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Abstract— Network on chip (NOC) has emerged as a promising 

alternative to ensure communication for Multiprocessor systems 

on chip (MPSoC). This paper proposes a hybrid verification 

approach of Delta multistage interconnection networks for 

MPSoC. At the generic level, we propose a formal specification 

of the network in the ACL2 theorem proving environment. We 

will ensure the soundness of our verification approach by using 

programmable logic circuits for fast performance verification of 

Delta MIN. We thus show the utility of the hybrid approach to 

give a more realistic model describing the communication 

architectures. 

I. INTRODUCTION 

Modern embedded systems integrate a potentially large 

number of applications or functions in a single chip. An 

increasing number of processors and data memory units are 

being integrated into a single chip to build Multi-Processor 

Systems on Chip (MPSoC) [1]. Therefore, researches were 

focused mainly in squeezing computing and controlling 

power on embedded systems. As a result, many MPSOC 

platforms have emerged [2]. 

Nevertheless, one of the most critical area of MPSoC 

design is the choice of the suitable interconnect platform. 

Indeed, this communication architecture must support the 

entire inter-component data traffic and has a significant 

impact on the overall system performance [3]. As a promising 

alternative, Networks on Chip (NoC) have been proposed by 

academia and industry to handle communication needs for the 

future multiprocessor systems-on-chip [4].  

Multistage Interconnection Network (MIN) has been used 

in classical multiprocessor systems. As an example, MINs are 

frequently used to connect the nodes of IBMSP [5] and 

CRAY Y-MP series [6]. Further on, MINs are applied for 

networks on chip to connect processors to memory modules in 

MPSOC. A MIN is defined by its topology, switching 

strategy, routing algorithm, scheduling mechanism, fault 

tolerance, and dynamic reconfigurability [7]. 

An essential step in the design of an MPSoC is the 

verification of the whole system, and especially of the 

selected communication architecture. Traditionally, this 

verification is synonym with simulation which consists on the 

performance evaluation of the system [8]. However, such 

technique provides partial verification, so it cannot cover all 

design errors or detect undesirable situations (deadlock, 

starvation). The trend is then to adopt formal verification, 

which is based on using methods of mathematical proof to 

ensure the quality of the design, improve the robustness of the 

system, and speed up the development [9]. To compare and 

contrast different communication architectures, a standard set 

of performance metrics should be evaluated, such as area, 

energy consumption, execution time and latency. Therefore, 

the easy programmability and the large integration capacity 

of FPGA provide a faster performance evaluation through 

emulation which complements the formal verification process 

of the communication architecture. 

A hybrid approach for functional verification of Delta 

multistage interconnection networks for MPSoC is 

investigated in this paper. Section 2 introduces MIN 

architecture. Next, a formal approach to specify Delta-MIN 

based on-chip communications is detailed. Section 4 

describes Delta networks model implemented on FPGA. 

Finally, we conclude the paper and we give directions for 

future work. 

 

II. MIN ARCHITECTURE 

In this section, we present an overview of the networks 

used for the specification and the verification of the 

interconnection platform for MPSOC. 

A. MIN Components 

The common multistage interconnection networks (MINs) 

used, have N inputs and N outputs nodes and are built using 

r×r switches. Such MINs have N/r switches at each stage, 

and logrN stages of switches denoted d. The different stages 

are connected by links generated by applying permutation 

functions. In a MIN, a path between a source and a target is 

obtained by operating each corresponding switch of the stage 

i in straight mode if the i
th

 bit of the destination address is 

equal to 1, otherwise in exchange mode. 

B. MIN with Banyan property  

Banyan MIN is a multistage interconnection network 

characterized by one and only one path between each source 

and destination. A banyan MIN of size N×N consists of r×r 

crossbars. An interesting subclass of Banyan MINs is 

composed of Delta networks. Let denote by: oi the i
th 

output 

of a crossbar in a MIN, and by Cj, a crossbar belonging to the 

stage j. So, the Delta property can be defined as follows: if an 

input of Cj is connected to the output oi of Cj-1, then all other 

inputs of Cj must be connected to the stage (j-1) on outputs 

with the same index i.  
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Fig.1. A Delta network (8,2) 

The difference between each of the existing MINs is the 

topology of interconnection links between the crossbar 

stages. A study of equivalence of a variety of Delta MINs has 

been detailed in [10]. An example of Delta networks (a 

subclass of MINs) illustrated in figure 1 connects 8 

processors to 8 memories by means of 3 stages of 4 switches 

each. Processors and memories are represented by 3-bit 

number (d2 d1 d0)2. The interconnection stages denoted Ci 

(0 ≤ i ≤ 3) are generated by applying permutation functions. 

 

III. SPECIFICATION AND VERIFICATION OF A DELTA-MIN 

BASED ARCHITECTURE   

We describe below the methodology adopted to specify in 

formal notations the Delta MIN network. We detail a generic 

topology and extended routing components as extension of 

the Generic Networks on Chip model denoted GeNoC [11]. 

This model takes into account the common components of 

any on-chip interconnection architecture, and models them in 

a functional style through four functions: "Send", "Recv", 

"Routing" and "Scheduling". The GeNoC model has been 

implemented in the ACL2 theorem proving environment [12].  

A. The Delta MIN topology component 

The Delta MIN topology as described above (fig.1) is 

composed of nodes and connections.  

-The set of nodes: a pair of coordinates (x y) is used to 

represent a node in a Delta MIN. The coordinate x is decimal. 

It represents the stage of nodes to which belongs the node. 

The Y coordinate is binary and it describes the position of the 

node within the same stage. The function gen-nodes-dmin 

generates all nodes of the network. It takes as parameters N, 

the size of the network, and r (r=2), the degree of switches. 

The validity of these parameters is recognized by the 

predicate ValidParamsp-dmin. We define also another 

predicate called dmin-nodesetp for the whole nodes validity. 

The nodes set generation is constrained by the theorem.1. 

Theorem.1 Nodes set generation 

(defthm gen-nodes-dmin-correct 

 (implies (ValideParams-dmin pms) 

           (dmin-nodesetp(gen-nodes-dmin pms)))) 

-Connections: we represent a connection cnx in a Delta 

MIN by a list ((x px) (y py)), where x is the origin of cnx, px 

is the port involved in cnx, y is the second extremity and py is 

the port of y. For example, the connection (((3) (0 1)) L0) 

(((2) (1 0)) R0) denotes that the port L0 of the switch ((3) (0 

1)) is connected to the port R0 of ((2) (1 0)). In the case of 

Delta MIN, the connection functions are always a list of three 

permutations to apply respectively on the first stage of 

connection, the middle stages and finally, on the last stage.  

In the ACL2 logic, we define the function gen-cnx-node that 

generates all connections of one node n. It takes as arguments 

the node n origin of connections, the list of permutation 

functions, the parameter d denoting the stages number of the 

network, and r the degree of the switches. The theorem.2 

checks that every node ext2 produced by the permutation 

function σn-1 (modelled by sigmak) belongs to the set of 

nodes (nodes). The same constraint must be also verified for 

the other two permutation functions. We define below the 

function gen-top-dmin (definition.1). It generates all the 

connections of a Delta MIN by taking as inputs N and r 

previously defined, and the type of the Delta MIN. The last 

parameter is used by gen-topology to select the types of 

permutations corresponding to this network.  

Definition.1. Generation of Delta MIN topology 

(defun gen-top-dmin (pms-t) 

 (let* ((x1 (car pms-t))(x2 (cadr pms-t)) 

        (x3 (caddr pms-t)) 
        (S (car x1)) 

        (pms-s (cadr x1))(fp-s (caddr x1)) 

        (Sw (car x2))(pms-sw (cadr x2)) 
        (fp-sw (caddr x2)) 

        (D (car x3))(pms-d (cadr x3)) 

        (fp-d (caddr x3)) 

     ;;(S pms-s fps) 

  (top-S (gen-top-dmin-src_sw S pms-s fp-s))    

     ;; (Sw pms-sw fpsw)   
  (top-Sw (gen-top-dmin-sw_sw Sw pms-sw fp-sw))  

  ;;(D pms-d fpd)         

  (top-D (gen-top-dmin-sw_dest D pms-d fp-d))) 
  (append top-S (append top-Sw top-D)))) 

Theorem.2 

(defthm ext2-gen-one-cnx-in-nodes 
  (let* ((nodes (gen-nodes-dmin pms)) 

         (c (gen-one-cnx x i fp)) 

         (ext2 (y-node c)))  
  (implies (and (ValidParamspD pms)  

                (Validfp-dmin fp) 

                (member-equal x nodes) 
                (valid-node-dmin ext2))  

           (member-equal ext2 nodes))) 

:hints (("GOAL" :in-theory  
                  (disable gen-nodes-inv1)))) 

 

Finally, theorem.3 proves the constraint that expresses the 

validity of the Delta-MIN topology and check the compliance 

of the definitions with the generic topology component 

extended. 

Theorem.3  

 (defthm valid-gen-top-dmin     

   (let* ((pms-t (params-top-t pms)) 
          (top (gen-top-dmin pms-t))) 

(implies (and (ValidParamspD pms) 
              (valid-params-t pms-t)) 

              (valid-top-dmin top))) 

 :hints (("GOAL" :in-theory (disable Validfp-dmin GEN-NODES-DMIN-S-
pms gen-nodes-dmin-sw-1-pms GEN-NODES-DMIN-d-pms )))) 



B. The Delta MIN routing component 

The routing algorithm used in Delta MINs is the self 

routing. It depends only on the destination address, called 

also control sequence. If the corresponding digit of the 

control sequence is equal to i, the message to deliver will be 

switched to the output i of the current crossbar. Here, the 

routing algorithm must take into account connections. Indeed, 

the only information of the port through which the message 

must be switched is not enough. Thus, we must look in the 

topology for the connection with the current switch as origin. 

As defined in ACL2, the routing function routing-dmin takes 

as arguments the list of missives to be routed through the 

Delta MIN, and the parameters to generate the whole 

topology. For each missive, routing-dmin calls the following 

function compute-rte (definition.2) to compute the route 

between the origin (from) and the destination (to).  

Definition.2  Function compute-rte.  

(defun compute-routes-dmin (from to cdrto top) 

(if (endp cdrto) 
     nil  

(let*((bit_rtg (car cdrto)) 

      (from-a (adapt-node from bit_rtg))        
      (next-node (ext2 (rech-top from-a top))))       

(cond  

;; destination bit equals 0 
((equal bit '0)  

 (list* (list from-a next-node) 

 (compute-routes-dmin next-node to (cdr cdrto) top))) 
;; destination bit equals 1 

((equal bit '1) 

 (list* (list from-a next-node)  
 (compute-routes-dmin next-node to (cdr cdrto) top)))))) 

The ACL2 theorem proving environment provides also an 

execution engine. Thus, we can simulate the execution of the 

definitions. We present below a simulation of the function 

routing-dmin showing the progression of a list of missives 

(table 1) through an omega network 8x8, using 2x2 crossbars. 

TABLE I.   THE LIST OF MISSIVES  

id origin content destination 
1 ((4) (0 0 1)) frm1 ((0) (1 0 0)) 

2 ((4) (1 0 1)) frm2 ((0) (0 0 1)) 

 

The simulation result of the missive number 1 is shown 

below. We can notice that the routing algorithm make use of 

connections like ((((3) (0 1)) O1) (((2) (1 1)) I0)), to compute a 

route.  

TABLE II.  SIMULATION RESULTS 

Id 1 2 

C3 ((((4) (001)) L) (((3) (01)) I0)) ((((4) (110)) O) (((3) (10)) I1)) 

C2 ((((3) (01)) O1) (((2) (11)) I0)) ((((3) (10)) O1) (((2) (01)) I1)) 

C1 ((((2) (11)) O0) (((1) (10)) I1)) ((((2) (01)) O1) (((1) (11)) I0)) 

C0 ((((1) (10)) O0) (((0) (100)) I)) ((((1) (11)) O0) (((0) (111)) L)) 

In this section, we have proposed an approach to specify 

and verify the Delta multistage interconnection networks by 

identifying inherent properties of all topologies and 

connections. These properties, which are called also 

constraints, have been validated using the ACL2 theorem 

proving environment. To achieve the routing extension, we 

have formalized the general common relation between 

topology and routing.  

 

IV. DESIGN AND PERFORMANCE ANALYSIS OF A DELTA-

MIN BASED ARCHITECTURE ON FPGA 

The main idea in this work is to combine hybrid 

verification techniques by enhancing coverage of the state 

space traversed.   Therefore, we proposed in this section a 

design of a Delta multistage interconnection network for 

MPSoC architecture on FPGA which provides fast 

verification through emulation by evaluating a set of 

performance metrics. 

A. Design of Delta-MIN on FPGA 

The configurable Delta MIN provides support for a 

variety of network topologies which play an important role in 

designing routing strategy, network latency, throughput and 

area. We will restrict study to Delta MINs networks (fig.1). A 

generic connection block is developed to involve various 

MINs topology by switching links between the crossbar 

stages.  

 Data exchanged: Traffic passed through the networks 

composed of fixed size packets. The packet format 

has three parts (fig.2).  

6867 0323334 101112

AddressData

66 35

Bit 

enable

Bit r/w

3 bits of the 

target’s address

Source

Address  

Address in 

memory

 
Fig.2. Packet format 

 Router architecture: The router is composed of 2x2 

crossbars, a control component (Scheduler), a couple 

of input and output ports (fig.3). Each input port of 

the router has dedicated buffer storage. Packets are 

buffered in input port until the output port of the next 

stage is ready to accept the packets; the width of each 

buffer is equal to the packet length in order to 

facilitate the routing strategy.  

 
Fig.3. Router architecture 

-MIN implementation: A model of a MIN for N 

processors and N memory has been implemented on a 



prototyping platform Xilinx virtex4. The following figure 

represents an example of an omega MIN (8, 2) described at 

RTL level.  

 

 Fig.4. An Omega network (8,2) 

B. Simulation results  

This section details the implementation results of the 

configurable Delta MIN as well as complete MIN-based 

multiprocessor system. Our platform performs 

communication to N Mini-MIPS processors and N sharing 

data memories. The utility of the Delta MIN is shown here 

using a Finite impulse response (FIR) filter application. In 

order to demonstrate the effectiveness of the proposed design 

methodology, the application is parallelized on MPSoC 

architecture with 4 to 32 processors. 

TABLE III.  RESOURCES UTILIZATION FOR N*N NODES 

 

Table III details the resource utilizations for N*N nodes 

implementations on a prototyping platform Xilinx Virtex4. 

Based on these results, we find that area on FPGA is 

increasing while increasing the size of the network. 

 

V. CONCLUSION AND FUTURE WORK 

In this paper, we have proposed a hybrid approach for 

functional verification of multistage interconnection network 

for MPSOC. Our objective in this work is to use several 

verification techniques to validate selected communication 

architecture in different level abstraction. The framework 

presented in this paper opens promising trend for further 

development as complement to traditional verification 

techniques. We plan to extend this work to employ formal 

notations to validate the implementation of the 

communication architecture based on multistage 

interconnection network. 
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