13t International conference on Sciences and Techniques
of Automatic control & computer engineering
PRy December 17-19, 2012, Monastir, Tunisia

Exploration tool for analyzing the
performance of MPSoC design

Sonda Chtourod, Zied Ben Salert2, Mohamed-Wassim Youss&fMohamed
Abid?!

1 CES Research Laboratory, National School of Engineers of Sfax, University of Sfax,
Tunisia.
{sonda. cht ourou, zied. bensal em nohaned. abi d} @esl ab. org
2 ALPHA ENGINEERING Industrial Society, Tunis, Tunisia.
engi neeri ng. di rect or @l pha- engi neeri ng. net
3 Higher Institute of Computer Science, Tunis, Tunisia.
wassi m yousef @ahoo. fr

Abstract. The major problem faced when designing Multi-Processor Systems-
on-Chip (MPSoCs) is the difficulty and the complexity of interfacing the
hardware (HW) and software (SW) parts with high-performance requirements.
Moreover, HW is always designed far too late in the product development cy-
cle. Thus, SW can't be checked for early internships in the design cycle.
Virtual prototyping represents a good alternative to respond this problem by
allowing early design integration. However, virtual prototyping platforms use
textual-language description to design and integrate HW and SW parts. Thus,
designer needs flexible and interactive tool that runs on the top of virtual plat-
form to rapidly and easily explore alternative solutions. In this paper, we pro-
pose an interactive tool with a graphical web-powered layer for HW and SW
exploration at virtual prototyping level. We propose also an approach to esti-
mate the global performance of an MPSoC during exploration process. Using
this tool, designer would be able to make early HW and SW integration and
validation in the design process of MPSoC. This tool provides precise and ac-
curate performance information regarding the MPSoC to be designed. The pre-
sented approach was validated using H264 encoder design as a case study.

Keywords. Interactive exploration, MPSoC, virtual platform, virtual prototyp-
ing level and H264 encoder.

STA'2012-CES-3054, pages 429-442
Academic Publication Center of Tunis, Tunisia

2 STA'2012 - Topics ..., pages 1 to X
1. Introduction

Current embedded software, such as multimedia aled¢dmmunication applica-
tions, are becoming more and more complex. Consglgu¢he design complexity is
exponentially increasing. Embedded application® K264 compression video and
3D image synthesis, are designed in multi-threadioigtext and require computing
and power guaranties to handle their complexityusThrembedded systems use an
increasing hardware parallelism (MPSoC) to delivigh computation and communi-
cation performances while maintaining a reducedgrdwudget. In addition, to man-
age the complexity of both the supported applicatiand the target architectures, the
use of operating system (OS) becomes mandatoryhd¥umore, the continuous in-
crease of embedded application and HW design cotipleas intensified the chal-
lenges. Indeed, today’s marketing managers reduge-performance MPSoC with
minimal cost and short time-to-market.

Classical design flow recommends designing HW avliis parallel way. Howev-
er, HW is always designed far too late in the paddievelopment cycle. Thus, SW
can’'t be checked for early internships in the degigcle. This implies a huge gap
between HW and SW integration. Meanwhile, virtuadtptyping seems to be a good
candidate to respond to this need. Indeed, theofisértual prototyping simulators
allows early design validation. However, virtuabfotyping platforms use textual-
language description to integrate HW and SW pattsrefore, it's not easy to extract
the best applications parallelism with high-perfanoe requirements to be mapped on
the best MPSoC architecture which meets constraihiss, designer needs interactive
tool that runs on the top of virtual platform wighaphical interfaces to rapidly and
easily explore others alternative solutions and tttelearn how a particular perfor-
mance metric depends on a particular parameter.

In this paper, we propose an interactive tool fo¥ ldnd SW exploration at virtual
prototyping level. This interactive exploration taall help designer to take decision
of the optimal design at early stage in the desiggle of MPSoC. To achieve our
goal, we proposed an approach to estimate MPSdGrpemce and we described an
interactive technique of exploration based on diffé¢ HW and SW variations. The
major contribution of this work is that we enabigloration through a graphical web
layer that runs on the top of virtual platform irder to make the technique of explora-
tion interactive and to allow an easy exploratide.case study, we realized experi-
mentation with H264 encoder benchmark to provedtecept of the proposed ap-
proach. The experiment shows that the proposedprahits to handle the complexity
and flexibility needed in the development of MPS@®sl the early selection of the
best system which meets constraints.

This paper is organized into four sections. Sedtipresents the problem statement
and related works. Section |l details the develamnoé an interactive tool for explo-
ration of MPSoC at virtual prototyping level. Sectilll exposes how the proposed
interactive exploration was applied to the H264aogler case study. Different results

Paper title 3

and interpretations of exploration of the paratlel H264 encoder mapped on
MPSoC are discussed in Section IV.

2. Problem statement and related works

MPSoC allows integration of all needed electronicuits in a single chip. Mean-
while, it opens up new challenges for HW and SVégnation in order to satisfy max-
imum performance and tight time-to-market requiretee The SW running on the
MPSoC architecture is called software stack (figllye The software stack is com-
posed of two components: the application tasks ot the hardware-dependent
software (HdS). The HdAS layer is composed of thagers which are OS and com-
munication middleware, the hardware abstractiorddiAL) and the HAL/API. The
HdS is responsible for providing application andhitecture specific services such as
scheduling the application tasks, communicationvbeh the different tasks, external
communication with other sub-systems and HW resoaranagement and control [1].

Task1 Task 2 Task 3 =
o © o< oo | |T
05 & Drives Communication Middleware
(4]
=
=
HAL

Fig. 1. A typical software stack.

The major problem faced when designing HdS is tffeeulty and the complexity
of interfacing the HW and the SW. Indeed, this psscdepends on several important
details like drivers, type of memory, CPU and comiuvation. Thus, SW can be vali-
dated only on ready-to-use model of the HW platformaddition, HW is generally
designed with register-transfer level (RTL) whishalways far too late in the product
development cycle. This leads to an outstandindecglesign. Besides, if the HW
implementation is done at a low level, making migdifion of mapping is costly and
difficult. Thus, the development of HW and SW coments in parallel way risks to
lead to incompatibilities and to make unfeasibke e¢hrly check of SW.

Meanwhile, abstraction levels allow designing SWnicremental process by veri-
fying the SW on an abstracted representation ofte In this manner, HW and SW
development can progress together without conficnsequently, HW and SW inte-
gration in complex MPSoC should converge on usiffgrént HW and SW abstrac-
tion levels. We referenced in this research tathiesis work of Katalin Popovici from
Tima laboratory [1] who performed the validation ¥V in four abstraction levels

4 STA'2012 - Topics ..., pages 1 to X

which are system architecture design, virtual @echirre design, transaction accurate
architecture design and virtual prototype desigactElevel depicts a step in the SW
refinement process. This helps to gradually tramsfthe system with high level rep-
resentation and abstract components into a contretdevel executable SW code.
Particularly, in the virtual prototyping level, dgser adapts the specific SW to map
the target processors and peripherals. This iniegrdakes care of the processor
dependent SW code into the SW stack. The HW pilatfioicludes all the HW com-
ponents, such as cache memories or scratch paalpwolow level access to the HW
resources and the final memory mapping. Therefooejpared to other abstraction
levels, the virtual prototyping level provides peecand accurate performance infor-
mation.

For this purpose, several frameworks and toolsgusirbackend virtual prototyp-
ing platform were developed in order to speed ypaation of MPSoC design. [2],
[3], [4] and [5] proposed frameworks based on Sy§teallowing higher simulation
speed with early performance estimation. Propossaddworks are useful for explora-
tion and permit to rapidly find the most adequal//8BW configuration. However,
SystemC is HW-oriented language and it is not taadard language to design com-
plex applications at algorithm level [6]. Simulidnd UML are also used inside
frameworks for high-level modeling. Simulink is axed HW/SW architecture model
allowing abstraction of HW/SW interfaces of multeaded heterogeneous multipro-
cessor architecture with specific HW 1/0O [7]. [68] and [9] propose frameworks
enabling mixed HW/SW refinement and opening newlifes like communication
mapping exploration and interconnection componefitement. However, embedded
programmers are still reluctant to adopt Simulirddels on MPSoC because it quick-
ly becomes unsuitable with complex HW architectu&@sme environments also use
Qemu emulator which is equipped with dynamic progteace facilities. The Qemu
emulator can run an operating system Linux for ssvarchitectures like x86, Sparc,
MIPS, PowerPC and ARM ISAs. QEMU was used as thmdation for Yeh Tse-
Chen projects [10]. These projects showed that dbmbination of QEMU and
SystemC can make the co-simulation at the cyclerate level extremely fast, even
with a full-fledged operating system up and runrib@]. However, Qemu shows lack
of flexibility to configure specific HW architectes and supports only homogeneous
designs. Meanwhile, OVP (Open Virtual Platformpalé simulating complex hetero-
geneous and homogeneous MPSoC architectures atsimghlation performance
which can be measured by hundreds of million ircsibns per second (MIPS) [11].
Besides, OVP provides a large set of free opencesusnd standard models compo-
nents providing more flexibility to configure conepl HW system. OVP uses the same
level of simulation but also tackles the simulatgpeed problem by using advanced
techniques for the software simulation such as i@falation for the former and code
morphing for the latter. Several studies have lpmformed using the OVP simulator
targeting MPSoC architectures. [12] investigated dlifferent virtual platform emula-
tors QEMU and OVP for integration into SCE (Syst&m-Chip Environment) and
opted on integrating the OVP. In addition, [13] cked simulation performance of
OVP and possibility for hybrid simulation with SCM{Open SystemC Modeling
Library). Moreover, [14] used OVP to simulate béidrdware architectures and run-

Paper title 5

ning software applications. From the above mentioresons, OVP has been em-
braced as a primary solution to make easier sydesuription (SW and HW integra-
tion) and faster simulation [15]. Thus, OVP reprgsea good virtual platform solu-

tion to speed up exploration of MPSoC design. Haxegven if OVP performs early
and fast system description, it uses scripts artliaélanguage description to inte-
grate HW and SW parts. Therefore, its specificatiomplexity rises with the virtual

platform complexity rise (MPSoC, several OSs angliagtions). This becomes a new
bottleneck in the HW/SW integration and in the exation of the best applications
parallelism to be mapped on the best MPSoC arc¢hied¢hat meets constraints. In
fact, designer needs interactive graphical integacunning on the top of OVP to
easily explore others alternative solutions and tteelearn how a particular perfor-
mance metric depends on a particular parametehidncontext, we didn’t find any

work or environment with graphical layer allowingéractive exploration that runs on
the top of OVP. Our contribution is to design ahiggraphical layer on the top of
OVP environment to allow an easy graphical intévacexploration and profit of

OVP features.

3. Development of an interactive tool for MPSoC exploration at
virtual prototyping level

3.1. General proposed wor kflow

To design a higher graphical layer on the top offCaAllowing an easy graphical
interactive exploration, we started by defining arkflow handling different needed
phases to make exploration and then design sysigsfiying performance constraints
at early stage (figure 2):

» Phase 1: Partitioning and mapping: select a s@lutibpartitioning and mapping
tasks of chosen complex application into procesdoesigner chooses the number of
processors and how to map tasks into each processwder to define the relation-
ship between SW and HW;

» Phase 2: Configuration of the design: this phasgatos two sub-actions achieved
in parallel way:

- Configuration of SW prototype: select differeptions and features (OS, applica-
tion parameters) of the SW prototype. Then, geres&t/ prototype representing this
configuration;

- Configuration of the virtual MPSoC HW prototypastantiate different needed
compounds and interconnections with OVP. Then gaaesirtual HW prototype.

» Phase 3: Integration: integrate and simulate SW\artdal HW prototypes with
OVP to make early integration;

6 STA'2012 — Topics ..., pages 1 to X

* Phase 4: Performance estimation: use the definpagh of MPSoC performance
estimation to estimate performance of the configuaystem;

* Phase 5: Interactive technique of exploration: valldesigner to explore various
integration alternatives to best satisfy definedfggenance requirements and objec-
tives.

When designer fixes the best configuration whictetsi@lefined performance ob-
jectives, he can proceed to the real fabricatiothefHW and then make final integra-
tion.

¥ ——~
HW configuration

o

| Performance estimation |
£

Interactive technique of i.—
exploration |

|_ Final sys_tem _|

Fig. 2. Proposed workflow of interactive exploration.

Paper title 7
3.2. Define an approach to estimate performance of M PSoC

To define an approach of performance estimatiomgph of the workflow), we
have to fix performance metrics. Several works $aclion performance estimation. In
our project, we proposed HW and SW performanceioseto measure efficiencies in
terms of used HW resources, average turnaround aintk quality of the service
(QoS). The designer can select or combine propasatdcs, evaluate each config-
ured system and make decision.

* Used hardware resources

Through estimated percentage of used HW resoufdde @configured system, de-
signer can reduce the cost on the final SoC bygdaxj minimal configuration that
performs the needed constraints. CPU and Memoryharenost important HW com-
pounds in term of necessity and cost. Thus, weeho®stimate used percentage of
memory (%MEM) and of processor (%CPU):

- %MEM: Percentage of memory used by the process the available physical
memory;

- %CPU: Percentage of total CPU time that the m®o®nsumes from the elapsed
CPU time.

» Average turnaround time (execution time)

Time elapsed by the whole application with the @ured HW system depicts a
widely used constraint to evaluate performancenefdystem. Time statistics consist
of the actual elapsed time between invocation anohihation (real), the CPU time
running the program code (user) and the CPU timaing the system calls (sys): real
= user + sys.

* Quality of Service

Aside from the three performance metrics (%CPU, %MEmMe), the QoS pro-
vided by the system depicts an important aspe&a@ design. This metric mainly
depends of the target application.

3.3. Define an inter active technique of exploration

We proposed a technique of exploration (phasetbeofvorkflow) to explore oth-
er solution alternatives. This technique is basedseveral HW and SW variations
which mainly affect the performance of the systéesigner can also modify the
number of target CPUs and the SW parallelizatiorlfe He can also adjust the num-
ber of MIPS and the architecture of target CPUsddjng on the need of the mapped
task. Distribution, type and size of used memorp@f parameter setting can be also
revised. Thus, designer can use this techniqudetify the effect of each modified
HW or SW parameter on performance. Based on resgtsan improve some parts of
the design or revise design options to satisfyqguarénce requirement.

8 STA'2012 - Topics ..., pages 1 to X
3.4. Design of higher graphical layer on the top of OVP

We developed graphical user interfaces on the fo@P\WP handling different
phases of proposed workflow (figure 2). These fatags allow designer to perform an
easy and fast interactive and graphical exploradind then design system satisfying
performance constraints at early stage. Then, vpdeimented different scripts auto-
mating several back-end functions of these integconfiguration, compilation and
generation of the SW, integration of configured HWWd SW with OVP, storage of
generated system in database, start up of configeystem). Storing configured sys-
tem in database allows designer to save time afwit ¢b modify some parts of a
configured design without repeating all steps. V8eduthe following HW and SW
tools (Linux: Host OS, APACHE: web server, PHP:ifictanguage and MySQL.:
Manage database).

4. Validation of the proposed tool

After implementing this approach, it is imperativoecheck whether the solution
achieves the expected behavior. After several relses, we chose H264 encoder
benchmark because it is designed in multi-threadorgext and requires considerable
HW resources to encode a video. In experimentatiused the x264 version of
H264 encoder [16].

4.1. Mapping H264 on M PSoC

The used H264 version encodes the video frameagdr Thus, we found that it
is interesting to split encoding the video betwéen processors (processor 1 and
processor 2). Each processor encodes each folldwiffgred frames as if we have a
video coming from a camera. After encoding eacHtdoeél frames, each processor
puts the encoded frames in a shared memory. Thénrdaprocessor (processor 3)
reads data (encoded frames) from the shared meamolgenerates the encoded vid-
€o.

H264 runs several threads simultaneously. Thusjeeel to use an OS to manage
the different threads. We chose Embedded Linuam et OS because it addresses the
basic needs of our project: flexibility to add, ifig to modify or integrate new driv-
ers in a configured Linux kernel, multi-processopsort, stability and portability. All
these advantages guarantee the extensibility afytstem in future.

4.2. Implementation of parallelized H264
1) Custom virtual hardware design

In this part, we focus on the implementation ofustom virtual HW design to
achieve the previous described objective. We nedelsagn which contains 3 proces-

Paper title 9

sors and a shared memory to assure communicatiorede the different instances.
We need also to use Embedded Linux for each procéssrder to run the threads of
the application.

The first step was to find a sub-system (minimadigie which boots Linux) based
on ARM processor. This sub-system contains sevaralponents: ARM926EJ mi-
croprocessor core (ARM), RAM memory (RAM), Intertu@ontroller (PIC), Counter
Timers (PIT), UART and Smart Loader Arm Linux (Sthaader). The second step
was to implement an MPSoC design based on armystbrs for the parallelized
benchmark. As we need 3 processors, we configuigd @VP an MPSoC which
contains 3 arm processors with minimal needed pergis (3 arm sub-systems) (fig-
ure 3). We also configured a shared memory to comuate between different sub-
systems of the design. In each sub-system, wedatemo run Embedded Linux to
assure exchange of data (pictures) between prasesso

Bus ABus

Processor 2

Smart Loader | | ARM I——| Smart Loader |

H

Processor 1

| ARM

\Bus

—| Smart Loader |

Fig. 3. Custom MPSoC design.

2) Configuring software stack

Embedded Linux is based on 2 principal compoundstware the kernel and the
file system (rootfs). We started by configuringpeedfic kernel for each sub-system
with all needed peripherals. To generate the cosseek zImage of the kernel, we
used an EABI cross-compiler for arm processor. flleesystem (rootfs) represents a
principal part of the operating process of the whgjistem. It must be mounted at the
start up because it contains all needed script®td the OS. We configured all need-
ed repository to boot Linux (/bin, /etc, /proc,dsy). We used Busybox tools to add
needed Linux commands. Finally, we modified bootsugipts in order to start run-
ning target application automatically after the boo

3) H264 parallelization

H264 encodes and writes the encoded frames, irtgeherated video, in a same
function. Thus, we started by modifying H264 codevider to separate encoding the
video and generating the encoded video. After tivatmodified H264 code for pro-
cessors 1 and 2 in order to encode then write &didwing buffered frames in the

10 STA'2012 - Topics ..., pages 1 to X

shared memory. Then, we modified H264 code for ggeor 3 in order to read each
following encoded frames written by each encodecessor and generate the encod-
ed video.

4.3. M ethodology of exploration

The performance objective of our case study isesigh a system which runs par-
allelized H264 on 3 processors with minimal time &W resources while keeping an
acceptable QoS. We performed interactive explanatiith the assumption that we
keep the chosen partitioning and mapping solutioh A: H264 parallelized 3 main
tasks on 3 processors). However, during the intemtechnique of exploration, we
intent to explore other variations that affect parfance like: (i) variation of the
number of buffered frames (HW and SW modificatiq(ii), variation of the encoder
parameters (SW modification).

As we mentioned in section 3.2, QoS performanceiosadepend mainly on target
application. As we chose H264 codec, it is inténgsto measure the quality of the
encoded video because it is the most importantacheristics of a codec. PSNR is the
most widely used video quality metric [17]. Conseqly, we used PSNR metric to
measure the quality of the encoded video.

5. Testsand results

5.1. Configuration of thefirst prototype system

We used configured graphical web interfaces toigané the first prototype sys-
tem (see figure 4). We have just to click checkbo® bottom of proposed interfaces
to configure and generate the first prototype syqteee 3.4). Then, we selected need-
ed performance metrics to estimate and we predsedilate” button to start booting
the whole system with OVP (see figure 4). Each otenstarted up automatically the
associated target task of the parallelized H264eithe whole application terminat-
ed, each processor wrote the performance estinmagddcs. The generated system is
automatically stored in database and then desicgre@pply interactive technique of
exploration by modifying some part of the desigthaut repeating all steps.

Paper title 11

Explore benchmark tasks

*Choice of Benchmark H264 E 7| *Number of CPU
Benchmark Configuration
*Task Encede 1: - Target GPU ARM -] - Rooffs: [select
*Task Encode 2: - Target
Performance Metrics
* Task Generate: - Target
* Used Resources [NERYN
* Number of Buffered frame B xeru
* Execution Time O Time

* Encoder parameters :

* Quality of Service = Quality

Load Configured System | select

[Emuate

Fig. 4. Proposed graphical interfaces.

5.2. Exploration of parallelized H264

1) Evaluation of references metrics

First of all, we executed the H264 on process®QD (MIPS) without any modifi-
cation (default version of H264). Then, we estirdad# fixed performance metrics in
order to take them as a reference for all modificet done later on: %MEM=27.8%,
%CPU=99.6%, Time=138.74s and PSNR=36.480kb/s.

2) Impact of variation of the number of buffered frame

In this test, we used 4 different numbers of beffieframes: 10, 15, 20 and 25. We
fixed all MIPS of processors at 200 and we usedstiree parameters of encoding.
Table 1 gives results of quality of the encodecdkwidOn the horizontal axis, there is
relative encoding time (in s). On the vertical axlsere is relative PSNR (in kb/s)
which depicts the quality of the encoded sequence.

Table 1. Effect of varying the number of buffered frames.

PSNR (kb/s) Time (s)
10 frames 36.392 77.40
15 frames 36.162 96.24
20 frames 36.254 97.53
25 frames 36.109 110.26
10 frames 36.392 77.40

This table shows that for all used number of beffeframes, the time needed to
encode the video decreased comparing to the defaettution. For example, it de-

12 STA'2012 - Topics ..., pages 1 to X

creased from 138.74s to 77.40s when we used 2®rbdffframes. When we com-
pared the time measured for each number of buffeeedes for cases 10, 15 and 25,
we noticed that the time decreased for a highedt nsenber of buffered frames. How-
ever, when we compared cases 15 and 20, we ndheédhe time needed increased
by 1.29s. In fact, the time depends mainly on thealer of loads of buffered frames
to encode the following frames. Thus, when we hearme number of loads for two
different numbers of buffered frames, we have closecution time.

A higher PSNR means that we have a better quéldythese cases, the quality of
the encoded video slightly decreased comparingpeéoréference case. This decrease
can be explained by a bad choice of reference ggtrieames). In fact, the encoder
processor has to choose a reference frame fromljisstimited number of buffered
frames.

3) Impact of variation of the encoder parameters

As said before, in the used H264 code there ig aflmetrics which can be modi-
fied through command-line. We used different preqdencoder parameters) which
differ from the default one by turning on one (ilmshcases) codec’s parameter. We
operated with Bitrate/Quality by using differentrbtes: 100, 500, 1800 kb/s. H264
includes several profiles. We used baseline, mauh tagh profiles. Besides, H264
offers preset options allowing to trade off compres efficiency against encoding
speed. In addition, H264 has options that contrel VBV (Video Buffer Verifier)
which is used to constrain the output bitrategebt, we manipulated two options that
control the VBV. We fixed the buffer's size of tH8V at 400 kb and the rate at 300
kb/s. Table 2 illustrates results of used presmt®5 buffered frames.

Table 2. Effect of varying encoder parameters.

PSNR (kb/s) Time (s)
Bitrate 100 29.215 51.30
Bitrate 500 35.236 70.02
Bitrate 1800 38.305 113.10
Profile Main 36.113 79.80
Profile High 36.126 78.20
Profile Baseline 36.100 77.76
Preset veryfast 35.863 49.60
VBV 35.563 82.35

Depending on what the user needs for his payloaitelehe can make a fast com-
parison. Thus, all conclusions (“better”, “wors&fgster”, etc) will be made from this
point of view.

4) Exploration results

Paper title 13

It is now easy to select the best system configumahat satisfies the fixed per-
formance objectives for our case study (see 4.BjoUdgh previous exploration, we
have to fix the number of buffered frame to 25 aneset “veryfast” in order to use
the minimal HW resource and time while keeping ereptable QoS.

6. Conclusion

To handle the complexity and flexibility neededtlie development of MPSoCs,
virtual prototyping platforms would be an interagtialternative. In this context, we
proposed an interactive exploration tool of MPSda@igual prototyping level. The
main contribution of this work is that we enablederactive exploration through a
graphical layer allowing easy interactive explaratiOther implementation steps are
possible as perspectives of this work:

- Automate the configuration of the design withgirigal web layer which runs on
the top of OVP;

- Proof of concept of the proposed approach witkrogeneous MPSoC design to
extend comparison of prototypes;

- Define HAS API in order to adapt the map of apgleation with HW layer with
a simple call of HAS API.

References

1. Popovici, K. “Multilevel Programming Environmefdr Heterogeneous MPSoC Architec-
tures”,PhD Thesis TIMA Laboratory, Grenoble, France, 2008.

2. Gerin, P. “Flexible and Executable Hardwaref8afe Interface Modeling For Multiproces-
sor SoC Design Using SystemC”, ASP-DAC '07: Proceedofghe 2007 Asia and South
Pacific Design Automation Conference, 2007, 390-395.

3. Mello, A. “Parallel Simulation of SystemC TLM 2@ompliant MPSoC on SMP Work-
stations”, DATE '10: Proceedings of the Conferene®esign, Automation and Test in Eu-
rope, 2010, 606-609.

4. Ben Atitallah, R. “Modeéles et simulation des syg8 sur puce multiprocesseurs : estimation
des performances et de la consommation d'énefgfidd, Thesis , University of sciences and
technologies of Lille, 2008.

5. Madl, G. “Combining Transaction-level Simulaticensd Model Checking for MPSoC Veri-
fication and Performance Evaluation ", ACM Trangsatsi on Design Automation of Elec-
tronic Systems, 2009.

6. Popovici, K. “Simulink based hardware-softwaoelesign flow for heterogeneous MPSoC”,
SCSC'07: Proceedings of the summer computer siraalatinference, 2007, 497-504.

7. Popovici, K. “Mixed Hardware Software Multilevélodeling and Simulation for Multi-
threaded Heterogeneous MPSoC”, VLSI-DAT'07: VLSIsiga, Automation and Test,
2007,1 - 4.

8. Huang, K. “Simulink-Based MPSoC Design Flow: Catel$ of Motion-JPEG and H.264”,
DAC '07: Design Automation Conference, 2007, 39-42.

14 STA'2012 - Topics ..., pages 1 to X

9. Atat, Y. “Simulink-based MPSoC Design: New Apprbdo Bridge the Gap between Algo-
rithm and Architecture Design”, ISVLSI '07: Procaegs of the IEEE Computer Society
Annual Symposium on VLSI, 2007, 9-14.

10. Chen Yeh, T. “On the interface between QEMU &ydtemC for hardware modeling”,
ISNE'10: International Symposium on Next-Generatectronics, 2010, 73.

11. http://www.ovpworld.org/technology.php#secti@ff

12. Pablo, E. “Integration of Virtual Platform Mddénto a System-Level Design Framework”,
University of Texas, 2010.

13. Agrawal, P. “Hybrid Simulation Framework forrttial Prototyping Using OVP, SystemC
& SCML”, Journal of Systems Architecture: the EUROMICR@urnal, 2010, 99-111.

14. lulian, N. “A new HW/SW co-design method for Itiprocessor system on chip applica-
tions”, ISSCS'09: International Symposium on Sign@iscuits and Systems, 2009.

15. Ben Atitallah, R. “A fast MPSoC virtual prototygitior intensive signal processing appli-
cations”, MICPRO: Microprocessors and Microsystems&dded Hardware Design Jour-
nal, 2012,176-189.

16. www.videolan.org/developers/x264.html.

17. Wang, Y. “Survey of Objective Video Quality Meaements”, WWIC'10: Proceedings of
the 8th international conference on Wired/Wirelegsgrnet Communications, 2010, 240-
251.

