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Introduction générale 

 
 1-Motivations  

Les prévisions stratégiques d'ITRS (International Technology Roadmap for Semiconductors) 

annoncent que 70% des systèmes mono-puce ( SoC pour "System On Chip" en anglais) 

comporteront au moins un processeur embarqué à partir de l’année 2005 [1]. Cette tendance semble 

non seulement se confirmer mais se renforcer : les SOCs contiendront plusieurs processeurs dans le 

cas d'applications telles que les terminaux mobiles, vidéos, réseaux de communication, traitement 

de signal, capteurs, etc. De plus, ces puces contiendront des éléments non digitaux (par ex. 

analogique ou RF) et des mécanismes de communication très sophistiqués. Le développement de 

produits électroniques de haute performance, de faible coût, destinés au grand public, et dotés de 

fonctions intelligentes a obligé l’industrie des semi-conducteurs à intégrer toutes les ressources sur 

une seule puce afin de réduire les coûts de production. Il est donc crucial de maîtriser la conception 

de tels systèmes tout en respectant les contraintes de mise sur le marché et les objectifs de qualité. 

En plus, le modèle de synchronisation des futurs systèmes sur puce sera probablement de 

type « Globalement Asynchrone Localement Synchrone » (GALS) avec la possibilité d’utiliser 

plusieurs domaines isochrones (phases et domaines d’horloge différents)[2].  

Cette augmentation de la capacité et de la complexité des  systèmes mono-puce a stimulé les 

chercheurs pour concevoir de nouvelles plates-formes d’interconnexion fiable, à énergie réduite et 

à rendement élevé, baptisés réseaux sur puce (NOC pour "Network On Chip" en anglais), afin de 

remédier aux problèmes de communication générés par les anciennes architectures 

d’interconnexion (les bus).  

L’objectif essentiel de la conception des NOCs est de limiter l’espace de conception tout en 

respectant les contraintes de mise sur le marché et les objectifs de qualité, et d’assurer  

l’interfaçage entre l’espace de conception de l’application et l’implémentation[3].  

Les réseaux sur puces semblent être une solution appropriée pour gérer la communication 

entre les ressources(Processeur, DSP, IP, ASIP, etc.…). La difficulté de la conception d’un NOC 

réside dans un compromis entre une Qualité de Service (QoS) optimale, une bande passante 

élevée, une latence faible, une flexibilité, une extensibilité d’utilisation importantes, et une 

possibilité de réutilisation de la conception, tout en limitant la consommation d’énergie et de 

surface dans la puce. 
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2- Contributions 

Dans ce mémoire nous proposons un modèle de réseau sur puce basé sur une topologie 

en papillon à arbre élargi. Ce réseau interconnecte seize ressources. Une charge aléatoire 

uniformément répartie a été appliquée dans le réseau. Nous avons opté pour le simulateur 

NS-2 afin d’évaluer notre modèle. Nous avons pu implémenter toutes les composantes dans 

le simulateur choisi. Des études comparatives ont été réalisées entre deux techniques de 

routage pour le modèle proposé d’une part, et entre le réseaux BFT-NOC et Grille2D d’autre 

part. Plusieurs paramètres ont été explorés dans les simulations, à savoir la bande passante 

maximale, la technique de routage, la stratégie de mémorisation et le contrôle des 

performances. 

 

3- Organisation du mémoire 

Le chapitre 1 étudie les paramètres technologiques indispensables à la conception d’un 

réseau sur puce, et explore les réalisations faites dans cet axe de recherche, avec une analyse 

détaillée de la topologie, de la stratégie de mémorisation adoptée, des techniques de routage  

et de commutation utilisées, ainsi que du paquetage de données pour chaque réseau présenté. 

Le chapitre 2 présente le simulateur NS-2 choisi pour évaluer notre modèle baptisé 

BFT-NOC. Nous détaillons les tâches à entreprendre afin d’implémenter et de simuler un 

réseau sur puce. 

Les chapitres 3 et 4 développent en détail l’architecture du modèle BFT-NOC. 

L’implémentation de notre réseau dans le simulateur NS-2 est faite en trois phases. On 

commence par l’implémentation de la topologie. Dans la deuxième phase nous détaillons la 

gestion des communications inter-ressources, composée du générateur de trafic du réseau, 

ainsi que l’algorithme adopté pour le choix des ressources. La dernière phase renferme des 

modules implémentés en vue d’évaluer notre modèle, entre autres les stratégies de routage, 

le  moniteur  de la file d’attente, et l’analyseur de la bande passante. 

Le chapitre 5 analyse les performances réelles du modèle BFT-NOC, que l'on a pu 

prédire grâce à une modélisation complète précise. Ces performances concernent des critères 

quantitatifs et qualitatifs minimaux que doit atteindre un réseau sur puce telle ques : la bande 

passante maximale, la latence, la fiabilité, la flexibilité, la consommation  et la surface du 

réseau dans la puce. 
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La dernière partie évoque les extensions possibles de BFT-NOC, plus précisément au 

niveau du coût élevé de l’utilisation des protocoles IP (Internet Protocol) et UDP (User 

Datagram Protocol) pour la transmission des données à travers le réseau sur puce, ainsi que 

les problèmes liés aux techniques de routage et de commutation utilisées.     
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Chapitre 1.  

Les réseaux sur puce   

1.1 Introduction 
Conduis par l’évolution phénoménale de la technologie submicronique[4], les futurs   

systèmes sur puce (SOC) utilisent des billions de transistors et intègrent des centaines de 

ressources sur une simple puce.  

La conception d’une interconnexion inter-ressources fiable, à énergie réduite et à 

rendement élevé, s’avère un goulot d’étranglement dans le flot de conception des SOCs. 

Actuellement, ces communications sont assurées par les bus dans la conception des SOCs, ces 

moyens de communication sont limités en terme de débit et consommation d’énergie[5]. Les 

nouvelles générations des SOCs nécessitent une nouvelle architecture des communications inter-

ressources offrant plusieurs avantages tels que :  la flexibilité, la scalabilité, la bande passante, le 

débit garanti, et permettant de mieux contrôler les propriétés physiques (surface, bande passante, 

délais d’interconnexion,  interférences et bruits …) de ces plates-formes.  

 

Ce nouveau paradigme de conception des SoCs, baptisé  réseau sur puce  (Network On 

Chip appelé aussi NOC), offre beoucoups solutions pour plusieurs problèmes  

d'interconnexion[6]. Une architecture de communication à haute performance doit en effet :  

- être polyvalente, c’est à dire supporter des flux de données multiples générés par les 

mêmes ressources. 

- Garantir l’intégrité des données, le contrôle de flux, de séquencement, et de la correction 

d’erreurs de transmission .  

-Offrir des performances quantitatives et qualitatives très élevées (haut débit, faible latence 

et une consommation minimale d’énergie). 

- Être extensible, flexible et reprogrammable. 

- Permettre la réutilisation des ressources, des fonctionnalités de systèmes et de la 

conception. 
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1.2 Architecture générale des réseaux sur puce  

1.2.1 Directives de conception 
La conception d’un réseau  sur puce est basée sur des paramètres technologiques 

indispensables pour réaliser une architecture d’interconnexion fiable, flexible et à énergie réduite. 

Cette plate-forme favorise la conception de systèmes sur puces à haute performance.    

• L’architecture: elle devrait utiliser convenablement les ressources (Processeurs, 

DSPs, Ips, Mémoires, routeurs, interfaces-réseaux, fils d’interconnexion) disponibles sur la 

puce. Les signaux de commande n'ont pas besoin d'être acheminés en série avec les 

données, puisqu’ils peuvent être exécutés dans des fils dédiés aux commandes. 

L'implantation des mémoires tampons doit être limitée en terme de taille, afin de réduire la 

consommation de surface et d'énergie.  

• Le paquetage de données : le système sur puce renferme plusieurs ressources 

(Processeur, DSP, IP, Mémoires, etc.…) appelées aussi nœuds qui sont  interconnectés 

entre eux par un réseau sur puce. Le trafic sur le réseau est géré par des transactions entre 

ces nœuds qui génèrent des données découpées en séquences de bits de taille fixe ou 

variable appelées paquets. Par conséquent, la performance de la communication dans la 

puce n’est pas déterminée seulement par les aspects physiques du réseau (délais 

d’interconnexion, interférences), mais dépendent également du paquetage de données sur le 

réseau.   

• Les techniques de routage et de commutation: L’acheminement des données  sur la 

puce est assuré par des techniques de routage et de commutation. Ces techniques sont 

conçues de façon optimisée afin de minimiser l'utilisation substantielle de mémoire tampon 

sur la puce. L'état du réseau (contrôle de flux, congestion, intégrité de données) est contrôlé 

par des signaux dédiés aux commandes.  

1.2.2 Catégories des réseaux sur puce  : 
Cette nouvelle architecture de communication  est classée en deux catégories : 

- Les réseaux directs : tous les nœuds sont interconnectés entre eux via des interfaces-

réseaux.  La ressource et le routeur  sont co-implantés, par conséquent l’acheminement des données 

(routage et arbitrage) est assuré au niveau du nœud.  
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- Les réseaux indirects : les nœuds sont interconnectés par un ou plusieurs routeurs 

intermédiaires assurant l’acheminement des données à travers le réseau. En plus, si on adopte une 

ressource par routeur, ce dernier peut être soit implanté dans le nœud, soit conçu en dehors.  

1.2.3 La gestion des Communications  
Les communications entre les ressources dans la puce sont assurées par des messages 

passants ou mémoires partagées.   

- Communication via messages passants  : l’échange de données entre les nœuds est assuré 

par des commandes (telles qu’envoyer() ou recevoir()) exécutées explicitement par des APIs 

(Application Program Interface). Ce mécanisme requière des protocoles spéciaux de transmission, 

ce qui induit l’augmentation du temps de communication. 

- Communication via mémoires partagées : l’échange des données est assuré implicitement 

par l’accès partagé et concurrentiel aux mémoires. Par conséquent, cette approche a été largement 

utilisée dans la conception des systèmes sur puce à haute performance[7]. 

1.2.4 Caractéristiques  des NOCs :  
Cette partie présente une description détaillée des caractéristiques des NOCs, nous 

définissons quelques paramètres technologiques indispensables pour la conception d’un réseau sur 

puce, tels que la topologie, les fils d’interconnexion, les files d’attentes, le paquetage des données et 

techniques de routage et de commutation. 

1.2.4.1 La topologie 
C’est un graphe permettant l’interconnexion des différents nœuds, il est régulier si sa 

topologie correspond à une structure mathématique, sinon il est irrégulier. Les paramètres 

caractérisant une topologie sont : 

- le diamètre : le nombre maximal d'arêtes entre deux ressources. 

- Le débit de bissection : le nombre minimal de liens reliant deux moitiés du graphe. 

- Le degré : le degré maximal des routeurs  

- Le coût marginal : le nombre de routeurs par ressource. 

Les différentes topologies adoptées pour la conception des NOCs sont : 

- Les topologies régulières : graphe linéaire(grille 1D), en anneau, grille 2D, anneau 2D, 

cube 2D, arbre binaire, arbre élargi, papillon, papillon en arbre élargi (figure 1)  

- Les topologies irrégulières : (figure 1) 
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1.2.4.2 Fils d’interconnexion (wire) 
 

L’interconnexion des ressources est assurée par des fils. Le nombre de fils est déterminé en 

fonction des techniques de commutation et de routage utilisées par le réseau sur puce.  Pour une 

technologie d’intégration de 0.13µm avec 8 couches de métal, la taille du fil varie entre 0.30µm et  

0.50µm. En outre, un commutateur de surface 100µm x 100µm peut accommoder plusieurs 

centaines de fils dans plusieurs directions. Par conséquent, le coût d’ajouter plusieurs 

fonctionnalités de routage diminue quand le processus d’intégration évolue[8].      

1.2.4.3 File d’attente 
La limitation des fils ; en terme de gestion de conflits et de débit, est compensée par 

l’utilisation de files d’attentes appelées aussi mémoires tampons. Elles fournissent des espaces de 

stockage temporaire pour gérer les conflits inter-nœuds d’une part, et le dépassement de la bande 

passante maximale d’autre part. L’implantation de ces mémoires tampons influe sur la 

consommation d’énergie et sur la surface de la puce, ce qui induit un coût d’implémentation 

relativement important. Par conséquent, la taille de ces mémoires tampons est un facteur limitant 

dans la conception des réseaux sur puces.     

1.2.4.4 Paquetage des données 
Les données échangées entre les nœuds sont fragmentées en paquets, ces derniers 

dépendent des protocoles adoptés dans la conception des NOCs. Généralement, un paquet est 

composé de trois parties : 

- Un en-tête : adresse source, adresse destination, codification de l’opération(lecture, 

écriture, commande, …), longueur de données, etc.…. 

- Un message : la donnée à échanger. 

- Une queue : des données de vérification et de correction d’erreurs de transmission. 

 
a) Les sources de données  
Les paquets circulant à travers le réseau proviennent de  plusieurs sources, ces paquets  

peuvent être classés en quatre catégories :  

- Paquet_requête_mémoire : demande d’accès à la mémoire  pour chercher des données 

(opération de lecture, adresse destination=id_mémoire, adresse source=id_cache, 

généralement pas de données). 
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- Paquet_réponse_mémoire : les données fournies par la mémoire (adresse destination 

=id_cache, adresse source= id_mémoire, message= données lues). 

- Paquet_M.A.J_mémoire : réécriture des données dans la mémoire (opération d’écriture, 

adresse destination=id_mémoire, adresse source=id_cache, message= données à mettre à 

jour). 

- Paquet_entrée/sortie : ce paquet est utilisé pour les opérations d’entrée /sortie (opération 

E/S, adresse destination=id_noeud, message= données à entrer/sortir). 

b) Catégories de paquets 

La section précédente montre que la plupart des  paquets parcourant le réseau sont 

acheminés entre les mémoires et les caches, à l’exception des paquets d’entrées/sorties. Ces 

paquets sont générés par des sources différentes. On distingue deux catégories de paquets : 

- Paquets courts : ce sont des paquets sans données, constitués d’un en-tête et d’une 

queue, l’information est décodée à partir de l’en-tête (ex. demande d’accès à une 

mémoire).  

- Paquets longs : ce sont des paquets avec données, telle que la réécriture dans la mémoire. 

Généralement la taille des données est inférieure ou égale à la capacité d’un bloc de 

cache.  

   Techniques de routage et de commutation 

a) Routage  

Il s’agit de l’acheminement des paquets dans le réseau via des routeurs, qui sont chargés de 

véhiculer des paquets en vue de rejoindre la destination dans un délai minimum. Plusieurs 

techniques de routage sont utilisées dans la conception des réseaux sur puce : 

- le routage déterministe : le chemin est déterminé seulement par les emplacements de la 

source et de la destination. 

- Le routage arithmétique : l’adresse destination du paquet entrant est comparée à 

l’adresse du routeur, en fonction de laquelle le paquet sera acheminé(routage relatif). 

- Routage de source (source routing) : le chemin est déterminé par la source, l’entête 

renferme les adresses des routeurs utilisés. Au passage du paquet, chaque routeur décolle 

son adresse. 

- Routage adaptatif : le chemin est géré par les routeurs,  pour faire face à l’indisponibilité 

des ressources (liens, routeurs). 
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- Routage distribué : le routeur dispose d’une table de routage reconfigurable 

dynamiquement . 

b) Commutation  
Il s’agit d’un traitement effectué sur le paquet dans le nœud avant de l’acheminer au nœud 

suivant. Plusieurs techniques de commutation sont envisageables : 

- commutation par mémorisation puis transfert (store-and-forward switching) :le paquet 

doit être complètement mémorisé dans le nœud, afin de l’acheminer au nœud suivant. 

- Commutation par découpage (cut-through switching) :le paquet est découpé en 

fragments acheminés à travers le réseau, le paquet peut être expédié à la prochaine étape 

avant qu’il ne soit complètement reçu  par le nœud actuel. 

- Commutation virtuelle par découpage (virtual cut-through switching) : idem que la 

dernière technique citée, à l’exception du fait que le paquet est totalement mémorisé dans 

le nœud en cas de blocage du fragment renfermant l’entête dû à la congestion du réseau.    

- Commutation de trou de ver (wormhole switching) : les fragments du paquet suivent le 

canal réservé par le fragment entête, la queue résilie cette réservation. Cependant tous les 

fragments sont mémorisés dans les nœuds intermédiaires en cas de blocage du fragment 

renfermant l’entête dû à la congestion du réseau. 

 

c) Problèmes liés aux techniques de commutation et de routage: 

Nous présentons dans cette section les problèmes liés à l’utilisation des techniques de 

commutation et de routage qui peuvent se manifester au cours de la conception d’un réseau sur 

puce. 

- Blocage (deadlock) : un ou plusieurs paquets peuvent se bloquer mutuellement, en outre 

ils attendent des ressources qui ne seront jamais disponibles. 

- Diffusion éternelle (livelock) :le paquet circule éternellement à travers le réseau sans 

rejoindre sa destination, ce qui induit une saturation du réseau. Pour remédier à ce 

problème, il faut instaurer un compteur au niveau de l’entête du paquet renfermant le 

nombre maximal de routeurs traversés par le paquet, ce compteur est décrémenté au 

passage par chaque routeur.  Le paquet est détruit lorsqu’il ne rejoint pas sa destination. 
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1.3 Etude exhaustive des recherches relatives au thème réseau sur 
puce 

Cette partie présente les recherches relatives au  réseau sur puce. Nous avons choisi des 

exemples provenant d’horizons très variés pour montrer la polyvalence et l’évolution de cette 

technologie. On s’est intéressé essentiellement à l’architecture générale des réseaux existants, 

ainsi qu’au  paquetage des données et aux techniques de routage et de commutation adoptées.   

1.3.1  SPIN (Scalable Programmable Integrated Network)  
 

C’est un réseau d’interconnexion à commutation de paquets pour systèmes intégrés sur 

puce développé au LIP6[9]. Ce réseau est basé sur une topologie dite d’arbre quaternaire 

élargi( Fat Tree), cette topologie a les avantages suivants : le nombre maximal de liens entre 

les ressources est raisonnable (il est égal à 2*log4(n) avec n le nombre de niveaux), en plus 

elle est extensible, hiérarchique et utilise un petit nombre de routeurs pour un nombre donné 

de ressources. Les informations qui circulent sur le réseau SPIN sont des paquets. Un paquet 

SPIN est une séquence de fragments de 36bits, le premier fragment possède un marqueur de 

début de paquet et le dernier fragment renferme le marqueur de fin de paquet.  La technique de 

routage utilisée est distribuée. Il en résulte que chaque routeur achemine les paquets sans 

l’intervention d’une synchronisation centrale. La technique de commutation utilisée est de 

type Wormhole pour limiter la latence. Le réseau SPIN (figure 3) fournit un mécanisme de 

communication dynamique entre les différents composants connectés dans le système. De 

plus, la bande passante croît linéairement avec le nombre de processeurs intégrés. 

L’implantation de ce réseau a soulevé des problèmes tels que la présence d’interblocages et la 

difficulté de la gestion des ressources autour du réseau. Pour remédier à ces problèmes, des 

Wrappers  ont été conçus pour fournir aux ressources des interfaces de communication 

respectant le standard VCI (Virtual Component Interface) [10].  
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Figure 3: le réseau SPIN 

 

1.3.2  Les réseaux orthogonaux  
Ces réseaux sont interconnectés en grille ou en tore multidimensionnel. Un réseau direct en 

grille 2D a été proposé par Dally [11]. Ce modèle est basé sur une topologie qui interconnecte 

tous les processeurs entre eux directement (figure 4). Les fonctionnalités  de routage, d’arbitrage 

et de paquetage de données sont réalisées indépendamment au niveau de chaque nœud. Les 

données échangées sont découpées en fragments de 294bits dont 38bits sont des données de 

contrôle (le type du paquet, la taille de la donnée, le numéro du canal virtuel, le chemin, 

l’indicateur de service). Le routeur utilise l’algorithme de source déterministe.  La commutation 

des données est faite via des canaux virtuels pour limiter la latence, en plus ces données sont 

mémorisées dans des files d’attentes en entrée. Le processeur et le routeur sont co-implantés dans 

le même nœud. Les interfaces réseaux sont localisées  aux quatre périphéries de chaque nœud . 

Ce réseau a des avantages de structure, d’exécution et de modularité, tels que : 

- la prédiction des paramètres électriques (puissance, interférence et bruit) permettant 

l’obtention de circuits à haute performance en terme de latence , de bande passante et de 

puissance minimale. 

-  La réutilisation de la conception du réseau, c’est à dire le routeur est un composant 

réutilisable. 

-  La simplicité de l’interface-réseau, ce qui facilite l’interopérabilité avec une grande 

variété de protocoles. 

16 



Conception et simulation d’un réseau sur puce en papillon à arbre élargi                                                         Yassine AYDI 

 

 

 

 

 

 

 
 
 
 
 
 
 
 

 

 

1.3.3 Le ré
Ce réseau ado

routeur via une inte

utilise la technique d

garantir la bande pas

dont 10 sont réserv

acheminer les donné

à un routeur sont mé

des mécanismes d

simulateur a été dév

entre le réseau NOS

 

 

 

interfaces 

noeud 

Figure 4: Dally NOC 

seau  NOSTRUM 
pte la topologie grille 2D (figure 5). Chaque ressource est connectée à un 

rface réseau. Chaque routeur est connecté aux quatre voisins. Ce modèle 

e commutation de paquets avec des circuits virtuels de communication pour 

sante et la latence. Chaque paquet est découpé en Flit (Flow Unit) de 300bits 

és au contrôle. Le routeur  utilise l’algorithme Hot-potato routing pour 

es, ce qui minimise l’utilisation des mémoires tampons. Les données arrivant 

morisées dans des files d’attente en entrée. Le contrôle de flux est assuré par 

’acquittement, de fenêtre d’anticipation et de retransmission [12]. Un 

eloppé en SystemC pour évaluer cette architecture par une étude comparative 

TRUM et une architecture à base de bus[13].  
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Figure 5: le réseau sur puce NOSTRUM 

1.3.4 Le réseau Octagon  
C’est un réseau direct, proposé par Karim [14]. Ce modéle est basé sur une  topologie en 

anneaux raccordés (figure 6). Chaque anneau renferme huit nœuds. Les fonctionnalités de 

routage et de commutation sont co-implantées avec le processeur. Le paquet circulant à travers le 

réseau est de taille variable, l’entête du paquet renferme trois bits dédiés pour le contrôle(bits 

d’adresses). Ce réseau utilise la commutation de paquets et de circuits. La technique de routage 

adoptée est de type distribué et adaptative. La communication entre deux nœuds quelconques 

d’un anneau exige au plus deux liens intermédiaires. La bande passante de ce réseau peut 

atteindre 40Gbits/s, ce qui permet d’obtenir des circuits à rendement élevé . 

 
 
 
 
 
 
 
 
 

Figure 6: le réseau sur puce Octagon 
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1.3.5 Le réseau Æthereal 
Ce réseau a été développé au laboratoire de recherches de Philips aux Pays Bas[15]. Il est 

basé sur une topologie irrégulière (figure 7). Les ressources(processeur, mémoire, Ip, etc.…) sont 

connectées au routeurs par des interfaces-réseaux. Le routeur Æthereal utilise un routage de 

source déterministe (source routing), une commutation de type Wormhole et une mémorisation 

de paquets en entrée. Chaque paquet est découpé en flits de 32bits, le premier flit renferme 

l’entête(identification de paquet, taille, chemin, fenêtre d’anticipation, indicateur de fin de 

paquet). Æthereal fournit un transfert fiable de données via des routeurs opérant en deux 

catégories de trafic (établissement de connexion de bout en bout puis échange de données). Les 

interfaces-réseaux assurent plusieurs fonctions telles que, le contrôle de flux, le paquetage de 

données, la connexion avec les protocoles standards d’interface, ainsi que l’ordonnancement des 

transactions générées par les ressources connectées au réseau. 

 

 
 
 
 
 
 
 
 
 

 

1.3.6 
Cette a

une topolog

interconnecté

communicati

dispose d’un
Figure 7: le réseau sur puce Æthereal 

Le réseau Proteo 
rchitecture a été développée à l’Université de Tampere en Finlande[16]. Elle adopte 

ie en anneau bi-directionnel. Ce modèle est composé de plusieurs sous-réseaux 

s entre eux par des ponts (figure 8). Ce réseau offre une bibliothèque de 

on flexible supportant  plusieurs topologies et stratégies de routage. Le routeur 

e table de routage veillant sur l’acheminement des données et utilise la technique de 
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commutation de paquets. Des files d’attente sont utilisées en entrées et en sorties. Un 

environnement de simulation à base de VHDL a été créé pour la validation de cette approche[17]. 

 
 
 
 
 
 
 
 
 
 
 

 

IP 

IP 

Pont 

Routeur

Routeur

IP

Routeur

Pont Sous-réseau 1 

Sous-réseau 2

Sous-réseau 3 
 

Figure 8:  Proteo NOC 

1.3.7 Le réseau Hermes 
Cette architecture adopte la topologie en grille2D [18]. Chaque ressource (processeur, Ip) 

est connectée à un routeur (figure 9). Ce dernier est composé de cinq ports (Est, Ouest, Nord, Sud 

et Local). Le port local est relié à une ressource alors que les autres ports sont reliés aux routeurs 

voisins. Chaque port possède une file d’attente en entrée pour stocker provisoirement les 

données. La technique de commutation utilisée est de type Wormhole afin de diminuer la latence 

et l’utilisation de mémoires tampons. Les paquets circulant dans le réseau contiennent des 

données, un en-tête qui renferme l’adresse destination et un compteur indiquant le nombre de 

mots dans le paquet. L’acheminement des paquets dans le réseau est fait suivant une stratégie de 

routage arithmétique basée sur l’adresse du routeur exprimé en XY, où X représente sa position 

horizontale et Y sa position verticale. Les avantages primordiaux de cette plate-forme est sa 

performance, notamment en terme de latence et débit, ainsi que sa flexibilité du fait que les files 

d’attente et la taille des paquets sont paramétrables.  
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Figure 9:  Hermes NOC 

 

1.3.8 ECLIPSE(Embedded Chip Level Integrated Parallel Super 
computEr) 

 
Cette approche adopte une topologie en maille 2D hiérarchisée(figure 10). Le nombre de  

routeurs est au moins le carré du nombre de ressource divisé par quatre[19]. Elle utilise des 

mémoires partagées afin d’éviter les problèmes de cohérence de cache. L’avantage primordial de 

cette nouvelle architecture réside dans le fait que les communications ne bloquent jamais le 

réseau dans le cas d’un trafic lourd. 

 
 
 
 
 
 
 
 

Figure 10: ECLIPSE NOC 
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1.4 Performances des réseaux sur puces  
Nous avons passé en revue les différentes conceptions des réseaux sur puce. Bien que ces 

travaux restent théoriques jusqu'à nos jours, ils nous ont permis de déceler plusieurs besoins 

auxquels doit répondre une architecture d’interconnexion d’une part et des orientations générales 

indispensables pour la conception d’un réseau sur puce fiable et flexible d’autre part.   

1.4.1 Critères d’évaluation d’un réseau sur puce 
Nous présentons les objectifs quantitatifs et qualitatifs minimaux que doit atteindre un 

réseau sur puce comme suit : 

- la bande passante : le réseau sur puce doit offrir une bande passante suffisante pour 

établir des communications multi-Gbit/s entre les ressources. En plus, cette bande 

passante devra croître linéairement avec le nombre de ressources connectées. 

- La latence :  plusieurs systèmes « temps réels » et applications spécifiques (vidéo) 

demandent une très faible latence.  Pour cela, le réseau sur puce doit utiliser des 

mécanismes de routage acheminant les données dans un temps minimum. 

- La fiabilité : c’est le contrôle du taux de disponibilité du réseau avec des hypothèses 

pertinentes de charge. Cette disponibilité doit être compatible avec plusieurs heures de 

bon fonctionnement continu. 

- La flexibilité : les systèmes sur puce sont toujours composés de sous-systèmes 

hétérogènes. L’architecture de communication doit veiller à la coopération entre ces sous-

systèmes par la mise en place d’une plate-forme supportant des trafics variés et ayant un 

interfaçage souple avec les protocoles standards. En plus, cette architecture doit offrir la 

possibilité de la programmation, de la  reconfiguration et même de la réutilisation de la 

conception.  

- La consommation : les propriétés physiques d’un réseau sur puce (telles que la surface, 

les interférences et les bruits) sont prévisibles et soumises à un contrôle afin de réaliser 

une architecture de connexion à consommation réduite. 

- La surface : l’architecture de communication doit occuper une surface minimale de la 

puce.  
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1.4.2  Directives pour la conception d’un réseau sur puce  
Nous présentons dans cette partie des recommandations indispensables pour la conception 

d’un réseau sur puce à énergie réduite et à rendement élevé. 

- L’architecture : la topologie doit être extensible et utilise un nombre limité de liens et de 

routeurs. 

-  La segmentation et la mémorisation de données : les informations échangées doivent 

être découpées en séquences de bits de petite taille fixe,  puis mémorisées dans des files 

d’attente  de capacité limitée. 

- Les stratégies de routage et de la commutation : le routeur doit utiliser des techniques 

de routage et de commutation permettant d’acheminer les paquets dans un temps 

minimum. 

Les deux premiers paramètres influent sur la consommation de l’énergie et sur la surface du 

réseau sur la puce, le troisième paramètre définit la latence du système. 

 

1.5 Conclusion 
Dans cette partie, nous avons passé en revue les différentes conceptions des réseaux sur 

puces, les critères pertinents d’évaluation de la plate-forme d’interconnexion, ainsi que des 

mesures technologiques que le concepteur doit prendre en considération pour implémenter un 

réseau  sur puce.   

Ces critères serviront à orienter les choix de conception de notre modèle de réseau sur puce 

baptisé BFT-NOC. Les performances obtenues par les réalisations faites dans cet axe de 

recherche définissent les objectifs qu’on s’est fixé dans ce travail.   
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Chapitre 2.  

Le simulateur NS-2 
 

Après avoir exploré l’architecture générale du réseau sur puce et avant de modéliser notre 

architecture baptisée BFT-NOC, il a fallu choisir un simulateur pour évaluer notre modèle. Pour 

cela, nous décelons en première partie les similitudes entre les domaines des NOCs et  des réseaux 

publics, puis nous étudions les simulateurs de réseaux existants et enfin nous présentons le 

simulateur NS-2 choisi en vue d’évaluer notre architecture. 

 

2.1 NOC et les réseaux publics 
L’étude approfondie faite dans le chapitre précédent nous a permis de déceler plusieurs 

similitudes entre les NOCs et les réseaux publics. Le réseau sur puce interconnecte plusieurs 

ressources tels que processeurs, DSPs, FPGAs, Ips, mémoires qui ressemblent aux terminaux 

connectés à un réseau public. Les routeurs ou commutateurs implémentés dans les NOCs ont 

presque les mêmes fonctionnalités que ceux des réseaux publics. L’acheminement des données est 

assuré respectivement par des fils en métal dans un NOC et des supports de transmission pour les 

réseaux publics. En plus, l’architecture d’un NOC est plus simple que celle d’un réseau public, 

étant donné tous les composants sont intégrés sur la même puce. Tous ces indicateurs nous ont 

laissé réfléchir à choisir un simulateur de réseau public à adopter en vue d’évaluer notre modèle.   

2.2 Les simulateurs de réseaux publics   
Nous étudions dans cette section quelques simulateurs utilisés dans le domaine des réseaux 

publics. Ce n’est pas une étude exhaustive puisque plusieurs centres de recherche ont conçu des 

simulateurs pour des objectifs précis tels que la simulation d’un protocole ou d’un problème 

particulier. Par conséquent, la documentation relative à un simulateur est souvent pauvre ou 

confidentielle, les bogues ne sont pas fixes et les simulateurs n’ont pas évolué. Dans la partie qui 

suit nous présentons des simulateurs de réseaux dont les informations les  concernant  sont 

disponibles[20]. 
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- Netsim : conçu par MIT LCS, c’est un simulateur à événement discret, pour les réseaux à 

commutation de paquets, avec une stratégie de routage statique et mémorisation en file 

d’attente événementielle. 

- Insane : conçu à l’université de Californie, c’est un simulateur à événement discret, orienté 

objet, utilise une table de routage statique, et une mémorisation FIFO. Il est utilisé pour 

simuler les réseaux ATM (Asynchronus transfer mode). 

- Nest 2.5 : développé à l’université de Columbia, en vue de simuler les systèmes et les 

algorithmes distribués.  

- Real 5.0 : c’est une version évoluée de NEST2.5, il évalue le comportement dynamique du 

flux  d’information échangé, ainsi que la congestion des réseaux à commutation de paquets 

(notamment TCP/IP). 

- Network simulator 2 (NS-2) :  il a été développé par le groupe de recherche de réseau au 

laboratoire national de Laurent Berkeley (LBNL). C’est un simulateur orienté objet et à 

événement discret, il évalue les réseaux à commutation de paquets. De plus amples détails 

pour cet outil sont  présentés dans la section suivante. 

- Autres simulateurs : Opnet, Cpism, Cnet, Mars, Simunet, Gpss, Ipv6, Netsim++, . .. 

 

Parmi les simulateurs cités ci-dessus, nous avons opté pour NS-2 en vue d’évaluer notre 

modèle baptisé BFT-NOC. Ce choix a été déterminé en fonction des avantages de ce simulateur, 

entre autres : 

- un domaine large d’applications, 

- des fonctionnalités multiples d’implémentation,  

- des interfaces utilisateurs simples,  

- l’efficacité, la scalabilité et la synergie, 

- plusieurs niveaux d’abstraction . 

 

2.3 Présentation du simulateur NS-2 

2.3.1  Les fonctionnalités de base de NS-2 : 
Le simulateur NS-2 propose aux utilisateurs un support de recherche pour la gestion des 

réseaux , telles que l’implémentation de la topologie, la modélisation des routeurs (file d’attente, 
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stratégies de routage… ), la génération du trafic, la présentation de résultats sous forme de 

graphiques. Aussi, il dispose d’une source ouverte et distribuée (code partagé), ce qui facilite la 

comparaison des modèles, des protocoles et des résultats. En plus, cet outil fournit des niveaux 

multiples de détails, des interfaces utilisateurs simples, et plusieurs niveaux d’abstraction. 

 

2.3.2  Architecture logicielle de NS-2 : 
Le simulateur NS-2 est l’objet de perfectionnements périodiques effectués par un groupe de 

recherches de réseau au laboratoire national de Laurent Berkeley (LBNL). C’est un ensemble de 

ligne de code en C++ et OTCL (environ 200K), cet outil présente aussi plus de cent exemples 

testés, et un manuel d’utilisation de 371 pages qui illustre touts les fonctionnalités du 

simulateur[21]. Ce composant est supporté  par toutes les plates-formes ( Linux,  Solaris, Windows, 

Mac). 

 

2.3.3  Les composants de NS-2 : 
Le simulateur NS-2 renferme plusieurs composants ayant des fonctionnalités précises, 

nous passons en revue ci-dessous les modules les plus utilisés au cours d’une simulation : 

- NS, le noyau du simulateur, composé d’un ensemble de modules et de bibliothèques .  

- Nam, l’animateur de réseau: c’est l’éditeur pour générer des scripts NS et pour visualiser les 

modèles implémentés.  

- Les générateurs de topologie et d’applications . 

- Le moniteur des files d’attente. 

- L’analyseur de la bande passante.  

En plus, le simulateur NS-2 offre la possibilité d’incorporer des protocoles de 

transmission,  des mécanismes de routage et des générateurs d’applications, ces modules sont 

conçus par les utilisateurs. 

 

2.3.4  Le modèle d’interconnexion de  NS-2 :  
Le simulateur NS-2 s’est inspiré du modèle OSI (Open System Interconnexion) de l’ISO 

(International Standard Organisation) le découpage en couches, mais se limite à cinq couches 

seulement à savoir : 
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- La couche application : Ftp, Web, Telnet, Cbr, Vbr 

- La couche transport : TCP, UDP, LossMonitor… 

- La couche réseau : protocole de routage (statique, dynamique ou manuel), file d’attente 

(Red, Drop-tail,…) 

- La couche liaison : acheminement des données, contrôle d’erreurs. ..  

- La couche physique : acheminement à travers des fils, ou sans-fils, ou par satellite. 

 

2.3.5  Utilisation de  NS-2 
L’organigramme cité ci-dessous décrit  les étapes à suivre pour l’utilisation de NS-2, nous 

signalons que cet outil offre aux utilisateurs l’opportunité de simuler plusieurs processus en 

même temps. 

 

Probléme

modéle
a simuler

création/
exécution

de la simulation 
avec ns

Analyse 
des résultats

modification
du script ns

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11: organigramme d’utilisation de NS-2 

 

2.4 Tâches à entreprendre  pour modeler et simuler un réseau avec 
NS-2 

La conception, l’implémentation et la simulation d’un réseau avec NS-2 nécessitent des 

tâches réparties en trois phases : 
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2.4.1  Pré-traitement   
- la création du modèle à simuler, 

- la définition du déclencheur de début et de fin des  événements, 

- l’activation des moniteurs de trafic, de l’animateur de trafic et des traceurs de graphes 

(figure 12), 

- l’implémentation de la topologie (la capacité du réseau en terme de bits, la taille de la file 

d’attente, la nature de la liaison (simplex ou duplex), le mécanisme de mémorisation 

(DropTail, Red, etc..), le moniteur de la file d’attente). 
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Figure 12: une topologie de réseau et un scénario de simulation 

.4.2  Traitement   
la mise en place de la stratégie et du protocole de routage (statique, dynamique ou 

manuelle), 

le choix du mécanisme de la gestion des files d’attente,   

la création de la connexion au niveau transport par des protocoles destinés à la 

transmission, 

la génération du trafic dans le réseau par des applications (figure 13).  

.4.3  Post-traitement 
l’exécution de la simulation  

l’analyse des résultats de simulation fournis par des moniteurs de files d’attente et de 

bande  passante (figure 14) . 
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Figure 13: détails du trafic inter-nœuds 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: graphe évaluant la taille de la file d’attente durant la simulation 
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Chapitre 3.  

Architecture générale du réseau   

sur puce (BFT_NOC) 

En réinvestissant les connaissances acquises dans le domaine du réseau sur puce par l’étude 

exhaustive des travaux relatifs à ce thème, et en déterminant les motivations et les objectifs de ce 

travail, nous  présentons dans cette partie  le modèle de notre réseau sur puce baptisé  BFT_NOC. 

La conception et la simulation du modèle sont assurées par le simulateur NS-2.  

Cette étape consiste à concevoir le modèle en topologie papillon en arbre élargi, choisir les 

blocs fonctionnels (ressources et routeurs), les paramètres liés à la communication  inter-

ressources (bande passante, latence, débit…), les techniques de routage, les files d’attente, et la 

conception d’un analyseur de trafic du réseau  permettant l’obtention des résultats de simulation. 

3.1 Introduction 
Notre modèle est composé essentiellement de trois  parties (figure 15 ), la mise en place de la 

topologie, la génération des communications inter-ressources, l’implémentation d’un analyseur 

contrôlant des paramètres liés au  trafic dans le réseau. Ces parties satisfont les besoins de 

communication de ce modèle, et permettent l’obtention des résultats  de simulation analysés dans le 

chapitre 6. 
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Figure 15: le modèle abstrait du  BFT_NOC 
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3.2 Architecture générale du modèle BFT_NOC 
Cette partie présente la mise en place de la topologie papillon en arbre élargi (Butterfly Fat 

Tree) sur notre modèle BFT_NOC. Dans la première phase, nous décrivons la topologie adoptée, 

puis l’architecture et le fonctionnement  des composants (ressources et routeurs) intervenant dans 

ce modèle et en dernière phase les communications nécessaires pour cette plate-forme. 

3.2.1  Implémentation de la topologie  sur BFT_NOC  
3.2.1.1 Architecture de la topologie papillon en arbre élargi 
Nous avons opté pour la topologie papillon en arbre élargi (figure 16) pour interconnecter 

de nombreux blocs (processeurs, mémoires, DSP, IP ….). Dans ce modèle, les ressources sont 

placées aux feuilles et les routeurs aux sommets. Chaque nœud est marqué par une paire de 

coordonnées (l, a) où l dénote le niveau d'un nœud et le p dénote sa position dans ce niveau. En 

général, au niveau le plus bas (l = 0), il y a N ressources avec des adresses s'étendant de 0 à (N-

1).  La paire (0, N) dénote les endroits des ressources à ce niveau le plus bas. Le routeur  marqué 

par  R(l, p)  possède six ports : ascendant0, ascendant1, descendant0 , descendant1 , descendant2 et 

descendant3 . Les ressources sont reliées aux N/4 routeurs au premier niveau. Le nombre de 

niveaux dépend du nombre de ressources. En outre pour N ressources, le nombre de niveaux est 

log4(N) . Au l éme niveau (de l=1 à log4(N) ) , on dispose de N/2l+1 routeurs[22].  

 

 

 

 

 

 

 

 

 

 

Figure 16: une architecture papillon en arbre élargi composée de 64 ressources et 28 

routeurs 
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Les connections ressource-routeur et routeur-routeur sont déterminées comme suit : 

- une ressource N(0, a) est connectée au descendant(amod4) dénoté S(1, (adiv4)) 

- l’ascendant0 du routeur R(l, a) est connecté au  descendant(i) dénoté S(l+1, (adiv2l+1)*2l + 

(a mod 2l)), avec i=  (a mod 2l+1)div 2l-1 

- l’ascendant1 du routeur R(l, a) est connecté au  descendant(i) dénoté S(l+1, (adiv2l+1)*2l + 

((a+2l-1)mod 2l)), avec i=  (a mod 2l+1)div 2l-1  

L’adoption  de cette architecture nous a permis  plusieurs avantages : 

- Le nombre de routeurs dans cette topologie converge vers une constante indépendante du 

nombre de  niveaux, et ce nombre tend vers la moitié du nombre de ressources quand ce dernier 

croit arbitrairement.  
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−
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2
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l

    R →→l 2
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- Il existe plus qu’un chemin court entre une paire de feuilles, en outre un message est   

acheminé à travers l’un des deux liens hauts  du routeur. 

- Les fils entre les ressources et les routeurs sont logiquement structurés, donc leurs 

longueurs peuvent être rendues prévisibles. 

- Le trafic émergeant de/arrivant aux ressources est combiné dans un fil simple, ceci induit 

à la réduction de la congestion du fil. 

3.2.1.2 Modélisation de la topologie 
Notre objectif essentiel est de concevoir un réseau sur puce dont la topologie est papillon en 

arbre élargi. Une architecture composée de 16 ressources, 6 routeurs et 3 niveaux  sera  modélisée  

puis simulée (figure 17). 

Les routeurs et les ressources sont présentés respectivement par des carrés et des cercles. 

Les ressources sont hétérogènes (mémoires, processeur, DSP, IP ..) et sont choisis aléatoirement 

soit source ou destination.  

La connexion ressource-routeur est faite via un composant intermédiaire implémenté dans 

la ressource et baptisé RNI (Ressource Interface Network ). La connexion routeur-routeur 

permet la communication entre les ressources. Chaque composant(ressource, routeur)  possède 

une adresse unique indiquant le niveau du composant et sa position dans ce niveau. 
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Figure 17: Synoptique du BFT-NOC 

3.2.2 Architecture des blocs fonctionnels 
Le modèle proposé comprend deux composants importants : le routeur et la ressource, 

ainsi que les communications établies entre eux.   

3.2.2.1 Le routeur 
Le routeur est un composant vital de tout réseau. Il doit donc être très compact. D'autre part, 

la performance globale du réseau dépend du comportement individuel des routeurs et de leurs 

interactions, les meilleurs résultats étant évidemment obtenus avec les routeurs les plus 

sophistiqués.  

Nous proposons un routeur qui assure l’établissement de la connexion, l’acheminement des 

paquets et la gestion de la file d’attente. Ce routeur comprend 6 ports reliés par des fils en métal. 

Chaque port comprend un lien_départ et un lien_arrivée. Une file d’attente de taille fixe est 

assignée à chaque lien_arrivée. Nous avons adopté le mécanisme FIFO pour la gestion de la file 

d’attente, c’est à dire quand un paquet arrive à un routeur (figure 18), deux hypothèses se 

présentent : La première, s’il y a de l’espace dans la file d’attente, le paquet doit attendre dans la 

file jusqu’à devenir prioritaire afin de l’acheminer au prochain nœud. La seconde, si la file 

d'attente est saturée, le paquet est détruit définitivement. En ce qui concerne le mécanisme de 

routage, nous avons adopté deux stratégies de routage pour la détermination du prochain nœud.  
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La première stratégie est statique, en outre les calculs sont faits une seule fois pour une seule 

simulation. La deuxième stratégie de routage est dynamique, fondée sur un algorithme modifiant 

la table de routage dynamiquement  durant la simulation . 
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Figure 18: Synoptique du routeur BFT-NOC 

 

3.2.2.2 Les ressources  
Les ressources ont été modélisées comme  processeur, mémoire, IP, DSP . .., aussi elles 

peuvent être à la fois source et destination (figure 19) dans lesquelles les paquets sont générés et  

consommés. On suppose que la taille de la file d’attente est infinie dans les ressources. Etant 

donné que chaque ressource (processeur, mémoire, IP, DSP …) est habilitée à traiter les données 

entrantes et sortantes à une grande vitesse, le risque de destruction de paquets dans une 

ressource est négligeable. 
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Figure 19: Liaison routeur-ressource 

3.2.3 Communications inter-blocs 
Dans cette section on présente les conditions requises pour gérer les communications inter-

blocs. 

- Les informations entre deux ressources sont acheminées en trois phases, de la ressource-

source au routeur auquel elle est connectée, puis du routeur au routeur et en dernière 

phase du routeur à la ressource-cible. 

- Les informations échangées sont découpées en paquets dont la taille est fixée à 8 octets, et 

pour une bande passante maximale de 8Gbits/s . 

- Notre routeur (dropTail router) adopte le mécanisme FIFO pour la gestion de la file 

d’attente, en outre, le routeur détruit automatiquement les paquets arrivant et dépassant la 

capacité de la file d’attente. 

- Deux stratégies de routage ont été adoptées pour notre modèle. La première est statique, 

basée sur un algorithme qui détermine le chemin le plus court entre la source et la 

destination, la table de routage est mise à jour une seule fois au début de la simulation. La 

deuxième stratégie de routage est dynamique, basée sur un algorithme modifiant la table 

de routage dynamiquement durant la simulation. Les avantages primordiaux de ces 

stratégies sont la simplicité, la tolérance aux fautes, et le contrôle des propriétés physiques 

(surface, bande passante, débit, latence,…) par l’utilisation optimale des mémoires et des 

délais d’interconnection. 
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-  Etant donné que NS_2 est un simulateur à événement discret, notre modèle est piloté par 

événement en utilisant des déclencheurs de début et de fin de simulation.  

- Au niveau du contrôle de la transmission entre équipements terminaux (ressources), nous 

avons opté pour le protocole UDP (User Datagram Protocol) opérant en mode non 

connecté, c’est à dire les paquets sont acheminés à travers le réseau sans garantie 

d’arrivée (pas d’acquittements), sans contrôle de flux, de duplication et pas de 

récupération d’erreurs. Ce choix est déterminé par la simplicité du protocole par rapport à 

TCP (transmission control protocol), et par l’optimisation de la taille de la file d’attente 

afin de minimiser la destruction des paquets. 

- La génération du trafic est pilotée par une application produisant un trafic selon une 

distribution exponentielle (figure 20). Des paquets de taille fixe sont émis à travers le 

réseau durant une période opérationnelle (burst_time) suivant un débit binaire fixé à 

l’avance. Le trafic est bloqué durant une période de repos (idle_time). 

- Le choix des sources est effectué suivant une distribution uniforme, pour notre modèle, 

toutes les ressources émettent des paquets selon une distribution exponentielle, au 

contraire les cibles sont choisies aléatoirement, en outre une ressource peut être une cible 

pour plusieurs sources à la fois.   
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Figure 20: génération du trafic dans le réseau 
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Chapitre 4.  

Conception et modélisation du 

réseau BFT_NOC dans NS-2 

 
 Cette étape consiste à implémenter le modèle BFT-NOC dans le simulateur NS-2, nous 

avons découpé le modèle en trois composants. Nous commençons par la conception de la topologie 

adoptée, dans la deuxième phase nous détaillons la gestion des communications inter-ressources 

composée  du générateur de trafic du réseau, ainsi que l’algorithme adopté pour le choix des 

ressources. La dernière étape renferme des modules implémentés en vue d’évaluer notre modèle, 

entre autres les stratégies de routage, le moniteur de la file d’attente et l’analyseur de la bande 

passante. 

4.1  Implémentation de la topologie 
Nous introduisons dans cette étape le nombre de ressources utilisées  dans notre modèle, ce 

nombre est fixé à 16 ressources. Une ressource peut être à la fois source et destination dans 

laquelle  les paquets sont générés et  consommés. Le nombre de niveaux de la topologie adoptée est 

déterminé implicitement en fonction du nombre de ressources, en outre pour N=16 ressources, le 

nombre de niveaux L est égal à  log4(16) = 2. Le nombre de routeurs est déduit implicitement en 

fonction du nombre de ressources et de niveaux, et ce par la  fonction suivante : au l éme niveau (de 

l=1 à log4 (N) ), on dispose de N/2l+1 routeurs. Pour notre modèle, nous implémentons au premier 

niveau  quatre routeurs(16/21+1), et au deuxième niveau  deux routeurs (16/22+1), en outre le 

nombre de routeurs utilisés s’élève à six. Nous présentons dans l’exemple qui suit la syntaxe de 

création des ressources : 

 
For {set i 0} {$i < $Nr} {incr i} { 

Set n($i)   [$bftnoc node] 

Set $n($i) shape circle 

Set $n($i) color red 

} 
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Nous définissons aussi, trois paramètres fondamentaux utilisés dans la  conception de notre 

réseau sur puce, à savoir  la bande passante maximale, le délai et la taille de FIFO. 

• La bande passante maximale :  détermine la capacité maximale du réseau en terme de 

bits ou paquets, cette valeur est exprimée en MBits/s La limitation du CPU a réduit la 

bande passante à 500MBits/s 

• Le délai d’une liaison :  c’est le temps de transfert d’un paquet d’un nœud à un autre via 

une liaison en fil métallique.  Ce délai est fixé à 0.1ms. 

• La taille de FIFO : c’est un paramètre critique pour les NOCs, il influe directement sur 

les performances des routeurs implémentés dans le modèle, le délai du message dépend 

aussi de la taille de FIFO. Plusieurs variantes de FIFOs  sont implémentées et simulées en 

vu d’évaluer les performances de notre réseau sur puce (2tf avec tf ∈ [0,4]).  

Nous illustrons un exemple qui définit ces trois paramètres, ainsi que leur utilisation pour la 

conception de la topologie : 

 

 

 

   

 

 

 

    

 

  

   

 

  

 

 

 

 

 

Set bandepassante 500Mb  

Set delailfil 0.1ms 

Set capacitefifo 4 

For {set i 0} {$i < $(Nr/2l+1 )} {incr i} { 

For {set j 0} {$j < 4} {incr j} { 

$nocbft duplex-link $n($j) $r($i) $bandepassante $delaifil Droptail 

# commentaires : 
9 nocbft : l’objet a simulé 

9 duplex-link : liaison en full_duplex(échanges de paquets  dans les deux

sens) 

9 $n($j) $r($i) : désigne respectivement une ressource et un routeur 

9 Droptail : le mécanisme de la gestion de la FIFO, tout paquet entrant, et

n’ayant pas une place dans la FIFO est détruit automatiquement. 

$nocbft queue-limit $n($j) $r($i) $capacitefifo 

set monfifo(n($j)r($i)) [$nocbft monitor-queue $n($j) $r($i)   ] 

# commentaires : 
9 queue-limit : définit la capacité de  FIFO de la liaison entre la ressource

et le routeur    

9 monitor-queue : une pile renferme des données relatives à la

FIFO(paquets entrants, paquets sortants, paquets détruits…) 

} 
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4.2  La gestion des communications inter-ressources 
Cette partie comporte deux modules implémentés, le premier décrit l’application qui génère 

le trafic au niveau des sources, le deuxième présente l’algorithme permettant le choix des sources 

et des destinations.  

4.2.1 Générateur du trafic dans le réseau sur puce(BFT-NOC) 
Nous choisissons une application qui génère le trafic au niveau des sources suivant une 

distribution exponentielle. Des paquets de taille fixe sont émis à travers le réseau durant une 

période opérationnelle (burst_time) et suivant un débit binaire fixé à l’avance, et le trafic est 

bloqué durant une période de repos (idle_time). Ce générateur du trafic qui est implémenté au 

niveau de la couche application est attaché au protocole UDP (User Datagram Protocol) utilisé 

par notre modèle, et ce protocole est attaché à un nœud source. De l’autre coté un agent 

LossMonitor est crée, cet agent est attaché  à un nœud destination. Les deux protocoles sont 

connectés entre eux au niveau de la couche transport, en outre la connexion entre une source et 

une destination est établie implicitement.  

Le  comportement de ce générateur du trafic est défini par quatre paramètres : 

• débit :  la quantité d’informations envoyée pour une période donnée, une variante de 

débits a été simulée(100,120,150,250,350 et 450Mbits/s) 

• taille du paquet : des données de taille fixe générées par l’application  

• burst_time : la période opérationnelle durant laquelle les paquets sont générés 

• idle_time : la période durant laquelle le trafic est bloqué 

l’exemple cité ci-dessous présente les étapes d’implémentation d’un générateur du trafic : 
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Set taillepaquet 8 
Set debit 450000k             # déclaration  des paramètres  
Set burst  0.5s 
Set idle 1ms 
Proc application {noeud_source cible  taillepaquet   burst  idle   debit } { 
Set bftnoc [Simulator instance] 
Set UDP[new Agent/UDP] 
$bftnoc attach-agent $noeud_source $udp 
set expooTraffic [new Application/TrafficExponential] 
$expooTraffic  set  packetSize_ $ taillepaquet 
$expooTraffic  set  burst_time_ $burst 
$expooTraffic  set  idle_time_ $idle 
$expooTraffic  set  rate_ $debit 
$expooTraffic  attach-agent UDP 
$bftnoc connect $UDP $cible 
return expooTraffic   
} 



Conception et simulation d’un réseau sur puce en papillon à arbre élargi                                                         Yassine AYDI 

 

 

#appel de la procédure application par une source 
set source($i) [application $n($noeud_src) $cible($i) $taillepaquet  $burst  $idle  $debit ]

 

4.2.2  Algorithme d’affectation des nœuds sources et cibles 
Afin de mieux évaluer les performances de notre réseau sur puce baptisé BFT-NOC, nous 

avons appliqué à notre réseau une charge aléatoire uniformément répartie. Les sources sont 

connectées à une application qui génère des paquets suivant une distribution exponentielle, les 

cibles peuvent être destination pour plusieurs sources à la fois. En outre, l’algorithme proposé 

repose sur les hypothèses suivantes : 

• toutes les applications connectées aux16 ressources génèrent des paquets. 

• une cible est destination à un ou plusieurs sources 

• 80% des cibles sont situées à quatre liaisons de la source. 

• 20% des cibles sont situées à deux liaisons de la source. 

Quelques  résultats d’affectation des sources et des cibles sont explicités dans le tableau 

suivant : 

Scénario 1 : 
noeud 0 est la  source   noeud 4 est la destination 
noeud 1 est la  source   noeud 13 est la destination 
noeud 2 est la  source   noeud 14 est la destination 
noeud 3 est la  source   noeud 1 est la destination 
noeud 4 est la  source   noeud 13 est la destination 
noeud 5 est la  source   noeud 10 est la destination 
noeud 6 est la  source   noeud 13 est la destination 
noeud 7 est la  source   noeud 12 est la destination 
noeud 8 est la  source   noeud 9 est la destination 
noeud 9 est la  source   noeud 1 est la destination 
noeud 10 est la  source   noeud 13 est la destination 
noeud 11 est la  source   noeud 8 est la destination 
noeud 12 est la  source   noeud 10 est la destination 
noeud 13 est la  source   noeud 0 est la destination 
noeud 14 est la  source   noeud 4 est la destination 

# creation d’un agent LossMonitor au niveau du nœud cible 
for {set j 0} {j < $na} {incr j} { 
set cible($i) [new Agent/LossMonitor] 
} 
 

# connexion du nœud destination à l’agent cible 
$bftnoc attach-agent $n(noeud_dest) $cible($I) 
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noeud 15 est la  source   noeud 12 est la destination 
Scénario 2 : 
noeud 0 est la  source   noeud 4 est la destination 
noeud 1 est la  source   noeud 11 est la destination 
noeud 2 est la  source   noeud 10 est la destination 
noeud 3 est la  source   noeud 1 est la destination 
noeud 4 est la  source   noeud 13 est la destination 
noeud 5 est la  source   noeud 2 est la destination 
noeud 6 est la  source   noeud 15 est la destination 
noeud 7 est la  source   noeud 8 est la destination 
noeud 8 est la  source   noeud 14 est la destination 
noeud 9 est la  source   noeud 6 est la destination 
noeud 10 est la  source   noeud 11 est la destination 
noeud 11 est la  source   noeud 14 est la destination 
noeud 12 est la  source   noeud 9 est la destination 
noeud 13 est la  source   noeud 5 est la destination 
noeud 14 est la  source   noeud 2 est la destination 
noeud 15 est la  source   noeud 0 est la destination 
 

L’organigramme suivant décrit les étapes de sélection des sources et cibles : 
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n o n  

G é n é r e r  u n  
n u m é r o _ s o u r c e   

a lé a t o i r e  d e  [ 0 . . 1 5 ]   

n u m é r o _ s o u r c e   
∉  [ l i s t e _ s o u r c e ]  

G é n é r e r  u n   
n u m é r o _ t i r é  

a lé a t o i r e  d e  [ 0 . . 1 ]   

c ib le  ∈  [ l i s t e _ c ib le 1 ]  c ib le  ∈  [ l i s t e _ c ib le 2 ]  

N u m é r o _ t i r é  ∈  [ 0 , 0 . 8 ]

G é n é r e r  u n  
n u m é r o _ c ib le   

a lé a t o i r e  d e  
[ 1 . lo n g e u r ( l is t e _ c ib le 1 ) ]  

G é n é r e r  u n  
n u m é r o _ c ib le   

a lé a t o i r e  d e  
[ 1 . lo n g e u r ( l is t e _ c ib le 2 ) ]   

S o u r c e  c h o i s i e  

C i b l e  c h o i s i e  

o u i  n o n  
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4.2.3 Stratégies et protocoles de routage  
La performance globale du réseau dépend du comportement des routeurs, et de leurs 

interactions, entre autre le routage des paquets. Le simulateur NS-2 choisi offre plusieurs 

variantes de stratégies de routage, nous adoptons deux variantes pour notre modèle de réseau sur 

puce, un routage statique et un routage dynamique. 

• Le routage statique : utilise l’algorithme Dijkstra’s all-pairs SPF(Shortest Path 

Forward), le chemin entre la source et la cible est calculé une seule fois et ce au début 

de la simulation, donc la table de routage est inéchangeable durant la période de 

simulation. 

•  Le routage dynamique : utilise un algorithme de routage distribué(Distributed 

Bellman-Ford algorithm), la table de routage est reconfigurable dynamiquement 

durant la simulation, cependant le chemin est géré par les routeurs,  pour faire face à 

l’indisponibilité des ressources(liens, routeurs), et la possibilité d’acheminer les paquets 

à travers plusieurs chemins redondants. 

Nous présentons dans l’exemple ci-dessous l’implémentation des stratégies de routage 

dans notre modèle : 

 

 

 

 

 

 

   

  

Set bftnoc [Simulator instance] 
# stratégie de routage dynamique avec utilisation de plusieurs chemins 
redondants 
$bftnoc rtproto DV   
For {set i 0} {$i < $(Nr/2l+1 )} {incr i} { 
$r($i) set multipath_ 1 
} 
 
# stratégie de routage statique 
$bftnoc rtproto Static 
 

 

Une étude comparative des deux stratégies de routage adoptées est largement explicitée 

dans la partie analyse des performances du modèle BFT-NOC.  
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4.3 Implémentation des modules de contrôle de performances  
Cette partie présente les modules implémentés en vue d’évaluer les performances de notre 

modèle BFT-NOC et plus précisément la pertinence de la modélisation du routeur. Nous 

détaillons les paramètres nécessaires pour le contrôle de simulation, le moniteur de la file 

d’attente et en dernière  partie l’analyseur de la bande passante.    

4.3.1 Contrôle d’événements 
Nous avons choisi NS-2 pour simuler notre réseau sur puce, cet outil opère en événement  

discret, il a fallut définir des déclencheurs d’événement pour piloter notre modèle. Pour cela, 

trois paramètres ont été définis respectivement le début, la fin et la période maximale de la 

simulation. La taille des paquets et les débits adoptés nous ont imposé de limiter la durée totale 

de la simulation à 4ms, par exemple pour un débit de 450Mbits/s, et un paquet de 8octets(64 

bits), l’application génère environ 300000 paquets pour la période maximale adoptée. Cette 

charge importante appliquée est suffisante pour évaluer les performances de notre modèle. 

4.3.2 Le moniteur de la file d’attente 
Afin de déterminer la performance brute de notre modèle, nous avons implémenté un 

moniteur au niveau de chaque file d’attente. Ce moniteur renferme des données nécessaires pour 

l’évaluation de notre réseau, à savoir les données entrantes(paquets, octets), les données 

sortantes(paquets, octets), les données  détruites (paquets, octets), la taille maximale de la file 

d’attente, la moyenne d’occupation de la file d’attente…. Ces données sont mises à jour 

périodiquement durant la période de simulation(4ms) suivant  un intervalle fixé à 0.1ms. Une 

fois la simulation est achevée, toutes les données concernant les files d’attente seront 

enregistrées dans un fichier  en vue de les exploiter  dans la partie analyse des performances du 

réseau sur puce BFT-NOC. 

L’exemple cité ci-dessous illustre l’extraction des données a partir du moniteur de la file 

d’attente : 

  

 

 

 

 

 

Set bftqad [open bftnoc.qad w] 

Set bftnoc [Simulator instance] 

Foreach {index valeur} {array get qmon} { 

Set paquets [eval $value get-pkts-integrator] 

Set moy_fifo_pkts [expr [$paquets set sum_]/$timemax] 

Puts $bftqad “ [eval $value set parrivals_]  [eval $value set pdepartures_] [eval

$value set pdrops_] $moy_fifo_pkts $max_fifo “ 

} 

43 



Conception et simulation d’un réseau sur puce en papillon à arbre élargi                                                         Yassine AYDI 

4.3.3 Analyseur de la bande passante 
Le paramètre le plus souvent mesuré dans les simulations des réseaux sur puce est la 

bande passante. On la définit ainsi: c’est le nombre de paquets (en unités de Mbit/s) arrivant à 

une cible par seconde. Pour cela, nous avons implémenté un moniteur dans les 16 ressources 

permettant d’enregistrer l’évolution de la bande passante de chaque destination durant la période 

de simulation, en captant des valeurs intégrées (paquets) à des intervalles de temps fixé à 0.1ms.   

Les étapes d’implémentation de l’analyseur de la bande passante sont décrites ci-dessous : 

- avoir une instance du simulateur ;  

- fixer l’intervalle du captage des paquets ;  

- enregistrer les paquets reçus  par chaque cible durant l’intervalle du temps ; 

- calculer la bande passante ;  

- remette à zéro le nombre de paquets reçus par chaque cible ; 

- ré-exécuter la procédure. 
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Chapitre 5.  

Analyse des performances du 

réseau BFT_NOC 

5.1 Introduction 
Ce chapitre présente des mesures de performances du réseau BFT_NOC. Le simulateur NS-2 

a été utilisé pour implémenter et évaluer notre plate-forme d’interconnexion. Cet outil permet de 

simuler des modules contenant des descriptions en langage TCL (Tool Command Langage)  du 

comportement du réseau. Grâce aux excellentes performances  de NS-2, nous avons simuler un 

modèle composé de 16 ressources et de 6 routeurs. La durée moyenne d’une simulation est de 3 

minutes environ, sur une station PC à 3 Ghz sous Linux.  

Dans la première partie de cette section, nous analysons les performances du modèle 

BFT_NOC en termes de bande passante, latence moyenne, taille de file d’attente et  fiabilité. 

Pour cela, deux stratégies de routage ont été adoptées et comparées. La première stratégie est 

statique, en outre les calculs sont faits une seule fois pour une seule simulation. La deuxième 

stratégie de routage est dynamique, basée sur un algorithme modifiant la table de routage 

dynamiquement durant la simulation. 

Dans la deuxième partie, une étude comparative est faite entre notre modèle BFT_NOC et 

un réseau sur puce basé sur une topologie en Grille2D, tout en adoptant les paramètres 

technologiques qui ont été retenus dans la première partie. 

5.2 Performance du réseau sur puce BFT_NOC 
Afin de déterminer la performance de l’interconnexion et la pertinence de la modélisation 

du routeur, nous avons appliqué à notre modèle une charge aléatoire uniformément répartie : Un 

générateur de trafic produit des paquets suivant un débit moyen (paramétrable) dans un temps 

opérationnel (burst_time). Le trafic est bloqué dans une période de repos (idle_time). Les 

paramètres les plus souvent mesurés dans ces simulations sont : la bande passante maximale, la 

latence moyenne, la taille de la file d’attente et la charge moyenne du réseau. Tous ces 

paramètres ont été mesurés et commentés dans cette section. 
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5.2.1 Fiabilité du réseau 
C’est le contrôle du taux de disponibilité du réseau sous des hypothèses pertinentes de 

charge. Deux paramètres ont été mesurés en vue d’évaluer cette disponibilité à savoir la charge 

moyenne du réseau et le taux de paquets détruits.  

5.2.1.1 La charge moyenne du réseau   
On la définit ainsi: C’est le rapport entre la charge réelle et la charge maximale du réseau. 

La charge réelle (Cr) est définie par le nombre des paquets reçus par les cibles durant la 

simulation. La charge maximale (Cmax) est définie par le nombre maximal de paquets transmis à 

travers les liens du réseau. 

Cmoy= maxC
Cr (1)    

Cr=∑  (2)  et  : le nombre de paquets reçus par une cible  
=

nl

i
ireçusPaquets

1
)_( ireçusPaquets )_(

Cmax= T* 2*nl* ( taille
Bw ) (3)  

T :durée de simulation (4ms) ; Bw :la bande passante (500Mb/s) 

Taille :la taille du paquet (64bits) ; nl : le nombre de liens dans le réseau (24 liens). 

nl = ∑   avec x=2
=

l

i x
Nr

0

l  et l :le nombre de niveaux dans le réseau, Nr :nombre de ressources.  

Les figures 21 et 22 présentent les résultats de mesures de la charge moyenne de réseau  

pour les deux stratégies de routage adoptées. Nous constatons que la charge moyenne du réseau 

croît linéairement avec le débit pour l’intervalle [100 à 300Mb/s], et elle n’est pas sensitive à la 

taille de la file d’attente (les tableaux  1 et  2) . En plus, l’adoption du routage dynamique permet 

au réseau d’atteindre une charge moyenne plus importante : pour un débit de 250Mb/s et une 

FIFO de taille 8 paquets, cette charge s’élevé à 85% contre 58% pour la technique de routage 

stati

 débit en Mb/s 
taille FIFO 100 120 150 250 300 450 
2paquets 0.313 0.343 0.417 0.576 0.544 0.515 
4paquets 0.338 0.406 0.477 0.576 0.557 0.54 
8paquets 0.298 0.406 0.477 0.576 0.595 0.487 

que.     

   

 

 

 

Tableau 1: : la charge moyenne du BFT_NOC pour un routage statique 
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  débit en Mb/s 
taille FIFO 100 120 150 250 300 450 
2paquets 0.222 0.27 0.313 0.539 0.475 0.606 
4paquets 0.339 0.407 0.508 0.847 0.87 0.925 
8paquets 0.301 0.407 0.508 0.847 0.947 0.993 

 
 
 
 
 
 

Tableau 2 : la charge moyenne du BFT_NOC pour un routage dynamique 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 21: la charge moyenne du BFT_NOC pour un routage statique 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 22: la charge moyenne du BFT_NOC pour un routage dynamique 
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5.2.1.2 Le taux de paquets détruits 
On la définit ainsi: C’est le rapport entre le nombre des paquets détruits par les routeurs et 

le nombre total des paquets échangés à travers le réseau.  

D’après les résultats figurant dans les tableaux 3 et 4, nous avons pu observer les 

constations suivantes : 

- le taux de paquets détruits décroît quand la taille de file d’attente croît pour une 

variation de  la FIFO de 2 à 8 paquets et un réseau peu chargé (figures 23 et 24). 

-  le taux de paquets détruits croît avec le débit pour des valeurs dépassant 250Mb/s et 

120 Mb/s respectivement pour le routage dynamique et statique (figures 25 et 26). 

- l’obtention d’une bande passante maximale de 250Mb/s pour une taille de la file 

d’attente entre 4 et 8 paquets pour une stratégie de routage dynamique. 

- l’obtention d’une bande passante maximale de 120Mb/s pour une taille de la file 

d’attente entre 4 et 8 paquets pour une stratégie de routage statique. 

 

  

 
 
 
 
 
 
 
 
 

Tableau 3

 
 
 
 
 
 
 
 
 
 
 

Tableau 4 :

déb
M
1
1
1
2
3
4

dé
M

 taille de la file d'attente 
it en 
b/s 2paquets 4paquets 8paquets

00 0.0328 0.0000 0.0000 
20 0.0576 0.0000 0.0000 
50 0.0344 0.0224 0.0223 
50 0.1440 0.1440 0.1440 
00 0.1770 0.1770 0.1770 
50 0.2610 0.2610 0.2610 
 : le taux de paquets détruits pour un routage statique 

 l

b

1
1
1
2
3
4

 taille de la file d'attente 
it en 
b/s 2paquets 4paquets 8paquets

00 0.0053 0.0000 0.0000 
20 0.0002 0.0000 0.0000 
50 0.0437 0.0000 0.0000 
50 0.0202 0.0000 0.0000 
00 0.0320 0.0290 0.0290 
50 0.1240 0.1120 0.1110 

e taux de paquets détruits pour un routage dynamique 
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Figure 23: évaluation de la taille de la FIFO pour un routage statique 
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Figure 24 : évaluation de la taille de la FIFO pour un routage dynamique 
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Figure 25 :le taux de paquets détruits pour un routage statique 
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Figure 26: le taux de paquets détruits pour un routage dynamique 
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5.2.2 La bande passante maximale 
Afin de déterminer la bande passante maximale du réseau, nous avons mesuré l’impact de 

débit et de la taille de la file d’attente sur le taux de paquets rejetés. Les résultats obtenus (figures 

5.5 et 5.6) nous ont permis de dégager les constations suivantes : 

- La bande passante maximale ne peut pas dépasser 250Mb/s pour une stratégie de 

routage dynamique et une file d’attente de taille 4 ou 8 paquets. 

- La bande passante maximale ne peut pas dépasser 120Mb/s pour une stratégie de 

routage statique et une file d’attente de taille 4 ou 8 paquets. 

5.2.3 La stratégie de mémorisation 
La taille de la file d’attente est un paramètre fondamental dans la conception d’un routeur. 

Elle ne doit pas être de grande taille pour qu’elle n’occupe pas trop de surface sur la puce.  Pour 

cela, nous avons adopté des FIFOs de taille variable. Les résultats obtenus (tableaux 1,2,3 et 4 ; 

figures 5.3 et 5.4 ) montrent l’impact de la taille de la file d’attente sur la fiabilité du réseau. En 

outre, une file d’attente de taille 8 paquets est la plus performante. 

5.2.4 La latence moyenne 
On la définit ainsi : C’est le temps de la transmission du paquet dans le routeur. Lorsque le 

réseau est peu chargé, la file d’attente est vide et la mesure de la latence moyenne (Lm) 

correspond au temps du transit du paquet dans le routeur ( par exemple pour un paquet de taille 

64bits et une bande passante de 500Mb/s, la latence moyenne(Lm)= 128ns). Si le réseau est trop 

saturé, les paquets s’accumulent dans la file d’attente et la latence moyenne dépend du délai de 

mémorisation du paquet dans la FIFO. 

 

 

 

 

 

 

 

Tableau

déb
M

100
120
150
250
300
450

déb
M

100
120
150
250
300
450

 

 taille de la file d'attente
it en 
b/s 4paquets 8paquets 

Mbs 128 128 
Mbs 128 128 
Mbs 128 128 
Mbs 128 128 
Mbs 144.512 345.472 
Mbs 286.976 723.584 

 5 : latence de routage dynamique        Tableau
 taille de la file d'attente
it en 
b/s 4paquets 8paquets 

Mbs 128 128 
Mbs 128 128 
Mbs 144.512 342.912 
Mbs 271.104 707.84 
Mbs 322.56 805.632 
Mbs 334.848 818.176 
 6 : la latence de routage statique 
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Les tableaux 5 et 6 présentent les mesures de la latence moyenne du paquet dans le routeur 

en fonction de la charge de réseau et la taille de la file d’attente pour les différentes stratégies de 

routage adoptées. 

Les figures 27 et 28 montrent l’évolution de la latence moyenne pour les deux tailles de la 

file d’attente. Pour un réseau trop chargé, la latence moyenne est très sensitive à la taille de la file 

d’attente, ceci est du au délai de mémorisation des paquets dans les FIFOs.  
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Figure 27: évaluation de la latence par rapport à la taille de la FIFO pour un routage statique 
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igure 28 : évaluation de la latence par rapport la taille de la FIFO pour un routage dynamique 
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Les figures 29 et 30 présentent la latence moyenne en fonction de la charge du réseau. Nous 

constatons qu’un réseau légèrement chargé offre une latence moyenne constante pour les deux 

stratégies de routage adoptées. Toutefois, si le débit dépasse la capacité maximale du réseau, on 

constate une augmentation phénoménale de la latence due au délai de mémorisation des paquets 

dans les files d’attente.  
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Figure 29: évaluation de la latence en fonction du débit pour un routage statique 
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Figure 30 :évaluation de la latence en fonction du débit pour un routage dynamique 
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5.3 Analyse critique 
Ces résultats appellent plusieurs critiques, notamment pour les deux stratégies de routage 

adoptées dans la simulation de notre modèle. Premièrement, le taux de disponibilité du réseau et 

de la bande passante maximale sont plus élevés pour le routage dynamique que pour le statique. 

Ce taux dépend de la charge du réseau. Deuxièmement, les meilleures latences moyennes sont 

obtenues pour un réseau peu chargé, mais si la débit dépasse la capacité du réseau, la latence 

moyenne du paquet est ralentie par la mémorisation des paquets dans les FIFOs. Enfin, la 

performance de l’interconnexion reste tributaire d’une bonne optimisation de la taille de la file 

d’attente.  

Cependant, les résultats obtenus ont montré les performances de l’interconnexion du 

BFT_NOC, avec des réserves quant à la nécessité d’une bonne optimisation de la taille de la file 

d’attente et à l’utilité de l’adoption du routage dynamique pour l’acheminement des paquets à 

travers le réseau.  

5.4 Etude comparative entre BFT_NOC et un NOC en Grille2D 
Afin de mieux évaluer notre modèle à base de papillon en arbre élargi (figure31), il ne 

suffit pas de montrer les performances d’interconnexion du BFT_NOC, mais il faut également le 

comparer à une architecture concurrente. Pour cela, nous avons choisi d’implémenter un réseau 

sur puce à base d’une topologie en Grille2D (figure 32). Cette architecture interconnecte les 16 

ressources à 16 routeurs. Ces derniers sont interconnectés entre eux en Grille2D. Nous avons 

adopté les paramètres technologiques qui ont été retenus dans l’analyse de la performance du 

BFT_NOC, notamment la taille de la file d’attente, les stratégies de routage et la charge 

appliquée dans le réseau.  
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Les tableaux 7, 8 et  9 indiquent les paramètres mesurés, respectivement la charge moyenne 

du réseau, le taux de paquets détruits et la latence moyenne d’un paquet dans le réseau. 

a

c

B

 architecture 
débit BFT-NOC MESH-NOC 
150 0.301 0.372 
200 0.508 0.468 
250 0.847 0.58 
300 0.947 0.659 
450 0.993 0.948 

   

 

 

 

 

 

Tableau 7 : la charge moyenne du réseau       
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 architecture 
débit BFT-NOC MESH-NOC 
150 0 0 
200 0 0.01 
250 0 0.02 
300 0.029 0.069 
450 0.111 0.113 
  Tableau 8 : le taux de paquets détruits 
 architecture 
débit BFT-NOC MECH-NOC 
150 128 128 
200 128 613.12 
250 128 651.776 
300 345.472 774.784 
450 723.584 824.832 
ce moyenne du paquet 

r la charge moyenne du réseau pour les deux 

aleurs de charge qui sont presque égales pour 

ugmentation brusque de la charge du modèle 
au  entre BFT-NOC et MECH-NOC

300 450ébit

BFT-NOC

MESH-NOC

oyenne du réseau pour les deux NOCs 

55 



Conception et simulation d’un réseau sur puce en papillon à arbre élargi                                                         Yassine AYDI 

La figure 34 montre que le taux de paquets détruits dépend de la charge du réseau pour les 

deux architectures. Le modèle BFT_NOC prétend à une bande passante maximale (autrement dit, 

le taux de paquets détruits reste nul) de 250Mb/s contre 150Mb/s pour le MESH_NOC. 

Les valeurs de la latence moyenne d’un paquet dans le réseau (figure 35) nous ont permis 

de formuler les constations suivantes :  

- La latence moyenne est sensitive à la taille de la file d’attente pour un débit dépassant la 

capacité maximale du réseau pour  les deux architectures. 

- La latence moyenne dépend du nombre de routeurs traversés. 

Etude comparative du taux des paquets détruits entre BFT-NOC et MESH-NOC 
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Figure 34 : évaluation du taux de paquets détruits pour les deux NOCs 
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Figure 35 : évaluation de la latence moyenne pour les deux NOCs 
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Cette étude comparative a montré que BFT_NOC semble offrir une solution avantageuse 

par rapport à MESH_NOC. Le tableau 10 résume cette comparaison en termes de composants, 

liens, bande passante, fiabilité et latence moyenne. 

  

 

 

 

 

 

 

 

 
 

 

.☺Fiabilité

150Mb/s250Mb/sBande passante maximale

824.832723.584Latence moyenne maximale

0.9480.993Charge moyenne maximale
4024liens
166Routeurs
1616Ressources 

Grille 2DBFT-NOC

.☺Fiabilité

150Mb/s250Mb/sBande passante maximale

824.832723.584Latence moyenne maximale

0.9480.993Charge moyenne maximale
4024liens
166Routeurs
1616Ressources 

Grille 2DBFT-NOC

Tableau 10 : Comparaison entre BFT_NOC et MESH_NOC 

5.5 Conclusion  
Ce chapitre  analyse les performances du modèle BFT-NOC, que l'on a pu prédire 

grâce à une modélisation complète précise. Ces performances concernent des critères 

quantitatifs et qualitatifs minimaux que doit atteindre un réseau sur puce : la bande passante 

maximale, la latence, la fiabilité, la flexibilité, la consommation  et la surface du réseau dans 

la puce. Les performances de l’interconnexion ont été concrétisées par une étude 

comparative entre BFT_NOC et une architecture concurrente en Grille2D.  
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Conclusion et Perspectives  
 

 

Nous récapitulons ici les travaux de mastère et ses apports. Nous avons passé en revue les 

conceptions des réseaux sur puce. Bien que ces travaux restent théoriques jusqu'à nos jours, ils 

nous ont permis de déceler plusieurs besoins auxquels doit répondre une architecture 

d’interconnexion à haute performance d’une part, et des directives générales indispensables pour 

la conception d’un réseau sur puce fiable et flexible.  

Notre architecture d’interconnexion baptisée BFT_NOC a été modélisée en modules 

contenant des descriptions en langage TCL du comportement du réseau, puis elle a été évaluée 

par simulation avec NS-2. La conception du modèle à été réalisée en trois phases. Nous avons 

commencé par l’implémentation de la topologie. Dans la deuxième phase nous avons détaillé la 

gestion des communications inter-ressources composée  du générateur de trafic du réseau, ainsi 

que de l’algorithme adopté pour le choix des ressources. La dernière phase renferme des 

modules conçus en vue d’évaluer notre modèle, entre autres les stratégies de routage, le  

moniteur  de la file d’attente et l’analyseur de la bande passante. 

Grâce aux performances de NS-2, nous avons pu simuler un modèle composé de 16 

ressources et 6 routeurs. les résultats obtenus ont montré les performances de l’interconnexion 

du BFT_NOC, avec des réserves sur la nécessité d’une bonne optimisation de la taille de la file 

d’attente, de la bande passante maximale et de l’utilité de l’adoption du routage dynamique 

pour l’acheminement des paquets à travers le réseau. Les performances de l’interconnexion ont 

été concrétisées par une étude comparative entre BFT_NOC et une architecture concurrente 

basée sur une topologie en Grille2D.  

 

Nous énumérons ci-dessous les limitations et les extensions possibles du BFT_NOC qui 

méritent un complément d’investigation, et qui feront l’objet de futures recherches : 

- Le coût élevé d’utilisation des protocoles, notamment IP (Internet Protocol) et UDP 

(User Datagram Protocol) pour la transmission des données à travers le réseau. En effet, 
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les en-têtes des protocoles cités (28 octets) ont été ajoutées aux données transmises 

(paquets de 8 octets), ce qui entraîne la diminution du rendement du réseau (22%).  

- La limitation de stratégies de routage implantées dans le simulateur NS-2. Par conséquent 

le concepteur est tenu à ajouter des modules en vue d’implémenter de nouvelles 

techniques de routage  telles que : Wormhole routing et Hot Potato routing . 

- Le problème de synchronisation : toutes les communications dans le simulateur NS-2 sont 

contrôlées par des événements (Event Driven), en outre on ne peut pas prédire les aspects 

physiques (blocage, accès à la mémoire, etc..).      

- L’évaluation des performances de l’architecture d’interconnexion est faite suite à une 

charge appliquée au réseau, elle peut estimer le comportement du réseau, mais elle n’est 

pas trop représentative des applications réelles. 

Nous proposons deux scénarios pour palier à ces limitations. Le premier consiste à  étendre le 

simulateur NS-2 par l’ajout de modules spécifiques aux architectures des réseaux sur puces. Le 

deuxième consiste à concevoir un simulateur de réseau sur puce, tout en tenant compte des 

performances du simulateur NS-2.  
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