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Abstract
We purpose a hybrid approach for classification of brain tissues in magnetic
resonance images (MRI) based on genetic algorithm (GA) and support vector
machine (SVM). A wavelet based texture feature set is derived. The optimal
texture features are extracted from normal and tumor regions by using spatial
gray level dependence method (SGLDM). These features are given as input to
the SVM classifier. The choice of features, which constitute a big problem in
classification techniques, is solved by using GA. These optimal features are
used to classify the brain tissues into normal, benign or malignant tumor. The
performance of the algorithm is evaluated on a series of brain tumor images.
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Introduction

Brain tumor is any mass that results from abnormal growths of cells in the brain. It
may affect any person at almost any age. Brain tumor effects may not be the same for each
person, and they may even change from one treatment session to the next. Brain tumors can
have a variety of shapes and sizes; it can appear at any location and in different image
intensities. Brain tumors can be benign or malignant. Low grade Gliomas and Meningiomas
[1], which are benign tumors, represent the most common type of brain tumor. Glioblastoma
multiform [1] is a malignant tumor and represents the most common primary brain neoplasm.
Benign brain tumors have a homogeneous structure and do not contain cancer cells. They may
be either simply be monitored radiologically or surgically eradicated and they seldom grow
back. Malignant brain tumors have a heterogeneous structure and contain cancer cells. They
can be treated by radiotherapy, cheomotherapy or a combination thereof and they are life
threatening. Many procedure and diagnostic imaging techniques can be performed for the
early detection of any abnormal changes in tissues and organs such as Computed Tomography
(CT) scan and Magnetic Resonance Imaging (MRI) [2]. Although MRI seems to be efficient
in supplying the location and size of tumors, it is unable to classify tumor types, hence the
application of biopsy [2]. Biopsy is a painful process. This inability requires development of
new analysis techniques that aim at improving diagnostic ability of MR images.

Many techniques have been reported for classification of brain tumors in MR images,
most notably, support vector machine (SVM) [3] neural network [4], knowledge based
techniques [5], expectation-maximization (EM) algorithms and Fuzzy c-means (FCM)
clustering. An SVM is a machine learning system developed using statistical learning theories
to classify data points into two classes. Notably, SVM models have been applied extensively
for classification, image recognition and bioinformatics. Chang et al. [6, 7] show the SVM is
an effective tool in sonography for the diagnosis of breast cancer. In the same context, Luiza
Antonie [8] proposed a method for Automated Segmentation and Classification of Brain MR
images in which an SVM classifier was used for normal and abnormal images classification
with statistical features. Chaplot et al [9] observed that the classification rate is higher for a
support vector machine classifier than neural networks self-organizing maps-based approach.
SVMs are suggested to show their superior performance and feasibility in the classification of
brain tissues in classical maximum-likelihood methods. Gering et al. [10] applied the EM

algorithms in the detection of abnormalities. These algorithms proved to be capable of

72



@ Leonardo Journal of Sciences Issue 17, July-December 2010
ISSN 1583-0233 p. 71-82

distinguishing large tumors from the surrounding brain tissues by training exclusively on
normal brain images in healthy people in order to recognize deviation from normality. This
requires high computational effort. The knowledge based techniques allowed to make more
efficient segmentation and classification results but these techniques required intensive
training.

In medical image analysis, the determination of tissue type (normal or pathological)
and classification of tissue pathology are performed by using texture. MR image texture
proved to be useful to determine the tumor type [11] and to detect Alzheimer’s disease [12].

To solve the texture classification problem many approaches have been developed
over the years, such as multichannel methods, multi-resolution analysis, level set, Gabor
filters, and wavelet transform [13, 14]. Gabor filters are poor due to their lack of orthogonality
that results in redundant features at different scales or channels. While Wavelet Transform is
capable of representing textures at the most suitable scale, by varying the spatial resolution
and there is also a wide range of choices for the wavelet function.

There is a big problem in selecting the optimal features to distinguish between classes.
The evaluation of possible feature subsets is usually a painful task due to the large amount of
computational effort required. Genetic algorithms (GAs) appear to be a seductive approach to
choose the best feature subset while maintaining acceptable classification accuracy. Siedlecki
and Sklansky [15] compared the GA with classical algorithms and they concluded the
superiority of the GA.

A new method for extracting features in MR images with lower computational

requirements are proposed, and classification results are analyzed.

Material and Method

Proposed image analysis process is outlined in Figure 1.

Brain MR
Image

For feature extraction we use the method proposed by Haralick [16], namely, the

Wavelet based

GA based — e
1 Feature " Feature Selection Classification
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Figure 1. The Image Analysis process

spatial gray-level dependence method (SGLDM). This well known statistical method for
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extracting second order texture information is based on the estimation of the discrete second
order probability function C(l,J/4x,4y,) [16]. This function represents the probability of going
from gray level i to gray level j, given that the spacing is d and the direction is given by the
angle 6. This is also referred to as co-occurrence matrix. For an offset distance d=1, co-
occurrence matrices are calculated for offset angles of 0° (in the horizontal direction), 45°
(along the positive diagonal), 90° (in the vertical direction), and 135° (along the negative
diagonal). In table 1, thirteen Haralick features are described and added with nine features to
facilitate our task and to make it more efficient and consistent [16-18]. The mean and range of

each measure over the four offset angles are used as features; this yields 44 features.

Table 1. Extracted texture features

Feature number| Feature (mean, range) |Feature number Feature (mean, range)

1,2 Angular second moment |23, 24 information measure of correlation |
3,4 Contrast 25, 26 information measure of correlation 11
5,6 Correlation 27,28 maximal correlation coefficient

7,8 Variance 29, 30 Correlation mat

9,10 inverse difference moment|31, 32 Cluster Prominence

11,12 sum average 33,34 Cluster Shade

13,14 sum variance 35, 36 Dissimilarity

15,16 sum entropy 37, 38 Energy

17,18 Entropy 39, 40 Homogeneity

19, 20 difference variance 41, 42 Maximum probability

21,22 difference entropy 43, 44 Inverse difference normalized

In the proposed method, we perform a second level decomposition of image. These
images are decomposed using 2D wavelet transform into four subbands. The wavelet
transform is Daubechies wavelet filter of order two, level 1 [19]. The subband with low
frequency represents the clearest appearance of the changes between the different textures.

The later are extracted from the subband which has maximum variance and low frequency.

Feature Selection and Optimization using GA
In a classification problem, the number of features can be quite large, many of them
can be irrelevant or redundant. Feature reduction improves classification by searching for the
best features subset, from the fixed set of the original features, according to a given
processing goal and a feature evaluation criterion: classification accuracy. This is illustrated in

Figure 2.
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Figure 2. Classification accuracy using a GA-based features extractor

A pattern’s features, from the point of view of processing goal and type, may be
irrelevant (having no effect on processing performance) or relevant (having an impact on
processing performance) or redundant (correlated, dependent). Hence to reduce the large
number of features to a smaller set of features we apply GA-based global search method. GA
is an adaptive method of global-optimization searching and simulates the behavior of the
evolution process in nature. It is based on Darwin’s fittest principle, which states that an
initial population of individuals evolves through natural selection in such a way that the fittest
individuals have a higher chance of survival [20]. The GA maintains a population of
competing feature transformation matrices. To evaluate each matrix in this population, the
input patterns are multiplied by the matrix, producing a set of transformed patterns which are
then sent to a classifier. The classifier typically divides the patterns into a training set, used to
train the classifier, and a testing set, used to evaluate classification accuracy. The accuracy
obtained is then returned to the GA as a measure of the quality of the transformation matrix
used to obtain the set of transformed patterns. Using this information, the GA searches a
transformation that minimizes the dimensionality of the transformed patterns and maximizing
classification accuracy. Each feature is encoded into a vector called a chromosome. One
element of the vector represents a gene. Each bit in the binary vector is associated with a
feature. If the i bit of this vector is equal to one then the i feature is allowed to participate in
classification. All of the chromosomes make up of a population and are estimated according
to the fitness function in the equation (1).

fitness = Wa-Accuracy + Wpy/N 1)
where W, is the weight of accuracy and Wy, is the weight of N feature participated in

75



An Hybrid Approach for Automatic Classification of Brain MRI Using Genetic Algorithm and Support Vector Machine
Ahmed KHARRAT, Karim GASMI, Mohamed BEN MESSAOUD, Nacéra BENAMRANE, and Mohamed ABID

classification where N # 0.

A fitness value will be used to measure the fitness of a chromosome and decides
whether a chromosome is good or not in a population. Initial populations in the genetic
process are randomly created. GA uses then three operators to produce a next generation from
the current generation: reproduction, crossover and mutation. GA eliminates the
chromosomes of low fitness and keeps the ones of high fitness.

Thus more chromosomes of high fitness move to the next generation. This process is
repeated until a good chromosome (individual) is found. The figure 3 illustrates the feature

selection using the genetic algorithm.
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Figure 3. Feature Selection using GA

Classification using SVM

Support Vector Machine (SVM) is a powerful supervised classifier and accurate
learning technique that has been introduced in 1995. It is derived from the statistical theory
developed by Vapnick in 1982 [21]. It yields successful classification results in various
application domains, e.g. medical diagnosis [22, 23]. Support Vector Machine (SVM) is
based on the structural risk minimization principle from the statistical learning theory. Its
kernel is to control the empirical risk and classification capacity in order to maximize the
margin between the classes and minimize the true costs [24]. A support vector machine
searchs an optimal separating hyper-plane between members and non-members of a given
class in a high dimension feature space [25]. The inputs to the SVM algorithm are the feature
subset selected using GA during data pre-processing step and extracted using the SGLDM
method. In our method, the two classes are normal or abnormal brain. Then classification
procedure continues to divide the abnormal brain into malignant and benign tumors; each
subject is represented by a vector in all images. There are many common kernel functions,

such as:
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e Linear: x;X;j,
e Polynomial of degree d: (xi-x; + 1)°,

e Radial basis function (RBF): exp MZ
. 20 '

2

Among these kernel functions, a radial basis function proves to be useful, due to the
fact the vectors are nonlinearly mapped to a very high dimension feature space. The optimal
values of constants y and C are determined, where y is the width of the kernel function and C
is the error/trade-off parameter that adjusts the importance of the separation error in the
creation of the separation surface. We perform the classification for the MRI dataset with (y,
C) varying along a grid. SVM-based classification takes N training samples, trains the
classifier on N-1 samples, then uses the remaining one sample to test. This procedure is
repeated until all N samples have been used as the test sample. The performance of the
classification for a given value (y, C) is evaluated by computing the accuracy across all

subjects.

Results and Discussion

Our proposed hybrid techniques are implemented on a real human brain dataset. The
input dataset consist in 83 images: 29 images are normal, 22 malignant tumors suffering from
a low grade Glioma, Meningioma and 32 benign tumors suffering from a Bronchogenic
Carcinoma, Glioblastoma multiform, Sarcoma and Grade IV tumors. These normal and
pathological benchmark images used for classification, are axial, T2-weighted of 256x256
sizes and acquired at several positions of the transaxial planes. These images were collected
from the Harvard Medical School website [26]. We have considered that all images belonging
to seven persons (four men and three women). Their ages vary between 22 and 81 years. The
determination of MR tumor type, which can be achieved by the histopathological analysis of
biopsies, was considered as the gold standard for the classification of images. A typical
representative MR image of normal, benign and malignant tumor is shown in Figure 4.

Once our data set is collected, we follow different steps of our system described in the

previous Sections. For the extraction step we apply SGLDM to extract 13 features. Additional
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9 features are also extracted for the performance of our method. This yields a total of 44

features including the mean and the range.

(a) normal brain (b) benign tumor (c) malignant tumor
Figure 4. Three T2 weighted MR images in axial plane

Due to the small size of the dataset, the SVM classifier is employed. In the classification step
we choose the RBF kernel due to the fact that many studies have demonstrated that the
preferable choice is RBF [27], and the technique used to fix its optimal parameters is a grid
search using a cross-validation. Cross-validation method with 5 folders is used to search the
best parameters among an interval of values which achieve a high accuracy during training
and testing phases. Hence, the values of C and y are 8 and 2, respectively as the best
parameters to apply in our implementation. Having as input these 44 extracted features, GA is
performed to reduce the number of features. The feature set containing five features is used as
entries of SVM classification. These optimal features mean of contrast, mean of homogeneity,
mean of sum average, mean of sum variance and range of autocorrelation [28]. A population
of 30 chromosomes is randomly generated. Each chromosome contains 44 genes (One gene
for each feature). The genetic operators, one point crossover and mutation are used. The
crossover rate is 90% and mutation rate is 10%. Tournoi selection method is used to select the
mating pool.

In this section, we present the performance evaluation methods used to evaluate the
proposed approaches. We assess the performance of the proposed method in terms of

sensitivity, specificity and accuracy. The three terms are defined in Equations (2)-(4):

Sensitivity=TP/(TP+FN) 100% (2
Specificity = TN/(TN+FN) 100% 3)
Accuracy = (TP+TN)/(TP+TN+FP+FN) 100% 4)

where:
TP (True Positives) = correctly classified positive cases,
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TN (True Negative) = correctly classified negative cases,
FP (False Positives) = incorrectly classified negative cases,
FN (False Negative) = incorrectly classified positive cases.

Sensitivity (true positive fraction) is the probability that a diagnostic test is positive,
given that the person has the disease. Specificity (true negative fraction) is the probability that
a diagnostic test is negative, given that the person does not have the disease. Accuracy is the
probability that a diagnostic test is correctly performed.

Table 2 shows the classification rates for performing the proposed hybrid approach by

using the most common kernel functions including linear, polynomial of degree and RBF.

Table 2. Classification results from support vector machine

Kernel Total _ Number of images ' Images Classification
used N of Tralqlnc _ Testl_ng | misclassified Accuracy
Images  |[Normal|Benign|Malign|Normal|Benign|Malign +SD (%)
Lin 83 12 9 16 29 18 36 3+1 96.36+1.23
Poly 83 12 9 16 29 18 36 2+1 97.59+1.2
RBF 83 12 9 16 29 18 36 2+1 97.59+1.2

Legend: Lin - Linear; Poly - Polynomial; RBF - Radial basis function

In fact classification accuracy varies from 96.36£1.23 to 97.59+1.2 %, with
polynomial and radial basis function. Both tools could achieve satisfactory classification
results for brain tumor but we prefer the application of RBF. In this case, the classification
accuracy varies from 96.39 to 98.79 % in the mean standard deviation format (Mean+SD) of
97.59+1.2 %.

Our hybrid approach is performed to classify the benign or malignant tumor. To
evaluate the effectiveness of our method we compare our results with another procedure for
the same MRI datasets. The compared approach omits the decomposition step (WT). Table 3
gives the classification accuracies of this approach and our hybrid method composed of four

steps.

Table 3. Classification rates (in %) for the proposed technique and the other procedure that
lacks the decomposition stage
The hybrid technique | TP |TN|FP|FN |Sensitivity + SD|Specificity|/Accuracy + SD
SGLDM+GA+SVM 34+1|17 |0 |3+1| 91.87+2.69 100 94.44+1.85
WT+SGLDM+GA+SVM|35+£1(17 |0 |21 94.6+2.7 100 96.29+1.85

This comparison shows that our system has high classification accuracy and less

computation due to the feature extraction based on WT. In fact, the experimental results show
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that the accuracy rate in our hybrid approach varies from 94.44 to 98.14 % while in the other
approach varies from 92.59 to 96.29 %. Hence the results of classification of proposed
approach are better than the other one lacking the decomposition stage for classification of the
human brain, benign or malignant tumor. Moreover in our proposal, the sensitivity rate varies
from 91.9 to 97.3 % with the mean +SD of 94.6+2.7 %. This makes our approach an
efficient clinical image analysis tool for doctors or radiologists to classify MRI tumor and to

further obtain MRI tumor location and Vol. estimation.

Conclusions

The paper developed a hybrid technique with normal and benign or malignant classes.
Our medical decision making system is designed by the wavelet transform (WT), genetic
algorithm (GA) and supervised learning methods (SVM). The proposed approach gives very
promising results in classifying the healthy and pathological brain. The benefit of the system
IS to assist the physician to make the final decision. The proposed algorithm is efficient for
classification of the human brain normal or abnormal (benign and malignant tumor) with high
sensitivity, specificity and accuracy rates. The performance of this study appears some
advantages of this technique: it is accurate, robust easy to operate, non-invasive and
inexpensive. The approach is limited by the fact that it necessitates fresh training each time

whenever there is a change in image database.
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