Validation de modeles dans un cadre d’IDM
dédié a la conception de systémes sur puce

Asma Charfi"* — Abdoulaye Gamatié* — Antoine Honoré* — Jean-
Luc Dekeyser* — Mohamed Abid**

* LIFL - UMR CNRS 8022, Université de Lille, INRIA
Parc Scientifique de la Haute Borne

Park Plaza - Bdtiment A, 40 avenue Halley

59655 Villeneuve d’Ascq Cedex France

{abdoulaye.gamatie, antoine.honore, jean-luc.dekeyser} @lifl.fr

** CES, ENIS Université de Sfax
Route Sokra km 3,5
B.P:w. 3038 Sfax-Tunisie

chrafiasma @yahoo.fr, mohamed.abid @ enis.rnu.tn

RESUME. Cet article présente un travail réalisé dans un environnement, appelé Gaspard2, dédié
a la conception de systemes embarqués sur puce a hautes performances. La conception dans
Gaspard? repose sur l’ingénierie dirigée par les modeles. Des transformations de modéles per-
mettent de passer d’un niveau d’abstraction a un autre jusqu’a la production de code ou la
synthése de matériel. Afin de réduire les erreurs dans les modéles transformés, nous propo-
sons la validation de leur intégrité depuis le modéle initial dans la chaine de transformation.
Pour cela, nous utilisons le langage OCL pour spécifier les propriétés que doivent vérifier les
modeles considérés corrects dans Gaspard2. Ensuite, nous développons un outil, appelé Gas-
pardValidation, permettant a l’utilisateur de vérifier la correction des modéles définis. Ainsi, ce
travail contribue a une conception plus siire des systemes embarqués dans Gaspard?2.

ABSTRACT. This paper presents a work within an environment, called Gaspard?2, dedicated to
the design of high-performance embedded system-on-chip. The design in Gaspard2 relies on
model-driven engineering. Some model transformations enable to go from a level of abstraction
to another one until code generation or hardware synthesis. In order to reduce errors in the
transformed models, we propose the validation of their integrity from the initial model in the
transformation chain. For that, we use the OCL language to specify the properties that must
verify the models considered as correct in Gaspard2. Then, we develop a tool, called Gaspard-
Validation, allowing the user to verify the correctness of defined models. This work therefore
contributes to a safer design of embedded systems within Gaspard?2.

MOTS-CLES : Gaspard2, contraintes OCL, systéme sur puce, outil de validation

KEYWORDS: Gaspard2, OCL constraints, system-on-chip, validation tool

2 IDM’08, Mulhouse — Quatrieme journées sur 1’Ingénierie des modeles

1. Introduction

L’évolution treés rapide des technologies d’intégration de circuits et la croissance
du nombre de transistors (de ’ordre du milliard sur une puce a I’horizon 2010)
rendent possible la réalisation de circuits numériques aux fonctionnalités toujours
plus nombreuses. Aujourd’hui, les concepteurs peuvent intégrer tout un systeme lo-
giciel/matériel sur la méme puce; on parle alors de systeme sur puce ou System-
on-Chip (SoC). La partie matérielle est constituée de microprocesseurs, de mémoires,
de périphériques d’interface et d’autres composants nécessaires a la réalisation de la
fonction attendue. La partie logicielle quant a elle est formée de blocs fonctionnels
pouvant exister déja, appelés en général Intellectual Property (IP).

La complexité grandissante de ces systemes rend nécessaire la possibilité d’abor-
der leur conception a des niveaux élevés d’abstraction. En effet, les gains en surface,
temps ou consommation qu’il est possible d’obtenir lors des transformations, tant al-
gorithmiques qu’architecturales, pourraient étre proportionnels au niveau d’abstrac-
tion considéré. Pour réduire les cofits de développement et augmenter 1’évolutivité,
I’Ingénierie Dirigée par les Modeles (IDM) représente une véritable alternative. Cette
approche s’appuie principalement sur le langage UML et sur Iinitiative MDA (Model-
Driven Architecture) dont le principe consiste en 1’élaboration de modeles indépen-
dants de toutes plates-formes et leur spécialisation via des transformations pour I’im-
plémentation effective des systemes (OMG, 2003).

D’autre part, les outils de conception des SoC doivent impérativement s’ appuyer
sur une implémentation modulaire et flexible, basée sur des composants génériques
et réutilisables. C’est dans ce cadre que 1’environnement Gaspard2 (Graphical Ar-
ray Specification for Parallel and Distributed Computing, version 2) a été développé.
Celui-ci fournit un support pour la conception basée sur I'IDM et la réutilisation, des
SoC a hautes performances. Comme illustré sur la Figure 1, il propose I’ utilisation de
modeles définis a différents niveaux d’abstractions et offre des transformations sys-
tématiques des modeles, qui réalisent des transitions entre les niveaux d’abstraction,
suivant un processus de raffinement aboutissant a la génération du code de simulation
ou de syntheése matérielle.

Au plus haut niveau, le concepteur décrit I’application logicielle et 1’architecture
matérielle sur laquelle 1’application sera exécutée ou simulée. A partir de ces deux
modeles, il est alors possible de définir comment les composants de 1’application sont
répartis sur 1’architecture. Cette phase, dite d’association, est décrite a I’aide d’un mo-
dele appelé aussi association. Les modeles d’application, architecture et association
sont completement indépendants de toute technologie d’implémentation. Le modele
résultant de 1’association est ensuite enrichi avec des informations sous forme d’IP
concernant son déploiement sur des plates-formes spécifiques. Le modele ainsi dé-
ployé peut subir diverses transformations selon le code cible recherché : langages
synchrones pour la vérification formelle, Fortran OpenMP pour le calcul parallele,
SystemC pour la simulation et VHDL pour la syntheése de matériel.

Validation de la conception des SoCs 3

refactoring

Application Architecture
[~ O A
e

Deployed

Traceability
information

Polyhedron

v

Loop.

L S
Synchronous HDL HDL
Equational Cp=niiey |QLDUEA PVT CABA
v v) 12 v
Synchronous 2BenP ey “pvT CABA

Interoperability bridge

Key

Metamodel dependancy

Code — transformation

Figure 1. Flot de conception Gaspard?.

Le passage d’un niveau d’abstraction a un autre est susceptible d’entrainer des
pertes d’informations et méme des erreurs de compilation qui nécessiteraient d’effec-
tuer des retours a des niveaux plus haut dans la chaine de conception. Cela augmente
le temps de conception des SoC. Pour diminuer ce délai et pour minimiser le nombre
d’erreurs, nous proposons de valider tres tot I'intégrité des modeles manipulés lors
de la conception, a I’aide du langage OCL (Object Constraint Language). Nous avons
ainsi étendu I’environnement Gaspard2 avec un nouvel outil de validation de modeles,
appelé GaspardValidation, qui est présenté en détail dans cet article.

Dans ce qui suit, la section 2 introduit le profil Gaspard2. Ensuite, la section 3 pré-
sente les différentes propriétés de modeles Gaspard2 sous forme de contraintes OCL
validées a 1’aide de 1’outil GaspardValidation décrit en section 4. La section 5 discute
quelques travaux connexes. Enfin, la section 6 donne les conclusions et perspectives.

2. Profil Gaspard2

Le langage de modélisation des applications Gaspard2 est UML. Par nature, un
modele UML possede une sémantique trop générale. Il faut donc spécialiser UML
pour I’adapter 2 un domaine bien déterminé, a 1’image de la proposition MARTE!'
pour le temps-réel. Ce besoin d’extension est rendu possible via la notion de profil, qui
correspond au regroupement d’extensions et de spécialisations du langage UML du
point de vue de la notation et de la sémantique. Cela est principalement réalisé a I’aide
du concept de stéréotype qui représente la définition d’une propriété supplémentaire
appliquée a un élément standard d”UML : classe, association ... (OMG, 2007).

1. http ://Wwww.omgmarte.org

4 IDM’08, Mulhouse — Quatrieme journées sur 1I’Ingénierie des modeles

ﬁ
| <<import>>
control | _ _ _ >
<<import>> component

| |
application e hardwareArchitecture
<cimport | Y
Figure 2. Profil Gaspard?2.

Le profil Gaspard2 dédié aux SoC (Ben Atitallah et al., 2007) est schématisé sur
la Figure 2. I1 s’articule autour de six paquetages ou packages. Nous ne détaillons que
ceux qui sont nécessaires a la compréhension de notre propos dans ce papier.

2.1. Les différents packages
Package component. Ce package offre un support pour la méthodologie orientée

composant en permettant la représentation de composants indépendamment de I’ envi-
ronnement d’utilisation. Il favorise la réutilisation d’IP logiciels et matériels.

<<stereotype>>
Maininstance
[InstanceSpecification]

<<stereotype>>
GaspardComponent
[Component]

i

<<stereotype>>
GaspardPort
[Port]

!—?—\

<<stereotype>> <<stereotype>>| |<<stereotype>>
ElementaryComponent Out In
[Component] [Port] [Port]

Figure 3. Vue du package component.

La notion la plus importante dans ce package est celle du stéréotype abstrait Gas-
pardComponent (Figure 3). Un composant de ce type est vu comme une adaptation
ou une restructuration des mécanismes utilisés pour la définition d’'un composant en
UML 2. Chaque composant dans Gaspard2 est donc considéré comme un élément
indépendant qui peut communiquer avec son environnement externe via la notion de
port, et dont sa structure et sa composition hiérarchique peuvent étre définies via la no-
tion de part et de connecteur. Un composant de type ElementaryComponent est utilisé
pour représenter un composant vu en général comme une boite noire. Un stéréotype
abstrait GaspardPort permet de spécifier le type et la direction des ports, In ou Out.

Package factorization. Les mécanismes de factorisation décrits dans ce package sont
fortement inspirés du langage Array-OL (Array-Oriented Language), le formalisme
sous-jacent de spécification de Gaspard2 (Boulet, 2007). Ils assurent une expression
compacte du parallélisme potentiel des applications et des architectures, ainsi que la

Validation de la conception des SoCs 5

topologie des connexions entre composants : caractéristiques des connecteurs, notion
de multiplicité des ports et relation entre tiches de calcul et données d’entrée / sortie.

<<stereotype>> <<stereotype>>
LinkTopology DefaultLink
[Connector] [Connector]

+modulo : boolean = false

% <<stereotype>>
[[l Shaped
<<stereotype>> <<stereotype>> <<stereotype>> [MultiplicityElement]
InterRepetition Tiler Reshape +shape : String
[Connector] [Connector, ConnectorEnd] [Connector]
+repetitionSpaceDependence : String +origin : String = ZERO +patternShape : String = ALL

+paving : String = IDENTITY +repetitionSpace : String = (1) Null : Tiler
+fitting : String = IDENTITY

Figure 4. Vue du package factorization.

La description du package factorization (Figure 4) est basée sur la définition des
topologies de liens principalement utilisées pour 1’expression de la répétition dans les
modeles Gaspard2. La définition des différentes topologies de lien est introduite via
le stéréotype abstrait LinkTopology qui étend la métaclasse Connector d’UML 2. Les
stéréotypes dérivant de LinkTopology sont Tiler, Reshape et InterRepetiton.

Le concept de Tiler étend les métaclasses Connector et ConnectorEnd d’UML 2.
11 est utilisé pour la spécification d’un lien particulier de répétition basé sur le langage
Array-OL qui manipule les tableaux comme structure de données. Ainsi, chaque tache
d’une application consomme des tableaux en les découpant en morceaux de données
de méme taille, appelés motifs. Les informations de calcul de ces motifs sont regrou-
pées dans une structure appelée Tiler : origin (origine du motif référence), paving
(matrice de pavage, décrivant comment les motifs couvrent le tableau), fitting (ma-
trice d’ajustage, décrivant comment remplir les motifs avec les éléments du tableau),
RepetitionSpace (espace de répétition, définissant le nombre total de motifs calculés),
Spattern (la taille du motif) et Sarray (la taille du tableau d’entrée).

Le stéréotype Reshape étend la métaclasse Connector d’UML 2. 11 permet la re-
présentation des topologies de liens plus complexes dans lesquelles les éléments d’un
tableau multidimensionnel sont redistribués dans un autre tableau. La différence ma-
jeure entre Tiler et Reshape est que le premier est utilis€ pour les connecteurs de
délégation (entre un port d’'un composant pere et un port d’une de ses parts) et que le
deuxiéme est utilisé pour les connecteurs qui relient deux parts. Le stéréotype Inter-
Repetion quant a lui est utilisé pour spécifier une dépendance de données entre tiches
répétées(une tache répétée est une tache dont I’exécution est assurée par la répétition
d’instances d’elle-méme). Enfin, a droite sur la Figure 4, sont représentés d’autres
composants facilitant la spécification de modeles complexes de systemes. Ceux-ci ne
seront pas détaillés ici.

6 IDM’08, Mulhouse — Quatrieme journées sur 1’Ingénierie des modeles

Package application. Le package application, illustré par la Figure 5, définit les sté-
réotypes utilisés pour modéliser la partie logicielle du systeme. Le stéréotype principal
est ApplicationComponent dont dérivent deux autres : ArrayProducer et ArrayConsu-
mer. Le premier est introduit pour structurer les données consommées par les tiches
tandis que le deuxieme récupere les données produites par les tiches.

<<stereotype>>
GaspardComponent
[Component]

i

<<stereotype>>
ApplicationComponent
[Component]

<<stereotype>> <<stereotype>>

ArrayConsumer ArrayProducer
[Component] [Component]

Figure 5. Vue du package application.

Les autres packages. Le package hardwareArchitecture définit tous les composants
nécessaires a la description de 1’architecture matérielle du systeme : Processeur, mé-
moire, bus, etc. Le stéréotype de base est HardwareComponent. Les différents sté-
réotypes dérivant directement du HardwareComponent sont : Memory pour décrire la
mémoire, Processeur pour modéliser un processeur, Communication pour représenter
les différentes connexions matérielles et IO pour modéliser les entrées / sorties. Le
package association fournit les outils nécessaires pour établir un lien entre une appli-
cation et une architecture matérielle associée. Enfin, le package control permet la prise
en compte des notions de contrdle et de la spécification de modes de fonctionnement
dans les applications modélisées dans Gaspard?2.

2.2. Exemple : modélisation d’une multiplication matricielle

Pour illustrer la modélisation a ’aide du profil Gaspard2, nous présentons un
exemple simple réalisé avec I’outil MagicDraw?, un outil visuel de modélisation
UML. 1l s’agit d’une multiplication de deux matrices. L’algorithme correspondant
est modélisé a 1’aide du package application. Soient A et B deux matrices d’entrées
et C celle de sortie. Chacune des trois matrices comprend 16 lignes et 16 colonnes.
Deux composants élémentaires nommés respectivement Multiplication et SumVector
sont introduits pour réaliser respectivement la multiplication de deux scalaires réels et
la somme de tous les éléments d’un vecteur. Ces composants sont stéréotypés a la fois
ApplicationComponent et ElementaryComponent (Figure 6).

Un autre composant, appelé MultV, est introduit pour modéliser la multiplication
d’un vecteur ligne de A avec un vecteur colonne de B (Figure 7). Il génere un vecteur

2. http ://www.magicdraw.com

Validation de la conception des SoCs 7

<<ApplicationComponent> >g] <<ApplicationComponent> >g]
<<ElementaryComponent>> <<ElementaryComponent>>
Multiplication SumVector
A :float[1]

Result : float [1] Vector : float [16]

B : float [1] Point : float [1]

Figure 6. Composants élémentaires dans la multiplication matricielle..

de 16 réels a partir de deux vecteurs également de 16 réels. Il contient une part de
type multiplication nommée Ixc (pour " line x column ") qui calcule a chaque fois le
produit de deux réels. Ce calcul est répété 16 fois, donc 1’attribut multiplicity de cette
part est fixé a 16. La valeur ZERO, ou vecteur nul, de I’attribut origin indique que le
motif de référence commence au point de coordonnées (0,0). La valeur IDENTITY de
Iattribut paving, de type matrice, indique que les motifs couvrent tous les éléments
du vecteur d’entrée un par un. La valeur IDENTITY de fitting indique que le premier
motif est formé du premier élément du vecteur d’entrée, le second est formé du second
élément et ainsi de suite.

<<ApplicationComponent> > =]
Multv

| 7<:Aprli?a(£nEonsz)7r|en7(>jgr
VA : float [16] <<ElementaryComponent> |

C e Ixc : Multiplication [16] |
fitting = "IDENTITY!| A : float [1] VResult : float [16}
CHOIISRZERO Result : float [1]
G 3 <<Tiler>>
) o R | fitting = “IDENTITY!]
VB : float [16] origin = "ZERO;
C B : float [1] | paving = "IDENTIT
<<Tiler>> = ST
fitting = "IDENTITY?
origin = "ZERO;"
paving = "IDENTITY}

Figure 7. Composant MultV.

Le composant SumRbyC (Figure 8) permet de calculer a chaque utilisation un seul
élément de la matrice de sortie en effectuant la somme de tous les éléments du vecteur
généré par la part Ixc. Cette somme s’ effectue en appliquant la part nommée s de type
SumVector. Ce composant va étre utilisé 16x16 fois puisque la matrice de sortie C est
une matrice [16,16]. SumRbyC est utilisé dans MatrixMultiplication en tant que sous
composant permettant de calculer ainsi tous les éléments de la matrice C (Figure 8).La
taille d’un motif est indiquée par la multiplicité du port 1ié a la sortie du connecteur
stéréotypé Tiler. Par exemple, pour le connecteur qui relie le port A et le port Line, la
taille du motif est 16. Ainsi, la valeur [1,0] de I’attribut firting du Tiler appliquée a ce
connecteur indique que le premier motif n’est que la premiere ligne de la matrice A.
la valeur [(0,0),(0,1)] du paving indique que le prochain motif est la deuxieme ligne,
et ainsi de suite.

Le composant principal de 1’application (Figure 9) contient une seule part de type
MatrixMultiplication qui prend en entrée deux matrices A et B de taille [16,16] et

8 IDM’08, Mulhouse — Quatrieme journées sur 1’Ingénierie des modeles

<<ApplicationComponent>> {]
SumRbyC
: Z<Eppﬁcax?m€on7pon2n§§\ : Z</§7pﬁca&m€or@on¥n§§\
Line : float [16] | Ixc : MultV | <<ElementaryComponent>
VA float [16] skisumVector Point : float [1

I
VResult : float [16] [‘J—D Vector : float [16] [:},/’{]
VB: float [16] Point : float [1]

olumn : float [16]

<<ApplicationComponent> > g]
MatrixMultiplication

[A : float [16,16] | <<App||(atl0nC0mp0nent>£]
]WD s : SumRbyC [16,16]

. Line : float [16] C : float [16,16]
itti [1,01" . e
et = ZERO Point : float [1] <<Tiler>>]

|
paving | | fnodulo,
. Column : float [16] fitting = "[0,0]"
| 8 float [16,16] ‘ | origin = "ZERGY
— <<Tiler>> :] paving = "[(1,01,{0,1T"
fnodulo, T = — = — = — = — — — —
fitting = "[0,11"
origin = "ZERO;
paving = "[[1,01,[0,0]8"

Figure 8. Composants SumRbyC et MatrixMultiplication.

génere en sortie une matrice C=A * B. Ainsi, la multiplication de matrices aura été
modélisée a I’aide de six composants dont deux élémentaires.

< <ApplicationComponent>> g]
MainAppli
A float [16,16] | <<ApplicationComponent>> 5] |
abyb : MatrixMultiplication
| C:float [16,16]

B: float [16,16] | A :float [16,16]
B: float [16,16] C :roat[lG.lG]‘

Figure 9. Composant MainAppli.

3. Validation de modéles dans Gaspard2

En plus de la notion de stéréotype mentionnée précédemment, un profil UML est
également composé de tagged value. Cette notion est utilisée pour définir des pro-
priétés additionnelles de certains éléments et elle peut €tre définie pour des éléments
existants ou des stéréotypes. Enfin, un profil comprend aussi des contraintes, utilisées
pour étendre la sémantique d’UML par I’ajout de nouvelles régles ou la modification
des regles existantes. Le langage qui permet d’exprimer les contraintes au niveau des
modeles UML est OCL.

Pour présenter les contraintes que nous avons définies dans le profil Gaspard?2,
nous adoptons une classification basée sur le but de chacune d’entre elles. Nous avons
identifié des contraintes de construction de modeles liées au profil lui-méme ; elles

Validation de la conception des SoCs 9

forment la classe nommée P (pour Profil). D’autres contraintes ont été identifiées a
partir du principe méthodologique de la conception conjointe logicielle / matérielle
des SoC; elles constituent quant a elles la classe M (pour Méthodologie). Les SoC
a hautes performances visés par Gaspard2 ont eux aussi des caractéristiques intrin-
seques (par exemple, un composant stéréotypé RAM ne peut pas contenir une part
de type Processeur...); les contraintes liées a ces propriétés forment la classe nom-
mée S (pour Systeme-sur-puce). Enfin, I’utilisation du langage Array-OL comme
formalisme sous-jacent de Gaspard2 induit une derniere classe de contraintes liées
a la sémantique de ce langage ; ces contraintes forment la classe nommée A (pour
Array-OL). Par la suite, nous parlerons de MAPS pour désigner cette classification.

Dans ce qui suit, les différentes contraintes sont présentées par packages : pour
chaque package, nous identifions ses contraintes et pour chacune d’elles, nous pré-
cisons le contexte, la classe, le but et I’expression correspondante en OCL. Les
contraintes OCL peuvent étre ajoutées aux modeles UML en utilisant le niveau M1
(niveau modele) ou bien le niveau M2 (niveau métamodele). Nous avons choisi
d’utiliser le niveau M2. Au niveau M1, on serait obligé d’utiliser les extensions
base_Component et extension_StereotypeName a chaque fois que 1’on voudra accéder
respectivement aux attributs et aux stéréotypes d’un composant.

3.1. Package component

Contexte GaspardComponent. La premiere contrainte impose que tout composant,
dont le stéréotype dérive du stéréotype GaspardComponent, ne peut contenir que des
parts dont le type dérive aussi du mé€me stéréotype GaspardComponent. Elle est donc
de type P et exprimée en OCL comme suit :

let parts :Set(Property) = self.ownedAttribute-self.ownedPort in
parts.type->forAll(p|p.getAppliedStereotypes() .generalization.general->
exists(name=’GaspardComponent’))

Un composant de type GaspardComponent peut avoir plus qu’un stéréotype : Ele-
mentaryComponent avec ApplicationComponent, ElementaryComponent avec Hard-
wareComponent, etc. Mais stéréotyper un composant a la fois ApplicationComponent
et HardwareComponent est strictement interdit selon les principes de la conception
conjointe matérielle logicielle. Cette regle fait partie de la classe M, elle est exprimée
par la contrainte OCL suivante :

not (self.getAppliedStereotypes () .name->includesAll(Set
{’HardwareComponent’, ’ApplicationComponent’}))

Contexte ElementaryComponent. D’apres le profil Gaspard, un composant stéréo-
typé ElementaryComponent ne doit contenir aucune part. Cette contrainte fait partie
de la classe P et elle est exprimée en OCL comme suit :

(self.ownedAttribute-self.ownedPort)->isEmpty ()

10 IDM’08, Mulhouse — Quatrieme journées sur I'Ingénierie des modeles

Contexte GaspardPort. Le type des ports est une notion trés délicate dans la mesure
ou les applications modélisées par Gaspard2 manipulent des données multidimen-
sionnelles de types variés (float, complex, integer...). Le type DataType convient le
mieux dans notre situation. En effet, les types UMLPrimitivesTypes et Enumeration
sont supportés par le DataType. De méme, en utilisant DataType, on peut définir de
nouveaux types (par exemple le type complex). Nous considérons donc la contrainte
OCL suivante, qui impose que tous les ports soient typés DataType ou ses dérivés.
Cette contrainte fait partie de la classe S puisqu’elle permet de définir des données
multidimensionnelles souvent utilisées dans les applicatifs des SoC.

self.type.oclIsKindOf (DataType)

3.2. Package factorization

Contexte LinkTopology. Un connecteur relie deux ports en permettant le passage des
données d’un port a un autre. Il est alors indispensable que ces ports aient le méme
type. Cela est exprimé par la contrainte OCL suivante :

self.end.role->forAll(x,y| x.type=y.type) ‘

Cette contrainte fait partie de la classe P puisqu’elle est liée a la construction des
modeles selon les concepts UML.

Contexte Tiler. Le type commun au trois tagged value (origin, paving et fitting) as-
sociées a un Tiler est le type String alors qu’en réalité, firting et paving représentent
des matrices et origin représente un vecteur. Nous avons donc ajouté une contrainte
OCL qui vérifie que le concepteur a bien respecté la forme d’une matrice en saisissant
les valeurs de fitting et paving. Cette contrainte est de classe A. Son expression OCL
relative a la valeur de fitting est la suivante :

let s : String = self.getValue(self.getAppliedStereotype
(’Gaspard : :Tiler’),’origin’).oclAsType(String)in
s.verif_form("\(\([0 — 9] + (,[0 = 9]+)"\)(\([0 = 9] + (, [0 = 9]-4)"\))"\)$')=true

En changeant >fitting’ par ’origin’ etle parametre d’appel de I’opération ve-
rif_form dans la contrainte ci-dessus par ' (\ ([0— 9]+ (,[0—9])*\)\)$’, nous obtenons
une nouvelle contrainte qui vérifie la forme du tagged Value origin. Cette contrainte
illustre deux points forts du langage OCL. Le premier consiste a déclarer et a définir
la valeur d’un attribut qui pourra étre utilisée dans d’autres expressions OCL (grace
a let...in). Le second est ’extensibilité de 1’environnement OCL3, permettant la défi-
nition de nouvelles opérations propres au concepteur, et qui s’appliquent a des types
de son choix. Dans notre cas, I’opération s’appelle verif_form et elle est applicable a
toute chaine de caracteres. Elle sera détaillée dans la section 4.

3. http ://wiki.eclipse.org/CustomizingOclEnvironments

Validation de la conception des SoCs 11

Nous avons ajouté une autre opération verif_dim, qui permet de vérifier les dimen-
sions des tagged value origin, paving et fitting. En effet, le langage Array-OL impose
que le nombre de lignes de fitting et paving ainsi que le nombre d’éléments de origin
soient égale a Spattern (section 2.1) et que le nombre de colonnes de fitting respecti-
vement de paving soit égal a la dimension de Sarray respectivement RepetitionSpace.

L utilisation du stéréotype Tiler est liée au concept de répétition, il est donc inter-
dit d’utiliser un Tiler alors que I’attribut multiplicity de la part en question n’est pas
spécifié (Figure 10). Cette contrainte est de classe A puisqu’elle est liée au concept de
répétition défini dans le langage Array-OL. Elle est exprimée comme suit :

self.end->select(c|not(c.partWithPort.oclIsUndefined())) .partWithPort->
exists(plnot (p.upperValue.oclIsUndefined() or
p.lowerValue.oclIsUndefined()))

< <ApplicationComponent> >£] <<ApplicationComponent> >£]
C D

A o) | A Mg
ﬁ]<<Tiler>>¢] 77777 | <<Ti|er>>D 77777 |

Figure 10. Utilisation interdite du Tiler (a gauche) et utilisation légale (a droite).

Comme nous 1’avons déja mentionné, un Tiler n’est utilisé que pour les connec-
teurs de délégation (Figure 11). Cela est traduit en OCL par la contrainte suivante :

self.end->exists(partWithPort.oclIsUndefined()) ‘

<<ApplicationComponent> > <<ApplicationComponent>>
< g] < g]

T e g T ag

e |

: A [M]
: n [:] 51,
Lo TecTiters> & — — | <<Tiler>> |

Figure 11. Utilisation interdite du Tiler (a gauche) et utilisation légale (a droite).

Cette contrainte exprime un invariant qui impose qu’a chaque utilisation d’un Tiler,
il faut que I'une des extrémités du connecteur ne soit pas liée a une part. Elle est de
classe P puisqu’elle est liée a la définition du stéréotype Tiler introduit dans le package
factorisation du profil Gaspard. La méme Figure 11, montre que les ports liés par un
connecteur stéréotypé Tiler doivent étre de méme direction (soit les deux In, soit les
deux Out). Cette contrainte de classe P est exprimée en OCL comme suit :

not(self.end.role.getAppliedStereotypes () .name->includesAll
(Set’In’,’0ut’))

Une autre contrainte de méme genre a été ajoutée au stéréotype Reshape qui exige
que les ports reliés par un tel connecteur doivent avoir des directions opposées.

12 IDM’08, Mulhouse — Quatrieme journées sur I’'Ingénierie des modeles

Contexte Reshape. Toutes les contraintes relatives a ce contexte sont de classe P. Elles
sont étroitement liées a celles déja exprimées pour les Tilers. Ainsi, si un Tiler n’est
utilisé que pour les connecteurs de délégation, 1’utilisation du Reshape pour ce méme
type de connecteur est strictement interdite. Cela est exprimé par une contrainte OCL
de type invariant qui impose que les deux extrémités du connecteur (Connector End)
doivent étre reliées a des parts :

self.end->forAll(plnot (p.partWithPort.oclIsUndefined()))

Nous pouvons spécifier une nouvelle regle liée & ces deux ConnectorEnd qui ex-
prime le fait qu’ils doivent étre stéréotypés Tiler. Cela permet de déterminer comment
sélectionner les éléments du tableau source et comment les ranger dans le tableau
destination. La contrainte OCL correspondante a cette regle est la suivante :

self.end->forAll(plp.getAppliedStereotypes()->exists (name=’Tiler’))

3.3. Package application

Contexte ApplicationComponent. ApplicationComponent est un stéréotype qui dé-
rive du stéréotype abstrait GaspardComponent. Par conséquent, toutes les contraintes
déja exprimées dans le contexte GaspardComponent sont appliquées & ce nouveau
stéréotype. L’ ajout de nouvelles contraintes s’avere nécessaire pour exploiter au maxi-
mum les nouveaux concepts introduits dans ce package. Mais celles-ci ne doivent pas
briser le lien de généralité entre ApplicationComponent et GaspardComponent. Elles
doivent plutdt renforcer cette relation de généralisation.

Ainsi, nous avons ajouté une contrainte plus spécifique que celle déja exprimée
dans GaspardComponent stipulant que toutes les parts d’un composant de type Gas-
pardComponent doivent étre elles aussi de type GaspardComponent. La nouvelle
contrainte exige que toutes les parts d’un composant stéréotypé ApplicationCom-
ponent soient stéréotypées ApplicationComponent (plus spécifique que GaspardCom-
ponent) ou ses dérivées :

let parts :Set(Property) = self.ownedAttribute-self.ownedPort in
parts.type->forAll(pl| (p.getAppliedStereotypes.generalization.general->
exists (name=’ApplicationComponent’)or p.getAppliedStereotypes()->exists
(name=’ApplicationComponent?’)))

Cette contrainte est de classe M car elle assure la séparation des deux concepts appli-
cation et architecture. Le méme type de contrainte a été ajouté au package Hardwa-
reArchitecture dans le contexte HardwareComponent.

Contextes ArrayProducer et ArrayConsumer. ArrayProducer a été introduit pour
structurer les données en entrée consommeées par les premieres taches, alors que Ar-
rayConsumer permet de récupérer les données en sortie produites par les dernieres
taches. Par conséquent, ArrayProducer ne doit avoir que des ports de sortie et Array-
Consumer ne doit avoir que des ports d’entrée. Ces deux contraintes sont de classe P

Validation de la conception des SoCs 13

car elles sont liées a la définition méme de ces deux stéréotypes. La contrainte OCL
associée a la contrainte relative au contexte ArrayProducer est la suivante :

self.ownedPort.getAppliedStereotypes () .name->includes (’Out’)and
self.ownedPort.getAppliedStereotypes () .name->excludes(’In’)

Une contrainte similaire a été ajoutée au contexte ArrayConsumer.

3.4. Package hardwareArchitecture

Contexte Memory. Le stéréotype Memory dérive du stéréotype HardwareCom-
ponent. Il permet de modéliser les différents types de mémoires : RAM, ROM et
Cache. Un composant de type Memory ne peut contenir que des parts de type Me-
mory, RAM, ROM ou Cache. Par exemple, cette contrainte interdit d’intégrer un pro-
cesseur dans une mémoire. Elle est donc de type S. Son expression OCL ressemble a
celle de la premiere contrainte définie dans 3.3 (contexte ApplicationComponent).

Contexte Sensor et Actuator. Un composant de type IO est introduit pour modéliser
les entrées/sorties au niveau architecture. De ce stéréotype dérive deux autres qui sont
Sensor (analogue a ArrayConsumer) et Actuator (analogue a ArrayConsumer). La
méme contrainte OCL définie dans les contextes ArrayProducer et ArrayConsumer
(section 3.3) a été ajoutée respectivement aux contextes Actuator et Sensor.

La Figure 12 résume la répartition des contraintes selon notre classification MAPS.
Nous avons identifié 24 contraintes OCL dont 12 de classe P, 7 de classe A, 3 de classe
M et uniquement 2 de classe S. Il y apparait clairement des contraintes, davantage

18 m Ciasse M
m Classe A
15 oclasse P
14 O Classe 5

nombre de contraintes
]

CoNwRODYDO

type de contraintes

Figure 12. Répartition des contraintes sur les classes.

liées aux regles de construction de modeles suivant les formalismes de spécification
(i.e. Gaspard/Array-OL) plutot qu’a la sémantique a proprement parler du domaine
visé (i.e. codesign des SoC). Cette observation s’explique en partie par le fait qu’aux
niveaux application et architecture du flot Gaspard2 (ol nous nous situons), les pro-
priétés des SoC ne sont pas encore tres explicites. En fait, celles-ci le deviennent pro-
gressivement lors des raffinements dans le flot de conception (cf Figure 1), notamment
au niveau du déploiement vers la plate-forme cible retenue. Une perspective intéres-
sante de notre étude consisterait donc a étendre la spécification des contraintes aux

14 IDM’08, Mulhouse — Quatrieme journées sur I'Ingénierie des modeles

couches basses dans le flot. Certaines contraintes de type S font références a des va-
leurs connues seulement pendant I’exécution (consommation d’énergie, temps d’exé-
cution...). Puisque OCL est un langage statique, toutes les questions d’exécution des
modeles sont évacuées de sa portée. Ainsi, Ces contraintes, qualifiées de non fonc-
tionnelles, ne peuvent &tre exprimées en OCL ce qui explique encore le nombre réduit
de contraintes OCL de type S.

La classe regroupant le plus grand nombre de contraintes est la classe P. cela peut
étre expliqué par le fait qu’un profil n’est qu’un mécaniseme d’extension li€¢ au méta-
modele UML. On peut alors ajouter beaucoup plus de contraintes au profil qu’au mé-
tamodele puisque le premier n’est qu’une spécialisation du second pour un domaine
particulier. En effet, un profil UML spécialise davantage le métamodele en ajoutant de
nouveaux stéréotypes qui peuvent représenter des nouveaux contextes pour de nou-
velles contraintes.

4. Outil de validation

Cette section présente I’outil que nous avons développé pour valider les modeles
décrits a I’aide du profil Gaspard2 étendu avec les contraintes précédentes. Notons
tout d’abord que la version actuelle de Gaspard?2 est disponible sous forme d’un plugin
Eclipse, c’est-a-dire, un module qui se greffe a Eclipse pour lui ajouter une nouvelle
fonctionnalité. Notre outil de validation est également un plugin Eclipse.

4.1. Architecture générale de Ioutil

Une caractéristique essentielle de la plate-forme Eclipse est I’extensibilité de 1’en-
vironnement assurée par la notion de plugin. La structure d’un plugin peut étre ré-
sumée de la fagon suivante : c’est un fichier JAR classique contenant, en plus de ses
classes java, deux autres fichiers, le fichier MANIFEST.MF et le fichier plugin.xml. En
exploitant les informations contenues dans le premier fichier, le noyau d’Eclipse gere
le cycle de vie des plugins et leurs dépendances. Le deuxieme fichier sert a concrétiser
les fonctionnalités d’extensibilité de la plate-forme. Via ce fichier, des plugins dé-
clarent des points d’extension auxquels d’autres plugins se branchent. Dans notre cas,
I’outil GaspardValidation utilise les points d’extension org.eclipse.uml2.uml.editor et
org.eclipse.ocl.ecore déclarés respectivement par les plugins UML et OCL.

En utilisant I'interface org.eclipse.ocl.ecore.EcoreEnvironmentFactory, nous pou-
vons étendre I’environnement d’analyse des contraintes OCL et ajouter ainsi 1’opéra-
tion verif_form (cf section 3.2). Nous définissons une classe MyEnvironmentFactory
qui implémente cette interface. Cette classe permet de créer deux environnements :
MyEnvironnement et MyEvaluationEnvironment. Le premier permet d’analyser la
syntaxe des contraintes OCL et le deuxieéme permet d’évaluer ces contraintes sur les
modeles (Figure 13). Ainsi, notre nouvelle opération verif form a été ajoutée dans la
classe MyEnvironnent en utilisant la méthode defineCustomOperations(). L’appel de

Validation de la conception des SoCs 15

create

MyEnvir actory class

l oreate

eration Operation...)

v i i class

a une chaine de caractéres

Figure 13. Extension de I’environnement OCL.

la méthode callOperation() de la classe MyEvaluationEnvironment permet d’exécuter
le code défini dans le corps de la méthode defineCustomOperations().

4.2, Utilisation de Uoutil de validation dans la chaine de conception Gaspard2

Modéle+profil.umli

EMFExporter f> Iic-nspm dValidation

Modéle.mdxml Modéle validé

Figure 14. Utilisation de GaspardValidation dans la chaine de conception Gaspard2.

Les contraintes OCL présentées dans la section 3 ont été ajoutées au profil Gas-
pard2 en utilisant la version 12.0 de 1’outil MagicDraw. Une fois les contraintes ajou-
tées, le profil accompagné du modele, est exporté vers Eclipse en utilisant I’outil EM-
FExporter*, formant ainsi un fichier UML qui constitue le point d’entrée du plugin
GaspardValidation (Figure 14). L’ outil de validation GaspardValidation est développé
au sein d’Eclipse de fagon a pouvoir traiter tout fichier au format UML indépendam-
ment de 1’outil de modélisation ayant servi a le générer. Le choix de I’éditeur Ma-
gicDraw n’est pas exclusif. D’autres éditeurs tels que Papyrus® ou Topcased® peuvent
également étre envisagés.

4. Cet outil est une propriété de I'INRIA.
5. http ://www.papyrusuml.org
6. http ://www.topcased.org, etc.

16 IDM’08, Mulhouse — Quatrieme journées sur I'Ingénierie des modeles

Ilustration concréte. Pour tester notre plugin sur I’exemple présenté dans la sec-
tion 2.2, nous illustrons la violation des deux contraintes suivantes : un composant
élémentaire ne doit contenir aucune "part” (C1) et 'utilisation d’un Tiler doit étre
accompagnée d’une spécification de I’attribut "multiplicity” de la "part” en question
(C2). Dans la Figure 15, le composant Multiplication présente une violation de C1
tandis que le composant MultV présente une violation de C2. La Figure 16 illustre la
violation des deux contraintes C1 et C2 dans le fichier UML obtenu suivant le schéma
de la figure 14, ainsi que le résultat de I’invocation de I’outil de validation sur les
modeles ci-dessus.

T —————— [T S ————
R ey Componertrr. 2] EShertaycomponentes
Muttiplic ation Muttiplication
A flost [1]
A fiost [1] =]| g Repur - nost1]
Result : flost (1] — - -
o hom i) []
0 ey B
& fiost [1]

<<ApplicationComponent>=> =]

="Espace de répétition

VA - float (6] A ACormpon:

1 1 <Elem yCompones non spécifié
miplication [ViResult : float [§1
L & - noat (12
Result - float [1] H— —C 1
i [
o — Bl = no= ' fitting = TIDENTITY")
e

EROo"

Ftting = IDENTITYC B

Figure 15. Violation des contraintes C1 (en haut) et C2 (en bas).

& Suspardzrrobis.profls.um 5] *ranrg.rmadelund
R pee— o e, T b 2 ke 2 D frremb 3 vl el
= Cai cmodel> mg
© 3 <Pathage > Assccstion
Package > MatriMubioher

< s eportimplomertodBy s> <Depondoncy> _12_0_42501a8_LIPEISMEA1019_LEA1TI_1635

a) Invocation du vérificateur b) Rapport de validation

Figure 16. Invocation de GaspardValidation et résultats d’évaluation de contraintes.

Validation de la conception des SoCs 17

5. Travaux relatifs

De nombreux outils” ont été développés pour assurer I’intégrité des modeles UML
en analysant les contraintes OCL. Certains, Objecteering ou Poseidon, offrent un
éditeur UML supportant OCL, mais sans la vérification des contraintes ; ces dernieres
étant simplement considérées comme des notes sur les modeles (Ratté, 2007). Ce
n’est pas le cas des outils USE® et ArgoUML’ qui eux supportent la vérification
de contraintes OCL. Dans notre étude, nous nous sommes plutot intéressés aux outils
pouvant étre intégrés dans Eclipse. La premiere alternative consiste a utiliser 1’outil
EMF Validation. Quant a la seconde, il n’existe pas d’outil a proprement parler ; il
faut combiner les plugins EMF et OCL.

Le plugin EMF Validation faisait partie du projet EMFT qui a été lancé pour ajou-
ter de nouvelles technologies qui completent EMFE. D’apres les exemples fournis par
les développeurs de ce plugin, il existe quatre méthodes pour valider les contraintes
OCL (Damus, 2006). La plupart de ces méthodes sont inadaptées a notre besoin.
D’une part, elles imposent a 1’utilisateur la connaissance a I’avance des contraintes
ainsi qu’une définition par lui-méme du traitement a faire en cas d’échec ou succes.
D’autre part, les contraintes manipulées doivent étre spécifiées dans un fichier spé-
cifique, or dans notre cas, on souhaite les extraire a partir du profil. Ainsi, parmi les
quatre méthodes, seule une est susceptible de répondre a nos attentes. Elle consiste
a écrire du code java permettant d’extraire les contraintes a partir d’'un métamodele.
L’ outil de validation de contraintes de 1’environnement Papyrus utilise cette méthode
en I’adaptant pour les profils.

La seconde alternative pour valider les modeles sous Eclipse consiste a utiliser
EMF et le plugin OCL. Ce dernier fait partie du projet MDT. La solution proposée ici
est similaire a la derniere méthode évoquée ci-dessus pour EMF Validation. C’est elle
que nous avons privilégiée pour développer I’outil GaspardValidation.

6. Bilan et perspectives

Dans cet article, nous avons abordé la validation dans I’environnement Gaspard2
dédié a la conception de systemes embarqués sur puce a 1’aide de I'IDM. Gaspard2
permet d’effectuer des transformations de modeles de haut niveau, qui aboutissent a la
génération de code et a la synthese de matériel. Ces modeles sont décrits a 1’aide d’un
profil spécifique. Pour assurer 1’intégrité des modeles transformés, nous avons enrichi
le profil avec des contraintes OCL. La description de certaines contraintes a nécessité
la définition d’opérations nouvelles, en plus de celles proposées par le langage OCL.
Nous avons ensuite développé un outil de validation, appelé GaspardValidation, sous
forme d’un plugin Eclipse. Cet outil présente 1’avantage d’étre générique et indépen-
dant vis-a-vis du profil Gaspard2.

7. http ://www.um.es/giisw/ocltools/ocl.htm
8. http ://www.db.informatik.uni-bremen.de/projects/USE/
9. http ://argouml.tigris.org/

18 IDM’08, Mulhouse — Quatrieme journées sur I'Ingénierie des modeles

Pour améliorer la validation proposée actuellement dans Gaspard?, il serait intéres-
sant d’étendre celle-ci avec davantage d’analyse sémantique liée aux SoC : propriétés
d’architectures particulieres ou d’exécutions. Cette perspective pourrait remettre en
question 1’utilisation de la version statique d’OCL. Une alternative serait alors 1’ex-
tension XOCL (eXecutable OCL) de I’outil XMF-Mosaic (Clark et al., 2004).

Une fois le modele d’entrée du flot Gaspard (Application, Architecture, Associa-
tion et Déploiement) est valide, on peut penser a étendre nos travaux de vérification
pour le reste du flot de conception, et valider ainsi les différentes transformations de
modeles (Figure 1). Selon les travaux de (Cariou et al., 2004), Le langage de vali-
dation des transformations n’est pas forcément OCL. il fallait étudier les outils et les
langages de transformations de modeles telque le langage QVT (Query / View / Trans-
form) adopté en 2005 par I’'OMG (OMG, 2005).

7. Bibliographie

Ben Atitallah R., Boulet P., Cuccuru A., Dekeyser J., Honoré A., Labbani O., Le Beux S., Mar-
quet P, Piel E., Taillard J., Yu H., Gaspard2 uml profile documentation, Rapport technique
n° 0342, INRIA, septembre, 2007.

Boulet P, Array-OL Revisited,Multidimensional Intensive Signal Processing Specification,
Rapport de recherche n° 6113, INRIA, février, 2007.

Cariou E., Marvie R., Seinturier L., Duchien L., « OCL for the Specification of Model Trans-
formation Contracts », proceedings « UML» 2004 Workshop OCL and Model Driven Engi-
neering, Lisbon, Portugal, 2004.

Clark T., Evans A., Sammut P., Willans J., « Applied Metamodelling - A Foundation for Lan-
guage Driven Development », version 0.1., 2004.

Damus C., « EMFT 1.0 Release Review (OCL, Query, Transaction, and Validation) », eclipse
con, 2006.

OMG, « MDA Guide Version 1.0.1 », omg/2003-06-01, 2003.

OMG, « Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification », ptc/05-
11-01,2005.

OMG, « OMG Unified Modeling Language(OMG UML),Superstructure », V2.1.2, 2007.

Ratté S., UML et OCL, Document thématique, Université de Québec,Ecole de technologie su-
périeure, Département de Génie logiciel et des TI, 2007.

