
A Multi Level Functional Verification of Multistage

Interconnection Network for MPSOC

Abstract— Network on chip (NOC) has emerged as a promising

alternative to ensure communication for Multiprocessor systems

on chip (MPSoC). This paper proposes a hybrid verification

approach of Delta multistage interconnection networks for

MPSoC. At the generic level, we propose a formal specification

of the network in the ACL2 theorem proving environment. We

will ensure the soundness of our verification approach by using

programmable logic circuits for fast performance verification of

Delta MIN. We thus show the utility of the hybrid approach to

give a more realistic model describing the communication

architectures.

I. INTRODUCTION

Modern embedded systems integrate a potentially large

number of applications or functions in a single chip. An

increasing number of processors and data memory units are

being integrated into a single chip to build Multi-Processor

Systems on Chip (MPSoC) [1]. Therefore, researches were

focused mainly in squeezing computing and controlling

power on embedded systems. As a result, many MPSOC

platforms have emerged [2].

Nevertheless, one of the most critical area of MPSoC

design is the choice of the suitable interconnect platform.

Indeed, this communication architecture must support the

entire inter-component data traffic and has a significant

impact on the overall system performance [3]. As a promising

alternative, Networks on Chip (NoC) have been proposed by

academia and industry to handle communication needs for the

future multiprocessor systems-on-chip [4].

Multistage Interconnection Network (MIN) has been used

in classical multiprocessor systems. As an example, MINs are

frequently used to connect the nodes of IBMSP [5] and

CRAY Y-MP series [6]. Further on, MINs are applied for

networks on chip to connect processors to memory modules in

MPSOC. A MIN is defined by its topology, switching

strategy, routing algorithm, scheduling mechanism, fault

tolerance, and dynamic reconfigurability [7].

An essential step in the design of an MPSoC is the

verification of the whole system, and especially of the

selected communication architecture. Traditionally, this

verification is synonym with simulation which consists on the

performance evaluation of the system [8]. However, such

technique provides partial verification, so it cannot cover all

design errors or detect undesirable situations (deadlock,

starvation). The trend is then to adopt formal verification,

which is based on using methods of mathematical proof to

ensure the quality of the design, improve the robustness of the

system, and speed up the development [9]. To compare and

contrast different communication architectures, a standard set

of performance metrics should be evaluated, such as area,

energy consumption, execution time and latency. Therefore,

the easy programmability and the large integration capacity

of FPGA provide a faster performance evaluation through

emulation which complements the formal verification process

of the communication architecture.

A hybrid approach for functional verification of Delta

multistage interconnection networks for MPSoC is

investigated in this paper. Section 2 introduces MIN

architecture. Next, a formal approach to specify Delta-MIN

based on-chip communications is detailed. Section 4

describes Delta networks model implemented on FPGA.

Finally, we conclude the paper and we give directions for

future work.

II. MIN ARCHITECTURE

In this section, we present an overview of the networks

used for the specification and the verification of the

interconnection platform for MPSOC.

A. MIN Components

The common multistage interconnection networks (MINs)

used, have N inputs and N outputs nodes and are built using

r×r switches. Such MINs have N/r switches at each stage,

and logrN stages of switches denoted d. The different stages

are connected by links generated by applying permutation

functions. In a MIN, a path between a source and a target is

obtained by operating each corresponding switch of the stage

i in straight mode if the i
th

 bit of the destination address is

equal to 1, otherwise in exchange mode.

B. MIN with Banyan property

Banyan MIN is a multistage interconnection network

characterized by one and only one path between each source

and destination. A banyan MIN of size N×N consists of r×r

crossbars. An interesting subclass of Banyan MINs is

composed of Delta networks. Let denote by: oi the i
th

output

of a crossbar in a MIN, and by Cj, a crossbar belonging to the

stage j. So, the Delta property can be defined as follows: if an

input of Cj is connected to the output oi of Cj-1, then all other

inputs of Cj must be connected to the stage (j-1) on outputs

with the same index i.

Yassine AYDI, Ramzi TLIGUE, Maïssa ELLEUCH, Mohamed ABID

CES Laboratory

National Engineering School of Sfax

Email: yassine.aydi@oous.rnu.tn, ramzitligue@ieee.org, mohamed.abid@enis.rnu.tn

Jean-Luc DEKEYSER

LIFL and INRIA-Futurs,

University of Lille, France

Email: dekeyser@lifl.fr

mailto:yassine.aydi@oous.rnu.tn
mailto:ramzitligue@ieee.org
mailto:mohamed.abid@enis.rnu.tn
mailto:dekeyser@lifl.fr

Fig.1. A Delta network (8,2)

The difference between each of the existing MINs is the

topology of interconnection links between the crossbar

stages. A study of equivalence of a variety of Delta MINs has

been detailed in [10]. An example of Delta networks (a

subclass of MINs) illustrated in figure 1 connects 8

processors to 8 memories by means of 3 stages of 4 switches

each. Processors and memories are represented by 3-bit

number (d2 d1 d0)2. The interconnection stages denoted Ci

(0 ≤ i ≤ 3) are generated by applying permutation functions.

III. SPECIFICATION AND VERIFICATION OF A DELTA-MIN

BASED ARCHITECTURE

We describe below the methodology adopted to specify in

formal notations the Delta MIN network. We detail a generic

topology and extended routing components as extension of

the Generic Networks on Chip model denoted GeNoC [11].

This model takes into account the common components of

any on-chip interconnection architecture, and models them in

a functional style through four functions: "Send", "Recv",

"Routing" and "Scheduling". The GeNoC model has been

implemented in the ACL2 theorem proving environment [12].

A. The Delta MIN topology component

The Delta MIN topology as described above (fig.1) is

composed of nodes and connections.

-The set of nodes: a pair of coordinates (x y) is used to

represent a node in a Delta MIN. The coordinate x is decimal.

It represents the stage of nodes to which belongs the node.

The Y coordinate is binary and it describes the position of the

node within the same stage. The function gen-nodes-dmin

generates all nodes of the network. It takes as parameters N,

the size of the network, and r (r=2), the degree of switches.

The validity of these parameters is recognized by the

predicate ValidParamsp-dmin. We define also another

predicate called dmin-nodesetp for the whole nodes validity.

The nodes set generation is constrained by the theorem.1.

Theorem.1 Nodes set generation

(defthm gen-nodes-dmin-correct

 (implies (ValideParams-dmin pms)

 (dmin-nodesetp(gen-nodes-dmin pms))))

-Connections: we represent a connection cnx in a Delta

MIN by a list ((x px) (y py)), where x is the origin of cnx, px

is the port involved in cnx, y is the second extremity and py is

the port of y. For example, the connection (((3) (0 1)) L0)

(((2) (1 0)) R0) denotes that the port L0 of the switch ((3) (0

1)) is connected to the port R0 of ((2) (1 0)). In the case of

Delta MIN, the connection functions are always a list of three

permutations to apply respectively on the first stage of

connection, the middle stages and finally, on the last stage.

In the ACL2 logic, we define the function gen-cnx-node that

generates all connections of one node n. It takes as arguments

the node n origin of connections, the list of permutation

functions, the parameter d denoting the stages number of the

network, and r the degree of the switches. The theorem.2

checks that every node ext2 produced by the permutation

function σn-1 (modelled by sigmak) belongs to the set of

nodes (nodes). The same constraint must be also verified for

the other two permutation functions. We define below the

function gen-top-dmin (definition.1). It generates all the

connections of a Delta MIN by taking as inputs N and r

previously defined, and the type of the Delta MIN. The last

parameter is used by gen-topology to select the types of

permutations corresponding to this network.

Definition.1. Generation of Delta MIN topology

(defun gen-top-dmin (pms-t)

 (let* ((x1 (car pms-t))(x2 (cadr pms-t))

 (x3 (caddr pms-t))
 (S (car x1))

 (pms-s (cadr x1))(fp-s (caddr x1))

 (Sw (car x2))(pms-sw (cadr x2))
 (fp-sw (caddr x2))

 (D (car x3))(pms-d (cadr x3))

 (fp-d (caddr x3))

 ;;(S pms-s fps)

 (top-S (gen-top-dmin-src_sw S pms-s fp-s))

 ;; (Sw pms-sw fpsw)
 (top-Sw (gen-top-dmin-sw_sw Sw pms-sw fp-sw))

 ;;(D pms-d fpd)

 (top-D (gen-top-dmin-sw_dest D pms-d fp-d)))
 (append top-S (append top-Sw top-D))))

Theorem.2

(defthm ext2-gen-one-cnx-in-nodes
 (let* ((nodes (gen-nodes-dmin pms))

 (c (gen-one-cnx x i fp))

 (ext2 (y-node c)))
 (implies (and (ValidParamspD pms)

 (Validfp-dmin fp)

 (member-equal x nodes)
 (valid-node-dmin ext2))

 (member-equal ext2 nodes)))

:hints (("GOAL" :in-theory
 (disable gen-nodes-inv1))))

Finally, theorem.3 proves the constraint that expresses the

validity of the Delta-MIN topology and check the compliance

of the definitions with the generic topology component

extended.

Theorem.3

 (defthm valid-gen-top-dmin

 (let* ((pms-t (params-top-t pms))
 (top (gen-top-dmin pms-t)))

(implies (and (ValidParamspD pms)
 (valid-params-t pms-t))

 (valid-top-dmin top)))

 :hints (("GOAL" :in-theory (disable Validfp-dmin GEN-NODES-DMIN-S-
pms gen-nodes-dmin-sw-1-pms GEN-NODES-DMIN-d-pms))))

B. The Delta MIN routing component

The routing algorithm used in Delta MINs is the self

routing. It depends only on the destination address, called

also control sequence. If the corresponding digit of the

control sequence is equal to i, the message to deliver will be

switched to the output i of the current crossbar. Here, the

routing algorithm must take into account connections. Indeed,

the only information of the port through which the message

must be switched is not enough. Thus, we must look in the

topology for the connection with the current switch as origin.

As defined in ACL2, the routing function routing-dmin takes

as arguments the list of missives to be routed through the

Delta MIN, and the parameters to generate the whole

topology. For each missive, routing-dmin calls the following

function compute-rte (definition.2) to compute the route

between the origin (from) and the destination (to).

Definition.2 Function compute-rte.

(defun compute-routes-dmin (from to cdrto top)

(if (endp cdrto)
 nil

(let*((bit_rtg (car cdrto))

 (from-a (adapt-node from bit_rtg))
 (next-node (ext2 (rech-top from-a top))))

(cond

;; destination bit equals 0
((equal bit '0)

 (list* (list from-a next-node)

 (compute-routes-dmin next-node to (cdr cdrto) top)))
;; destination bit equals 1

((equal bit '1)

 (list* (list from-a next-node)
 (compute-routes-dmin next-node to (cdr cdrto) top))))))

The ACL2 theorem proving environment provides also an

execution engine. Thus, we can simulate the execution of the

definitions. We present below a simulation of the function

routing-dmin showing the progression of a list of missives

(table 1) through an omega network 8x8, using 2x2 crossbars.

TABLE I. THE LIST OF MISSIVES

id origin content destination
1 ((4) (0 0 1)) frm1 ((0) (1 0 0))

2 ((4) (1 0 1)) frm2 ((0) (0 0 1))

The simulation result of the missive number 1 is shown

below. We can notice that the routing algorithm make use of

connections like ((((3) (0 1)) O1) (((2) (1 1)) I0)), to compute a

route.

TABLE II. SIMULATION RESULTS

Id 1 2

C3 ((((4) (001)) L) (((3) (01)) I0)) ((((4) (110)) O) (((3) (10)) I1))

C2 ((((3) (01)) O1) (((2) (11)) I0)) ((((3) (10)) O1) (((2) (01)) I1))

C1 ((((2) (11)) O0) (((1) (10)) I1)) ((((2) (01)) O1) (((1) (11)) I0))

C0 ((((1) (10)) O0) (((0) (100)) I)) ((((1) (11)) O0) (((0) (111)) L))

In this section, we have proposed an approach to specify

and verify the Delta multistage interconnection networks by

identifying inherent properties of all topologies and

connections. These properties, which are called also

constraints, have been validated using the ACL2 theorem

proving environment. To achieve the routing extension, we

have formalized the general common relation between

topology and routing.

IV. DESIGN AND PERFORMANCE ANALYSIS OF A DELTA-

MIN BASED ARCHITECTURE ON FPGA

The main idea in this work is to combine hybrid

verification techniques by enhancing coverage of the state

space traversed. Therefore, we proposed in this section a

design of a Delta multistage interconnection network for

MPSoC architecture on FPGA which provides fast

verification through emulation by evaluating a set of

performance metrics.

A. Design of Delta-MIN on FPGA

The configurable Delta MIN provides support for a

variety of network topologies which play an important role in

designing routing strategy, network latency, throughput and

area. We will restrict study to Delta MINs networks (fig.1). A

generic connection block is developed to involve various

MINs topology by switching links between the crossbar

stages.

 Data exchanged: Traffic passed through the networks

composed of fixed size packets. The packet format

has three parts (fig.2).

6867 0323334 101112

AddressData

66 35

Bit

enable

Bit r/w

3 bits of the

target’s address

Source

Address

Address in

memory

Fig.2. Packet format

 Router architecture: The router is composed of 2x2

crossbars, a control component (Scheduler), a couple

of input and output ports (fig.3). Each input port of

the router has dedicated buffer storage. Packets are

buffered in input port until the output port of the next

stage is ready to accept the packets; the width of each

buffer is equal to the packet length in order to

facilitate the routing strategy.

Fig.3. Router architecture

-MIN implementation: A model of a MIN for N

processors and N memory has been implemented on a

prototyping platform Xilinx virtex4. The following figure

represents an example of an omega MIN (8, 2) described at

RTL level.

 Fig.4. An Omega network (8,2)

B. Simulation results

This section details the implementation results of the

configurable Delta MIN as well as complete MIN-based

multiprocessor system. Our platform performs

communication to N Mini-MIPS processors and N sharing

data memories. The utility of the Delta MIN is shown here

using a Finite impulse response (FIR) filter application. In

order to demonstrate the effectiveness of the proposed design

methodology, the application is parallelized on MPSoC

architecture with 4 to 32 processors.

TABLE III. RESOURCES UTILIZATION FOR N*N NODES

Table III details the resource utilizations for N*N nodes

implementations on a prototyping platform Xilinx Virtex4.

Based on these results, we find that area on FPGA is

increasing while increasing the size of the network.

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a hybrid approach for

functional verification of multistage interconnection network

for MPSOC. Our objective in this work is to use several

verification techniques to validate selected communication

architecture in different level abstraction. The framework

presented in this paper opens promising trend for further

development as complement to traditional verification

techniques. We plan to extend this work to employ formal

notations to validate the implementation of the

communication architecture based on multistage

interconnection network.

VI. REFERENCES

[1] A. Jerraya, and W. Wolf, “Multiprocessor Systems-on-Chips”,

Morgan Kaufmann Publishers, San Francisco, 2004.

[2] W. Wolf, “The future of multiprocessor systems-on-chips”,

Proc. of the 41st annual conference on Design automation,

ACM Press, New York, 2004, pp. 681–685.

[3] S. Pasricha, “Floorplan-aware automated synthesis of bus-

based communication architectures”, Proc. of the 42nd annual

conference on Design automation, ACM Press, New York,

2005, pp. 565–570.

[4] L. Benini, “Networks on chips: A new SoC paradigm”,

Computer, Vol. 35, N° 1, IEEE Computer Society Press, Los

Alamitos, California, 2002, pp. 70–78.

[5] C. B. Stunkel, “The SP2 High-Performance Switch”, IBM

Systems Journal, Vol. 34, N° 2, IBM Corp., Riverton, USA,

1995, pp. 185–204.

[6] T. Cheung, “A simulation study of the CRAY X-MP memory

system”, IEEE Transactions on Computers, Vol. 35, N° 7,

IEEE Computer Society, Washington, 1986, pp. 613–622.

[7] Y. Aydi “Design and Performance Evaluation of a

Reconfigurable Delta MIN for MPSOC”, In 19th International

Conference on Microelectronics (ICM ’07), 2007.

[8] Y. Aydi, “Dynamicity Analysis of Delta MINs for MPSOC

Architectures”, STA'07, 2007.

[9] M. Elleuch., “Formal Specification of Delta MINs for MPSOC

in the ACL2 Logic”, in Proceedings of Forum on Design and

specification Languages - FDL ’08, 2008.

[10] C. Kruskal, “A unified theory of interconnection network”,

Theoretical Computer Science, Vol.48, N°1, Elsevier Science

Publishers Ltd., essex, 1986, pp. 75-94.

[11] J. Schmaltz, and D. Borrione, “Towards a Formal Theory of

Communication Architecture in the ACL2 Logic”, Proc. of 6th

international workshop on the ACL2 theorem prover and its

applications, ACM Press, New York, 2006, pp. 47- 56.

[12] M. Kaufmann, and J S. Moore, “ACL2: An industrial strength

version of nqthm”, IEEE Transactions on Software

Engineering, Vol. 23, N°4, IEEE Press, New York, 1996, pp.

23-34.

Logic Utilization

N

Number

of

Slices

%

Number

of Slice

Flip Flops

%

Number of

4inputLUT

s

%

 Number

of

FIFO16/

 RAMB16s

%

4 2281 2 2364 1 3993 2 16 4

8 6839 7 7092 3 12257 6 48 14

16 18220 20 18912 10 33057 18 128 38

32 37566 42 48560 27 66657 37 320 95

http://en.wikipedia.org/wiki/Computer_Society

