

CO-SIMULATION INTERFACE SYSTEMC AND MATLAB
VERIFICATION

ENVIRONMENT BY JPEG ALGORITHM

Walid Hassairi

 Laboratory CES, National
School of

Engineers of Sfax, Tunisia.
walid.hassairi@ceslab.org

Moncef Bousselmi

Laboratory CES, National
School of

Engineers of Sfax, Tunisia.
moncef.bousselmi

@ceslab.org

Mohamed Abid

Laboratory CES, National
School of

Engineers of Sfax, Tunisia.
mohamed.abid
@ceslab.org

 Functional verification is a major part of today’s system design task. Several approaches are available for
verification on a high abstraction level, where designs are often modeled using MATLAB/Simulink. However,
different approaches are a barrier to a unified verification flow. In this paper, we propose a co-simulation interface
between SystemC and MATLAB and Simulink to enable functional verification of multi-abstraction levels designs.
The resulting verification flow is tested on JPEG compression algorithm. The required synchronization of both
simulation environments, as well as data type conversion is solved using the proposed co-simulation flow. We divided
into two encoder jpeg parts. First implemented in SystemC which is the DCT is representing the party HW. The
second consisting of quantization and entropy encoding is implemented in Matlab is the SW part. For communication
and synchronization between these two parts we use S-Function and engine in Simulink matlab. With this research
premise, this study introduces a new implementation of a Hardware SystemC of DCT. We compare the result of our
simulation compared to SW / SW. We observe a reduction in simulation time you have 88.15%.

Keywords: hardware/software, co-design, co-simulation, systemC, matlab, S-Function, communication,
synchronization, jpeg, stimulus.

I. Introduction

The functionality of embedded systems as well as
the pressure to time-to-market has been
continuously increasing in the past decades.
Simulation of the entire system including both
hardware and software from early design stages is
one of effective approaches to improve the design
productivity. A large number of research efforts on
hardware/software co-simulation have been made
so far. Real-time operating systems have become
one of the important components in embedded
systems. Therefore, in order to validate the entire
system functionality, this system has to be
simulated together with application software and
hardware. Traditional methods of verification have
proven to be insufficient for complex digital
systems. Register transfer level test-benches have
become too complex to manage and slow to
execute. New methods and verification techniques
began to emerge over the past few years. High-level
test-benches, assertion-based verification, formal
methods, hardware verification languages are just a
few examples of the intense research activities
driving the verification domain. A integrate
SystemC in MATLAB/Simulink and is presented.
This interface is principally used for the verification
of lower abstraction level designs with a high level
model of the design environment. Our work
articulates on three contributions which are the

proposal for solutions of implementation of
different the parts of architecture in the case of the
simulators: systemC and Simulink/matlab,
moreover the definition of an environment of Co-
simulation based on the automatic generation of the
interfaces necessary for the integration these
simulators and the proposed a new verification
framework based on SystemC verification standard
that uses MATLAB and Simulink to accelerate
testbench development.
A verification methodology based on SystemC is
proposed. The MATLAB/Simulink to SystemC
interface and the evolved version of transactors are
combined in a scalable multi-abstraction level
verification platform.
This paper describes a refined co-simulation
platform which overcomes these problems. The
refined platform enables co-simulation with
hardware models written in SystemC. On the co-
simulation platform, all of the application software
and hardware modules are directly executed on a
host computer, which leads to high co-simulation
speed. We propose a co-simulation interface
between SystemC and MATLAB and Simulink to
enable functional verification of multi-abstraction
levels designs. The resulting verification flow is
tested on JPEG compression algorithm. The
required synchronization of both simulation
environments, as well as data type conversion is
solved using the proposed co-simulation flow. We

59
ISBN: 978-9938-9511-0-3
International Conference on Information Technology and e-Services

divided into two encoder jpeg parts. First
implemented in SystemC which is the DCT is
representing the party HW. The second consisting
of quantization and entropy encoding is
implemented in Matlab is the SW part. For
communication and synchronization between these
two parts we use S-Function and engine in
Simulink matlab. With this research premise, this
study introduces a new implementation of a
Hardware SystemC of DCT. We compare the result
of our simulation compared to SW / SW.
In this paper, we first discussed the related work in
section 2 and in section 3, we presented a
methodology of co-simulation. Then, in section 4,
we proposed the application of compression image
JPEG. After that, we give the resultant for co-
simulation in section 5. Finally, we concluded by
suggesting some recommendations to future works.

II. Related work

Connecting Simulink and SystemC together has
already been tried in the literature. Authors in [6]
propose a solution to integrate SystemC models in
Simulink. A wrapper is created using S-Functions
to combine SystemC modules with Simulink.
This wrapper initializes the SystemC kernel and
converts Simulink data type to SystemC signals and
vice versa. Simulation control is entirely handled by
Simulink. Some extensions of the SystemC kernel
are required for initialization and simulation tasks.
In [7], SystemC calls MATLAB using the engine
library. MATLAB provides interfaces to external
routines written in other programming languages.
Using the C engine library, it is possible to share
data between SystemC models and MATLAB.
This simple working demo shows how to use the
library to send and retrieve data from the MATLAB
workspace and plot some results. The main
difference with [6] is with the simulation control:
SystemC is now the master of the simulation and
MATLAB operates as a slave process. Also,
Simulink is not supported in this example.
In a similar way, MathWorks provides a
commercial solution to close the gap between
algorithmic domain and the hardware design. The
link for ModelSim [8] is a co-simulation interface
that integrates MATLAB and Simulink into the
hardware design flow. It provides a link between
MATLAB/Simulink and Model Technology’s HDL
simulator, ModelSim. This interface makes the
verification and co-simulation of RTL-level models
possible from within MATLAB and Simulink. As
opposed to the two previous techniques, there is no
support for system level languages like SystemC.
These approaches [6, 7, 8] all try to reduce the
barrier that exist between higher level modeling and
existing hardware design flow. While [8] is a fully
functional commercial tool for RTL verification, [6,

7] suffer from their embryonic stage (i.e.
incomplete solutions for hardware design and
verification).
The authors in [9] have look at the problem of
cosimulating continuous systems with discrete
systems. The increasing complexity of
continuous/discrete systems makes their simulation
and validation a demanding task for the design of
heterogeneous systems. They propose a co-
simulation interface approach based on Simulink
and SystemC. The main objective of the proposed
solution is to provide a framework to evaluate
continuous/discrete systems modeling and
simulation.
In our former work [10], I adopted the methodology
of communication and synchronization. To
exchange data between a Simulink model and
SystemC module, the co-simulation interface must
integrate a bridge between the two simulators. This
bridge is built with two Simulink S-Functions. An
S-Function is a computer language description of a
Simulink block. It uses syntax of call thus we can
interact with Simulink solvers. For our bridge, I
create two C++ S- Functions. The representation of
simulation time differs significantly from SystemC
and Matlab. SystemC is cycle-based simulator and
simulation occurs at multiples of the SystemC
resolution limit. The default time resolution is 1
picoseconds; this can be changed with function
sc_set_time_resolution. Simulink maintains
simulation time as a double precision value scaled
to seconds. Our co-simulation interface uses a one-
to-one correspondence between simulation time in
Simulink and SystemC.

III. Methodologies

The implementation of applications on embedded
systems is a very time expensive task using the
standard development tools. The new
heterogeneous model is executable too to simulate
the co-design implementation. The simulation of
the heterogeneous model is realized using SystemC.
A description of a hardware module is transformed
into a structural description with SystemC
components (RT-level). The interface between
hardware and software parts is implemented using
special SystemC constructs and can be compared
with the interface of the implementation in the real
system. SystemC provides several levels of
abstraction to describe hardware. For the simulation
of hardware modules in the shown design flow the
cycle accurate level (CA) of SystemC is used. The
interface to the software kernel is untimed
functional level (UTF). A wrapper was designed to
connect the modules to the software kernel. This
wrapper is based on two shell-blocks which connect
the CA-model to the software kernel by realizing an

60

interface between the CA- and the UTF-model
(Untimed Functional) of SystemC.

Fig. 1: Using SystemC within Simulink S-Function

Simulink is a commonly used tool for

designing DSP applications. It supports with a lot
of libraries distinguished suppositions to develop
single machine vision operators, e.g. the possibility
to generate intelligent test environments for image.

To use the tool for generation of hardware
operators, an interface between SystemC and
Simulink was developed. Thus an integration of the
visualized tool in more common design flows is
realized.

This integration was done by using Simulink
S-Functions. S-Functions provide a powerful
mechanism for extending Simulink with custom
blocks and can be implemented as C++ Code.
Within the S-Function the output is calculated from
input and from states at each time step when the
fixed-step, discrete time solver is used.

So a stepwise, cycle by cycle SystemC-
simulation is needed, which can be executed in the
S-Function. The initialization of the SystemC
kernel must be separated from simulation.

To meet these requirements a wrapper has been
inserted between the S-Function and the SystemC
model (Fig. 1). The purpose of that wrapper is:
•Connect Simulink ports to a SystemC-TM-Block.
•Converting Simulink data types to SystemC-TM
signals and vice versa.
•Initializing of the SystemC-Kernel.
•Converting events; function call from Simulink to
sc_cycle().
•Provide a DLL interface to the Simulink
S-Function.

The methodology tries to push the idea a step
further than just a co-simulation interface. It is a
complete verification solution. It uses MATLAB
external interfaces, similar to the example described
in [6], to exchange data between SystemC and
Simulink. Once this link is established, it opens up

a wide range of additional capability to SystemC,
like stimulus [10] generation and data visualization.
The first advantage of our technique is to use the
right tool for the right task. Complex stimulus
generation and signal processing visualization are
carried out with MATLAB and Simulink while
hardware verification is performed with SystemC
verification standard. The second advantage is to
have a SystemC centric approach allowing greater
flexibility and configurability.
With this approach the overall system simulation
can be controlled by Simulink through settings of
duration time and step size.
The machine vision operators designed and verified
in Matlab/Simulink can be added to the hardware
library of IPED and used as executable
specification in the backend design process.
start_of_simulation: The implementation shall
call member function start_of_simulation
immediately the application calls function sc_start
for the first time or at the very start of simulation if
simulation is initiated under the direct control of the
kernel. If an application makes multiple calls to
sc_start, the implementation shall only make the
callbacks to start_of_simulation on the first such
call to sc_start. The implementation shall call
function start_of_simulation after the callbacks to
end_of_elaboration and before invoking the
initialization phase of the scheduler.
end_of_simulation: The implementation shall
call member function end_of_simulation at the
point when the scheduler halts due to the function
sc_stop having been called during simulation, or at
the very end of simulation if simulation is initiated
under the direct control of the kernel. The purpose
of member function end_of_simulation is to allow
an application to perform housekeeping actions at
the end of simulation. Examples include closing
stimulus and response files, and printing diagnostic
messages. The intention is that an implementation
that initiates elaboration and simulation under direct
control of the kernel (in the absence of functions
sc_main and sc_start) shall make the callbacks to
end_of_simulation at the very end of simulation
whether or not function sc_stop has been called.

IV. JPEG compression algorithm

The current standard for JPEG compression is a
recommendation issued by ITU (International
telecommunication Union) in 1992. JPEG is an
image compression algorithm for continues-tones
images and photographs. Several variants of the
JPEG compression method exists. From research
made on the human visual system, psycho visual
models have been created. These models explain
among other things what we are able to see and to
what extent. These models, together with the FDCT

61

(FORWARD Discrete Cosine Transform), from the
foundation of JPEG encoding.
When JPEG compression is applied on continuous-
tone images, a high quality output can often be
achieved with a compression ratio as high as 1:10 -
1:20. At a compression ratio of 1:5, the output is
virtually indistinguishable from the original source.
The JPEG encoding process can be divided into
five steps:

• Color conversion
• Sub sampling
• Two-dimensional FDCT
• Quantization
• Entropy encoding

Fig. 2: The JPEG decoder

The image consists of one or several color
components or color channels. The individual data
elements the source image and the output image
consist of are referred to as samples and
coefficients.
Prior to the JPEG compression is started, the input
image is divided into square data blocks of eight by
eight samples. Data blocks representing each of the
available color channels are grouped into Minimum
Coded Units (MCU). A MCU represents the
smallest possible subset of the encoded image. The
size and arrangement of the MCU varies depending
on which color format is used.
The studies made on the human visual system
showed that humans are more sensitive to changes
and details in brightness than in color. JPEG uses a
color space that takes advantage of this fact,
CIELAB or YUV. YUV consists of three
components: Luminance (Y), Chrominance A (U)
and Chrominance B (V). Luminance represents
brightness, while the two chrominance channels
together represents color.
By applying a 2D FDCT on the source image, it is
transformed from the spatial domain to the
frequency domain. This transformation basically
separates visually important image detail from
detail of less visual importance (figure 2.14).

For each data block of YUV samples from the
source image, a corresponding data block of
coefficients is created as a result of the 2D FDCT.
Together all coefficients render their data block.
Each coefficient adds image detail to the data
block. The coefficients are ordered according to
their significance to image detail, from the top-left
corner diagonally downwards to the bottom-right
corner.
Since the 2D FDCT divided image detail
information according to their importance, this
knowledge makes it possible to further remove
redundant data. Quantization vectors are utilized to
individually scale each coefficient after their
significance and after the sought compression ratio.
The ITU recommendation contains suggested
quantization tables that are carefully balanced
between image quality and compression ratio.
After quantization, each data block is zigzag
scanned as a preparation for entropy encoding. The
zigzag scan reorganizes the coefficients in an order
which makes the entropy encoding more efficient in
each data block, the upper, leftmost coefficient
represents an average value for the entire data
block. It is referred to as the DC coefficient while
the other 63 coefficients are referred to as the AC
coefficients.
The DC value is encoded with Differential Pulse
Code Modulation (DPCM). DPCM enhances the
compression performance for continuous-tone
images by encoding the difference between
adjacent data blocks’ DC coefficients.
As motion in the chair, the DCT is the most
important and contains much of calculation. This
part of the chain will be developed in SystemC, and
represents part Hardware. We explain it using an
example process named ‘DCT’ (in JPEG encoder)
in SystemC as shown in Figure 3.

Fig. 3: The DCT in systemC.

62

 It has two FIFO channels, one for receiving data
and the other for sending data. From the SystemC
code, we remove all SystemC dependent statements
and exchange the FIFO read/write.
To proceed to an FPGA implementation, the
resulting netlist from the previous stage has to be
mapped to the FGPA's logic block structure and
interconnect. The main outcome of this technology
mapping, placing, and routing is a bit stream which
can be programmed into a FPGA.

V. Results

The virtual architecture model is described using
SystemC language and is generated according to
the parameters specified in the initial Simulink
model. SystemC allows modeling a system at
different abstraction levels from functional to pin
accurate register transfer level.
The virtual architecture is modeled using
transaction level modeling (TLM) techniques that
allow analyzing FPGA architecture in an earlier
phase of design, software development and timing
estimation. At the virtual architecture level, the
Simulink functions of the application are
transformed into systemC program code for each
task. This step is very similar to the code generation
performed by Real Time Workshop (RTW).
Contrary to the RTW which generates only single
task code, the software at the virtual architecture
level represents a multitasking systemC code
description of the initial Simulink application
model. The generation has to support also user
defined systemC codes integrated in the Simulink
model as S-functions. For the S-functions, the task
code represents a function call of the user written
systemC function. The semantics of the argument
passing are identical to those of the definition in the
configuration panel of the S-Function Builder tool
in Simulink. The hardware is refined to a set of
abstract SystemC modules (SC_MODULE) for
each subsystem. The SC_MODULE of the
processor includes the tasks modules that are
mapped on the processor and the communication
channels for the intra-subsystem communication
between the tasks inside the same processor. The
communication channels between the tasks mapped
on the FPGA is implemented using standard
SystemC channels. The tasks modules are
implemented as SystemC modules
(SC_MODULE). The development of the JPEG
Decoder application in Simulink requires 7 S-
Functions in order to integrate the systemC code of
the main parts of the decoding algorithm. Which
are: jpeg_sfun_h, dct_sfun_h, sfc_sf.h, sfc_mex.h,
sfcdebug.h, jpeg_sfun.mexw32, dct_sfun.mexw32.
Once this link is established, it opens up a wide
range of additional capability to SystemC, like
stimulus generation and data visualization. The first

advantage of our technique is to use the right tool
for the right task. Complex stimulus generation and
signal processing visualization are carried out with
MATLAB and Simulink while hardware
verification is performed with SystemC verification
standard. The second advantage is to have a
SystemC centric approach allowing greater
flexibility and configurability.

In this part, we make a comparison between the
previous methodology based on the communication
and the synchronization between both simulators
and the new approach which is based on the
integration of systemC in matlab / Simulink in other
applications.
CODIS (COntinuous DIscrete Simulation) is a tool
which can automatically produces co-simulation
instances for continuous/discrete systems
simulation using SystemC and Simulink simulators.
This is done by generating and providing co-
simulation interfaces and the co-simulation bus. To
evaluate the performances of simulation models
generated in CODIS, they measured the overhead
given by the simulation interfaces. The experiments
have shown synchronization overhead of less than 30
% in simulation time [9]. In the [5] A Software-
Defined Radio (SDR) is a combination of digital
filters, analog components and processors, each
requiring different design approaches with a different
tool or language. Using a traditional design flow,
where the verification effort represents 70% of the
total design time, will yield in more time spent on
testbench development and simulation runs. The result
is 192 days as the total development time for this
project, compared to 131 days using the improved
design flow. This represents a productivity gain of
around 32% over a traditional design flow that has
limited testbench components reuse and software
interoperability. Bat the implementation HW/SW
reduced the number of clock cycle: 1334722 to
158044 times of execution. The reduction on the
total execution time of the JPEG algorithm was
88. 15%.

VI. Conclusions

 In this paper, we presented a new approach Based
on the integration systemc in matlab / simulink. The
capital advantage of this approach is the possibility
of modeling and verifying the overall system within
the same design environment. The result is shorter
design cycles for applications using heterogeneous
architectures. The co-simulation interface we
presented a method for reducing the time spent on
validation and verification while improving overall
testbench quality. MATLAB/Simulink assists the
SystemC verification environment in a unified
approach. It has been shown that the methodology
allows complex stimulus generation and exhaustive
data analysis for the design under verification. As

63

FPGA designs encompass larger and larger
systems, the need to efficiently model the complex
external environment during the architecture and
verification phases becomes greater. The whole
verification flow has been evaluated, using an
example. It has been shown, that the usage of the
extended verification flow saves a significant
amount of time during the development process.
The proposed plateform is tested on the JPEG
compression algorithm. The execution time of such
algorithm is improved by 88.15% due to the
hardware implementation of the Matlab mult16
Function using SystemC. As future works, we aim
to test our platform with the whole video
compression chain using MPEG4 modules and
Software-Defined Radio (SDR). It includes
hardware and software components that require
rigorous verification all along the design flow.

References

[1] A. Avila, “Hardware/Software Implementation of a Discrete
Cosine Transform Algorithm Using SystemC” Proceedings of
the 2005 International Conference on Reconfigurable Computing
and FPGAs (ReConFig 2005)

[2] M.Abid, A. Changuel, A. Jerraya,” Exploration of
Hardware/Software Design Space through a Codesign of Robot
Arm Controller” EURO-DAC '96 with EURO-VHDL '96 pp 17-
24

[3] L. Benini, D. Bertozzi, D. Bruni, N. Drago, F. Fummi, M.
Poncino, “SystemC Cosimulation and Emulation of
Multiprocessor SoC designs,” Computer Magazine, April 2003
pp: 53 – 59

[4] The Open SystemC Initiative (OSCI)

http://www.systemc.org

[5] J.F. Boland “Using MATLAB and Simulink in a SystemC
Verification Environment”, Proc. of Design and Verification
Conference & Exhibition, San Jose, Californie, Février 2005

[6] F. Czerner and J. Zellmann. “Modeling cycle-accurate
hardware with matlab/ simulink using systemc”. 6th European
SystemC Users Group Meeting (ESCUG),
October 2002.

[7] C. Warwick. Systemc calls matlab. MATLAB Central,
March 2003.

[8] The MathWorks. Link for ModelSim 2.0, 2006.

[9] F. Bouchhima, M. Briere, G. Nicolescu, M. Abid, and E.M.
Aboulhamid. A SystemC/Simulink co-simulation framework for
continuous/discrete-events simulation. In Behavioral Modeling
and Simulation Workshop, Proceedings of the 2006 IEEE
International, pages 1–6, 2006

[10]W.hassairi, M.Bousselmi, M.Abid,C.valderama “Using
Matlab And Simulink In SystemC Verification Environment By
JPEG Algorithm“ICECS 2009 ,page 912-915

[11] Draft Standard SystemC Language Reference Manual
April 25 2005

 [12] Independent JPEG Group, http://www.ijg.org

 [13] Hiroyasu Mitsui “A Student Experiment Method for
Learning the Basics of Embedded Software Development
Including HW/SW Co-design” 22nd International Conference on
Advanced Information Networking and Applications –
Workshops 2008 pp.1367-1376

64

