

IoT Workshop
Building IoT application using open source tools

13/05/2017
TWESD’17, Monastir, Tunisia.

IoT Workshop
Building IoT application using open source tools

Building IoT application using open source tools

Introduction
In this tutorial, users will be guided to create a connected light using a Raspberry Pi. The connected

light can be controlled and monitored from a mobile, tablet and desktop.

Software and hardware setup

Python
Python is a high-level, interpreted, interactive and object-oriented scripting language. Python is

designed to be highly readable. It uses English keywords frequently where as other languages use

punctuation, and it has fewer syntactical constructions than other languages.

For more details about this language: www.tutorialspoint.com/python/python_overview.htm

Python installation for windows
If you don’t already have a copy of Python installed on your computer, you will need to open up your

Internet browser and go to the Python download page (https://www.python.org/downloads/).

Now that you are on the download page, select which of the software builds you would like to
download. For the purposes of this workshop we will use the most up to date 2.x version available
(Python 2.7.13).

Once you have downloaded the Python MSI, simply navigate to the download location on your
computer, double clicking the file and pressing Run when the dialog box pops up. If you are the only
person who uses your computer, simply leave the “Install for all users” option selected. If you have
multiple accounts on your PC and don’t want to install it across all accounts, select the “Install just
for me” option then press “Next.”

If you want to change the install location, feel free to do so; however, it is best to leave it as is and
simply select next.

Scroll down in the window and find the “Add Python.exe to Path” and click on the small red “x.”
Choose the “Will be installed on local hard drive” option then press “Next.”

Now that you have completed the installation process, click on “Finish.”

Once you have successfully installed Python, it is time to add it to the System Path Variable. This will
allow Python to run scripts on your computer without any conflicts of problems. Begin by opening
the start menu and typing in “environment” and select the option called “Edit the system
environment variables.”

When the “System Properties” window appears, click on “Environment Variables…”

Once you have the “Environment Variables” window open, direct your focus to the bottom half. You
will notice that it controls all the “System Variables” rather than just this associated with your user.
Add the following “C:\Python27\;C:\Python27\Scripts;” to ‘PATH’ variable.

Now that we have successfully completed the installation process and added our “Environment
Variable,” you are ready to check is python is correctly installed and works fine. Let’s begin by
opening a command line window and typing “python”. You have now activated the command line for
python, to exit just type the “exit()”.

Pip module
pip is a package management system used to install and manage software packages written in

Python. Many packages can be found in the Python Package Index (PyPI).

Python 2.7.9 and later (on the python2 series), and Python 3.4 and later include pip (pip3 for Python

3) by default. pip is a recursive acronym that can stand for either "Pip Installs Packages" or "Pip

Installs Python". In case where pip is not installed, securely download get-pip.py

(https://bootstrap.pypa.io/get-pip.py). And then run the following:

python get-pip.py

Paho-mqtt module
This module contains the source code for the Eclipse Paho MQTT Python client library, which

implements versions 3.1 and 3.1.1 of the MQTT protocol.

This code provides a client class which enable applications to connect to an MQTT broker to publish

messages, and to subscribe to topics and receive published messages. It also provides some helper

functions to make publishing one off messages to an MQTT server very straightforward.

It supports Python 2.7 or 3.x, with limited support for Python 2.6.

The MQTT protocol is a machine-to-machine (M2M)/”Internet of Things” connectivity protocol.

Designed as an extremely lightweight publish/subscribe messaging transport, it is useful for

connections with remote locations where a small code footprint is required and/or network

bandwidth is at a premium.

Paho is an Eclipse Foundation project.

The latest stable version is available in the Python Package Index (PyPi) and can be installed using:

pip install paho-mqtt

Raspberry Pi
The Raspberry Pi is a series of small single-board computers developed in the United Kingdom by the

Raspberry Pi Foundation to promote the teaching of basic computer science in schools and in

developing countries. The original model became far more popular than anticipated, selling outside

of its target market for uses such as robotics. Peripherals (including keyboards, mice and cases) are

not included with the Raspberry Pi. Some accessories however have been included in several official

and unofficial bundles.

According to the Raspberry Pi Foundation, over 5 million Raspberry Pis have been sold before

February 2015, making it the best-selling British computer. By November 2016 they had sold 11

million units.

Tutorial

Hardware
The following hardware is needed for this tutorial:

- Raspberry Pi connected to the Internet, either via ethernet (Model B) or via WiFi using a

compatible WiFi USB dongle,

- Led,

- 10K Ohm resistor,

- MicroSD card (Class 10),

- Power supply,

- Breadboard,

- Male/male jumper wires,

- Pin cobbler,

- Ribbon cable.

Software
The Raspberry Pi is programmed using a compatible GNU/Linux distribution. This software can be

installed from the raw images ready for download from the official Raspberry P

(https://www.raspberrypi.org/downloads/

a generation tool such as Buildroot

Wiring schematic
This schema represents the led and the

Code
Create a new file named “light.py” using a classic text editor.

umper wires,

The Raspberry Pi is programmed using a compatible GNU/Linux distribution. This software can be

from the raw images ready for download from the official Raspberry P

https://www.raspberrypi.org/downloads/), or by compiling a custom Linux image from scratch using

Buildroot (https://buildroot.uclibc.org/).

and the resistor setup.

Create a new file named “light.py” using a classic text editor.

The Raspberry Pi is programmed using a compatible GNU/Linux distribution. This software can be

from the raw images ready for download from the official Raspberry Pi website

, or by compiling a custom Linux image from scratch using

Imports
In order to use the Paho module and command the Raspberry Pi GPIO (for led control), these
modules are imported:

import paho.mqtt.client as paho
import RPi.GPIO as GPIO

Global variables
Some variables shall be defined to let the Raspberry Pi connect to MQTT broker:

device topics
base_topic = '<your_name_goes_here>/light/'
command_topic = base_topic + 'command'
status_topic = base_topic + 'status'
command_on = "on"
command_off = "off"

device and broker names
random_client_id = '<my_id>' # set a random client_id (max 23 char)
broker_address = "iot.eclipse.org"

Led Pin number
ledPin = 7

GPIO setup
Set GPIO mode to BOARD and set pin mode for the led pin. This will set the pin numbering to
correspond to the wiring schematic:

Led init
def LedInit():
 GPIO.setmode(GPIO.BOARD) # use P1 header pin numbering convention
 GPIO.setup(ledPin, GPIO.OUT) # LED pin set as output
 GPIO.output(ledPin, GPIO.LOW)

Led power
def LedPower(led_on):
 if led_on:
 GPIO.output(ledPin, GPIO.HIGH)
 else:
 GPIO.output(ledPin, GPIO.LOW)

MQTT callbacks
When the Raspberry Pi is connected to the remote MQTT broker, subscription to specific topics is
performed through the on_connect function.
When a user sends a device command using any MQTT client, a message is published to the topic
<YOUR-NAME>/light/command and it's received from the Raspberry Pi through the on_message
function.
It is also possible to add further treatment for each topic subscription using the on_subscribe
function.

connection event callback
def on_connect(client, data, flags, rc):
 print('Connected, rc: ' + str(rc))
 client.subscribe(command_topic, 0)

subscription event callabck
def on_subscribe(client, userdata, mid, gqos):
 print('Subscribed: ' + str(mid))

received message event callback
def on_message(client, obj, msg):
 print "message received: topic = {}, payload = {}".format(msg.topic,
msg.payload)
 # parse received message
 topic = msg.topic
 in_payload = msg.payload
 # check message topic
 if topic == command_topic:
 # check the command property value
 if in_payload == command_on:
 print "turn on room light"
 LedPower(True)
 elif in_payload == command_off:
 print "turn off room light"
 LedPower(False)
 else:
 print "unhandled command: {}".format(in_payload)
 # confirm changes to broker
 if (in_payload == command_on) or (in_payload == command_off):
 out_payload = in_payload
 print "send back status: {}".format(out_payload)
 client.publish(status_topic, out_payload)
 else:
 print "unhandled topic: {}".format(topic)

Main function

-- #
Main function #
-- #
if __name__ == "__main__":
 # LED init
 LedInit()

 # create the MQTT client
 client = paho.Client(client_id=random_client_id, protocol=paho.MQTTv31)

 # assign event callbacks
 client.on_message = on_message
 client.on_connect = on_connect
 client.on_subscribe = on_subscribe

 # client connection
 client.connect(broker_address)

 # Continue the network loop, exit when an error occurs
 client.loop_forever()

