

VIRTUAL PLATFORMS: FROM CONSUMER ELECTRONICS TO CRITICAL EMBEDDED SYSTEMS

Réda NOUACER

reda.nouacer@cea.fr

http://www.unisim-vp.org

SAFETY-CRITICAL AND TIME CRITICAL APPLICATIONS (COURTESY ROLF ERNST)

REQUIREMENTS (COURTESY ARNAUD GRASSET) **CHALLENGING NON-FUNCTIONAL**

Ceatech PREDICTABILITY OF COMPLEX ARCHITECTURES

Ceatech Traditional Design and Verification Flow

HW/SW development & testing in a pipeline

Ceatech VIRTUALIZED DESIGN AND VERIFICATION FLOW

- Fusion of HW/SW development & Testing be decreased TTM
- More competitive products
- Up to 6 months faster

EMBEDDED SYSTEM DESIGN FLOW

MODELING ABSTRACTION LEVELS

High Level System Model

Behavioral Model

Formal

JML, SysML

SDL

AADL

Exécutable Spécification ■UML
■AADL
■Matlab

Scilab

Modelica

Scade C/C++

SystemC ArchC

Timed Behavioral Model

Cycle Accurate Model

Approximated Timing

Annotation

Accurate Timing _C/C++ _SystemC _ArchC

SystemC VHDL

Verilog
AMS

SIMULATION WITHIN WORKFLOW

VIRTUAL TESTBED OF CONTROL LOOP

MODELING TRADEOFFS

Design/Decision criterion

- Level of detail/Precision/Representativeness
- Flexibility
- Speed
- Development cost
- Maintenance cost

Impacts/Implications of modeling/technological choices

- Speed impacts:
 - Amount of tests
 - Quality of product because time budget for testing is limited
- **■** Low Level of Detail implies:
 - High flexibility, high speed, low cost, low maintenance cost
 - But are key characteristics still captured? Is behavior still simulated?
 - Fortunately substitutes excel sheets by fast architectural exploration
- High Level of Detail implies:
 - → igh cost & maintenance cost
 - **Low** flexibility
 - Low speed

SIMULATION SCOPE

SIMULATION SCOPE – SIM2

User level: Application source code

Requires compiling target application using host compiler

SIMULATION SCOPE - SIM3

User Level: Application Binary

Requires an instruction set simulator

App. App. Real binary

OS/BSW OS/BSW
Bare Logical Model

SIMULATION SCOPE - SIM4

Full system:

Application + OS binary

- Requires an instruction set simulator
- Requires simulation of peripherals

High Level
System Model

Behavioral
Model

Timed
Behavioral
Model

Cycle Accurate
Model

SIMULATION SCOPE – SIM5

Full system of system:

Application + OS binary

- Requires an instruction set simulator
- **■** Requires simulation of peripherals
- Requires simulation of network adapters

High Level
System Model

Behavioral
Model

Timed
Behavioral
Model

Cycle Accurate
Model

Ceatech REASONS FOR DELAYS IN PROJECT SCHEDULE

SCHEDULE ADHERENCE

COMPARISON OF OVERALL MARKET AND VIRTUAL PROTOTYPING SOLUTION (VPS) USERS

COMPETITIVE ADVANTAGES

Cheaper and Simplified deployment

- dess logistical problems (no physical constraints, no time-sharing on the board)
- Easier injection of scenarios (nominal, faults)
- Easier and extended means for system observation (traces)

Design, share and reuse

- Design space exploration
- Golden/Reference model for HW/SW architects
- Anticipated integration problems detection

Early System Validation

- Global validation of system at model level
- Multi-level co-simulation {Matlab Simulink, Statemate Stateflow, VHDL-AMS, microcontrollers UNISIM-VP}

Automation of tests

- Shorter software updates to software validation cycles
- →ess hardware manipulations: Software engineer can spend time to increase quality and validation, not manipulation

WHAT IS BLOCKING?

- **■** Current offers are not adapted to embedded systems integrators
 - ■Target the semiconductor world (hardware prototyping and verification)
 - Few instrumentation capabilities for SW verification
 - → imited interoperability (models and tools)
 - Few catalogs / suppliers
- **■** Even if the scope is limited, there are still problems
 - Development time and high cost
 - Difficulties to support in-house maintenance and upgrades of VP
 - →ow ROI when product life cycle is short
 - Early availability of VP to maximize ROI
- No open-source solution that guarantees long term support to industrial

WHAT WE SUGGEST

- Creating a virtualization ecosystem suitable for system integrators and SMEs
- Sharing of development costs
- A participatory academic/industrial consortium?
 - To benefit to all stakeholders in the value chain
 - Reduce development costs of virtual platforms
 - Increase the availability of VPs
 - Influence the market of VPs
 - Will enable more R&D activities using/around virtual platforms

QUESTIONS?