
Architecture for Energy Efficient Execution of
Graph Analytics Applications

SERIF YESIL †, M. MUSTAFA OZDAL †, OZCAN OZTURK†
†BILKENT UNIVERSITY, ANKARA, TURKEY

TAEMIN KIM *, ANDREY AYUPOV *, STEVEN M. BURNS *

*STRATEGIC CAD LABS, INTEL

Dark Silicon Era
 End of Dennard scaling & dark silicon

 Power is the main limiting factor

Hardware specialization & heterogeneity

 Execute each workload on the most efficient hardware

 What type of architectures needed for different application domains?
 Many core? SIMD? Latency tolerant? …

2 12/23/2016 ENERGY EFFICIENT ARCHITECTURE FOR GRAPH ANALYTICS ACCELERATORS

Limitations of Existing Architectures
CPUs: [1,2,3]

◦ Low IPC for state-of-the-art systems

◦ Single OOO core number of outstanding memory requests are limited

◦ Synchronization overhead

Throughput architectures[4,5,6,7]
◦ Separate kernel executions are required for Bulk Synchronous Processing (BSP)

◦ Control divergence due to asymmetric convergence

◦ Memory divergence un-coalesced memory accesses are limited due to irregular memory accesses

12/23/2016 3 ENERGY EFFICIENT ARCHITECTURE FOR GRAPH ANALYTICS ACCELERATORS

GPUs Multicore Clusters Mini Clouds Clouds

Cloud Computing & Data Centers

 Increasingly more computation done in the cloud

 NRDC report:

 If worldwide data centers were a country, it
 would be the 12th largest consumer of electricity.

 Specialize data centers for energy efficiency

What type of architectures needed for different
application domains?

Source: NRDC

4 12/23/2016 ENERGY EFFICIENT ARCHITECTURE FOR GRAPH ANALYTICS ACCELERATORS

Energy Crisis in Data Center

[Source:NRDC]

5 12/23/2016 ENERGY EFFICIENT ARCHITECTURE FOR GRAPH ANALYTICS ACCELERATORS

Motivation for Accelerators

Many datacenters execute the same tasks
◦ Hardware can be customized for specific workloads

◦ Especially for big data problems like Graph applications

◦ Power and performance efficiency is needed

12/23/2016 6 ENERGY EFFICIENT ARCHITECTURE FOR GRAPH ANALYTICS ACCELERATORS

48 Hours a Minute
YouTube

24 Million
Wikipedia Pages

750 Million
Facebook Users

6 Billion
Flickr Photos

[From GraphLab]

Graph Analytics

 Model relationships between individual entities

 Knowledge discovery and data mining
 Extract actionable information from data.

Many application areas:
 Web, social networks, biological pathways, …

Example applications: PageRank, Collaborative
Filtering, Loopy Belief Propagation, Betweenness
Centrality, …

7 12/23/2016 ENERGY EFFICIENT ARCHITECTURE FOR GRAPH ANALYTICS ACCELERATORS

Objectives

 Identify the archtiectural requirements of energy-efficient execution of
irregular graph applications.

 Why focus on graph applications?
 Increasing importance in emerging applications

 Different than traditional grid-based HPC

 Irregular data access & communication
 Low data locality
 Low computation-to-communication ratio
 Dynamic/hard-to-predict work assignment

J. Feo, “Graph Analytics in Big Data”, Int’l Conference for High Performance Computing, Networking, Storage and Analysis (SC) 2012.

8 12/23/2016 ENERGY EFFICIENT ARCHITECTURE FOR GRAPH ANALYTICS ACCELERATORS

Outline

 Application Characteristics

 Implementation Challenges and Customization Opportunities

Experimental Results

9 12/23/2016 ENERGY EFFICIENT ARCHITECTURE FOR GRAPH ANALYTICS ACCELERATORS

Gather-Apply-Scatter (GAS) Model

vg1
vg2

vg3
vi vi

Gather:
Collect and
accumulate data
from the
neighboring
vertices and edges

Apply: Perform the
main computation
for the input vertex
using the Gather
results.

Scatter: Distribute the vertex
data computed in Apply to
neighbors. Determine
whether to schedule the
neighboring vertices for
future execution

vgk

vg4

vs1
vs2

vs3
vi

vsj

vs4

12/23/2016 10 ENERGY EFFICIENT ARCHITECTURE FOR GRAPH ANALYTICS ACCELERATORS

Example Application: PageRank

 Vertex program executed for each vertex v
sum = 0
for each vertex u for which (u ➝ v) exists

𝑠𝑢𝑚 = 𝑠𝑢𝑚 +
𝑟𝑎𝑛𝑘(𝑢)

𝑑𝑒𝑔𝑟𝑒𝑒 (𝑢)

𝑟𝑎𝑛𝑘𝑛𝑒𝑤 𝑣 =
1 − 𝛼

|𝑉|
+ 𝛼 𝑠𝑢𝑚

 if 𝑟𝑎𝑛𝑘𝑛𝑒𝑤 𝑣 − 𝑟𝑎𝑛𝑘 𝑣 > 𝜖 then
 for each vertex w for which (v➝ w) exists
 schedule w for future execution

𝑟𝑎𝑛𝑘 𝑣 = 𝑟𝑎𝑛𝑘𝑛𝑒𝑤(𝑣)

v

u1 u2 u3

u1 u2

11 12/23/2016 ENERGY EFFICIENT ARCHITECTURE FOR GRAPH ANALYTICS ACCELERATORS

Example Application: PageRank

 Vertex program executed for each vertex v
sum = 0
for each vertex u for which (u ➝ v) exists

𝑠𝑢𝑚 = 𝑠𝑢𝑚 +
𝑟𝑎𝑛𝑘(𝑢)

𝑑𝑒𝑔𝑟𝑒𝑒 (𝑢)

𝑟𝑎𝑛𝑘𝑛𝑒𝑤 𝑣 =
1 − 𝛼

|𝑉|
+ 𝛼 𝑠𝑢𝑚

 if 𝑟𝑎𝑛𝑘𝑛𝑒𝑤 𝑣 − 𝑟𝑎𝑛𝑘 𝑣 > 𝜖 then
 for each vertex w for which (v➝ w) exists
 schedule w for future execution

𝑟𝑎𝑛𝑘 𝑣 = 𝑟𝑎𝑛𝑘𝑛𝑒𝑤(𝑣)

v

u1 u2 u3

u1 u2

12 12/23/2016 ENERGY EFFICIENT ARCHITECTURE FOR GRAPH ANALYTICS ACCELERATORS

 Vertex program executed for each vertex v
sum = 0
for each vertex u for which (u ➝ v) exists

𝑠𝑢𝑚 = 𝑠𝑢𝑚 +
𝑟𝑎𝑛𝑘(𝑢)

𝑑𝑒𝑔𝑟𝑒𝑒 (𝑢)

𝑟𝑎𝑛𝑘𝑛𝑒𝑤 𝑣 =
1 − 𝛼

|𝑉|
+ 𝛼 𝑠𝑢𝑚

 if 𝑟𝑎𝑛𝑘𝑛𝑒𝑤 𝑣 − 𝑟𝑎𝑛𝑘 𝑣 > 𝜖 then
 for each vertex w for which (v➝ w) exists
 schedule w for future execution

𝑟𝑎𝑛𝑘 𝑣 = 𝑟𝑎𝑛𝑘𝑛𝑒𝑤(𝑣)

Example Application: PageRank

v

u1 u2 u3

u1 u2

13 12/23/2016 ENERGY EFFICIENT ARCHITECTURE FOR GRAPH ANALYTICS ACCELERATORS

Asymmetric Convergence
 Process all vertices in every iteration?
 Easier to implement
 Typically higher throughput due to more regularity
 Unnecesary computation
 e.g. Only 0.3% of the vertices need all 77 iterations

 Process only “active” vertices?
 Overhead to keep track of the active list
 Harder to parallelize
 Control divergence issues for SIMD
 More work-efficient

14 12/23/2016 ENERGY EFFICIENT ARCHITECTURE FOR GRAPH ANALYTICS ACCELERATORS

 Jacobi iteration formula for PageRank:

𝑟𝑘+1 𝑣 = 1 − 𝛼 + 𝛼
𝑟𝑘(𝑢)

𝑑𝑒𝑔𝑟𝑒𝑒(𝑢)
(𝑢→𝑣)

 Synchronous: All vertices are updated simultaneously.

Gauss-Seidel iteration formula for PageRank:

𝑟𝑘+1 𝑣 = 1 − 𝛼 + 𝛼
𝑟𝑘+1(𝑢)

𝑑𝑒𝑔𝑟𝑒𝑒(𝑢)
+

𝑢<𝑣
(𝑢→𝑣)

𝛼
𝑟𝑘(𝑢)

𝑑𝑒𝑔𝑟𝑒𝑒(𝑢)

𝑢>𝑣
(𝑢→𝑣)

 Asynchronous: Updates to a vertex are visible to others in the same iteration.

Synchronous vs. Asynchronous Execution

15 12/23/2016 ENERGY EFFICIENT ARCHITECTURE FOR GRAPH ANALYTICS ACCELERATORS

Synchronous vs. Asynchronous Execution
 PageRank: Gauss-Seidel can converge ~2x faster than Gauss-Jordan

 Concept generalized by GraphLab:
 Synchronous: v’s data visible to neighbors in the next iteration

 Asynchronous: v’s data visible to neighbors immediately in the same iteration

 Sequential consistency: The result of any execution is the same as if the
operations of all the processors were executed in some sequential order, and the
operations of each individual processor appear in this sequence in the order
specified by its program [Lamport, 1979].
 In short: Parallel execution corresponds to some sequential execution.

16 12/23/2016 ENERGY EFFICIENT ARCHITECTURE FOR GRAPH ANALYTICS ACCELERATORS

Convergence Behavior
 Example: Simple graph coloring

 Vertex program: Read the colors of all neighbors.

 Choose a color different from all neighbors.
 Sequential version is guaranteed to terminate.

 Parallel execution without sequential consistency may not terminate

17

 Better convergence with sequential consistency for some iterative algorithms

 Examples: Alternating Least Squares, Gibbs Sampling [Low, 2012]

12/23/2016 ENERGY EFFICIENT ARCHITECTURE FOR GRAPH ANALYTICS ACCELERATORS

Memory Access Bottlenecks
 Typically, small amount of computation per vertex or edge.

Unstructured graphs: Poor spatial and temporal locality
 Access to the neighboring vertex/edge data likely to be a cache miss

18

v

u1 u2 u3

u1 u2

12/23/2016 ENERGY EFFICIENT ARCHITECTURE FOR GRAPH ANALYTICS ACCELERATORS

Vertex Degrees
 Power law distribution for vertex degrees
 A small percent of vertices are connected to most of the edges.

Vertex-based partitioning likely to lead to load imbalances

19 12/23/2016 ENERGY EFFICIENT ARCHITECTURE FOR GRAPH ANALYTICS ACCELERATORS

Outline

 Application Characteristics

 Implementation Challenges and Customization Opportunities

Experimental Results

20 12/23/2016 ENERGY EFFICIENT ARCHITECTURE FOR GRAPH ANALYTICS ACCELERATORS

Active Vertex Set Requirements

 Storage in long-latency main memory with efficient caching

 Latency tolerance mechanisms

 High-throughput access mechanisms

 Race-free simultaneous accesses without explicit locks

 Asynchronous execution support

21

v

u1 u2 u2

Efficient hardware mechanisms needed for neighbor activation

12/23/2016 ENERGY EFFICIENT ARCHITECTURE FOR GRAPH ANALYTICS ACCELERATORS

Asynchronous Execution Support
 Synchronous: All vertices logically executed simultaneously in an iteration
 Read from last iteration’s data, write to next iteration’s data

 Asynchronous: Vertices executed in a (logically) sequential order
 Read from and write to the same data

 Asynchronous execution with or without sequential consistency

 Sequential consistency expensive to enforce in software

22

Hardware support for low-overhead race-free execution of many vertices simultaneously

12/23/2016 ENERGY EFFICIENT ARCHITECTURE FOR GRAPH ANALYTICS ACCELERATORS

Latency Tolerance Support
 General-purpose OOO logic not necessary for graph-parallel execution

 Basic idea:

 Maintain a partial state for each vertex or edge processed

 Non-blocking access to memory

 Special mechanisms to guarantee race-free execution and sequential
consistency.

23

Hardware support for efficient latency tolerance for graph parallelism.

12/23/2016 ENERGY EFFICIENT ARCHITECTURE FOR GRAPH ANALYTICS ACCELERATORS

Dynamic Load Balancing
 Many vertices/edges processed simultaneously

 Power-law distribution for vertex degrees

Hardware resources should be utilized efficiently in different cases:
 Many vertices with small degrees

Few vertices with very large degrees

 Control divergence issues for SIMD-style execution of vertices

 e.g. When vertices assigned statically to GPU threads

24

Hardware support for dynamic scheduling of vertices and edges

12/23/2016 ENERGY EFFICIENT ARCHITECTURE FOR GRAPH ANALYTICS ACCELERATORS

Memory Subsystem Customization
 Different access patterns per data structure

 Examples:
 Good spatial locality for adjacency list

 Poor temporal/spatial locality for edge data

 Special data structure for active list

25

Custom cache/buffer types and microarchitecture parameter set for each data type

12/23/2016 ENERGY EFFICIENT ARCHITECTURE FOR GRAPH ANALYTICS ACCELERATORS

Proposed Architecture
Tens of vertices and hundreds of edges are processed simultaneously

Dynamic load balancing, via keeping partial states for vertices

A distributed synchronization unit to ensure sequential consistency

Keeps an active list for not-yet-converged vertices

An optimized memory subsystem for irregular memory accesses

12/23/2016 26 ENERGY EFFICIENT ARCHITECTURE FOR GRAPH ANALYTICS ACCELERATORS

Outline

 Application Characteristics

 Implementation Challenges and Customization Opportunities

Experimental Results

27 12/23/2016 ENERGY EFFICIENT ARCHITECTURE FOR GRAPH ANALYTICS ACCELERATORS

Benchmarks

Applications
 PageRank (PR)

 Single Source Shortest Path (SSSP)

 Stochastic Gradient Descent (SGD)

 Loopy Belief Propagation (LBP)

Datasets
 PR & SSSP: 6 datasets from Snap and generated with Graph500 (up to 1B edges)

 LBP: 3 images generated with GraphLab’s synthetic image generator (up to 18M edges)

 SGD: 2 movie datasets from MovieLens (up to 10M edges)

28 12/23/2016 ENERGY EFFICIENT ARCHITECTURE FOR GRAPH ANALYTICS ACCELERATORS

Experimental Setup
 Baseline CPU
 2-socket 24-core IvyBridge Xeon with 30MB LLC and 132GB of main memory

 Optimized software implementations in OpenMP/C++

 Running Average Power Limit (RAPL) to estimate energy

 Projected DDR3 power (measured) to DDR4 power (in-house DDR4 model)

 Proposed Accelerator
 Performance: Cycle accurate SystemC model + DRAMSim2

 Accelerator power and area: HLS + physical-aware logic synthesis with a 22nm industrial library

 Cache power and area: CACTI models

 DRAM power: in-house DDR4 model

29 12/23/2016 ENERGY EFFICIENT ARCHITECTURE FOR GRAPH ANALYTICS ACCELERATORS

Performance Comparison

30

0

1

2

3

4

5

Accelerator Speed Up

24-cores 12-cores

12/23/2016 ENERGY EFFICIENT ARCHITECTURE FOR GRAPH ANALYTICS ACCELERATORS

Power Comparison

 Accelerator power is dominated by DRAM power. Improvements would be ~10x higher without DRAM power

31

0

10

20

30

40

50

60

70

CPU Power / ACC Power

24-cores 12-cores

12/23/2016 ENERGY EFFICIENT ARCHITECTURE FOR GRAPH ANALYTICS ACCELERATORS

Current & Future Work
Exploration of benefits of a template design compared to direct application
specific implementations of aforementioned applications

◦ Template approach proposed in this work outperforms direct HLS in terms of execution time

◦ However, direct HLS approach can be more area efficient

A heuristic for design space exploration
◦ A two step optimization algorithm

◦ First optimizes 𝑇𝑝𝑢𝑡/𝐴𝑟𝑒𝑎

◦ Then, maximizes ∆𝑇𝑝𝑢𝑡 − 𝛼∆𝐴𝑟𝑒𝑎

12/23/2016 32 ENERGY EFFICIENT ARCHITECTURE FOR GRAPH ANALYTICS ACCELERATORS

Conclusions
 A template architecture for graph-analytics is proposed

 Latency tolerance for irregular accesses

 Graph-parallel execution with sequential consistency

 Asynchronous execution and active vertex set support

 Synthesizable and cycle-accurate SystemC models

 Different accelerators generated by plugging in app-specific functions

 Template code size : 39K lines, user code size 43 lines for PageRank

 Experiments with 22nm industrial libraries:
 Performance comparable with a 24-core Xeon system (except SSSP)

 Up to 65x less power

33 12/23/2016 ENERGY EFFICIENT ARCHITECTURE FOR GRAPH ANALYTICS ACCELERATORS

34

Thank you

12/23/2016 ENERGY EFFICIENT ARCHITECTURE FOR GRAPH ANALYTICS ACCELERATORS

