

Poster Abstract: A Secure Group Communication Mechanism in Cluster-Tree Wireless Sensor Networks

Olfa Gaddour¹, Anis Koubâa^{2,3}, Omar Cheikhrouhou¹, Mohamed Abid¹

¹Research unit CES, National school of Engineers of Sfax-Tunisia

²IPP-HURRAY! Research Group, Polytechnic Institute of Porto,Rua Antnio Bernardino de Almeida, 431, 4200-072 Porto, Portugal

³Al-Imam Muhammad Ibn Saud University, Computer Science Dept., 11681 Riyadh, Saudi Arabia
olfgangaddour@yahoo.fr , akoubaa@dei.isep.ipp.pt, enis01amor@yahoo.fr, mohamed.abid@enis.rmu.tn

Abstract—Security is a challenging issue in Wireless Sensor Networks (WSNs) due to the dual impact of their inherent constraints and their operation in open and harsh environments. We briefly present SeGCom, a new security mechanism for group communications in cluster-tree WSNs. We define a group as a set of sensor nodes in the cluster-tree network sharing the same sensory information. Our objective is to limit the access to the group data exclusively to the members that have securely joined the group.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) are composed of energy-constrained nodes embedding limited transmission, processing and sensing capabilities. As WSNs are basically deployed in hostile environments, security becomes extremely important, since sensor nodes are exposed to different types of malicious attacks.

Security in WSNs has attracted several research studies that have addressed various security problems. The security problem in WSNs becomes even more challenging when dealing with the *group* security, as this grouping impose additional overhead in terms of network management. In this poster, we focus on securing group communications in *cluster-tree* WSNs, where a *group* is defined as a set of sensor nodes sharing a common private information.

II. SEGCOM DESCRIPTION

A. Network Model

We consider a multi-tiered architecture which contains a special node called Base Station (*BS*) which define the entire network, some special nodes that may have the ability to associate from other nodes which are called cluster-heads (*CH*) and end devices (*ED*) with no ability to associate with other devices. This architecture is shown in Fig. 1.

In Fig. 2, we identify two groups in the cluster-tree network. The first group is represented by black squares (e.g. for temperature data traffic) and the other is represented by gray triangles (e.g. for light data traffic).

B. Pre-deployment settings

Our work relies on the polynomial-based key pre-distribution scheme proposed by Blundo *et al.* in [1]. This

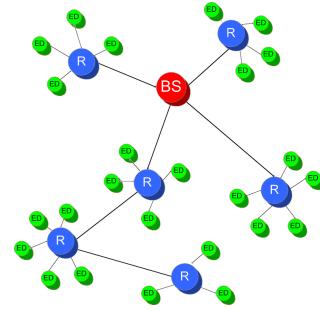


Fig. 1. The Network Model

scheme uses a symmetric bi-variate polynomial to generate secure pairwise keys for any two nodes knowing each other's identity.

C. Group Creation

1) *Group initiation*: We consider a new grouping concept as compared to previous works. A *group* refers to a set of sensors that produce the same type of traffic. Fig. 2 illustrates our grouping concept in a cluster-tree WSN.

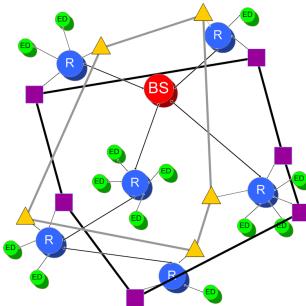


Fig. 2. An example of a WSN containing two groups

2) *Group controller creation*: A node that wants to join a given nonexistent group must send a *join-request* message to the *BS*. After authenticating the request, the *BS* sends a *join-confirmation* message and a set flag *GC-flag*. After receiving the flag, the designated *GC* sends a request to *BS* to obtain

the G_{id} . After receiving the G_{id} , the GC generates a random key K_g as the group key.

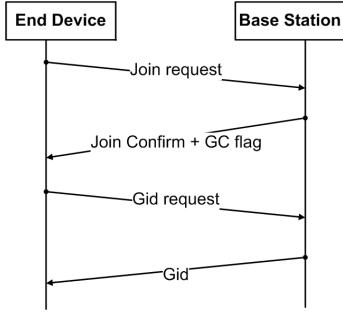


Fig. 3. Message Sequence Diagram between an ED wanting to form a group and the BS

3) *Group Join*: After the designation of the GC , the subsequent group joining requests must be directed to (and handled) by the GC . Nodes will know about the existence of the group upon the reception of group identifier sent by an authenticated broadcast using the μ TESLA proposed in [2].

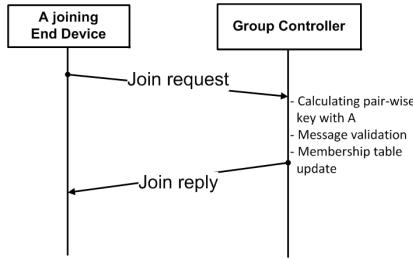


Fig. 4. Message Sequence Diagram between an ED and the GC

After receiving the broadcasted group identifier G_{id} , a node A that wants to join the group calculates the pair-wise key shared with the GC , according to the Blundo mechanism. The node A then sends a *join-request* message to the group controller GC , which has the following structure:

$$ID_A|G_{id}|MAC(K_{A,GC}, ID_A, G_{id}) \quad (1)$$

In the second step, the GC sends a *join-response* message with the following structure:

$$\{K_g, add_{gr}\}_{K_{A,GC}} \quad (2)$$

4) *Group Leave*: A node leave may be initiated by the node itself upon sending a leave-request message to its group controller, or initiated by the group controller, which may delete the node from the group.

The group leave operation when initiated by a leaving end device is shown in Fig. 5.

III. EVALUATION

A. Performance Analysis

1) *Storage cost*: The additional computation overhead for calculating the pairwise key is almost negligible (requires t

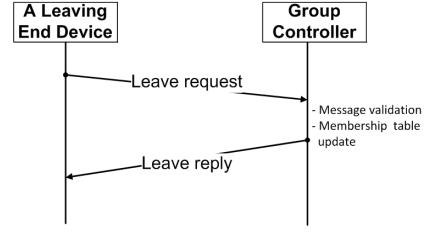


Fig. 5. The Leaving Operation

modular additions and t modular multiplications over F_q). To use Blundo's theory, each sensor node i needs to store a t -degree polynomial $f(i, x)$, which occupies $(t + 1) \log q$ storage space. As a result, if a key is of q -bits, a regular sensor node has to store $(t+2)$ keys.

2) *Communication cost*: The proposed scheme requires one global broadcast for sending the group controller identifier. The GC may receive N join requests and needs to send the group key to N members. Thus, to set up the group key among N members, it requires $2N$ unicasts and one global broadcast.

B. Security analysis

- *Security of the GC*: Only the base station can authorize a node to act as a group controller. We used μ TESLA to perform authenticated broadcast between a GC and all nodes in the network. This scheme guarantees the authentication and the freshness of the packets sent by the GC .
- *Protection against replay attacks*: An intruder can hear the join or leave requests and replay it byte-by-byte to the GC . This request is automatically rejected by the GC because the member already exists in the membership table. Thus, replay attacks are not possible in both *join* and *leave* operations.
- *Prevention against decoding previous and future messages within a group*: the forward secrecy and the backward secrecy are guaranteed by updating the group key in each join and leave operations.

IV. CONCLUSION

In this poster, we have proposed, SeGCom, a simple yet efficient new mechanism for supporting secure group communication in cluster-tree Wireless Sensor Networks (WSNs), where a group is defined as a set of sensor nodes producing the same type of sensory data. Our analysis shows that the proposed scheme is efficient in terms of computations, which is adequate for constrained-resources WSNs. In addition, we have shown that SeGCom is immune against several attacks.

REFERENCES

- [1] C. Blundo, A. Santis, A. Herzberg, S. Kutten, U. Vaccaro, and M. Yung, "Perfectly-secure key distribution for dynamic conferences," vol. 740, pp. 471–486, 1993.
- [2] A. Perrig, R. Canetti, J. D. Tygar, and D. Song, "The tesla broadcast authentication protocol," pp. 2–3, 2002.