
Conception et simulation d’un réseau sur puce en papillon à arbre élargi Yassine AYDI

Sommaire

Liste des figures…………...……….…………………………….……………….….…………….3
Liste des tableaux….……...……….…………………………….……………….….…………….4
Introduction générale……...……….…………………………….……………….….…………….5
Chapitre 1. ..8
Les réseaux sur puce ..8
1.1 Introduction ..8
1.2 Architecture générale des réseaux sur puce ...9

1.2.1 Directives de conception ..9
1.2.2 Catégories des réseaux sur puce :..9
1.2.3 La gestion des Communications ..10
1.2.4 Caractéristiques des NOCs :..10

1.2.4.1 La topologie..10
1.2.4.2 Fils d’interconnexion (wire)...12
1.2.4.3 File d’attente...12
1.2.4.4 Paquetage des données ...12

1.3 Etude exhaustive des recherches relatives au thème réseau sur puce15
1.3.1 SPIN (Scalable Programmable Integrated Network) ..15
1.3.2 Les réseaux orthogonaux..16
1.3.3 Le réseau NOSTRUM...17
1.3.4 Le réseau Octagon..18
1.3.5 Le réseau Æthereal ...19
1.3.6 Le réseau Proteo ...19
1.3.7 Le réseau Hermes ...20
1.3.8 ECLIPSE(Embedded Chip Level Integrated Parallel Super computEr)21

1.4 Performances des réseaux sur puces ..22
1.4.1 Critères d’évaluation d’un réseau sur puce ..22
1.4.2 Directives pour la conception d’un réseau sur puce...23

1.5 Conclusion..23
Chapitre 2. ..24
Le simulateur NS-2 ..24
2.1 NOC et les réseaux publics ..24
2.2 Les simulateurs de réseaux publics ..24
2.3 Présentation du simulateur NS-2..25

2.3.1 Les fonctionnalités de base de NS-2 : ..25
2.3.2 Architecture logicielle de NS-2 :..26
2.3.3 Les composants de NS-2 : ..26
2.3.4 Le modèle d’interconnexion de NS-2 : ...26
2.3.5 Utilisation de NS-2..27

2.4 Tâches à entreprendre pour modeler et simuler un réseau avec NS-227
2.4.1 Pré-traitement ...28
2.4.2 Traitement ..28
2.4.3 Post-traitement ...28

Chapitre 3. ..30
Architecture générale du réseau sur puce (BFT_NOC) ...30

1

Conception et simulation d’un réseau sur puce en papillon à arbre élargi Yassine AYDI

3.1 Introduction ..30
3.2 Architecture générale du modèle BFT_NOC...31

3.2.1 Implémentation de la topologie sur BFT_NOC ..31
3.2.1.1 Architecture de la topologie papillon en arbre élargi ...31
3.2.1.2 Modélisation de la topologie ..32

3.2.2 Architecture des blocs fonctionnels ...33
3.2.2.1 Le routeur ...33
3.2.2.2 Les ressources ..34

3.2.3 Communications inter-blocs ..35
Chapitre 4. ..37
Conception et modélisation du réseau BFT_NOC dans NS-2 ...37
4.1 Implémentation de la topologie..37
4.2 La gestion des communications inter-ressources ...39

4.2.1 Générateur du trafic dans le réseau sur puce(BFT-NOC)39
4.2.2 Algorithme d’affectation des nœuds sources et cibles ...40
4.2.3 Stratégies et protocoles de routage...42

4.3 Implémentation des modules de contrôle de performances ...43
4.3.1 Contrôle d’événements...43
4.3.2 Le moniteur de la file d’attente ..43
4.3.3 Analyseur de la bande passante..44

Chapitre 5. ..45
Analyse des performances du réseau BFT_NOC...45
5.1 Introduction ..45
5.2 Performance du réseau sur puce BFT_NOC..45

5.2.1 Fiabilité du réseau ..46
5.2.1.1 La charge moyenne du réseau ..46
5.2.1.2 Le taux de paquets détruits...48

5.2.2 La bande passante maximale..51
5.2.3 La stratégie de mémorisation ...51
5.2.4 La latence moyenne..51

5.3 Analyse critique..54
5.4 Etude comparative entre BFT_NOC et un NOC en Grille2D..54
5.5 Conclusion..57
Conclusion et perspectives………...……………....……...……………………...……….….…..58
Références ………………………………………….……………………………………………60

2

Conception et simulation d’un réseau sur puce en papillon à arbre élargi Yassine AYDI

Liste des figures

Figure 1 : les topologies irrégulières... 11

Figure 2 : les topologies régulières.. 11

Figure 3: le réseau SPIN ... 16

Figure 4: Dally NOC .. 17

Figure 5: le réseau sur puce NOSTRUM ... 18

Figure 6: le réseau sur puce Octagon ... 18

Figure 7: le réseau sur puce Æthereal.. 19

Figure 8: Proteo NOC... 20

Figure 9: Hermes NOC... 21

Figure 10: ECLIPSE NOC.. 21

Figure 11: organigramme d’utilisation de NS-2.. 27

Figure 12: une topologie de réseau et un scénario de simulation .. 28

Figure 13: détails du trafic inter-nœuds ... 29

Figure 14: graphe évaluant la taille de la file d’attente durant la simulation 29

Figure 15: le modèle abstrait du BFT_NOC... 30

Figure 16: une architecture papillon en arbre élargi composée de 64 ressources et 28 routeurs 31

Figure 17: Synoptique du BFT-NOC.. 33

Figure 18: Synoptique du routeur BFT-NOC.. 34

Figure 19: Liaison routeur-ressource... 35

Figure 20: génération du trafic dans le réseau .. 36

Figure 21: la charge moyenne du BFT_NOC pour un routage statique 47

Figure 22: la charge moyenne du BFT_NOC pour un routage dynamique 47

Figure 23: évaluation de la taille de la FIFO pour un routage statique.. 49

Figure 24 : évaluation de la taille de la FIFO pour un routage dynamique 49

Figure 25 :le taux de paquets détruits pour un routage statique .. 50

Figure 26: le taux de paquets détruits pour un routage dynamique... 50

Figure 27: évaluation de la latence par rapport à la taille de la FIFO pour un routage statique 52

Figure 28 : évaluation de la latence par rapport la taille de la FIFO pour un routage dynamique

.. 52

Figure 29: évaluation de la latence en fonction du débit pour un routage statique...................... 53

3

Conception et simulation d’un réseau sur puce en papillon à arbre élargi Yassine AYDI

Figure 30 :évaluation de la latence en fonction du débit pour un routage dynamique 53

Figure 31: synoptique du BFT-NOC Figure 32 : synoptique du Grille2D-NOC............... 54

Figure 33 : évaluation de la charge moyenne du réseau pour les deux NOCs.............................. 55

Figure 34 : évaluation du taux de paquets détruits pour les deux NOCs....................................... 56

Figure 35 : évaluation de la latence moyenne pour les deux NOCs... 56

Liste des Tableaux

Tableau 1: : la charge moyenne du BFT_NOC pour un routage statique 46

Tableau 2 : la charge moyenne du BFT_NOC pour un routage dynamique 47

Tableau 3 : le taux de paquets détruits pour un routage statique... 48

Tableau 4 : le taux de paquets détruits pour un routage dynamique ... 48

Tableau 5 : latence de routage dynamique Tableau 6 : la latence de routage statique.......... 51

Tableau 7 : la charge moyenne du réseau Tableau 8 : le taux de paquets détruits............... 55

Tableau 9 :la latence moyenne du paquet .. 55

Tableau 10 : Comparaison entre BFT_NOC et MESH_NOC.. 57

4

Conception et simulation d’un réseau sur puce en papillon à arbre élargi Yassine AYDI

Introduction générale

 1-Motivations

Les prévisions stratégiques d'ITRS (International Technology Roadmap for Semiconductors)

annoncent que 70% des systèmes mono-puce (SoC pour "System On Chip" en anglais)

comporteront au moins un processeur embarqué à partir de l’année 2005 [1]. Cette tendance semble

non seulement se confirmer mais se renforcer : les SOCs contiendront plusieurs processeurs dans le

cas d'applications telles que les terminaux mobiles, vidéos, réseaux de communication, traitement

de signal, capteurs, etc. De plus, ces puces contiendront des éléments non digitaux (par ex.

analogique ou RF) et des mécanismes de communication très sophistiqués. Le développement de

produits électroniques de haute performance, de faible coût, destinés au grand public, et dotés de

fonctions intelligentes a obligé l’industrie des semi-conducteurs à intégrer toutes les ressources sur

une seule puce afin de réduire les coûts de production. Il est donc crucial de maîtriser la conception

de tels systèmes tout en respectant les contraintes de mise sur le marché et les objectifs de qualité.

En plus, le modèle de synchronisation des futurs systèmes sur puce sera probablement de

type « Globalement Asynchrone Localement Synchrone » (GALS) avec la possibilité d’utiliser

plusieurs domaines isochrones (phases et domaines d’horloge différents)[2].

Cette augmentation de la capacité et de la complexité des systèmes mono-puce a stimulé les

chercheurs pour concevoir de nouvelles plates-formes d’interconnexion fiable, à énergie réduite et

à rendement élevé, baptisés réseaux sur puce (NOC pour "Network On Chip" en anglais), afin de

remédier aux problèmes de communication générés par les anciennes architectures

d’interconnexion (les bus).

L’objectif essentiel de la conception des NOCs est de limiter l’espace de conception tout en

respectant les contraintes de mise sur le marché et les objectifs de qualité, et d’assurer

l’interfaçage entre l’espace de conception de l’application et l’implémentation[3].

Les réseaux sur puces semblent être une solution appropriée pour gérer la communication

entre les ressources(Processeur, DSP, IP, ASIP, etc.…). La difficulté de la conception d’un NOC

réside dans un compromis entre une Qualité de Service (QoS) optimale, une bande passante

élevée, une latence faible, une flexibilité, une extensibilité d’utilisation importantes, et une

possibilité de réutilisation de la conception, tout en limitant la consommation d’énergie et de

surface dans la puce.

5

Conception et simulation d’un réseau sur puce en papillon à arbre élargi Yassine AYDI

2- Contributions

Dans ce mémoire nous proposons un modèle de réseau sur puce basé sur une topologie

en papillon à arbre élargi. Ce réseau interconnecte seize ressources. Une charge aléatoire

uniformément répartie a été appliquée dans le réseau. Nous avons opté pour le simulateur

NS-2 afin d’évaluer notre modèle. Nous avons pu implémenter toutes les composantes dans

le simulateur choisi. Des études comparatives ont été réalisées entre deux techniques de

routage pour le modèle proposé d’une part, et entre le réseaux BFT-NOC et Grille2D d’autre

part. Plusieurs paramètres ont été explorés dans les simulations, à savoir la bande passante

maximale, la technique de routage, la stratégie de mémorisation et le contrôle des

performances.

3- Organisation du mémoire

Le chapitre 1 étudie les paramètres technologiques indispensables à la conception d’un

réseau sur puce, et explore les réalisations faites dans cet axe de recherche, avec une analyse

détaillée de la topologie, de la stratégie de mémorisation adoptée, des techniques de routage

et de commutation utilisées, ainsi que du paquetage de données pour chaque réseau présenté.

Le chapitre 2 présente le simulateur NS-2 choisi pour évaluer notre modèle baptisé

BFT-NOC. Nous détaillons les tâches à entreprendre afin d’implémenter et de simuler un

réseau sur puce.

Les chapitres 3 et 4 développent en détail l’architecture du modèle BFT-NOC.

L’implémentation de notre réseau dans le simulateur NS-2 est faite en trois phases. On

commence par l’implémentation de la topologie. Dans la deuxième phase nous détaillons la

gestion des communications inter-ressources, composée du générateur de trafic du réseau,

ainsi que l’algorithme adopté pour le choix des ressources. La dernière phase renferme des

modules implémentés en vue d’évaluer notre modèle, entre autres les stratégies de routage,

le moniteur de la file d’attente, et l’analyseur de la bande passante.

Le chapitre 5 analyse les performances réelles du modèle BFT-NOC, que l'on a pu

prédire grâce à une modélisation complète précise. Ces performances concernent des critères

quantitatifs et qualitatifs minimaux que doit atteindre un réseau sur puce telle ques : la bande

passante maximale, la latence, la fiabilité, la flexibilité, la consommation et la surface du

réseau dans la puce.

6

Conception et simulation d’un réseau sur puce en papillon à arbre élargi Yassine AYDI

La dernière partie évoque les extensions possibles de BFT-NOC, plus précisément au

niveau du coût élevé de l’utilisation des protocoles IP (Internet Protocol) et UDP (User

Datagram Protocol) pour la transmission des données à travers le réseau sur puce, ainsi que

les problèmes liés aux techniques de routage et de commutation utilisées.

7

Conception et simulation d’un réseau sur puce en papillon à arbre élargi Yassine AYDI

Chapitre 1.

Les réseaux sur puce

1.1 Introduction
Conduis par l’évolution phénoménale de la technologie submicronique[4], les futurs

systèmes sur puce (SOC) utilisent des billions de transistors et intègrent des centaines de

ressources sur une simple puce.

La conception d’une interconnexion inter-ressources fiable, à énergie réduite et à

rendement élevé, s’avère un goulot d’étranglement dans le flot de conception des SOCs.

Actuellement, ces communications sont assurées par les bus dans la conception des SOCs, ces

moyens de communication sont limités en terme de débit et consommation d’énergie[5]. Les

nouvelles générations des SOCs nécessitent une nouvelle architecture des communications inter-

ressources offrant plusieurs avantages tels que : la flexibilité, la scalabilité, la bande passante, le

débit garanti, et permettant de mieux contrôler les propriétés physiques (surface, bande passante,

délais d’interconnexion, interférences et bruits …) de ces plates-formes.

Ce nouveau paradigme de conception des SoCs, baptisé réseau sur puce (Network On

Chip appelé aussi NOC), offre beoucoups solutions pour plusieurs problèmes

d'interconnexion[6]. Une architecture de communication à haute performance doit en effet :

- être polyvalente, c’est à dire supporter des flux de données multiples générés par les

mêmes ressources.

- Garantir l’intégrité des données, le contrôle de flux, de séquencement, et de la correction

d’erreurs de transmission .

-Offrir des performances quantitatives et qualitatives très élevées (haut débit, faible latence

et une consommation minimale d’énergie).

- Être extensible, flexible et reprogrammable.

- Permettre la réutilisation des ressources, des fonctionnalités de systèmes et de la

conception.

8

Conception et simulation d’un réseau sur puce en papillon à arbre élargi Yassine AYDI

1.2 Architecture générale des réseaux sur puce

1.2.1 Directives de conception
La conception d’un réseau sur puce est basée sur des paramètres technologiques

indispensables pour réaliser une architecture d’interconnexion fiable, flexible et à énergie réduite.

Cette plate-forme favorise la conception de systèmes sur puces à haute performance.

• L’architecture: elle devrait utiliser convenablement les ressources (Processeurs,

DSPs, Ips, Mémoires, routeurs, interfaces-réseaux, fils d’interconnexion) disponibles sur la

puce. Les signaux de commande n'ont pas besoin d'être acheminés en série avec les

données, puisqu’ils peuvent être exécutés dans des fils dédiés aux commandes.

L'implantation des mémoires tampons doit être limitée en terme de taille, afin de réduire la

consommation de surface et d'énergie.

• Le paquetage de données : le système sur puce renferme plusieurs ressources

(Processeur, DSP, IP, Mémoires, etc.…) appelées aussi nœuds qui sont interconnectés

entre eux par un réseau sur puce. Le trafic sur le réseau est géré par des transactions entre

ces nœuds qui génèrent des données découpées en séquences de bits de taille fixe ou

variable appelées paquets. Par conséquent, la performance de la communication dans la

puce n’est pas déterminée seulement par les aspects physiques du réseau (délais

d’interconnexion, interférences), mais dépendent également du paquetage de données sur le

réseau.

• Les techniques de routage et de commutation: L’acheminement des données sur la

puce est assuré par des techniques de routage et de commutation. Ces techniques sont

conçues de façon optimisée afin de minimiser l'utilisation substantielle de mémoire tampon

sur la puce. L'état du réseau (contrôle de flux, congestion, intégrité de données) est contrôlé

par des signaux dédiés aux commandes.

1.2.2 Catégories des réseaux sur puce :
Cette nouvelle architecture de communication est classée en deux catégories :

- Les réseaux directs : tous les nœuds sont interconnectés entre eux via des interfaces-

réseaux. La ressource et le routeur sont co-implantés, par conséquent l’acheminement des données

(routage et arbitrage) est assuré au niveau du nœud.

9

Conception et simulation d’un réseau sur puce en papillon à arbre élargi Yassine AYDI

- Les réseaux indirects : les nœuds sont interconnectés par un ou plusieurs routeurs

intermédiaires assurant l’acheminement des données à travers le réseau. En plus, si on adopte une

ressource par routeur, ce dernier peut être soit implanté dans le nœud, soit conçu en dehors.

1.2.3 La gestion des Communications
Les communications entre les ressources dans la puce sont assurées par des messages

passants ou mémoires partagées.

- Communication via messages passants : l’échange de données entre les nœuds est assuré

par des commandes (telles qu’envoyer() ou recevoir()) exécutées explicitement par des APIs

(Application Program Interface). Ce mécanisme requière des protocoles spéciaux de transmission,

ce qui induit l’augmentation du temps de communication.

- Communication via mémoires partagées : l’échange des données est assuré implicitement

par l’accès partagé et concurrentiel aux mémoires. Par conséquent, cette approche a été largement

utilisée dans la conception des systèmes sur puce à haute performance[7].

1.2.4 Caractéristiques des NOCs :
Cette partie présente une description détaillée des caractéristiques des NOCs, nous

définissons quelques paramètres technologiques indispensables pour la conception d’un réseau sur

puce, tels que la topologie, les fils d’interconnexion, les files d’attentes, le paquetage des données et

techniques de routage et de commutation.

1.2.4.1 La topologie
C’est un graphe permettant l’interconnexion des différents nœuds, il est régulier si sa

topologie correspond à une structure mathématique, sinon il est irrégulier. Les paramètres

caractérisant une topologie sont :

- le diamètre : le nombre maximal d'arêtes entre deux ressources.

- Le débit de bissection : le nombre minimal de liens reliant deux moitiés du graphe.

- Le degré : le degré maximal des routeurs

- Le coût marginal : le nombre de routeurs par ressource.

Les différentes topologies adoptées pour la conception des NOCs sont :

- Les topologies régulières : graphe linéaire(grille 1D), en anneau, grille 2D, anneau 2D,

cube 2D, arbre binaire, arbre élargi, papillon, papillon en arbre élargi (figure 1)

- Les topologies irrégulières : (figure 1)

10

Conception et simulation d’un réseau sur puce en papillon à arbre élargi Yassine AYDI

Figure 1 : les topologies irrégulières

(a) Grille 1D

(i)(h) Arbre élargi

Figure 2 : les topologies réguliè
(b) Anneau 1D

(c) Grille 2D
 (d) Tore 2D
 Pap

(

res
(e) Cube 2D

g) Papillon
(f) Arbre binaire

illon en arbre élargi

11

Conception et simulation d’un réseau sur puce en papillon à arbre élargi Yassine AYDI

1.2.4.2 Fils d’interconnexion (wire)

L’interconnexion des ressources est assurée par des fils. Le nombre de fils est déterminé en

fonction des techniques de commutation et de routage utilisées par le réseau sur puce. Pour une

technologie d’intégration de 0.13µm avec 8 couches de métal, la taille du fil varie entre 0.30µm et

0.50µm. En outre, un commutateur de surface 100µm x 100µm peut accommoder plusieurs

centaines de fils dans plusieurs directions. Par conséquent, le coût d’ajouter plusieurs

fonctionnalités de routage diminue quand le processus d’intégration évolue[8].

1.2.4.3 File d’attente
La limitation des fils ; en terme de gestion de conflits et de débit, est compensée par

l’utilisation de files d’attentes appelées aussi mémoires tampons. Elles fournissent des espaces de

stockage temporaire pour gérer les conflits inter-nœuds d’une part, et le dépassement de la bande

passante maximale d’autre part. L’implantation de ces mémoires tampons influe sur la

consommation d’énergie et sur la surface de la puce, ce qui induit un coût d’implémentation

relativement important. Par conséquent, la taille de ces mémoires tampons est un facteur limitant

dans la conception des réseaux sur puces.

1.2.4.4 Paquetage des données
Les données échangées entre les nœuds sont fragmentées en paquets, ces derniers

dépendent des protocoles adoptés dans la conception des NOCs. Généralement, un paquet est

composé de trois parties :

- Un en-tête : adresse source, adresse destination, codification de l’opération(lecture,

écriture, commande, …), longueur de données, etc.….

- Un message : la donnée à échanger.

- Une queue : des données de vérification et de correction d’erreurs de transmission.

a) Les sources de données
Les paquets circulant à travers le réseau proviennent de plusieurs sources, ces paquets

peuvent être classés en quatre catégories :

- Paquet_requête_mémoire : demande d’accès à la mémoire pour chercher des données

(opération de lecture, adresse destination=id_mémoire, adresse source=id_cache,

généralement pas de données).

12

Conception et simulation d’un réseau sur puce en papillon à arbre élargi Yassine AYDI

- Paquet_réponse_mémoire : les données fournies par la mémoire (adresse destination

=id_cache, adresse source= id_mémoire, message= données lues).

- Paquet_M.A.J_mémoire : réécriture des données dans la mémoire (opération d’écriture,

adresse destination=id_mémoire, adresse source=id_cache, message= données à mettre à

jour).

- Paquet_entrée/sortie : ce paquet est utilisé pour les opérations d’entrée /sortie (opération

E/S, adresse destination=id_noeud, message= données à entrer/sortir).

b) Catégories de paquets

La section précédente montre que la plupart des paquets parcourant le réseau sont

acheminés entre les mémoires et les caches, à l’exception des paquets d’entrées/sorties. Ces

paquets sont générés par des sources différentes. On distingue deux catégories de paquets :

- Paquets courts : ce sont des paquets sans données, constitués d’un en-tête et d’une

queue, l’information est décodée à partir de l’en-tête (ex. demande d’accès à une

mémoire).

- Paquets longs : ce sont des paquets avec données, telle que la réécriture dans la mémoire.

Généralement la taille des données est inférieure ou égale à la capacité d’un bloc de

cache.

 Techniques de routage et de commutation

a) Routage

Il s’agit de l’acheminement des paquets dans le réseau via des routeurs, qui sont chargés de

véhiculer des paquets en vue de rejoindre la destination dans un délai minimum. Plusieurs

techniques de routage sont utilisées dans la conception des réseaux sur puce :

- le routage déterministe : le chemin est déterminé seulement par les emplacements de la

source et de la destination.

- Le routage arithmétique : l’adresse destination du paquet entrant est comparée à

l’adresse du routeur, en fonction de laquelle le paquet sera acheminé(routage relatif).

- Routage de source (source routing) : le chemin est déterminé par la source, l’entête

renferme les adresses des routeurs utilisés. Au passage du paquet, chaque routeur décolle

son adresse.

- Routage adaptatif : le chemin est géré par les routeurs, pour faire face à l’indisponibilité

des ressources (liens, routeurs).

13

Conception et simulation d’un réseau sur puce en papillon à arbre élargi Yassine AYDI

- Routage distribué : le routeur dispose d’une table de routage reconfigurable

dynamiquement .

b) Commutation
Il s’agit d’un traitement effectué sur le paquet dans le nœud avant de l’acheminer au nœud

suivant. Plusieurs techniques de commutation sont envisageables :

- commutation par mémorisation puis transfert (store-and-forward switching) :le paquet

doit être complètement mémorisé dans le nœud, afin de l’acheminer au nœud suivant.

- Commutation par découpage (cut-through switching) :le paquet est découpé en

fragments acheminés à travers le réseau, le paquet peut être expédié à la prochaine étape

avant qu’il ne soit complètement reçu par le nœud actuel.

- Commutation virtuelle par découpage (virtual cut-through switching) : idem que la

dernière technique citée, à l’exception du fait que le paquet est totalement mémorisé dans

le nœud en cas de blocage du fragment renfermant l’entête dû à la congestion du réseau.

- Commutation de trou de ver (wormhole switching) : les fragments du paquet suivent le

canal réservé par le fragment entête, la queue résilie cette réservation. Cependant tous les

fragments sont mémorisés dans les nœuds intermédiaires en cas de blocage du fragment

renfermant l’entête dû à la congestion du réseau.

c) Problèmes liés aux techniques de commutation et de routage:

Nous présentons dans cette section les problèmes liés à l’utilisation des techniques de

commutation et de routage qui peuvent se manifester au cours de la conception d’un réseau sur

puce.

- Blocage (deadlock) : un ou plusieurs paquets peuvent se bloquer mutuellement, en outre

ils attendent des ressources qui ne seront jamais disponibles.

- Diffusion éternelle (livelock) :le paquet circule éternellement à travers le réseau sans

rejoindre sa destination, ce qui induit une saturation du réseau. Pour remédier à ce

problème, il faut instaurer un compteur au niveau de l’entête du paquet renfermant le

nombre maximal de routeurs traversés par le paquet, ce compteur est décrémenté au

passage par chaque routeur. Le paquet est détruit lorsqu’il ne rejoint pas sa destination.

14

Conception et simulation d’un réseau sur puce en papillon à arbre élargi Yassine AYDI

1.3 Etude exhaustive des recherches relatives au thème réseau sur
puce

Cette partie présente les recherches relatives au réseau sur puce. Nous avons choisi des

exemples provenant d’horizons très variés pour montrer la polyvalence et l’évolution de cette

technologie. On s’est intéressé essentiellement à l’architecture générale des réseaux existants,

ainsi qu’au paquetage des données et aux techniques de routage et de commutation adoptées.

1.3.1 SPIN (Scalable Programmable Integrated Network)

C’est un réseau d’interconnexion à commutation de paquets pour systèmes intégrés sur

puce développé au LIP6[9]. Ce réseau est basé sur une topologie dite d’arbre quaternaire

élargi(Fat Tree), cette topologie a les avantages suivants : le nombre maximal de liens entre

les ressources est raisonnable (il est égal à 2*log4(n) avec n le nombre de niveaux), en plus

elle est extensible, hiérarchique et utilise un petit nombre de routeurs pour un nombre donné

de ressources. Les informations qui circulent sur le réseau SPIN sont des paquets. Un paquet

SPIN est une séquence de fragments de 36bits, le premier fragment possède un marqueur de

début de paquet et le dernier fragment renferme le marqueur de fin de paquet. La technique de

routage utilisée est distribuée. Il en résulte que chaque routeur achemine les paquets sans

l’intervention d’une synchronisation centrale. La technique de commutation utilisée est de

type Wormhole pour limiter la latence. Le réseau SPIN (figure 3) fournit un mécanisme de

communication dynamique entre les différents composants connectés dans le système. De

plus, la bande passante croît linéairement avec le nombre de processeurs intégrés.

L’implantation de ce réseau a soulevé des problèmes tels que la présence d’interblocages et la

difficulté de la gestion des ressources autour du réseau. Pour remédier à ces problèmes, des

Wrappers ont été conçus pour fournir aux ressources des interfaces de communication

respectant le standard VCI (Virtual Component Interface) [10].

15

Conception et simulation d’un réseau sur puce en papillon à arbre élargi Yassine AYDI

liens
routeurs

ressources

Figure 3: le réseau SPIN

1.3.2 Les réseaux orthogonaux
Ces réseaux sont interconnectés en grille ou en tore multidimensionnel. Un réseau direct en

grille 2D a été proposé par Dally [11]. Ce modèle est basé sur une topologie qui interconnecte

tous les processeurs entre eux directement (figure 4). Les fonctionnalités de routage, d’arbitrage

et de paquetage de données sont réalisées indépendamment au niveau de chaque nœud. Les

données échangées sont découpées en fragments de 294bits dont 38bits sont des données de

contrôle (le type du paquet, la taille de la donnée, le numéro du canal virtuel, le chemin,

l’indicateur de service). Le routeur utilise l’algorithme de source déterministe. La commutation

des données est faite via des canaux virtuels pour limiter la latence, en plus ces données sont

mémorisées dans des files d’attentes en entrée. Le processeur et le routeur sont co-implantés dans

le même nœud. Les interfaces réseaux sont localisées aux quatre périphéries de chaque nœud .

Ce réseau a des avantages de structure, d’exécution et de modularité, tels que :

- la prédiction des paramètres électriques (puissance, interférence et bruit) permettant

l’obtention de circuits à haute performance en terme de latence , de bande passante et de

puissance minimale.

- La réutilisation de la conception du réseau, c’est à dire le routeur est un composant

réutilisable.

- La simplicité de l’interface-réseau, ce qui facilite l’interopérabilité avec une grande

variété de protocoles.

16

Conception et simulation d’un réseau sur puce en papillon à arbre élargi Yassine AYDI

1.3.3 Le ré
Ce réseau ado

routeur via une inte

utilise la technique d

garantir la bande pas

dont 10 sont réserv

acheminer les donné

à un routeur sont mé

des mécanismes d

simulateur a été dév

entre le réseau NOS

interfaces

noeud

Figure 4: Dally NOC

seau NOSTRUM
pte la topologie grille 2D (figure 5). Chaque ressource est connectée à un

rface réseau. Chaque routeur est connecté aux quatre voisins. Ce modèle

e commutation de paquets avec des circuits virtuels de communication pour

sante et la latence. Chaque paquet est découpé en Flit (Flow Unit) de 300bits

és au contrôle. Le routeur utilise l’algorithme Hot-potato routing pour

es, ce qui minimise l’utilisation des mémoires tampons. Les données arrivant

morisées dans des files d’attente en entrée. Le contrôle de flux est assuré par

’acquittement, de fenêtre d’anticipation et de retransmission [12]. Un

eloppé en SystemC pour évaluer cette architecture par une étude comparative

TRUM et une architecture à base de bus[13].

17

Conception et simulation d’un réseau sur puce en papillon à arbre élargi Yassine AYDI

routeur

ressource

Figure 5: le réseau sur puce NOSTRUM

1.3.4 Le réseau Octagon
C’est un réseau direct, proposé par Karim [14]. Ce modéle est basé sur une topologie en

anneaux raccordés (figure 6). Chaque anneau renferme huit nœuds. Les fonctionnalités de

routage et de commutation sont co-implantées avec le processeur. Le paquet circulant à travers le

réseau est de taille variable, l’entête du paquet renferme trois bits dédiés pour le contrôle(bits

d’adresses). Ce réseau utilise la commutation de paquets et de circuits. La technique de routage

adoptée est de type distribué et adaptative. La communication entre deux nœuds quelconques

d’un anneau exige au plus deux liens intermédiaires. La bande passante de ce réseau peut

atteindre 40Gbits/s, ce qui permet d’obtenir des circuits à rendement élevé .

Figure 6: le réseau sur puce Octagon

0

1

3

P 2

M 3

2

7

6

5

4

P 0
M 0

P 1
M 1

P 4
M 4

P 5
M 5

P 6
M 6

P 7
M 7

M 2

P 3

18

Conception et simulation d’un réseau sur puce en papillon à arbre élargi Yassine AYDI

1.3.5 Le réseau Æthereal
Ce réseau a été développé au laboratoire de recherches de Philips aux Pays Bas[15]. Il est

basé sur une topologie irrégulière (figure 7). Les ressources(processeur, mémoire, Ip, etc.…) sont

connectées au routeurs par des interfaces-réseaux. Le routeur Æthereal utilise un routage de

source déterministe (source routing), une commutation de type Wormhole et une mémorisation

de paquets en entrée. Chaque paquet est découpé en flits de 32bits, le premier flit renferme

l’entête(identification de paquet, taille, chemin, fenêtre d’anticipation, indicateur de fin de

paquet). Æthereal fournit un transfert fiable de données via des routeurs opérant en deux

catégories de trafic (établissement de connexion de bout en bout puis échange de données). Les

interfaces-réseaux assurent plusieurs fonctions telles que, le contrôle de flux, le paquetage de

données, la connexion avec les protocoles standards d’interface, ainsi que l’ordonnancement des

transactions générées par les ressources connectées au réseau.

1.3.6
Cette a

une topolog

interconnecté

communicati

dispose d’un
Figure 7: le réseau sur puce Æthereal

Le réseau Proteo
rchitecture a été développée à l’Université de Tampere en Finlande[16]. Elle adopte

ie en anneau bi-directionnel. Ce modèle est composé de plusieurs sous-réseaux

s entre eux par des ponts (figure 8). Ce réseau offre une bibliothèque de

on flexible supportant plusieurs topologies et stratégies de routage. Le routeur

e table de routage veillant sur l’acheminement des données et utilise la technique de

19

Conception et simulation d’un réseau sur puce en papillon à arbre élargi Yassine AYDI

commutation de paquets. Des files d’attente sont utilisées en entrées et en sorties. Un

environnement de simulation à base de VHDL a été créé pour la validation de cette approche[17].

IP

IP

Pont

Routeur

Routeur

IP

Routeur

Pont Sous-réseau 1

Sous-réseau 2

Sous-réseau 3

Figure 8: Proteo NOC

1.3.7 Le réseau Hermes
Cette architecture adopte la topologie en grille2D [18]. Chaque ressource (processeur, Ip)

est connectée à un routeur (figure 9). Ce dernier est composé de cinq ports (Est, Ouest, Nord, Sud

et Local). Le port local est relié à une ressource alors que les autres ports sont reliés aux routeurs

voisins. Chaque port possède une file d’attente en entrée pour stocker provisoirement les

données. La technique de commutation utilisée est de type Wormhole afin de diminuer la latence

et l’utilisation de mémoires tampons. Les paquets circulant dans le réseau contiennent des

données, un en-tête qui renferme l’adresse destination et un compteur indiquant le nombre de

mots dans le paquet. L’acheminement des paquets dans le réseau est fait suivant une stratégie de

routage arithmétique basée sur l’adresse du routeur exprimé en XY, où X représente sa position

horizontale et Y sa position verticale. Les avantages primordiaux de cette plate-forme est sa

performance, notamment en terme de latence et débit, ainsi que sa flexibilité du fait que les files

d’attente et la taille des paquets sont paramétrables.

20

Conception et simulation d’un réseau sur puce en papillon à arbre élargi Yassine AYDI

Figure 9: Hermes NOC

1.3.8 ECLIPSE(Embedded Chip Level Integrated Parallel Super
computEr)

Cette approche adopte une topologie en maille 2D hiérarchisée(figure 10). Le nombre de

routeurs est au moins le carré du nombre de ressource divisé par quatre[19]. Elle utilise des

mémoires partagées afin d’éviter les problèmes de cohérence de cache. L’avantage primordial de

cette nouvelle architecture réside dans le fait que les communications ne bloquent jamais le

réseau dans le cas d’un trafic lourd.

Figure 10: ECLIPSE NOC

21

Conception et simulation d’un réseau sur puce en papillon à arbre élargi Yassine AYDI

1.4 Performances des réseaux sur puces
Nous avons passé en revue les différentes conceptions des réseaux sur puce. Bien que ces

travaux restent théoriques jusqu'à nos jours, ils nous ont permis de déceler plusieurs besoins

auxquels doit répondre une architecture d’interconnexion d’une part et des orientations générales

indispensables pour la conception d’un réseau sur puce fiable et flexible d’autre part.

1.4.1 Critères d’évaluation d’un réseau sur puce
Nous présentons les objectifs quantitatifs et qualitatifs minimaux que doit atteindre un

réseau sur puce comme suit :

- la bande passante : le réseau sur puce doit offrir une bande passante suffisante pour

établir des communications multi-Gbit/s entre les ressources. En plus, cette bande

passante devra croître linéairement avec le nombre de ressources connectées.

- La latence : plusieurs systèmes « temps réels » et applications spécifiques (vidéo)

demandent une très faible latence. Pour cela, le réseau sur puce doit utiliser des

mécanismes de routage acheminant les données dans un temps minimum.

- La fiabilité : c’est le contrôle du taux de disponibilité du réseau avec des hypothèses

pertinentes de charge. Cette disponibilité doit être compatible avec plusieurs heures de

bon fonctionnement continu.

- La flexibilité : les systèmes sur puce sont toujours composés de sous-systèmes

hétérogènes. L’architecture de communication doit veiller à la coopération entre ces sous-

systèmes par la mise en place d’une plate-forme supportant des trafics variés et ayant un

interfaçage souple avec les protocoles standards. En plus, cette architecture doit offrir la

possibilité de la programmation, de la reconfiguration et même de la réutilisation de la

conception.

- La consommation : les propriétés physiques d’un réseau sur puce (telles que la surface,

les interférences et les bruits) sont prévisibles et soumises à un contrôle afin de réaliser

une architecture de connexion à consommation réduite.

- La surface : l’architecture de communication doit occuper une surface minimale de la

puce.

22

Conception et simulation d’un réseau sur puce en papillon à arbre élargi Yassine AYDI

1.4.2 Directives pour la conception d’un réseau sur puce
Nous présentons dans cette partie des recommandations indispensables pour la conception

d’un réseau sur puce à énergie réduite et à rendement élevé.

- L’architecture : la topologie doit être extensible et utilise un nombre limité de liens et de

routeurs.

- La segmentation et la mémorisation de données : les informations échangées doivent

être découpées en séquences de bits de petite taille fixe, puis mémorisées dans des files

d’attente de capacité limitée.

- Les stratégies de routage et de la commutation : le routeur doit utiliser des techniques

de routage et de commutation permettant d’acheminer les paquets dans un temps

minimum.

Les deux premiers paramètres influent sur la consommation de l’énergie et sur la surface du

réseau sur la puce, le troisième paramètre définit la latence du système.

1.5 Conclusion
Dans cette partie, nous avons passé en revue les différentes conceptions des réseaux sur

puces, les critères pertinents d’évaluation de la plate-forme d’interconnexion, ainsi que des

mesures technologiques que le concepteur doit prendre en considération pour implémenter un

réseau sur puce.

Ces critères serviront à orienter les choix de conception de notre modèle de réseau sur puce

baptisé BFT-NOC. Les performances obtenues par les réalisations faites dans cet axe de

recherche définissent les objectifs qu’on s’est fixé dans ce travail.

23

Conception et simulation d’un réseau sur puce en papillon à arbre élargi Yassine AYDI

Chapitre 2.

Le simulateur NS-2

Après avoir exploré l’architecture générale du réseau sur puce et avant de modéliser notre

architecture baptisée BFT-NOC, il a fallu choisir un simulateur pour évaluer notre modèle. Pour

cela, nous décelons en première partie les similitudes entre les domaines des NOCs et des réseaux

publics, puis nous étudions les simulateurs de réseaux existants et enfin nous présentons le

simulateur NS-2 choisi en vue d’évaluer notre architecture.

2.1 NOC et les réseaux publics
L’étude approfondie faite dans le chapitre précédent nous a permis de déceler plusieurs

similitudes entre les NOCs et les réseaux publics. Le réseau sur puce interconnecte plusieurs

ressources tels que processeurs, DSPs, FPGAs, Ips, mémoires qui ressemblent aux terminaux

connectés à un réseau public. Les routeurs ou commutateurs implémentés dans les NOCs ont

presque les mêmes fonctionnalités que ceux des réseaux publics. L’acheminement des données est

assuré respectivement par des fils en métal dans un NOC et des supports de transmission pour les

réseaux publics. En plus, l’architecture d’un NOC est plus simple que celle d’un réseau public,

étant donné tous les composants sont intégrés sur la même puce. Tous ces indicateurs nous ont

laissé réfléchir à choisir un simulateur de réseau public à adopter en vue d’évaluer notre modèle.

2.2 Les simulateurs de réseaux publics
Nous étudions dans cette section quelques simulateurs utilisés dans le domaine des réseaux

publics. Ce n’est pas une étude exhaustive puisque plusieurs centres de recherche ont conçu des

simulateurs pour des objectifs précis tels que la simulation d’un protocole ou d’un problème

particulier. Par conséquent, la documentation relative à un simulateur est souvent pauvre ou

confidentielle, les bogues ne sont pas fixes et les simulateurs n’ont pas évolué. Dans la partie qui

suit nous présentons des simulateurs de réseaux dont les informations les concernant sont

disponibles[20].

24

Conception et simulation d’un réseau sur puce en papillon à arbre élargi Yassine AYDI

- Netsim : conçu par MIT LCS, c’est un simulateur à événement discret, pour les réseaux à

commutation de paquets, avec une stratégie de routage statique et mémorisation en file

d’attente événementielle.

- Insane : conçu à l’université de Californie, c’est un simulateur à événement discret, orienté

objet, utilise une table de routage statique, et une mémorisation FIFO. Il est utilisé pour

simuler les réseaux ATM (Asynchronus transfer mode).

- Nest 2.5 : développé à l’université de Columbia, en vue de simuler les systèmes et les

algorithmes distribués.

- Real 5.0 : c’est une version évoluée de NEST2.5, il évalue le comportement dynamique du

flux d’information échangé, ainsi que la congestion des réseaux à commutation de paquets

(notamment TCP/IP).

- Network simulator 2 (NS-2) : il a été développé par le groupe de recherche de réseau au

laboratoire national de Laurent Berkeley (LBNL). C’est un simulateur orienté objet et à

événement discret, il évalue les réseaux à commutation de paquets. De plus amples détails

pour cet outil sont présentés dans la section suivante.

- Autres simulateurs : Opnet, Cpism, Cnet, Mars, Simunet, Gpss, Ipv6, Netsim++, . ..

Parmi les simulateurs cités ci-dessus, nous avons opté pour NS-2 en vue d’évaluer notre

modèle baptisé BFT-NOC. Ce choix a été déterminé en fonction des avantages de ce simulateur,

entre autres :

- un domaine large d’applications,

- des fonctionnalités multiples d’implémentation,

- des interfaces utilisateurs simples,

- l’efficacité, la scalabilité et la synergie,

- plusieurs niveaux d’abstraction .

2.3 Présentation du simulateur NS-2

2.3.1 Les fonctionnalités de base de NS-2 :
Le simulateur NS-2 propose aux utilisateurs un support de recherche pour la gestion des

réseaux , telles que l’implémentation de la topologie, la modélisation des routeurs (file d’attente,

25

Conception et simulation d’un réseau sur puce en papillon à arbre élargi Yassine AYDI

stratégies de routage…), la génération du trafic, la présentation de résultats sous forme de

graphiques. Aussi, il dispose d’une source ouverte et distribuée (code partagé), ce qui facilite la

comparaison des modèles, des protocoles et des résultats. En plus, cet outil fournit des niveaux

multiples de détails, des interfaces utilisateurs simples, et plusieurs niveaux d’abstraction.

2.3.2 Architecture logicielle de NS-2 :
Le simulateur NS-2 est l’objet de perfectionnements périodiques effectués par un groupe de

recherches de réseau au laboratoire national de Laurent Berkeley (LBNL). C’est un ensemble de

ligne de code en C++ et OTCL (environ 200K), cet outil présente aussi plus de cent exemples

testés, et un manuel d’utilisation de 371 pages qui illustre touts les fonctionnalités du

simulateur[21]. Ce composant est supporté par toutes les plates-formes (Linux, Solaris, Windows,

Mac).

2.3.3 Les composants de NS-2 :
Le simulateur NS-2 renferme plusieurs composants ayant des fonctionnalités précises,

nous passons en revue ci-dessous les modules les plus utilisés au cours d’une simulation :

- NS, le noyau du simulateur, composé d’un ensemble de modules et de bibliothèques .

- Nam, l’animateur de réseau: c’est l’éditeur pour générer des scripts NS et pour visualiser les

modèles implémentés.

- Les générateurs de topologie et d’applications .

- Le moniteur des files d’attente.

- L’analyseur de la bande passante.

En plus, le simulateur NS-2 offre la possibilité d’incorporer des protocoles de

transmission, des mécanismes de routage et des générateurs d’applications, ces modules sont

conçus par les utilisateurs.

2.3.4 Le modèle d’interconnexion de NS-2 :
Le simulateur NS-2 s’est inspiré du modèle OSI (Open System Interconnexion) de l’ISO

(International Standard Organisation) le découpage en couches, mais se limite à cinq couches

seulement à savoir :

26

Conception et simulation d’un réseau sur puce en papillon à arbre élargi Yassine AYDI

- La couche application : Ftp, Web, Telnet, Cbr, Vbr

- La couche transport : TCP, UDP, LossMonitor…

- La couche réseau : protocole de routage (statique, dynamique ou manuel), file d’attente

(Red, Drop-tail,…)

- La couche liaison : acheminement des données, contrôle d’erreurs. ..

- La couche physique : acheminement à travers des fils, ou sans-fils, ou par satellite.

2.3.5 Utilisation de NS-2
L’organigramme cité ci-dessous décrit les étapes à suivre pour l’utilisation de NS-2, nous

signalons que cet outil offre aux utilisateurs l’opportunité de simuler plusieurs processus en

même temps.

Probléme

modéle
a simuler

création/
exécution

de la simulation
avec ns

Analyse
des résultats

modification
du script ns

Figure 11: organigramme d’utilisation de NS-2

2.4 Tâches à entreprendre pour modeler et simuler un réseau avec
NS-2

La conception, l’implémentation et la simulation d’un réseau avec NS-2 nécessitent des

tâches réparties en trois phases :

27

Conception et simulation d’un réseau sur puce en papillon à arbre élargi Yassine AYDI

2.4.1 Pré-traitement
- la création du modèle à simuler,

- la définition du déclencheur de début et de fin des événements,

- l’activation des moniteurs de trafic, de l’animateur de trafic et des traceurs de graphes

(figure 12),

- l’implémentation de la topologie (la capacité du réseau en terme de bits, la taille de la file

d’attente, la nature de la liaison (simplex ou duplex), le mécanisme de mémorisation

(DropTail, Red, etc..), le moniteur de la file d’attente).

2
-

-

-

-

2
-

-

Figure 12: une topologie de réseau et un scénario de simulation

.4.2 Traitement
la mise en place de la stratégie et du protocole de routage (statique, dynamique ou

manuelle),

le choix du mécanisme de la gestion des files d’attente,

la création de la connexion au niveau transport par des protocoles destinés à la

transmission,

la génération du trafic dans le réseau par des applications (figure 13).

.4.3 Post-traitement
l’exécution de la simulation

l’analyse des résultats de simulation fournis par des moniteurs de files d’attente et de

bande passante (figure 14) .

28

Conception et simulation d’un réseau sur puce en papillon à arbre élargi Yassine AYDI

Figure 13: détails du trafic inter-nœuds

Figure 14: graphe évaluant la taille de la file d’attente durant la simulation

29

Conception et simulation d’un réseau sur puce en papillon à arbre élargi Yassine AYDI

Chapitre 3.

Architecture générale du réseau

sur puce (BFT_NOC)

En réinvestissant les connaissances acquises dans le domaine du réseau sur puce par l’étude

exhaustive des travaux relatifs à ce thème, et en déterminant les motivations et les objectifs de ce

travail, nous présentons dans cette partie le modèle de notre réseau sur puce baptisé BFT_NOC.

La conception et la simulation du modèle sont assurées par le simulateur NS-2.

Cette étape consiste à concevoir le modèle en topologie papillon en arbre élargi, choisir les

blocs fonctionnels (ressources et routeurs), les paramètres liés à la communication inter-

ressources (bande passante, latence, débit…), les techniques de routage, les files d’attente, et la

conception d’un analyseur de trafic du réseau permettant l’obtention des résultats de simulation.

3.1 Introduction
Notre modèle est composé essentiellement de trois parties (figure 15), la mise en place de la

topologie, la génération des communications inter-ressources, l’implémentation d’un analyseur

contrôlant des paramètres liés au trafic dans le réseau. Ces parties satisfont les besoins de

communication de ce modèle, et permettent l’obtention des résultats de simulation analysés dans le

chapitre 6.

Générateur des
communications

Résultats
de

simulation

Description
de la

topologie

Analyseur de
trafic

du réseau

Figure 15: le modèle abstrait du BFT_NOC

30

Conception et simulation d’un réseau sur puce en papillon à arbre élargi Yassine AYDI

3.2 Architecture générale du modèle BFT_NOC
Cette partie présente la mise en place de la topologie papillon en arbre élargi (Butterfly Fat

Tree) sur notre modèle BFT_NOC. Dans la première phase, nous décrivons la topologie adoptée,

puis l’architecture et le fonctionnement des composants (ressources et routeurs) intervenant dans

ce modèle et en dernière phase les communications nécessaires pour cette plate-forme.

3.2.1 Implémentation de la topologie sur BFT_NOC
3.2.1.1 Architecture de la topologie papillon en arbre élargi
Nous avons opté pour la topologie papillon en arbre élargi (figure 16) pour interconnecter

de nombreux blocs (processeurs, mémoires, DSP, IP ….). Dans ce modèle, les ressources sont

placées aux feuilles et les routeurs aux sommets. Chaque nœud est marqué par une paire de

coordonnées (l, a) où l dénote le niveau d'un nœud et le p dénote sa position dans ce niveau. En

général, au niveau le plus bas (l = 0), il y a N ressources avec des adresses s'étendant de 0 à (N-

1). La paire (0, N) dénote les endroits des ressources à ce niveau le plus bas. Le routeur marqué

par R(l, p) possède six ports : ascendant0, ascendant1, descendant0 , descendant1 , descendant2 et

descendant3 . Les ressources sont reliées aux N/4 routeurs au premier niveau. Le nombre de

niveaux dépend du nombre de ressources. En outre pour N ressources, le nombre de niveaux est

log4(N) . Au l éme niveau (de l=1 à log4(N)) , on dispose de N/2l+1 routeurs[22].

Figure 16: une architecture papillon en arbre élargi composée de 64 ressources et 28

routeurs

31

Conception et simulation d’un réseau sur puce en papillon à arbre élargi Yassine AYDI

Les connections ressource-routeur et routeur-routeur sont déterminées comme suit :

- une ressource N(0, a) est connectée au descendant(amod4) dénoté S(1, (adiv4))

- l’ascendant0 du routeur R(l, a) est connecté au descendant(i) dénoté S(l+1, (adiv2l+1)*2l +

(a mod 2l)), avec i= (a mod 2l+1)div 2l-1

- l’ascendant1 du routeur R(l, a) est connecté au descendant(i) dénoté S(l+1, (adiv2l+1)*2l +

((a+2l-1)mod 2l)), avec i= (a mod 2l+1)div 2l-1

L’adoption de cette architecture nous a permis plusieurs avantages :

- Le nombre de routeurs dans cette topologie converge vers une constante indépendante du

nombre de niveaux, et ce nombre tend vers la moitié du nombre de ressources quand ce dernier

croit arbitrairement.

R= 4
N + 2

1
4
N + 4

1
4
N + … ()l2

1
4
N = 4

N ()
















−

−

2
11
2
11

l

 R →→l 2
N

- Il existe plus qu’un chemin court entre une paire de feuilles, en outre un message est

acheminé à travers l’un des deux liens hauts du routeur.

- Les fils entre les ressources et les routeurs sont logiquement structurés, donc leurs

longueurs peuvent être rendues prévisibles.

- Le trafic émergeant de/arrivant aux ressources est combiné dans un fil simple, ceci induit

à la réduction de la congestion du fil.

3.2.1.2 Modélisation de la topologie
Notre objectif essentiel est de concevoir un réseau sur puce dont la topologie est papillon en

arbre élargi. Une architecture composée de 16 ressources, 6 routeurs et 3 niveaux sera modélisée

puis simulée (figure 17).

Les routeurs et les ressources sont présentés respectivement par des carrés et des cercles.

Les ressources sont hétérogènes (mémoires, processeur, DSP, IP ..) et sont choisis aléatoirement

soit source ou destination.

La connexion ressource-routeur est faite via un composant intermédiaire implémenté dans

la ressource et baptisé RNI (Ressource Interface Network). La connexion routeur-routeur

permet la communication entre les ressources. Chaque composant(ressource, routeur) possède

une adresse unique indiquant le niveau du composant et sa position dans ce niveau.

32

Conception et simulation d’un réseau sur puce en papillon à arbre élargi Yassine AYDI

20 21

10 11 12 13

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

20 21

10 11 12 13

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

2

1

0

Niveauressources

routeurs
liens

Figure 17: Synoptique du BFT-NOC

3.2.2 Architecture des blocs fonctionnels
Le modèle proposé comprend deux composants importants : le routeur et la ressource,

ainsi que les communications établies entre eux.

3.2.2.1 Le routeur
Le routeur est un composant vital de tout réseau. Il doit donc être très compact. D'autre part,

la performance globale du réseau dépend du comportement individuel des routeurs et de leurs

interactions, les meilleurs résultats étant évidemment obtenus avec les routeurs les plus

sophistiqués.

Nous proposons un routeur qui assure l’établissement de la connexion, l’acheminement des

paquets et la gestion de la file d’attente. Ce routeur comprend 6 ports reliés par des fils en métal.

Chaque port comprend un lien_départ et un lien_arrivée. Une file d’attente de taille fixe est

assignée à chaque lien_arrivée. Nous avons adopté le mécanisme FIFO pour la gestion de la file

d’attente, c’est à dire quand un paquet arrive à un routeur (figure 18), deux hypothèses se

présentent : La première, s’il y a de l’espace dans la file d’attente, le paquet doit attendre dans la

file jusqu’à devenir prioritaire afin de l’acheminer au prochain nœud. La seconde, si la file

d'attente est saturée, le paquet est détruit définitivement. En ce qui concerne le mécanisme de

routage, nous avons adopté deux stratégies de routage pour la détermination du prochain nœud.

33

Conception et simulation d’un réseau sur puce en papillon à arbre élargi Yassine AYDI

La première stratégie est statique, en outre les calculs sont faits une seule fois pour une seule

simulation. La deuxième stratégie de routage est dynamique, fondée sur un algorithme modifiant

la table de routage dynamiquement durant la simulation .

F iles d ’attentes
C ontrô le de

rou tage

Figure 18: Synoptique du routeur BFT-NOC

3.2.2.2 Les ressources
Les ressources ont été modélisées comme processeur, mémoire, IP, DSP . .., aussi elles

peuvent être à la fois source et destination (figure 19) dans lesquelles les paquets sont générés et

consommés. On suppose que la taille de la file d’attente est infinie dans les ressources. Etant

donné que chaque ressource (processeur, mémoire, IP, DSP …) est habilitée à traiter les données

entrantes et sortantes à une grande vitesse, le risque de destruction de paquets dans une

ressource est négligeable.

34

Conception et simulation d’un réseau sur puce en papillon à arbre élargi Yassine AYDI

RouteurRouteur
RessourceRessource

Paquets entrantsPaquets entrants

Paquets sortantsPaquets sortantsRouteurRouteur
RessourceRessource

Paquets entrantsPaquets entrants

Paquets sortantsPaquets sortants

Figure 19: Liaison routeur-ressource

3.2.3 Communications inter-blocs
Dans cette section on présente les conditions requises pour gérer les communications inter-

blocs.

- Les informations entre deux ressources sont acheminées en trois phases, de la ressource-

source au routeur auquel elle est connectée, puis du routeur au routeur et en dernière

phase du routeur à la ressource-cible.

- Les informations échangées sont découpées en paquets dont la taille est fixée à 8 octets, et

pour une bande passante maximale de 8Gbits/s .

- Notre routeur (dropTail router) adopte le mécanisme FIFO pour la gestion de la file

d’attente, en outre, le routeur détruit automatiquement les paquets arrivant et dépassant la

capacité de la file d’attente.

- Deux stratégies de routage ont été adoptées pour notre modèle. La première est statique,

basée sur un algorithme qui détermine le chemin le plus court entre la source et la

destination, la table de routage est mise à jour une seule fois au début de la simulation. La

deuxième stratégie de routage est dynamique, basée sur un algorithme modifiant la table

de routage dynamiquement durant la simulation. Les avantages primordiaux de ces

stratégies sont la simplicité, la tolérance aux fautes, et le contrôle des propriétés physiques

(surface, bande passante, débit, latence,…) par l’utilisation optimale des mémoires et des

délais d’interconnection.

35

Conception et simulation d’un réseau sur puce en papillon à arbre élargi Yassine AYDI

- Etant donné que NS_2 est un simulateur à événement discret, notre modèle est piloté par

événement en utilisant des déclencheurs de début et de fin de simulation.

- Au niveau du contrôle de la transmission entre équipements terminaux (ressources), nous

avons opté pour le protocole UDP (User Datagram Protocol) opérant en mode non

connecté, c’est à dire les paquets sont acheminés à travers le réseau sans garantie

d’arrivée (pas d’acquittements), sans contrôle de flux, de duplication et pas de

récupération d’erreurs. Ce choix est déterminé par la simplicité du protocole par rapport à

TCP (transmission control protocol), et par l’optimisation de la taille de la file d’attente

afin de minimiser la destruction des paquets.

- La génération du trafic est pilotée par une application produisant un trafic selon une

distribution exponentielle (figure 20). Des paquets de taille fixe sont émis à travers le

réseau durant une période opérationnelle (burst_time) suivant un débit binaire fixé à

l’avance. Le trafic est bloqué durant une période de repos (idle_time).

- Le choix des sources est effectué suivant une distribution uniforme, pour notre modèle,

toutes les ressources émettent des paquets selon une distribution exponentielle, au

contraire les cibles sont choisies aléatoirement, en outre une ressource peut être une cible

pour plusieurs sources à la fois.

 20 2120 2120 2120 21

10 11 12 13

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

Loss
Monitor

Traffic/Exponential
9Taille paquet= 8bytes

9Temps_opérat.=0.5s

9Temps_repos=1ms

9Débit de 100Mb/s au 450Mb/s

UDP

SourceSource Cible Cible

10 11 12 13

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

10 11 12 1310 11 12 13

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 1500 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

Loss
Monitor

Traffic/Exponential
9Taille paquet= 8bytes

9Temps_opérat.=0.5s

9Temps_repos=1ms

9Débit de 100Mb/s au 450Mb/s

Traffic/Exponential
9Taille paquet= 8bytes

9Temps_opérat.=0.5s

9Temps_repos=1ms

9Débit de 100Mb/s au 450Mb/s

UDP

SourceSource Cible Cible

Figure 20: génération du trafic dans le réseau

36

Conception et simulation d’un réseau sur puce en papillon à arbre élargi Yassine AYDI

Chapitre 4.

Conception et modélisation du

réseau BFT_NOC dans NS-2

 Cette étape consiste à implémenter le modèle BFT-NOC dans le simulateur NS-2, nous

avons découpé le modèle en trois composants. Nous commençons par la conception de la topologie

adoptée, dans la deuxième phase nous détaillons la gestion des communications inter-ressources

composée du générateur de trafic du réseau, ainsi que l’algorithme adopté pour le choix des

ressources. La dernière étape renferme des modules implémentés en vue d’évaluer notre modèle,

entre autres les stratégies de routage, le moniteur de la file d’attente et l’analyseur de la bande

passante.

4.1 Implémentation de la topologie
Nous introduisons dans cette étape le nombre de ressources utilisées dans notre modèle, ce

nombre est fixé à 16 ressources. Une ressource peut être à la fois source et destination dans

laquelle les paquets sont générés et consommés. Le nombre de niveaux de la topologie adoptée est

déterminé implicitement en fonction du nombre de ressources, en outre pour N=16 ressources, le

nombre de niveaux L est égal à log4(16) = 2. Le nombre de routeurs est déduit implicitement en

fonction du nombre de ressources et de niveaux, et ce par la fonction suivante : au l éme niveau (de

l=1 à log4 (N)), on dispose de N/2l+1 routeurs. Pour notre modèle, nous implémentons au premier

niveau quatre routeurs(16/21+1), et au deuxième niveau deux routeurs (16/22+1), en outre le

nombre de routeurs utilisés s’élève à six. Nous présentons dans l’exemple qui suit la syntaxe de

création des ressources :

For {set i 0} {$i < $Nr} {incr i} {

Set n($i) [$bftnoc node]

Set $n($i) shape circle

Set $n($i) color red

}

37

Conception et simulation d’un réseau sur puce en papillon à arbre élargi Yassine AYDI

Nous définissons aussi, trois paramètres fondamentaux utilisés dans la conception de notre

réseau sur puce, à savoir la bande passante maximale, le délai et la taille de FIFO.

• La bande passante maximale : détermine la capacité maximale du réseau en terme de

bits ou paquets, cette valeur est exprimée en MBits/s La limitation du CPU a réduit la

bande passante à 500MBits/s

• Le délai d’une liaison : c’est le temps de transfert d’un paquet d’un nœud à un autre via

une liaison en fil métallique. Ce délai est fixé à 0.1ms.

• La taille de FIFO : c’est un paramètre critique pour les NOCs, il influe directement sur

les performances des routeurs implémentés dans le modèle, le délai du message dépend

aussi de la taille de FIFO. Plusieurs variantes de FIFOs sont implémentées et simulées en

vu d’évaluer les performances de notre réseau sur puce (2tf avec tf ∈ [0,4]).

Nous illustrons un exemple qui définit ces trois paramètres, ainsi que leur utilisation pour la

conception de la topologie :

Set bandepassante 500Mb

Set delailfil 0.1ms

Set capacitefifo 4

For {set i 0} {$i < $(Nr/2l+1)} {incr i} {

For {set j 0} {$j < 4} {incr j} {

$nocbft duplex-link $n($j) $r($i) $bandepassante $delaifil Droptail

commentaires :
9 nocbft : l’objet a simulé

9 duplex-link : liaison en full_duplex(échanges de paquets dans les deux

sens)

9 $n($j) $r($i) : désigne respectivement une ressource et un routeur

9 Droptail : le mécanisme de la gestion de la FIFO, tout paquet entrant, et

n’ayant pas une place dans la FIFO est détruit automatiquement.

$nocbft queue-limit $n($j) $r($i) $capacitefifo

set monfifo(n($j)r($i)) [$nocbft monitor-queue $n($j) $r($i)]

commentaires :
9 queue-limit : définit la capacité de FIFO de la liaison entre la ressource

et le routeur

9 monitor-queue : une pile renferme des données relatives à la

FIFO(paquets entrants, paquets sortants, paquets détruits…)

}
38

Conception et simulation d’un réseau sur puce en papillon à arbre élargi Yassine AYDI

4.2 La gestion des communications inter-ressources
Cette partie comporte deux modules implémentés, le premier décrit l’application qui génère

le trafic au niveau des sources, le deuxième présente l’algorithme permettant le choix des sources

et des destinations.

4.2.1 Générateur du trafic dans le réseau sur puce(BFT-NOC)
Nous choisissons une application qui génère le trafic au niveau des sources suivant une

distribution exponentielle. Des paquets de taille fixe sont émis à travers le réseau durant une

période opérationnelle (burst_time) et suivant un débit binaire fixé à l’avance, et le trafic est

bloqué durant une période de repos (idle_time). Ce générateur du trafic qui est implémenté au

niveau de la couche application est attaché au protocole UDP (User Datagram Protocol) utilisé

par notre modèle, et ce protocole est attaché à un nœud source. De l’autre coté un agent

LossMonitor est crée, cet agent est attaché à un nœud destination. Les deux protocoles sont

connectés entre eux au niveau de la couche transport, en outre la connexion entre une source et

une destination est établie implicitement.

Le comportement de ce générateur du trafic est défini par quatre paramètres :

• débit : la quantité d’informations envoyée pour une période donnée, une variante de

débits a été simulée(100,120,150,250,350 et 450Mbits/s)

• taille du paquet : des données de taille fixe générées par l’application

• burst_time : la période opérationnelle durant laquelle les paquets sont générés

• idle_time : la période durant laquelle le trafic est bloqué

l’exemple cité ci-dessous présente les étapes d’implémentation d’un générateur du trafic :

39
Set taillepaquet 8
Set debit 450000k # déclaration des paramètres
Set burst 0.5s
Set idle 1ms
Proc application {noeud_source cible taillepaquet burst idle debit } {
Set bftnoc [Simulator instance]
Set UDP[new Agent/UDP]
$bftnoc attach-agent $noeud_source $udp
set expooTraffic [new Application/TrafficExponential]
$expooTraffic set packetSize_ $ taillepaquet
$expooTraffic set burst_time_ $burst
$expooTraffic set idle_time_ $idle
$expooTraffic set rate_ $debit
$expooTraffic attach-agent UDP
$bftnoc connect $UDP $cible
return expooTraffic
}

Conception et simulation d’un réseau sur puce en papillon à arbre élargi Yassine AYDI

#appel de la procédure application par une source
set source($i) [application $n($noeud_src) $cible($i) $taillepaquet $burst $idle $debit]

4.2.2 Algorithme d’affectation des nœuds sources et cibles
Afin de mieux évaluer les performances de notre réseau sur puce baptisé BFT-NOC, nous

avons appliqué à notre réseau une charge aléatoire uniformément répartie. Les sources sont

connectées à une application qui génère des paquets suivant une distribution exponentielle, les

cibles peuvent être destination pour plusieurs sources à la fois. En outre, l’algorithme proposé

repose sur les hypothèses suivantes :

• toutes les applications connectées aux16 ressources génèrent des paquets.

• une cible est destination à un ou plusieurs sources

• 80% des cibles sont situées à quatre liaisons de la source.

• 20% des cibles sont situées à deux liaisons de la source.

Quelques résultats d’affectation des sources et des cibles sont explicités dans le tableau

suivant :

Scénario 1 :
noeud 0 est la source noeud 4 est la destination
noeud 1 est la source noeud 13 est la destination
noeud 2 est la source noeud 14 est la destination
noeud 3 est la source noeud 1 est la destination
noeud 4 est la source noeud 13 est la destination
noeud 5 est la source noeud 10 est la destination
noeud 6 est la source noeud 13 est la destination
noeud 7 est la source noeud 12 est la destination
noeud 8 est la source noeud 9 est la destination
noeud 9 est la source noeud 1 est la destination
noeud 10 est la source noeud 13 est la destination
noeud 11 est la source noeud 8 est la destination
noeud 12 est la source noeud 10 est la destination
noeud 13 est la source noeud 0 est la destination
noeud 14 est la source noeud 4 est la destination

creation d’un agent LossMonitor au niveau du nœud cible
for {set j 0} {j < $na} {incr j} {
set cible($i) [new Agent/LossMonitor]
}

connexion du nœud destination à l’agent cible
$bftnoc attach-agent $n(noeud_dest) $cible($I)

40

Conception et simulation d’un réseau sur puce en papillon à arbre élargi Yassine AYDI

noeud 15 est la source noeud 12 est la destination
Scénario 2 :
noeud 0 est la source noeud 4 est la destination
noeud 1 est la source noeud 11 est la destination
noeud 2 est la source noeud 10 est la destination
noeud 3 est la source noeud 1 est la destination
noeud 4 est la source noeud 13 est la destination
noeud 5 est la source noeud 2 est la destination
noeud 6 est la source noeud 15 est la destination
noeud 7 est la source noeud 8 est la destination
noeud 8 est la source noeud 14 est la destination
noeud 9 est la source noeud 6 est la destination
noeud 10 est la source noeud 11 est la destination
noeud 11 est la source noeud 14 est la destination
noeud 12 est la source noeud 9 est la destination
noeud 13 est la source noeud 5 est la destination
noeud 14 est la source noeud 2 est la destination
noeud 15 est la source noeud 0 est la destination

L’organigramme suivant décrit les étapes de sélection des sources et cibles :

o u i

n o n

G é n é r e r u n
n u m é r o _ s o u r c e

a lé a t o i r e d e [0 . . 1 5]

n u m é r o _ s o u r c e
∉ [l i s t e _ s o u r c e]

G é n é r e r u n
n u m é r o _ t i r é

a lé a t o i r e d e [0 . . 1]

c ib le ∈ [l i s t e _ c ib le 1] c ib le ∈ [l i s t e _ c ib le 2]

N u m é r o _ t i r é ∈ [0 , 0 . 8]

G é n é r e r u n
n u m é r o _ c ib le

a lé a t o i r e d e
[1 . lo n g e u r (l is t e _ c ib le 1)]

G é n é r e r u n
n u m é r o _ c ib le

a lé a t o i r e d e
[1 . lo n g e u r (l is t e _ c ib le 2)]

S o u r c e c h o i s i e

C i b l e c h o i s i e

o u i n o n

41

Conception et simulation d’un réseau sur puce en papillon à arbre élargi Yassine AYDI

4.2.3 Stratégies et protocoles de routage
La performance globale du réseau dépend du comportement des routeurs, et de leurs

interactions, entre autre le routage des paquets. Le simulateur NS-2 choisi offre plusieurs

variantes de stratégies de routage, nous adoptons deux variantes pour notre modèle de réseau sur

puce, un routage statique et un routage dynamique.

• Le routage statique : utilise l’algorithme Dijkstra’s all-pairs SPF(Shortest Path

Forward), le chemin entre la source et la cible est calculé une seule fois et ce au début

de la simulation, donc la table de routage est inéchangeable durant la période de

simulation.

• Le routage dynamique : utilise un algorithme de routage distribué(Distributed

Bellman-Ford algorithm), la table de routage est reconfigurable dynamiquement

durant la simulation, cependant le chemin est géré par les routeurs, pour faire face à

l’indisponibilité des ressources(liens, routeurs), et la possibilité d’acheminer les paquets

à travers plusieurs chemins redondants.

Nous présentons dans l’exemple ci-dessous l’implémentation des stratégies de routage

dans notre modèle :

Set bftnoc [Simulator instance]
stratégie de routage dynamique avec utilisation de plusieurs chemins
redondants
$bftnoc rtproto DV
For {set i 0} {$i < $(Nr/2l+1)} {incr i} {
$r($i) set multipath_ 1
}

stratégie de routage statique
$bftnoc rtproto Static

Une étude comparative des deux stratégies de routage adoptées est largement explicitée

dans la partie analyse des performances du modèle BFT-NOC.

42

Conception et simulation d’un réseau sur puce en papillon à arbre élargi Yassine AYDI

4.3 Implémentation des modules de contrôle de performances
Cette partie présente les modules implémentés en vue d’évaluer les performances de notre

modèle BFT-NOC et plus précisément la pertinence de la modélisation du routeur. Nous

détaillons les paramètres nécessaires pour le contrôle de simulation, le moniteur de la file

d’attente et en dernière partie l’analyseur de la bande passante.

4.3.1 Contrôle d’événements
Nous avons choisi NS-2 pour simuler notre réseau sur puce, cet outil opère en événement

discret, il a fallut définir des déclencheurs d’événement pour piloter notre modèle. Pour cela,

trois paramètres ont été définis respectivement le début, la fin et la période maximale de la

simulation. La taille des paquets et les débits adoptés nous ont imposé de limiter la durée totale

de la simulation à 4ms, par exemple pour un débit de 450Mbits/s, et un paquet de 8octets(64

bits), l’application génère environ 300000 paquets pour la période maximale adoptée. Cette

charge importante appliquée est suffisante pour évaluer les performances de notre modèle.

4.3.2 Le moniteur de la file d’attente
Afin de déterminer la performance brute de notre modèle, nous avons implémenté un

moniteur au niveau de chaque file d’attente. Ce moniteur renferme des données nécessaires pour

l’évaluation de notre réseau, à savoir les données entrantes(paquets, octets), les données

sortantes(paquets, octets), les données détruites (paquets, octets), la taille maximale de la file

d’attente, la moyenne d’occupation de la file d’attente…. Ces données sont mises à jour

périodiquement durant la période de simulation(4ms) suivant un intervalle fixé à 0.1ms. Une

fois la simulation est achevée, toutes les données concernant les files d’attente seront

enregistrées dans un fichier en vue de les exploiter dans la partie analyse des performances du

réseau sur puce BFT-NOC.

L’exemple cité ci-dessous illustre l’extraction des données a partir du moniteur de la file

d’attente :

Set bftqad [open bftnoc.qad w]

Set bftnoc [Simulator instance]

Foreach {index valeur} {array get qmon} {

Set paquets [eval $value get-pkts-integrator]

Set moy_fifo_pkts [expr [$paquets set sum_]/$timemax]

Puts $bftqad “ [eval $value set parrivals_] [eval $value set pdepartures_] [eval

$value set pdrops_] $moy_fifo_pkts $max_fifo “

}

43

Conception et simulation d’un réseau sur puce en papillon à arbre élargi Yassine AYDI

4.3.3 Analyseur de la bande passante
Le paramètre le plus souvent mesuré dans les simulations des réseaux sur puce est la

bande passante. On la définit ainsi: c’est le nombre de paquets (en unités de Mbit/s) arrivant à

une cible par seconde. Pour cela, nous avons implémenté un moniteur dans les 16 ressources

permettant d’enregistrer l’évolution de la bande passante de chaque destination durant la période

de simulation, en captant des valeurs intégrées (paquets) à des intervalles de temps fixé à 0.1ms.

Les étapes d’implémentation de l’analyseur de la bande passante sont décrites ci-dessous :

- avoir une instance du simulateur ;

- fixer l’intervalle du captage des paquets ;

- enregistrer les paquets reçus par chaque cible durant l’intervalle du temps ;

- calculer la bande passante ;

- remette à zéro le nombre de paquets reçus par chaque cible ;

- ré-exécuter la procédure.

44

Conception et simulation d’un réseau sur puce en papillon à arbre élargi Yassine AYDI

Chapitre 5.

Analyse des performances du

réseau BFT_NOC

5.1 Introduction
Ce chapitre présente des mesures de performances du réseau BFT_NOC. Le simulateur NS-2

a été utilisé pour implémenter et évaluer notre plate-forme d’interconnexion. Cet outil permet de

simuler des modules contenant des descriptions en langage TCL (Tool Command Langage) du

comportement du réseau. Grâce aux excellentes performances de NS-2, nous avons simuler un

modèle composé de 16 ressources et de 6 routeurs. La durée moyenne d’une simulation est de 3

minutes environ, sur une station PC à 3 Ghz sous Linux.

Dans la première partie de cette section, nous analysons les performances du modèle

BFT_NOC en termes de bande passante, latence moyenne, taille de file d’attente et fiabilité.

Pour cela, deux stratégies de routage ont été adoptées et comparées. La première stratégie est

statique, en outre les calculs sont faits une seule fois pour une seule simulation. La deuxième

stratégie de routage est dynamique, basée sur un algorithme modifiant la table de routage

dynamiquement durant la simulation.

Dans la deuxième partie, une étude comparative est faite entre notre modèle BFT_NOC et

un réseau sur puce basé sur une topologie en Grille2D, tout en adoptant les paramètres

technologiques qui ont été retenus dans la première partie.

5.2 Performance du réseau sur puce BFT_NOC
Afin de déterminer la performance de l’interconnexion et la pertinence de la modélisation

du routeur, nous avons appliqué à notre modèle une charge aléatoire uniformément répartie : Un

générateur de trafic produit des paquets suivant un débit moyen (paramétrable) dans un temps

opérationnel (burst_time). Le trafic est bloqué dans une période de repos (idle_time). Les

paramètres les plus souvent mesurés dans ces simulations sont : la bande passante maximale, la

latence moyenne, la taille de la file d’attente et la charge moyenne du réseau. Tous ces

paramètres ont été mesurés et commentés dans cette section.

45

Conception et simulation d’un réseau sur puce en papillon à arbre élargi Yassine AYDI

5.2.1 Fiabilité du réseau
C’est le contrôle du taux de disponibilité du réseau sous des hypothèses pertinentes de

charge. Deux paramètres ont été mesurés en vue d’évaluer cette disponibilité à savoir la charge

moyenne du réseau et le taux de paquets détruits.

5.2.1.1 La charge moyenne du réseau
On la définit ainsi: C’est le rapport entre la charge réelle et la charge maximale du réseau.

La charge réelle (Cr) est définie par le nombre des paquets reçus par les cibles durant la

simulation. La charge maximale (Cmax) est définie par le nombre maximal de paquets transmis à

travers les liens du réseau.

Cmoy= maxC
Cr (1)

Cr=∑ (2) et : le nombre de paquets reçus par une cible
=

nl

i
ireçusPaquets

1
)_(ireçusPaquets)_(

Cmax= T* 2*nl* (taille
Bw) (3)

T :durée de simulation (4ms) ; Bw :la bande passante (500Mb/s)

Taille :la taille du paquet (64bits) ; nl : le nombre de liens dans le réseau (24 liens).

nl = ∑ avec x=2
=

l

i x
Nr

0

l et l :le nombre de niveaux dans le réseau, Nr :nombre de ressources.

Les figures 21 et 22 présentent les résultats de mesures de la charge moyenne de réseau

pour les deux stratégies de routage adoptées. Nous constatons que la charge moyenne du réseau

croît linéairement avec le débit pour l’intervalle [100 à 300Mb/s], et elle n’est pas sensitive à la

taille de la file d’attente (les tableaux 1 et 2) . En plus, l’adoption du routage dynamique permet

au réseau d’atteindre une charge moyenne plus importante : pour un débit de 250Mb/s et une

FIFO de taille 8 paquets, cette charge s’élevé à 85% contre 58% pour la technique de routage

stati

 débit en Mb/s
taille FIFO 100 120 150 250 300 450
2paquets 0.313 0.343 0.417 0.576 0.544 0.515
4paquets 0.338 0.406 0.477 0.576 0.557 0.54
8paquets 0.298 0.406 0.477 0.576 0.595 0.487

que.

Tableau 1: : la charge moyenne du BFT_NOC pour un routage statique

46

Conception et simulation d’un réseau sur puce en papillon à arbre élargi Yassine AYDI

 débit en Mb/s
taille FIFO 100 120 150 250 300 450
2paquets 0.222 0.27 0.313 0.539 0.475 0.606
4paquets 0.339 0.407 0.508 0.847 0.87 0.925
8paquets 0.301 0.407 0.508 0.847 0.947 0.993

Tableau 2 : la charge moyenne du BFT_NOC pour un routage dynamique

Figure 21: la charge moyenne du BFT_NOC pour un routage statique

Figure 22: la charge moyenne du BFT_NOC pour un routage dynamique

trafic versus debit pour routage statique

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 120 150 250 300 450

débit

ta
ux

 d
e

ta
rf

ic

2paquets

4paquets

8paquets

trafic versus debit pour un routage dynamique

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

100 120 150 250 300 450
débit

ta
ux

 d
e

tr
af

ic

2paquets
4paquets
8paquets

47

Conception et simulation d’un réseau sur puce en papillon à arbre élargi Yassine AYDI

5.2.1.2 Le taux de paquets détruits
On la définit ainsi: C’est le rapport entre le nombre des paquets détruits par les routeurs et

le nombre total des paquets échangés à travers le réseau.

D’après les résultats figurant dans les tableaux 3 et 4, nous avons pu observer les

constations suivantes :

- le taux de paquets détruits décroît quand la taille de file d’attente croît pour une

variation de la FIFO de 2 à 8 paquets et un réseau peu chargé (figures 23 et 24).

- le taux de paquets détruits croît avec le débit pour des valeurs dépassant 250Mb/s et

120 Mb/s respectivement pour le routage dynamique et statique (figures 25 et 26).

- l’obtention d’une bande passante maximale de 250Mb/s pour une taille de la file

d’attente entre 4 et 8 paquets pour une stratégie de routage dynamique.

- l’obtention d’une bande passante maximale de 120Mb/s pour une taille de la file

d’attente entre 4 et 8 paquets pour une stratégie de routage statique.

Tableau 3

Tableau 4 :

déb
M
1
1
1
2
3
4

dé
M

 taille de la file d'attente
it en
b/s 2paquets 4paquets 8paquets

00 0.0328 0.0000 0.0000
20 0.0576 0.0000 0.0000
50 0.0344 0.0224 0.0223
50 0.1440 0.1440 0.1440
00 0.1770 0.1770 0.1770
50 0.2610 0.2610 0.2610
 : le taux de paquets détruits pour un routage statique

 l

b

1
1
1
2
3
4

 taille de la file d'attente
it en
b/s 2paquets 4paquets 8paquets

00 0.0053 0.0000 0.0000
20 0.0002 0.0000 0.0000
50 0.0437 0.0000 0.0000
50 0.0202 0.0000 0.0000
00 0.0320 0.0290 0.0290
50 0.1240 0.1120 0.1110

e taux de paquets détruits pour un routage dynamique

48

Conception et simulation d’un réseau sur puce en papillon à arbre élargi Yassine AYDI

Figure 23: évaluation de la taille de la FIFO pour un routage statique

paquets détruits versus taille de la FIFO pour un routage dynamique

0

0.05

0.1

0.15

2paquets 4paquets 8paquets

taille de la FIFO

ta
ux

 d
e

pa
qu

et
s

dé
tr

ui
ts

100Mb/s

120Mb/s

150Mb/s

250Mb/s

300Mb/s

450Mb/s

paquets détruits versus taille de la FIFO pour un routage statique

0

0.05

0.1

0.15

0.2

0.25

0.3

2paquets 4paquets 8paquets

taille de la FIFO

ta
ux

 p
aq

ue
ts

 d
ét

ru
its

100Mb/s

120Mb/s

150Mb/s

250Mb/s

300Mb/s

450Mb/s

Figure 24 : évaluation de la taille de la FIFO pour un routage dynamique

49

Conception et simulation d’un réseau sur puce en papillon à arbre élargi Yassine AYDI

 paquets detruits versus debit pour routage statique

0

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0.24

0.27

0.3

100 120 150 250 300 450

debit

ta
ux

 p
aq

ue
ts

 d
ét

ru
its

2paquets
4paquets
8paquets

Figure 25 :le taux de paquets détruits pour un routage statique

paquets détruits versus débit pour un routage dynamique

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16
0.18
0.2

0.22
0.24
0.26
0.28
0.3

100 120 150 250 300 450

débit

ta
ux

 p
aq

ue
ts

 d
ét

ru
its

2paquets
4paquets
8paquets

Figure 26: le taux de paquets détruits pour un routage dynamique

50

Conception et simulation d’un réseau sur puce en papillon à arbre élargi Yassine AYDI

5.2.2 La bande passante maximale
Afin de déterminer la bande passante maximale du réseau, nous avons mesuré l’impact de

débit et de la taille de la file d’attente sur le taux de paquets rejetés. Les résultats obtenus (figures

5.5 et 5.6) nous ont permis de dégager les constations suivantes :

- La bande passante maximale ne peut pas dépasser 250Mb/s pour une stratégie de

routage dynamique et une file d’attente de taille 4 ou 8 paquets.

- La bande passante maximale ne peut pas dépasser 120Mb/s pour une stratégie de

routage statique et une file d’attente de taille 4 ou 8 paquets.

5.2.3 La stratégie de mémorisation
La taille de la file d’attente est un paramètre fondamental dans la conception d’un routeur.

Elle ne doit pas être de grande taille pour qu’elle n’occupe pas trop de surface sur la puce. Pour

cela, nous avons adopté des FIFOs de taille variable. Les résultats obtenus (tableaux 1,2,3 et 4 ;

figures 5.3 et 5.4) montrent l’impact de la taille de la file d’attente sur la fiabilité du réseau. En

outre, une file d’attente de taille 8 paquets est la plus performante.

5.2.4 La latence moyenne
On la définit ainsi : C’est le temps de la transmission du paquet dans le routeur. Lorsque le

réseau est peu chargé, la file d’attente est vide et la mesure de la latence moyenne (Lm)

correspond au temps du transit du paquet dans le routeur (par exemple pour un paquet de taille

64bits et une bande passante de 500Mb/s, la latence moyenne(Lm)= 128ns). Si le réseau est trop

saturé, les paquets s’accumulent dans la file d’attente et la latence moyenne dépend du délai de

mémorisation du paquet dans la FIFO.

Tableau

déb
M

100
120
150
250
300
450

déb
M

100
120
150
250
300
450

 taille de la file d'attente
it en
b/s 4paquets 8paquets

Mbs 128 128
Mbs 128 128
Mbs 128 128
Mbs 128 128
Mbs 144.512 345.472
Mbs 286.976 723.584

 5 : latence de routage dynamique Tableau
 taille de la file d'attente
it en
b/s 4paquets 8paquets

Mbs 128 128
Mbs 128 128
Mbs 144.512 342.912
Mbs 271.104 707.84
Mbs 322.56 805.632
Mbs 334.848 818.176
 6 : la latence de routage statique

51

Conception et simulation d’un réseau sur puce en papillon à arbre élargi Yassine AYDI

Les tableaux 5 et 6 présentent les mesures de la latence moyenne du paquet dans le routeur

en fonction de la charge de réseau et la taille de la file d’attente pour les différentes stratégies de

routage adoptées.

Les figures 27 et 28 montrent l’évolution de la latence moyenne pour les deux tailles de la

file d’attente. Pour un réseau trop chargé, la latence moyenne est très sensitive à la taille de la file

d’attente, ceci est du au délai de mémorisation des paquets dans les FIFOs.

 900

700

800

 600

 500

 300

 200

100

Figure 27: évaluation de la latence par rapport à la taille de la FIFO pour un routage statique

La latence moyenne versus taille de la FIFO pour un routage statique

0

400

4paquets 8paquets

Taille de la file d'attente

la
 la

te
nc

e(
en

 n
an

o-
se

co
nd

e)

100Mbs
120Mbs
150Mbs
250Mbs
300Mbs
450Mbs

La latence moyenne versus taille de la FIFO pour un routage dynamique

F

0

100

200

300

400

500

600

700

800

4paquets 8paquets

Taille de la file d'attente

la
 la

te
nc

e(
en

 n
an

o-
se

co
nd

e)

100Mbs
120Mbs
150Mbs
250Mbs
300Mbs
450Mbs

igure 28 : évaluation de la latence par rapport la taille de la FIFO pour un routage dynamique

52

Conception et simulation d’un réseau sur puce en papillon à arbre élargi Yassine AYDI

Les figures 29 et 30 présentent la latence moyenne en fonction de la charge du réseau. Nous

constatons qu’un réseau légèrement chargé offre une latence moyenne constante pour les deux

stratégies de routage adoptées. Toutefois, si le débit dépasse la capacité maximale du réseau, on

constate une augmentation phénoménale de la latence due au délai de mémorisation des paquets

dans les files d’attente.

La latence moyenne v ersus debit pour un routage statique

 800

0

100

200

300

400

500

600

700

900

100Mbs 120Mbs 150Mbs 250Mbs 300Mbs 450Mbs

débit

la
 la

te
nc

e(
en

 n
an

o-
se

co
nd

e)

4paquets

8paquets

Figure 29: évaluation de la latence en fonction du débit pour un routage statique

La latence moyenne versus debit pour un routage dynamique
0

100

200

300

400

500

600

700

800

100Mbs 120Mbs 150Mbs 250Mbs 300Mbs 450Mbs

débit

la
 la

te
nc

e(
en

 n
an

o-
se

co
nd

e)

4paquets
8paquets

Figure 30 :évaluation de la latence en fonction du débit pour un routage dynamique

53

Conception et simulation d’un réseau sur puce en papillon à arbre élargi Yassine AYDI

5.3 Analyse critique
Ces résultats appellent plusieurs critiques, notamment pour les deux stratégies de routage

adoptées dans la simulation de notre modèle. Premièrement, le taux de disponibilité du réseau et

de la bande passante maximale sont plus élevés pour le routage dynamique que pour le statique.

Ce taux dépend de la charge du réseau. Deuxièmement, les meilleures latences moyennes sont

obtenues pour un réseau peu chargé, mais si la débit dépasse la capacité du réseau, la latence

moyenne du paquet est ralentie par la mémorisation des paquets dans les FIFOs. Enfin, la

performance de l’interconnexion reste tributaire d’une bonne optimisation de la taille de la file

d’attente.

Cependant, les résultats obtenus ont montré les performances de l’interconnexion du

BFT_NOC, avec des réserves quant à la nécessité d’une bonne optimisation de la taille de la file

d’attente et à l’utilité de l’adoption du routage dynamique pour l’acheminement des paquets à

travers le réseau.

5.4 Etude comparative entre BFT_NOC et un NOC en Grille2D
Afin de mieux évaluer notre modèle à base de papillon en arbre élargi (figure31), il ne

suffit pas de montrer les performances d’interconnexion du BFT_NOC, mais il faut également le

comparer à une architecture concurrente. Pour cela, nous avons choisi d’implémenter un réseau

sur puce à base d’une topologie en Grille2D (figure 32). Cette architecture interconnecte les 16

ressources à 16 routeurs. Ces derniers sont interconnectés entre eux en Grille2D. Nous avons

adopté les paramètres technologiques qui ont été retenus dans l’analyse de la performance du

BFT_NOC, notamment la taille de la file d’attente, les stratégies de routage et la charge

appliquée dans le réseau.

20 21

10 11 12 13

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

20 2120 21

10 11 12 13

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

00 01 02 03

04 05 06 07

08 09 10 11

12 13 14 15

00 01 02 03

07060504

08 09 10 11

12 13 14 15

00 01 02 0300 01 02 03

04 05 06 0704 05 06 07

08 09 10 1108 09 10 11

12 13 14 1512 13 14 15

00 01 02 03

07060504

08 09 10 11

12 13 14 15

Figure 31: synoptique du BFT-NOC Figure 32 : synoptique du Grille2D-NOC

54

Conception et simulation d’un réseau sur puce en papillon à arbre élargi Yassine AYDI

Les tableaux 7, 8 et 9 indiquent les paramètres mesurés, respectivement la charge moyenne

du réseau, le taux de paquets détruits et la latence moyenne d’un paquet dans le réseau.

a

c

B

 architecture
débit BFT-NOC MESH-NOC
150 0.301 0.372
200 0.508 0.468
250 0.847 0.58
300 0.947 0.659
450 0.993 0.948

Tableau 7 : la charge moyenne du réseau

Tableau 9 :la laten

Le figure 33 présente l’impact du débit su

rchitectures. En outre, nous avons obtenu des v

ertains débits. En plus, nous constatons une a

FT_NOC à partir d’un débit de 250Mb/s.

1.19

0.99

0.79

0.59

Etude comparative de la charge de rese

-0.01

0.19

0.39

150 200 250 d

taux de trafic

Figure 33 : évaluation de la charge m
 architecture
débit BFT-NOC MESH-NOC
150 0 0
200 0 0.01
250 0 0.02
300 0.029 0.069
450 0.111 0.113
 Tableau 8 : le taux de paquets détruits
 architecture
débit BFT-NOC MECH-NOC
150 128 128
200 128 613.12
250 128 651.776
300 345.472 774.784
450 723.584 824.832
ce moyenne du paquet

r la charge moyenne du réseau pour les deux

aleurs de charge qui sont presque égales pour

ugmentation brusque de la charge du modèle
au entre BFT-NOC et MECH-NOC

300 450ébit

BFT-NOC

MESH-NOC

oyenne du réseau pour les deux NOCs

55

Conception et simulation d’un réseau sur puce en papillon à arbre élargi Yassine AYDI

La figure 34 montre que le taux de paquets détruits dépend de la charge du réseau pour les

deux architectures. Le modèle BFT_NOC prétend à une bande passante maximale (autrement dit,

le taux de paquets détruits reste nul) de 250Mb/s contre 150Mb/s pour le MESH_NOC.

Les valeurs de la latence moyenne d’un paquet dans le réseau (figure 35) nous ont permis

de formuler les constations suivantes :

- La latence moyenne est sensitive à la taille de la file d’attente pour un débit dépassant la

capacité maximale du réseau pour les deux architectures.

- La latence moyenne dépend du nombre de routeurs traversés.

Etude comparative du taux des paquets détruits entre BFT-NOC et MESH-NOC

-0.001

0.049

0.099

0.149

0.199

0.249

150 200 250 300 450

debit

ta
ux

 d
es

 p
aq

ue
ts

 d
ét

ru
its

MESH-
NOC
BFT-NOC

Figure 34 : évaluation du taux de paquets détruits pour les deux NOCs

Etude comparative de La latence moyenne entre BFT-NOC et MESH-NOC

0

100

200

300

400

500

600

700

800

900

150 200 250 300 450

débit

la
 la

te
nc

e(
en

 n
an

o-
se

co
nd

e)

BFT-NOC
MESH-NOC

Figure 35 : évaluation de la latence moyenne pour les deux NOCs

56

Conception et simulation d’un réseau sur puce en papillon à arbre élargi Yassine AYDI

Cette étude comparative a montré que BFT_NOC semble offrir une solution avantageuse

par rapport à MESH_NOC. Le tableau 10 résume cette comparaison en termes de composants,

liens, bande passante, fiabilité et latence moyenne.

.☺Fiabilité

150Mb/s250Mb/sBande passante maximale

824.832723.584Latence moyenne maximale

0.9480.993Charge moyenne maximale
4024liens
166Routeurs
1616Ressources

Grille 2DBFT-NOC

.☺Fiabilité

150Mb/s250Mb/sBande passante maximale

824.832723.584Latence moyenne maximale

0.9480.993Charge moyenne maximale
4024liens
166Routeurs
1616Ressources

Grille 2DBFT-NOC

Tableau 10 : Comparaison entre BFT_NOC et MESH_NOC

5.5 Conclusion
Ce chapitre analyse les performances du modèle BFT-NOC, que l'on a pu prédire

grâce à une modélisation complète précise. Ces performances concernent des critères

quantitatifs et qualitatifs minimaux que doit atteindre un réseau sur puce : la bande passante

maximale, la latence, la fiabilité, la flexibilité, la consommation et la surface du réseau dans

la puce. Les performances de l’interconnexion ont été concrétisées par une étude

comparative entre BFT_NOC et une architecture concurrente en Grille2D.

57

Conception et simulation d’un réseau sur puce en papillon à arbre élargi Yassine AYDI

Conclusion et Perspectives

Nous récapitulons ici les travaux de mastère et ses apports. Nous avons passé en revue les

conceptions des réseaux sur puce. Bien que ces travaux restent théoriques jusqu'à nos jours, ils

nous ont permis de déceler plusieurs besoins auxquels doit répondre une architecture

d’interconnexion à haute performance d’une part, et des directives générales indispensables pour

la conception d’un réseau sur puce fiable et flexible.

Notre architecture d’interconnexion baptisée BFT_NOC a été modélisée en modules

contenant des descriptions en langage TCL du comportement du réseau, puis elle a été évaluée

par simulation avec NS-2. La conception du modèle à été réalisée en trois phases. Nous avons

commencé par l’implémentation de la topologie. Dans la deuxième phase nous avons détaillé la

gestion des communications inter-ressources composée du générateur de trafic du réseau, ainsi

que de l’algorithme adopté pour le choix des ressources. La dernière phase renferme des

modules conçus en vue d’évaluer notre modèle, entre autres les stratégies de routage, le

moniteur de la file d’attente et l’analyseur de la bande passante.

Grâce aux performances de NS-2, nous avons pu simuler un modèle composé de 16

ressources et 6 routeurs. les résultats obtenus ont montré les performances de l’interconnexion

du BFT_NOC, avec des réserves sur la nécessité d’une bonne optimisation de la taille de la file

d’attente, de la bande passante maximale et de l’utilité de l’adoption du routage dynamique

pour l’acheminement des paquets à travers le réseau. Les performances de l’interconnexion ont

été concrétisées par une étude comparative entre BFT_NOC et une architecture concurrente

basée sur une topologie en Grille2D.

Nous énumérons ci-dessous les limitations et les extensions possibles du BFT_NOC qui

méritent un complément d’investigation, et qui feront l’objet de futures recherches :

- Le coût élevé d’utilisation des protocoles, notamment IP (Internet Protocol) et UDP

(User Datagram Protocol) pour la transmission des données à travers le réseau. En effet,

58

Conception et simulation d’un réseau sur puce en papillon à arbre élargi Yassine AYDI

les en-têtes des protocoles cités (28 octets) ont été ajoutées aux données transmises

(paquets de 8 octets), ce qui entraîne la diminution du rendement du réseau (22%).

- La limitation de stratégies de routage implantées dans le simulateur NS-2. Par conséquent

le concepteur est tenu à ajouter des modules en vue d’implémenter de nouvelles

techniques de routage telles que : Wormhole routing et Hot Potato routing .

- Le problème de synchronisation : toutes les communications dans le simulateur NS-2 sont

contrôlées par des événements (Event Driven), en outre on ne peut pas prédire les aspects

physiques (blocage, accès à la mémoire, etc..).

- L’évaluation des performances de l’architecture d’interconnexion est faite suite à une

charge appliquée au réseau, elle peut estimer le comportement du réseau, mais elle n’est

pas trop représentative des applications réelles.

Nous proposons deux scénarios pour palier à ces limitations. Le premier consiste à étendre le

simulateur NS-2 par l’ajout de modules spécifiques aux architectures des réseaux sur puces. Le

deuxième consiste à concevoir un simulateur de réseau sur puce, tout en tenant compte des

performances du simulateur NS-2.

59

Conception et simulation d’un réseau sur puce en papillon à arbre élargi Yassine AYDI

Références

[1] International Technology Roadmap for Semiconductors 2004 http://public.itrs.net/

[2] R. Lauwereins; "Creating a world of Smart Re-configurable Devices", Field

Programmable Logic FPL’2002, pp790-794.

[3] A. Jantsch, J. Oberg, H. Tenhunen; "Special issue on Networks on chip", Journal

of Systems Architecture (50) (2004), pp61-63

[4] W.O. Cesario, D. Lyonnard, G. Nicolescu, Y. Paviot, S. Yoo, L. Gauthier, M. Diaz-

Nava, A.A. Jerraya; "Multi-processor SoC platforms: a component-based design

approach", IEEE Design and Test of Computers 19 (6) (2002),pp52–63

[5] R. Ho, K. Mai, M. Horowitz; "The future of wires", Proceedings of the IEEE, April

(2001),pp490–504.

[6] L. Benini, G. De Micheli; "Networks on chips: a new SoC paradigm", IEEE

Computer 35 (1) (2002),pp70–78.

[7] D.E. Culler, J.P. Singh, A. Gupta; “Parallel computer architecture: a

hardware/software approach”, Morgan Kaufmann Publishers, 1998.

[8] Ye, T.; Benini, L.; De Micheli: "Packetized On-Chip Interconnection

Communication Analysis for MPSoC". In: Design Automation and Test in Europe

(DATE’03), Mars 2003, pp344-349.

[9] P. Guerrier, A. Greiner; "A generic architecture for on-chip packet-switched

interconnections" ;Proceedings of Design Automation and Test in Europe, 2000.

[10] H. Charlery, A. Greiner ; "SPIN,un micro-réseau d’interconnexion à commutation de

paquets respectant la norme VCI ", Proceedings of SympAAA 2003.

[11] W. Dally, B. Toles; "Route packets, not wires: on-chip interconnection networks",

Proceedings of the 38th Design Automation Conference, Juin 2001, pp684– 689.

[12] S. Kumar, A. Jantsch, J. Soininen, M. Forsell, M. Millberg, J. Oberg, K. Tiensyrja,

A. Hemani; "A network on chip architecture and design methodology", Proceedings

of IEEE Computer Society Annual Symposium on VLSI, Avril 2002, pp105–112.

[13] R. Thid, M. Millberg, A. Jantsch; "Evaluation NOC communication backbones with

simulation", Proceedings IEEE NorChip conference, Novembre 2003, pp27-30.

60

http://public.itrs.net/

Conception et simulation d’un réseau sur puce en papillon à arbre élargi Yassine AYDI

61

[14] F. Karim, A. Nguyen, S. Dey; "On-chip communication architecture for OC-768

network processors", Proceedings of 38th Design Automation Conference, Juin

2001, pp678–683.

[15] Rijpkema, E.Goossens, K.Radulescu: "A. Trade Offs in the Design of a Router with

Both Guaranteed and Best-Effort Services for Networks on Chip". In: Design,

Automation and Test in Europe (DATE’03), Mars 2003, pp350-355.

[16] I.Saastamoinen, M.Alho, J.Pirttimaki, J.Nurmi; "Proteo Interconnect IPs for

Networks-on-Chip". In: IP Based SoC Design, Octobre 2002.

[17] D. Siguenza-Tortosa, J. Nurmi; "VHDL-Based Simulation Environment for Proteo

NoC", Proceedings of the Seventh Annual IEEE International Workshop on High

Level Design Validation and Test, Cannes,France,Octobre 2002, pp1-6

[18] F. Moraes, A. Mello, L. Meller, L. Ost, N. Calazans; "A Low Area Overhead

Packet-switched Network on Chip: Architecture and Prototyping". In: IFIP Very

Large Scale Integration (VLSI-SOC) 2003.

[19] M. Forsell; "A Scalable High-Performance Computing Solution for Networks on

Chips" . IEEE Micro, Septembre. 2002, v 22(5), pp46-55.

[20] T. Ernst ; "Notes about network simulators" – INRIA – Sophia-Antipolis

[21] K. Fall, K. Varadhan; "The ns Manual", the VINT Project, Juin 2001,

http://www.isi.edu/nsnam.

[22] R.I Greenberg., L. Guan. ; "An improved analytical model for wormhole routed

networks with application to butterfly fat-trees", Proceedings of the 1997

International Conference on Parallel Processing, pp44 -48

