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Dark Silicon Era 
 End of Dennard scaling & dark silicon 

 Power is the main limiting factor 

  

Hardware specialization & heterogeneity 

 Execute each workload on the most efficient hardware 

 

 What type of architectures needed for different application domains? 
 Many core? SIMD? Latency tolerant? … 
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Limitations of Existing Architectures 
CPUs: [1,2,3] 

◦ Low IPC for state-of-the-art systems 

◦ Single OOO core number of outstanding memory requests are limited 

◦ Synchronization overhead 

Throughput architectures[4,5,6,7] 
◦ Separate kernel executions are required for Bulk Synchronous Processing (BSP) 

◦ Control divergence due to asymmetric convergence  

◦ Memory divergence un-coalesced memory accesses are limited due to irregular memory accesses 
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GPUs Multicore Clusters Mini Clouds Clouds 



Cloud Computing & Data Centers 

 Increasingly more computation done in the cloud 

 NRDC report:  

        If worldwide data centers were a country, it   
       would be the 12th largest consumer of electricity. 

 

 Specialize data centers for energy efficiency 

 

What type of architectures needed for different 
application domains? 

 
Source: NRDC 
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Energy Crisis in Data Center 

[Source:NRDC] 
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Motivation for Accelerators 

Many datacenters execute the same tasks 
◦ Hardware can be customized for specific workloads 

◦ Especially for big data problems like Graph applications 

◦ Power and performance efficiency is needed 
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48 Hours a Minute 
YouTube 

24 Million  
Wikipedia Pages 

750 Million 
Facebook Users 

6 Billion  
Flickr Photos 

[From GraphLab] 



Graph Analytics 

 Model relationships between individual entities 

 

 Knowledge discovery and data mining 
  Extract actionable information from data. 

  

Many application areas: 
 Web, social networks, biological pathways, … 

 

Example applications: PageRank, Collaborative 
Filtering, Loopy Belief Propagation, Betweenness 
Centrality, … 
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Objectives 

 Identify the archtiectural requirements of energy-efficient execution of 
irregular graph applications. 

 

 Why focus on graph applications? 
  Increasing importance in emerging applications  

  Different than traditional grid-based HPC 

 Irregular data access & communication 
 Low data locality 
 Low computation-to-communication ratio 
 Dynamic/hard-to-predict work assignment  

J. Feo, “Graph Analytics in Big Data”, Int’l Conference for High Performance Computing, Networking, Storage and Analysis (SC) 2012.  
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Outline 
  

 Application Characteristics 

  

 Implementation Challenges and Customization Opportunities 

 

Experimental Results 
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Gather-Apply-Scatter (GAS) Model 
  

vg1 
vg2 

vg3 
vi vi 

Gather: 
Collect and 
accumulate data 
from the 
neighboring 
vertices and edges 
 

Apply: Perform the 
main computation 
for the input vertex 
using the Gather 
results. 
 

Scatter: Distribute the vertex 
data computed in Apply to 
neighbors. Determine 
whether to schedule the 
neighboring vertices for 
future execution 
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Example Application: PageRank 

 Vertex program executed for each vertex v 
sum = 0 
for each vertex u for which (u ➝ v) exists 

𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 
𝑟𝑎𝑛𝑘(𝑢)

𝑑𝑒𝑔𝑟𝑒𝑒 (𝑢)
 

𝑟𝑎𝑛𝑘𝑛𝑒𝑤 𝑣 =  
1 − 𝛼

|𝑉|
+ 𝛼 𝑠𝑢𝑚 

 if   𝑟𝑎𝑛𝑘𝑛𝑒𝑤 𝑣 − 𝑟𝑎𝑛𝑘 𝑣  > 𝜖 then 
 for each vertex w for which (v➝ w) exists 
  schedule w for future execution 

𝑟𝑎𝑛𝑘 𝑣 = 𝑟𝑎𝑛𝑘𝑛𝑒𝑤(𝑣) 
 

v 

u1 u2 u3 

u1 u2 
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v 

u1 u2 u3 

u1 u2 
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Asymmetric Convergence 
 Process all vertices in every iteration? 
 Easier to implement 
 Typically higher throughput due to more regularity 
 Unnecesary computation 
 e.g. Only 0.3% of the vertices need all 77 iterations 

 

 Process only “active” vertices? 
 Overhead to keep track of the active list  
 Harder to parallelize 
 Control divergence issues for SIMD  
 More work-efficient 
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 Jacobi iteration formula for PageRank: 

𝑟𝑘+1 𝑣 = 1 − 𝛼 + 𝛼  
𝑟𝑘(𝑢)

𝑑𝑒𝑔𝑟𝑒𝑒(𝑢)
(𝑢→𝑣)

 

 

 Synchronous: All vertices are updated simultaneously.  

 

Gauss-Seidel iteration formula for PageRank: 

𝑟𝑘+1 𝑣 = 1 − 𝛼 + 𝛼  
𝑟𝑘+1(𝑢)

𝑑𝑒𝑔𝑟𝑒𝑒(𝑢)
+ 

𝑢<𝑣
(𝑢→𝑣)

𝛼  
𝑟𝑘(𝑢)

𝑑𝑒𝑔𝑟𝑒𝑒(𝑢)
 

𝑢>𝑣
(𝑢→𝑣)

 

 

 Asynchronous: Updates to a vertex are visible to others in the same iteration. 

 

Synchronous vs. Asynchronous Execution 
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Synchronous vs. Asynchronous Execution 
 PageRank: Gauss-Seidel can converge ~2x faster than Gauss-Jordan  

 Concept generalized by GraphLab: 
  Synchronous: v’s data visible to neighbors in the next iteration 

  Asynchronous: v’s data visible to neighbors immediately in the same iteration 

 

 Sequential consistency: The result of any execution is the same as if the 
operations of all the processors were executed in some sequential order, and the 
operations of each individual processor appear in this sequence in the order 
specified by its program [Lamport, 1979]. 
 In short: Parallel execution corresponds to some sequential execution. 
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Convergence Behavior 
 Example: Simple graph coloring 

 Vertex program: Read the colors of all neighbors.  

   Choose a color different from all neighbors. 
 Sequential version is guaranteed to terminate. 

 Parallel execution without sequential consistency may not terminate 

17 

 Better convergence with sequential consistency for some iterative algorithms 

  Examples: Alternating Least Squares, Gibbs Sampling [Low, 2012] 
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Memory Access Bottlenecks 
 Typically, small amount of computation per vertex or edge. 

 

Unstructured graphs: Poor spatial and temporal locality 
  Access to the neighboring vertex/edge data likely to be a cache miss 
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v 

u1 u2 u3 

u1 u2 

12/23/2016 ENERGY EFFICIENT ARCHITECTURE FOR GRAPH ANALYTICS ACCELERATORS 



Vertex Degrees 
  Power law distribution for vertex degrees 
  A small percent of vertices are connected to most of the edges. 

 

Vertex-based partitioning likely to lead to load imbalances 

 

 

19 12/23/2016 ENERGY EFFICIENT ARCHITECTURE FOR GRAPH ANALYTICS ACCELERATORS 



Outline 
  

 Application Characteristics 

  

 Implementation Challenges and Customization Opportunities 

 

Experimental Results 
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Active Vertex Set Requirements 

 Storage in long-latency main memory with efficient caching 

 Latency tolerance mechanisms  

 High-throughput access mechanisms  

 Race-free simultaneous accesses without explicit locks 

 Asynchronous execution support 

21 

v 

u1 u2 u2 

Efficient hardware mechanisms needed for neighbor activation 
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Asynchronous Execution Support 
 Synchronous: All vertices logically executed simultaneously in an iteration 
  Read from last iteration’s data, write to next iteration’s data 

 Asynchronous: Vertices executed in a (logically) sequential order 
 Read from and write to the same data 

 

 Asynchronous execution with or without sequential consistency 

 Sequential consistency expensive to enforce in software 

22 

Hardware support for low-overhead race-free execution of many vertices simultaneously 
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Latency Tolerance Support 
 General-purpose OOO logic not necessary for graph-parallel execution 

 Basic idea: 

 Maintain a partial state for each vertex or edge processed  

  Non-blocking access to memory 

 Special mechanisms to guarantee race-free execution and sequential 
consistency. 
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Hardware support for efficient latency tolerance for graph parallelism. 
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Dynamic Load Balancing 
 Many vertices/edges processed simultaneously 

 Power-law distribution for vertex degrees  

Hardware resources should be utilized efficiently in different cases: 
 Many vertices with small degrees 

Few vertices with very large degrees  

 Control divergence issues for SIMD-style execution of vertices 

 e.g. When vertices assigned statically to GPU threads 

24 

Hardware support for dynamic scheduling of vertices and edges 
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Memory Subsystem Customization 
 Different access patterns per data structure 

 Examples:  
 Good spatial locality for adjacency list 

 Poor temporal/spatial locality for edge data 

 Special data structure for active list 
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Custom cache/buffer types and microarchitecture parameter set for each data type 
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Proposed Architecture 
Tens of vertices and hundreds of edges are processed simultaneously 

Dynamic load balancing, via keeping partial states for vertices  

A distributed synchronization unit to ensure sequential consistency 

Keeps an active list for not-yet-converged vertices 

An optimized memory subsystem for irregular memory accesses 
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Outline 
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 Implementation Challenges and Customization Opportunities 

 

Experimental Results 
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Benchmarks 

Applications 
   PageRank (PR) 

   Single Source Shortest Path (SSSP) 

   Stochastic Gradient Descent (SGD) 

   Loopy Belief Propagation (LBP) 

 

Datasets 
  PR & SSSP: 6 datasets from Snap and generated with Graph500 (up to 1B edges) 

  LBP: 3 images generated with GraphLab’s synthetic image generator (up to 18M edges) 

  SGD: 2 movie datasets from MovieLens (up to 10M edges)   
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Experimental Setup 
 Baseline CPU 
 2-socket 24-core IvyBridge Xeon with 30MB LLC and 132GB of main memory 

 Optimized software implementations in OpenMP/C++ 

 Running Average Power Limit (RAPL) to estimate energy 

 Projected DDR3 power (measured) to DDR4 power (in-house DDR4 model)  

 

 Proposed Accelerator 
 Performance: Cycle accurate SystemC model + DRAMSim2  

 Accelerator power and area: HLS + physical-aware logic synthesis with a 22nm industrial library 

 Cache power and area: CACTI models 

 DRAM power: in-house DDR4 model 
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Performance Comparison 
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Power Comparison 

 Accelerator power is dominated by DRAM power. Improvements would be ~10x higher without DRAM power 
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Current & Future Work 
Exploration of benefits of a template design compared to direct application 
specific implementations of aforementioned applications 

◦ Template approach proposed in this work outperforms direct HLS in terms of execution time 

◦ However, direct HLS approach can be more area efficient 

A heuristic for design space exploration 
◦ A two step optimization algorithm 

◦ First optimizes 𝑇𝑝𝑢𝑡/𝐴𝑟𝑒𝑎 

◦ Then, maximizes ∆𝑇𝑝𝑢𝑡 − 𝛼∆𝐴𝑟𝑒𝑎 
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Conclusions 
 A template architecture for graph-analytics is proposed 

   Latency tolerance for irregular accesses 

   Graph-parallel execution with sequential consistency   

   Asynchronous execution and active vertex set support 

  

 Synthesizable and cycle-accurate SystemC models 

  Different accelerators generated by plugging in app-specific functions 

 Template code size : 39K lines, user code size 43 lines for PageRank 

 

  Experiments with 22nm industrial libraries: 
  Performance comparable with a 24-core Xeon system (except SSSP) 

  Up to 65x less power 
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Thank you 

12/23/2016 ENERGY EFFICIENT ARCHITECTURE FOR GRAPH ANALYTICS ACCELERATORS 


