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        Functional verification is a major part of today’s system design task. Several approaches are available for 
verification on a high abstraction level, where designs are often modeled using MATLAB/Simulink. However, 
different approaches are a barrier to a unified verification flow. In this paper, we propose a co-simulation interface 
between SystemC and MATLAB and Simulink to enable functional verification of multi-abstraction levels designs. 
The resulting verification flow is tested on JPEG compression algorithm. The required synchronization of both 
simulation environments, as well as data type conversion is solved using the proposed co-simulation flow. We divided 
into two encoder jpeg parts. First implemented in SystemC which is the DCT is representing the party HW. The 
second consisting of quantization and entropy encoding is implemented in Matlab is the SW part. For communication 
and synchronization between these two parts we use S-Function and engine in Simulink matlab. With this research 
premise, this study introduces a new implementation of a Hardware SystemC of DCT. We compare the result of our 
simulation compared to SW / SW. We observe a reduction in simulation time you have 88.15%.  
 
Keywords: hardware/software, co-design, co-simulation, systemC, matlab, S-Function, communication, 
synchronization, jpeg, stimulus.

I. Introduction 

The functionality of embedded systems as well as 
the pressure to time-to-market has been 
continuously increasing in the past decades. 
Simulation of the entire system including both 
hardware and software from early design stages is 
one of effective approaches to improve the design 
productivity. A large number of research efforts on 
hardware/software co-simulation have been made 
so far. Real-time operating systems have become 
one of the important components in embedded 
systems. Therefore, in order to validate the entire 
system functionality, this system has to be 
simulated together with application software and 
hardware. Traditional methods of verification have 
proven to be insufficient for complex digital 
systems. Register transfer level test-benches have 
become too complex to manage and slow to 
execute. New methods and verification techniques 
began to emerge over the past few years. High-level 
test-benches, assertion-based verification, formal 
methods, hardware verification languages are just a 
few examples of the intense research activities 
driving the verification domain. A integrate 
SystemC in MATLAB/Simulink and is presented. 
This interface is principally used for the verification 
of lower abstraction level designs with a high level 
model of the design environment. Our work 
articulates on three contributions which are the 

proposal for solutions of implementation of 
different the parts of architecture in the case of the 
simulators: systemC and Simulink/matlab, 
moreover the definition of an environment of Co-
simulation based on the automatic generation of the 
interfaces necessary for the integration these 
simulators and the proposed a new verification 
framework based on SystemC verification standard 
that uses MATLAB and Simulink to accelerate 
testbench development. 
A verification methodology based on SystemC is 
proposed. The MATLAB/Simulink to SystemC 
interface and the evolved version of transactors are 
combined in a scalable multi-abstraction level 
verification platform. 
This paper describes a refined co-simulation 
platform which overcomes these problems. The 
refined platform enables co-simulation with 
hardware models written in SystemC. On the co-
simulation platform, all of the application software 
and hardware modules are directly executed on a 
host computer, which leads to high co-simulation 
speed. We propose a co-simulation interface 
between SystemC and MATLAB and Simulink to 
enable functional verification of multi-abstraction 
levels designs. The resulting verification flow is 
tested on JPEG compression algorithm. The 
required synchronization of both simulation 
environments, as well as data type conversion is 
solved using the proposed co-simulation flow. We 
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divided into two encoder jpeg parts. First 
implemented in SystemC which is the DCT is 
representing the party HW. The second consisting 
of quantization and entropy encoding is 
implemented in Matlab is the SW part. For 
communication and synchronization between these 
two parts we use S-Function and engine in 
Simulink matlab. With this research premise, this 
study introduces a new implementation of a 
Hardware SystemC of DCT. We compare the result 
of our simulation compared to SW / SW. 
In this paper, we first discussed the related work in 
section 2 and in section 3, we presented a 
methodology of co-simulation. Then, in section 4, 
we proposed the application of compression image 
JPEG. After that, we give the resultant for co-
simulation in section 5. Finally, we concluded by 
suggesting some recommendations to future works. 
 

II. Related work 

Connecting Simulink and SystemC together has 
already been tried in the literature. Authors in [6] 
propose a solution to integrate SystemC models in 
Simulink. A wrapper is created using S-Functions 
to combine SystemC modules with Simulink. 
This wrapper initializes the SystemC kernel and 
converts Simulink data type to SystemC signals and 
vice versa. Simulation control is entirely handled by 
Simulink. Some extensions of the SystemC kernel 
are required for initialization and simulation tasks. 
In [7], SystemC calls MATLAB using the engine 
library. MATLAB provides interfaces to external 
routines written in other programming languages. 
Using the C engine library, it is possible to share 
data between SystemC models and MATLAB. 
This simple working demo shows how to use the 
library to send and retrieve data from the MATLAB 
workspace and plot some results. The main 
difference with [6] is with the simulation control: 
SystemC is now the master of the simulation and 
MATLAB operates as a slave process. Also, 
Simulink is not supported in this example. 
In a similar way, MathWorks provides a 
commercial solution to close the gap between 
algorithmic domain and the hardware design. The 
link for ModelSim [8] is a co-simulation interface 
that integrates MATLAB and Simulink into the 
hardware design flow. It provides a link between 
MATLAB/Simulink and Model Technology’s HDL 
simulator, ModelSim. This interface makes the 
verification and co-simulation of RTL-level models 
possible from within MATLAB and Simulink. As 
opposed to the two previous techniques, there is no 
support for system level languages like SystemC. 
These approaches [6, 7, 8] all try to reduce the 
barrier that exist between higher level modeling and 
existing hardware design flow. While [8] is a fully 
functional commercial tool for RTL verification, [6, 

7] suffer from their embryonic stage (i.e. 
incomplete solutions for hardware design and 
verification). 
The authors in [9] have look at the problem of 
cosimulating continuous systems with discrete 
systems. The increasing complexity of 
continuous/discrete systems makes their simulation 
and validation a demanding task for the design of 
heterogeneous systems. They propose a co-
simulation interface approach based on Simulink 
and SystemC. The main objective of the proposed 
solution is to provide a framework to evaluate 
continuous/discrete systems modeling and 
simulation. 
In our former work [10], I adopted the methodology 
of communication and synchronization. To 
exchange data between a Simulink model and 
SystemC module, the co-simulation interface must 
integrate a bridge between the two simulators. This 
bridge is built with two Simulink S-Functions. An 
S-Function is a computer language description of a 
Simulink block. It uses syntax of call thus we can 
interact with Simulink solvers. For our bridge, I 
create two C++ S- Functions. The representation of 
simulation time differs significantly from SystemC 
and Matlab. SystemC is cycle-based simulator and 
simulation occurs at multiples of the SystemC 
resolution limit. The default time resolution is 1 
picoseconds; this can be changed with function 
sc_set_time_resolution. Simulink maintains 
simulation time as a double precision value scaled 
to seconds. Our co-simulation interface uses a one-
to-one correspondence between simulation time in 
Simulink and SystemC. 
 

III.  Methodologies 

The implementation of applications on embedded 
systems is a very time expensive task using the 
standard development tools. The new 
heterogeneous model is executable too to simulate 
the co-design implementation. The simulation of 
the heterogeneous model is realized using SystemC. 
A description of a hardware module is transformed 
into a structural description with SystemC 
components (RT-level). The interface between 
hardware and software parts is implemented using 
special SystemC constructs and can be compared 
with the interface of the implementation in the real 
system. SystemC provides several levels of 
abstraction to describe hardware. For the simulation 
of hardware modules in the shown design flow the 
cycle accurate level (CA) of SystemC is used. The 
interface to the software kernel is untimed 
functional level (UTF). A wrapper was designed to 
connect the modules to the software kernel. This 
wrapper is based on two shell-blocks which connect 
the CA-model to the software kernel by realizing an 
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interface between the CA- and the UTF-model 
(Untimed Functional) of SystemC. 
 

        
Fig. 1: Using SystemC within Simulink S-Function  

 
Simulink is a commonly used tool for 

designing DSP applications. It supports with a lot 
of libraries distinguished suppositions to develop 
single machine vision operators, e.g. the possibility 
to generate intelligent test environments for image.  

To use the tool for generation of hardware 
operators, an interface between SystemC and 
Simulink was developed. Thus an integration of the 
visualized tool in more common design flows is 
realized.  

This integration was done by using Simulink  
S-Functions. S-Functions provide a powerful 
mechanism for extending Simulink with custom 
blocks and can be implemented as C++ Code. 
Within the S-Function the output is calculated from 
input and from states at each time step when the 
fixed-step, discrete time solver is used.  

So a stepwise, cycle by cycle SystemC-
simulation is needed, which can be executed in the 
S-Function. The initialization of the SystemC 
kernel must be separated from simulation.  

To meet these requirements a wrapper has been 
inserted between the S-Function and the SystemC 
model (Fig. 1). The purpose of that wrapper is:  
•Connect Simulink ports to a SystemC-TM-Block. 
•Converting Simulink data types to SystemC-TM 
signals and vice versa.  
•Initializing of the SystemC-Kernel. 
•Converting events; function call from Simulink to 
sc_cycle().  
•Provide a DLL interface to the Simulink              
S-Function.  
 
The methodology tries to push the idea a step 
further than just a co-simulation interface. It is a 
complete verification solution. It uses MATLAB 
external interfaces, similar to the example described 
in [6], to exchange data between SystemC and 
Simulink. Once this link is established, it opens up 

a wide range of additional capability to SystemC, 
like stimulus [10] generation and data visualization. 
The first advantage of our technique is to use the 
right tool for the right task. Complex stimulus 
generation and signal processing visualization are 
carried out with MATLAB and Simulink while 
hardware verification is performed with SystemC 
verification standard. The second advantage is to 
have a SystemC centric approach allowing greater 
flexibility and configurability.  
With this approach the overall system simulation 
can be controlled by Simulink through settings of 
duration time and step size.  
The machine vision operators designed and verified 
in Matlab/Simulink can be added to the hardware 
library of IPED and used as executable 
specification in the backend design process.   
start_of_simulation: The implementation shall 
call member function start_of_simulation 
immediately the application calls function sc_start 
for the first time or at the very start of simulation if 
simulation is initiated under the direct control of the 
kernel. If an application makes multiple calls to 
sc_start, the implementation shall only make the 
callbacks to start_of_simulation on the first such 
call to sc_start. The implementation shall call 
function start_of_simulation after the callbacks to 
end_of_elaboration and before invoking the 
initialization phase of the scheduler. 
end_of_simulation: The implementation shall 
call member function end_of_simulation at the 
point when the scheduler halts due to the function 
sc_stop having been called during simulation, or at 
the very end of simulation if simulation is initiated 
under the direct control of the kernel. The purpose 
of member function end_of_simulation is to allow 
an application to perform housekeeping actions at 
the end of simulation. Examples include closing 
stimulus and response files, and printing diagnostic 
messages. The intention is that an implementation 
that initiates elaboration and simulation under direct 
control of the kernel (in the absence of functions 
sc_main and sc_start) shall make the callbacks to 
end_of_simulation at the very end of simulation 
whether or not function sc_stop has been called. 
 

IV.  JPEG compression algorithm 
 
The current standard for JPEG compression is a 
recommendation issued by ITU (International 
telecommunication Union) in 1992. JPEG is an 
image compression algorithm for continues-tones 
images and photographs. Several variants of the 
JPEG compression method exists. From research 
made on the human visual system, psycho visual 
models have been created. These models explain 
among other things what we are able to see and to 
what extent. These models, together with the FDCT 
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(FORWARD Discrete Cosine Transform), from the 
foundation of JPEG encoding. 
When JPEG compression is applied on continuous-
tone images, a high quality output can often be 
achieved with a compression ratio as high as 1:10 -
1:20. At a compression ratio of 1:5, the output is 
virtually indistinguishable from the original source. 
The JPEG encoding process can be divided into 
five steps: 
 

•  Color conversion 
•  Sub sampling 
•  Two-dimensional FDCT 
•  Quantization 
•  Entropy encoding 

 

 
Fig. 2: The JPEG decoder 

 
The image consists of one or several color 
components or color channels. The individual data 
elements the source image and the output image 
consist of are referred to as samples and 
coefficients. 
Prior to the JPEG compression is started, the input 
image is divided into square data blocks of eight by 
eight samples. Data blocks representing each of the 
available color channels are grouped into Minimum 
Coded Units (MCU). A MCU represents the 
smallest possible subset of the encoded image. The 
size and arrangement of the MCU varies depending 
on which color format is used. 
The studies made on the human visual system 
showed that humans are more sensitive to changes 
and details in brightness than in color. JPEG uses a 
color space that takes advantage of this fact, 
CIELAB or YUV. YUV consists of three 
components: Luminance (Y), Chrominance A (U) 
and Chrominance B (V). Luminance represents 
brightness, while the two chrominance channels 
together represents color. 
By applying a 2D FDCT on the source image, it is 
transformed from the spatial domain to the 
frequency domain. This transformation basically 
separates visually important image detail from 
detail of less visual importance (figure 2.14). 

For each data block of YUV samples from the 
source image, a corresponding data block of 
coefficients is created as a result of the 2D FDCT. 
Together all coefficients render their data block. 
Each coefficient adds image detail to the data 
block. The coefficients are ordered according to 
their significance to image detail, from the top-left 
corner diagonally downwards to the bottom-right 
corner. 
Since the 2D FDCT divided image detail 
information according to their importance, this 
knowledge makes it possible to further remove 
redundant data. Quantization vectors are utilized to 
individually scale each coefficient after their 
significance and after the sought compression ratio. 
The ITU recommendation contains suggested 
quantization tables that are carefully balanced 
between image quality and compression ratio. 
After quantization, each data block is zigzag 
scanned as a preparation for entropy encoding. The 
zigzag scan reorganizes the coefficients in an order 
which makes the entropy encoding more efficient in 
each data block, the upper, leftmost coefficient 
represents an average value for the entire data 
block. It is referred to as the DC coefficient while 
the other 63 coefficients are referred to as the AC 
coefficients. 
The DC value is encoded with Differential Pulse 
Code Modulation (DPCM). DPCM enhances the 
compression performance for continuous-tone 
images by encoding the difference between 
adjacent data blocks’ DC coefficients.  
As motion in the chair, the DCT is the most 
important and contains much of calculation. This 
part of the chain will be developed in SystemC, and 
represents part Hardware. We explain it using an 
example process named ‘DCT’ (in JPEG encoder) 
in SystemC as shown in Figure 3. 

 
 

Fig. 3: The DCT in systemC. 
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 It has two FIFO channels, one for receiving data 
and the other for sending data. From the SystemC 
code, we remove all SystemC dependent statements 
and exchange the FIFO read/write. 
To proceed to an FPGA implementation, the 
resulting netlist from the previous stage has to be 
mapped to the FGPA's logic block structure and 
interconnect. The main outcome of this technology 
mapping, placing, and routing is a bit stream which 
can be programmed into a FPGA. 
 

V. Results 
 

The virtual architecture model is described using 
SystemC language and is generated according to 
the parameters specified in the initial Simulink 
model. SystemC allows modeling a system at 
different abstraction levels from functional to pin 
accurate register transfer level. 
The virtual architecture is modeled using 
transaction level modeling (TLM) techniques that 
allow analyzing FPGA architecture in an earlier 
phase of design, software development and timing 
estimation. At the virtual architecture level, the 
Simulink functions of the application are 
transformed into systemC program code for each 
task. This step is very similar to the code generation 
performed by Real Time Workshop (RTW). 
Contrary to the RTW which generates only single 
task code, the software at the virtual architecture 
level represents a multitasking systemC code 
description of the initial Simulink application 
model. The generation has to support also user 
defined systemC codes integrated in the Simulink 
model as S-functions. For the S-functions, the task 
code represents a function call of the user written 
systemC function. The semantics of the argument 
passing are identical to those of the definition in the 
configuration panel of the S-Function Builder tool 
in Simulink. The hardware is refined to a set of 
abstract SystemC modules (SC_MODULE) for 
each subsystem. The SC_MODULE of the 
processor includes the tasks modules that are 
mapped on the processor and the communication 
channels for the intra-subsystem communication 
between the tasks inside the same processor. The 
communication channels between the tasks mapped 
on the FPGA is implemented using standard 
SystemC channels. The tasks modules are 
implemented as SystemC modules 
(SC_MODULE). The development of the JPEG 
Decoder application in Simulink requires 7 S-
Functions in order to integrate the systemC code of 
the main parts of the decoding algorithm. Which 
are: jpeg_sfun_h, dct_sfun_h, sfc_sf.h, sfc_mex.h, 
sfcdebug.h, jpeg_sfun.mexw32, dct_sfun.mexw32. 
Once this link is established, it opens up a wide 
range of additional capability to SystemC, like 
stimulus generation and data visualization. The first 

advantage of our technique is to use the right tool 
for the right task. Complex stimulus generation and 
signal processing visualization are carried out with 
MATLAB and Simulink while hardware 
verification is performed with SystemC verification 
standard. The second advantage is to have a 
SystemC centric approach allowing greater 
flexibility and configurability. 

In this part, we make a comparison between the 
previous methodology based on the communication 
and the synchronization between both simulators 
and the new approach which is based on the 
integration of systemC in matlab / Simulink in other 
applications. 
CODIS (COntinuous DIscrete Simulation) is a tool 
which can automatically produces co-simulation 
instances for continuous/discrete systems 
simulation using SystemC and Simulink simulators. 
This is done by generating and providing co-
simulation interfaces and the co-simulation bus. To 
evaluate the performances of simulation models 
generated in CODIS, they measured the overhead 
given by the simulation interfaces. The experiments 
have shown synchronization overhead of less than 30 
% in simulation time [9]. In the [5]  A Software-
Defined Radio (SDR) is a combination of digital 
filters, analog components and processors, each 
requiring different design approaches with a different 
tool or language. Using a traditional design flow, 
where the verification effort represents 70% of the 
total design time, will yield in more time spent on 
testbench development and simulation runs. The result 
is 192 days as the total development time for this 
project, compared to 131 days using the improved 
design flow. This represents a productivity gain of 
around 32% over a traditional design flow that has 
limited testbench components reuse and software 
interoperability. Bat the implementation HW/SW 
reduced the number of clock cycle: 1334722 to 
158044 times of execution. The reduction on the 
total execution time of the JPEG algorithm was    
88. 15%. 
 
 

VI.  Conclusions 

   In this paper, we presented a new approach Based 
on the integration systemc in matlab / simulink. The 
capital advantage of this approach is the possibility 
of modeling and verifying the overall system within 
the same design environment. The result is shorter 
design cycles for applications using heterogeneous 
architectures. The co-simulation interface we 
presented a method for reducing the time spent on 
validation and verification while improving overall 
testbench quality. MATLAB/Simulink assists the 
SystemC verification environment in a unified 
approach. It has been shown that the methodology 
allows complex stimulus generation and exhaustive 
data analysis for the design under verification. As 
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FPGA designs encompass larger and larger 
systems, the need to efficiently model the complex 
external environment during the architecture and 
verification phases becomes greater. The whole 
verification flow has been evaluated, using an 
example. It has been shown, that the usage of the 
extended verification flow saves a significant 
amount of time during the development process. 
The proposed plateform is tested on the JPEG 
compression algorithm. The execution time of such 
algorithm is improved by 88.15% due to the 
hardware implementation of the Matlab mult16 
Function using SystemC. As future works, we aim 
to test our platform with the whole video 
compression chain using MPEG4 modules and 
Software-Defined Radio (SDR). It includes 
hardware and software components that require 
rigorous verification all along the design flow. 
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