IEEE International Conference on Wireless & Mobile Computing, Networking & Communication

An efficient scheme for key pre-distribution in wireless sensor
networks

Manel Boujelbenl, Habib Youssef’, Mohamed Abid'

ICES research unit, National school of engineering, Sfax, 3038, Tunisia
2 PRINCE research unit, ISITC of Hammam Sousse, 4011, Tunisia

Wireless sensor networks (WSN) are the subject of widespread deployment in commercial and military environments that call for
security. Since sensor networks pose unique challenges, traditional security techniques used in traditional networks cannot be directly
applied. A previous work defines TinySec, a link layer security protocol for TinyOS to provide integrity and confidentiality of
messages for WSN. However, TinySec employs a simple group key management where a single shared key is stored in each sensor
node. This makes the network unsecured and vulnerable to attacks. Therefore, TinySec must be enhanced with a more robust key
management scheme. This paper presents the integration of a proposed key management scheme as a more robust key management
solution for TinyOS. The more secured TinyOS is evaluated in terms of key computation time, memory, and energy consumption
overhead. Experimental results demonstrate that the secure key management protocol introduces negligible overhead and does not
affect the system performance. We also present performances comparison with two well known key distribution protocols,
implemented specially for sensor networks namely, ECDLP and LEAP.

Index Terms— Key pre-distribution, Security, Sensors networks

1. INTRODUCTION

Research advances in Micro Electro Mechanical Systems
(MEMS), highly embedded operating systems and wireless
communications have enabled the realization of wireless
sensor networks. Typically, WSN are composed of a large set
(hundreds to a few thousand) of homogeneous nodes with
extreme resource constraints [1]. Each node is equipped with a
limited power unit which must aliment processing, sensing,
storage, and radio communication units. These nodes are
usually scattered over the area to be monitored to collect data,
process it, and forward it to a central node for further
processing.

The deployment of WSN is becoming more common in a
wide range of applications ranging from home/health
monitoring and remote environment observation to vehicle
tracking and management of commercial inventory.

Security is one of the most difficult problems facing these
networks. For certain applications of sensor networks, like
military applications, security becomes very important. First,
wireless communication is difficult to protect since it is
realized over a broadcast medium. In a broadcast medium,
adversaries can easily eavesdrop on, intercept, inject, and alter
transmitted data. Second, since sensor networks may be
deployed in a variety of physically insecure environments,
adversaries can steal nodes, recover their cryptographic
material, and pose as authorized nodes in the network. Third,
Sensor networks are vulnerable to resource consumption
attacks. Adversaries can repeatedly send packets to drain a
node battery and waste network bandwidth. In these and other
vital or security-sensitive deployments, secure transmission of
sensitive digital information over the sensor network is
essential. The use of encryption or authentication primitives
between two sensor devices requires an initial link key

978-0-7695-3393-3/08 $25.00 © 2008 IEEE
DOI 10.1109/WiMob.2008.41

IEEE
532 computer
@ psoue

establishment process, which must satisfy the low power and
low complexity requirements.

Currently, the MICA2 mote devices represent the state of
the art in wireless sensor networks technology based on
commercial off-the-shelf hardware components [21]. They
offer an 8-bit, 7.3 MHz ATmega 128L processor, 4 KB of
primary memory (RAM) and 128 KB of program space
(ROM) and 512 KB secondary memory (EEPROM), and a
ChipCon CC1000 radio capable of transmitting at 38.4 Kbps
powered by 2 AA batteries. Each MICA2 node has a default
operating system called TinyOS. TinyOS is an open-source
operating system designed for embedded WSN. It features a
component-based architecture which enables rapid innovation
and implementation while minimizing code size as required by
the severe memory constraints inherent in sensor networks
[20]. TinySec is a fully implemented protocol for link-layer
cryptography in sensor networks. It is incorporated into the
official TinyOS release and provides message integrity and
confidentiality. However, TinySec employs a simple group
key management, so if a sensor node is compromised by an
adversary, overall sensor nodes in the network are likely to be
compromised.

In this paper, we focus on the integration of a key
establishment protocol called the “multiple space random key
pre-distribution scheme” [2] within the TinyOS operating
system. This protocol provides very good network resilience
while respecting the WSN constraints. Therefore, it is
integrated with the TinySec protocol to avoid relying on a
single network shared secret key. This protocol
implementation is evaluated and validated in terms of time for
pairwise key generation, memory utilization, and especially in
terms of energy consumption. Experimental results show that
the security upgrade version of TinyOS performs better than

ty

two well known key distribution protocols, implemented
specially for sensor networks namely, ECDLP and LEAP.

The remainder of this paper is organized as follows. First,
we discuss background and related work in Section 2. In
Section 3 we present an overview of the multiple space
random key pre-distribution scheme and we give a brief
analyse of its security. Section 4 describes the implementation
details. Section 5 presents experimental results. Finally, we
conclude in Section 6.

II. RELATED WORKS

When setting up a sensor network, one of the first
requirements is to establish cryptographic keys for later use
(encryption and authentication). The inherent properties of
sensor networks render previous protocols impractical.

Public Key Cryptography (PKC) such as RSA or Elliptic
Curve cryptography (ECC) has been proposed for solving the
problem of key distribution in WSN. However, it is unsuitable
for most sensor architectures due to its high energy
consumption and increased code storage requirements. Despite
this fact, several researchers have been focusing on developing
optimized implementations of PKC algorithms for sensor
networks [3], [4].

KDC-based schemes are also proposed for WSN. They rely
on the presence of a resource-rich Key Distribution Center
(KDC) or base station in the network to act as a trusted arbiter
for key establishment. Examples of such schemes include
SPINS [5] and Kerberos [6]. Here, each node needs to share
only a single key with the base station and sets up keys with
other nodes through the base station. The memory resource
load on the sensor nodes is low since the heavy burden is
placed on the KDC. This arrangement makes the base station a
single point of failure, but because there is only one base
station, the network may incorporate tamper-resistant
packaging for the base station, improving the protection
against physical attacks.

Several alternative approaches relying on symmetric key
cryptography have also been developed to perform key
management on resource-constrained sensor networks. The
simplest way is to let the network node share a single secret
key. Unfortunately, the compromise of even a single node in a
network would reveal the secret key and thus allow decryption
of all network traffic. One variant on this idea is to use a
single shared key to establish a set of link keys, one per pair of
communicating nodes, and then erase the network wide key
after setting up the session keys. However, this variant of the
key-establishment process does not allow addition of new
nodes after initial deployment. Yet another approach is the full
pairwise scheme. This approach uses a shared unique
symmetric key between each pair of nodes. Therefore, this
scheme is memory-intensive and does not scale up. The
memory overhead is n-1 cryptographic keys for every sensor
node. Zhu et al. proposed a protocol named LEAP [7] to help
establish individual keys between sensors and a base station,
pairwise keys between sensors, cluster keys within a local area,
and a group key shared by all nodes. To fully take advantage
of the information available to the sensor networks, schemes
using information from the environment were proposed.

533

Deployment knowledge about the environment is frequently
used for a more optimized design. For example, Du et al.
proposed a key management scheme using deployment
knowledge [14]. Liu et al. proposed location-based pairwise
key establishment for relatively static sensor networks [15],
with the prior knowledge obtained before distributing the
sensor nodes. The memory usage per sensor is greatly
improved while the connectivity of the sensor network is
maintained.

Other recent work focused on using networks with a
heterogeneous mix of nodes, and designating nodes with
greater inherent capabilities and energy as cluster heads in
order to maximize network lifetime [16], [17].

Blom [9] and Blundo et al. [10] proposed respectively a
matrix and a polynomial key generation schemes. These
schemes guarantee that any two nodes will be able to perform
pairwise key, but each of these schemes also involves an Q(n)
high memory cost if we require that the system be secure
against an adversary capable of compromising a fraction A of
the total number of nodes. The solution is A secure, meaning
that coalition of less than A+1 sensor nodes knows nothing
about pairwise keys of others.

Random key pre-distribution schemes represent another
major class of key establishment protocols for WSN.
Eschenauer and Gligor [12] proposed a probabilistic key pre-
distribution technique. Each sensor node receives a random
subset of keys from the key pool before deployment. Any two
nodes able to find one common key within their respective
subsets can use that key as their shared secret to initiate
communication. Chan et al. further extended this idea and
proposed the g-composite key pre-distribution [13]. This
approach allows two sensor nodes to set up a pairwise key
only when they share at least ¢ common keys. Du et al.
developed a pairwise key management scheme [2]. This
scheme combines the random key pre-distribution scheme [12]
and the Blom scheme [9] to substantially improve network
resilience against node capture over existing schemes, without
increasing the memory overhead. This scheme offers a good
security level while respecting the resources constraints of
sensor nodes. Therefore, this paper adopts this scheme as a
key management solution to be used with TinySec protocol [§8]
and implements it to validate its efficiency and feasibility for
WSN.

III. OVERVIEW OF THE MULTIPLE SPACE RANDOM KEY PRE-
DISTRIBUTION SCHEME

Since Du et al. scheme [2] provides good network resilience
with a low memory requirement; this paper focuses on the
implementation of this protocol for WSN. Next, we briefly
describe this scheme and discuss the reasons of this choice.

A. Blom’s scheme

In [9], Blom proposes a key pre-distribution scheme that
allows any pair of nodes to find a common secret between
them. This scheme has a A secure property: as long as an
adversary compromises less than or equal to A nodes,
uncompromised nodes are perfectly secure; when an adversary
compromises more than A nodes, all pairwise keys of the
entire network are compromised.

Compared to the full pairwise scheme, this scheme is
efficient in terms of memory consumption: each node in a
network of size n needs to store only A+1 elements, with A<<n,
but it is not perfectly resilient against node capture. The size
of an element is that of a secret key. To be more resilient, the
security parameter A must be high. However, this can have a
big memory overhead. Du et al‘s scheme builds on Blom’s
scheme and combines it with the random key pre-distribution
method. The goal of this scheme is to improve network
resilience against node capture without increasing the memory
size.

B. Key Pre-distribution Phase

In the key pre-distribution phase, we must select the
parameters that decide on the level of security of this scheme:
these parameters are A, ® and T (2 < 1 < ®). At the end of this
phase, each node must carry some information to be able to
compute a key after deployment. This phase is composed of
three steps:

Step 1 (Generating G matrix): To generate the matrix G of
size (A +1)xn, we must chose a primitive element from a finite
field GF(q), where q is the smallest prime larger than 64 bits,
the size of TinySec key, and q > n. Figure 1 shows an
example of matrix G. Let s be a primitive element of GF(q). A
node k in the network must carry the k™ column of G. Using
this generator matrix each node will only carry the seed sk,

S2 (S2)2

A 2\4
st (s7)
Fig. 1. Example of matrix G.

Step 2 (Generating D matrix): This step consists of generating
the o spaces with which we will work. Each space consists of
a tuple S;=(D;.G), i=1... o, where D; is a random symmetric
matrix of size (A+1)x(A+1) and G is the matrix generated in
the first step. Then, ® matrices A= (Di.G)T, i=1... ®, must be
computed. Let A(j) represent the j™ row of A,.

Step 3 (Selecting t spaces): Each node must choose T spaces
from the ® spaces. For any chosen space i the node will carry
a row from the matrix A;, and this row must be secret and
shouldn’t be revealed to other nodes.

In terms of memory usage, each node needs to store (A+1)xt
elements. Because the length of each element is the same as
the length of a secret key, the memory usage of each node is
(A+ 1)xt times the length of the key.

C. Key agreement Phase

After deployment, each node must carry its id, the different
chosen spaces, and the corresponding rows of matrix A;.
According to Blom’s scheme, two nodes can find a common
secret key if they have both picked a common key space.
Therefore, to communicate with his neighbours, each node
must broadcast a message containing his id and the spaces it
carries. If a neighbour receiving the message finds that it
shares a common space A with the sender, they can compute
their shared secret key using Blom*‘s scheme. (See Figure 2)

A=(D-G)

7\—*,\4@ —

Fig. 2. Example of generating a pairwise key from a common space.

This scheme results in a connected graph, rather than the
complete graph provided by Blom’s scheme. In the case where
the graph is only connected, each sensor node needs to carry
less key information. To make it possible to find pairwise keys,
all we need is to have a connected graph with high probability.
According to [2], we have this equality:

pactualzl—w' (])
(0-27)\w!

Where p.wa 18 the actual probability that any two
neighbouring nodes share at least one space. It depends on
selected values of ® and 1. So, we have interest in choosing a
high p,cua to increase the probability that our network is
connected. Figure 3 show the values of pya When @ varies
from tto 100 and t = 2, 4, 6, 8. For example, when we choose
T =4, ® must not exceed 11 to achieve a high probability of
connectivity (>0,9).

o 1=2
09r * 1=4
v 1=6
08f o 1=8
Forl g
X -
o ~a_
f= ~a_
Sosp ~a_ R
7] B
Sosl | I
=1 \ o
o \ v\\v‘
o4 \N T g
© % Vo
o
ﬁ. \\ T R
=03} \ — 3
o \ T
¥
e
02F e -
e
O e S
ﬂ\"'&
01t o R
e ¢
6069 o o —o—6—o ¢
o
0 10 20 30 4 50 60 70 80 90 100
Fig. 3. Probability of sharing at least one space when each of two

neighbouring nodes randomly selects T spaces from ® spaces.

534

The multiple-space key pre-distribution scheme is evaluated in
terms of its resilience against node capture. The evaluation
metric is: when x nodes are captured, what is the probability
that at least one key space is broken? Each space is considered
as the basic A -secure Blom scheme, so to break a key space,
an adversary needs to capture A +1 nodes that contain this key
space’s information; otherwise, the key space is still perfectly
secure. This analysis shows when the network starts to
become insecure.

Fig. 4 shows both simulation and analytical results. For
example, o is set to 50, T is set to 4, and the value of A for
each space is 49, an adversary needs to capture about 380
nodes in order to be able to break at least one key space.

o

, Simulation
, Simulation
, Simulation
, Analysis
, Analysis
, Analysis

)

=)
©
3

)

o
o
o

Won T m T
BB U U S
T T TTTT

coooool
P SN TN
EeRChe M R]

00 nnnmn

=

o =] e
o * ~N

o

Pr(at least one space is broken)
b

$=!
w

o
[N

e

o

bbb Elo v:hc”utﬁw>:‘”ﬁJ
300 400 500 600 700
Number of Compromised Nodes

Fig. 4. The probability of at least one key space being compromised

b

100

ik : ‘
0 200 800 900 100

by the adversary when the adversary has captured x nodes (A=49, ® = 50).
p in the figure represents pactual.

IV. IMPLEMENTATION AND DISCUSSIONS

This section presents the implementation of a key
management solution to be integrated in the TinyOS operating
system. TinyOS is written in NesC [11], a C-based language
that provides support for the TinyOS component and
concurrency model. Each component can correspond to a
hardware element (led, timer, ADC, etc.) and can be reused in
different applications. An application is composed by a set of
components linked together to achieve a fixed goal. The
implementation of a component is done by defining a set of
commands, events, and tasks. Figure 5 shows the architecture
of a TinyOS component. TinySec, de facto security
architecture for wireless sensor networks, provides security
properties such as integrity and confidentiality. It is composed
of a set of components linked together. RC5 and Skipjack are
the two cipher components already implemented in TinySec
module. These Cryptographic algorithms are based on block
cipher and use a single shared key. The main object of this
work is to implement an efficient key management scheme
which avoids the reliance of TinySec on a single unsecured
key.

535

Figure 6 depicts the components and the interfaces of
TinyOS used by our proposed scheme. Main is a major
component that is executed first in any TinyOS application.
StdControl is the common interface used to initialize and start
TinyOS components. In the boot sequence, Main will call
Stdcontrol init() and start() functions. In addition, our
application uses a linear-feedback shift register
(RandomLFSR) component to generate pseudo-random
numbers needed by D matrices. As block cipher, we have
chosen the Skipjack component to provide both encryption
and authentication. The choice of Skipjack as a symmetric key
cipher for this system is due to the fact that it has already been
implemented and tested for the Mica2 platform in TinySec.
Also, it is more efficient than RCS5.

Basically, our implementation uses several Timer interfaces
(provided by a Timer component) for handling message
transmission during key establishment phases. To enable
sending and receiving messages our scheme uses the
genericComm component that provides interfaces sendMSg
and receiveMsg. This code reuse in TinyOS saves code space
in ROM as well as data space in RAM because less variables
and cipher contexts have to be defined.

However, one of the major constraints on implementing any
scheme on a sensor platform is the small available payload
size of packets. Under TinyOS specifically, packet payload is
limited to 29 bytes. Each of the symmetric keys deployed in a
node are 8 bytes, which matches the key size used for the
TinySec. In the agreement phase, after finding a common
space, any two nodes that would like to communicate must
exchange their corresponding rows of matrix A. A row of
matrix A contains A values of 8 bytes. So it is difficult to send
all the amount of data using a 29 bytes packet, especially
when A is high. The solution that we have chosen is to
generate 4 keys of 2 bytes instead of computing a unique key
of 8 bytes. To compute a single key of 2 bytes, the rows of A
and G matrices need only to have 8 bit values. If we choose
A<30, sending a single message is sufficient, else, we must
send multiple messages. Because a continuous transmission of
these packets fails in TOSSIM, we employed timers that fire
every 100 ms in our simulations because this provides
sufficient spacing for TOSSIM while still allowing for
maximum channel utilization. Another constraint of sensor
nodes is the small available memory space. In order to cope
with the severe hardware constraints of sensor nodes, TinyOS
only allows for static memory allocation. This makes it very

Commands
=

Events
——

Provides { Interface_A Interface_B

Component

=

_]

Interface_C

Functions Frame

Ve

Uses {

Commands Events

Fig. 5. Architecture of a TinyOS component.

space and time efficient because there is no need for
maintaining an additional data structure to manage the
dynamic heap. This allows using the entire RAM for storing
information. But the downside is that all variables and their
sizes have to be known at compile time which makes working
with dynamic data structures, such as linked lists or hash maps,
almost impossible. Another problem is the amount of
available RAM because some applications may need more
memory, probably just temporarily, than the node offers. This
is where the EEPROM (also called flash) might come in
handy. The flash is mostly larger than the RAM but reading
from it and writing to it are operations needing a lot of time
and energy. These memory constraints lead us to optimize the
use of variables, especially global variables that take a lot of
memory space. When it is necessary to use them, we make
pointers to them to reduce this space.

StdContml

tart/Fiwed

Send/Fecerve

Fig. 6. Components and interfaces used by our proposed solution.

V. EXPERIMENTATION AND PERFORMANCES EVALUATION

In this section, we present experimental results of our
proposed solution in terms of memory overhead and key
computation time. Experiments were conducted with the
TOSSIM simulator [18]. TOSSIM is actually a discrete event
emulator designed specifically for TinyOS applications. It
allows verification of basic properties of applications before
they are loaded into motes for operation in the field. We also
evaluate the average node energy consumption overhead
needed to compute a pairwise key. To achieve this goal, the
PowerTOSSIM simulator [19] is used. It is based on TinyOS
and TOSSIM. PowerTOSSIM makes use of the TinyOS and
TOSSIM component model to instrument hardware state
transitions for the purpose of tracking power consumption.
Simulated hardware components (radio, sensors, LEDs, etc.)
make calls to the PowerState module, which emits power state
transition messages for each component. These messages can
be combined with a power model to generate detailed power
consumption data or visualizations.

A. Parameter setting

In our simulations, we fix the total number of nodes to 100.
The security parameter A=20. The values of ® and t are
chosen in a manner that the network connectivity is very high,

with paewar > 0,9. To improve the accuracy of our results, we
repeated the simulations at least 50 times.

B. Time to compute a pairwise key

To measure the average time for computing a pairwise key,
we use SysTime, a TinyOS component that provides a 32-bit
system time based on the available hardware clock. The
average time to compute a pairwise key was found equal to 6
seconds. This time is very low compared to the time spent by
ECDLP protocol (see Table 1).

C. Memory overhead

In terms of memory space, the implementation of this
scheme on Mica2 motes occupied approximately 14 KB of
ROM, representing 10% of the available ROM and 521 bytes
of RAM which represent only 13% of the RAM.

D. Energy Overhead

The commercially available platforms such as the Mica2
are limited to 128 KB of program memory and 4 KB of RAM
[20]. They are alimented with double AA batteries that offer
energy of 2850 mAh alimented by a 3v power. According to
Equation (2), a sensor node provides a total energy of 30780
joule.

Watt = Joules/ sec = Volt * Ampere (2)

The energy overhead introduced by our application is 417
mj which is negligible regarding the total energy of a mote (<
1%). Therefore, the proposed key management solution is
very efficient and suits well the severe constraints of sensor
nodes. Such efficiency is necessary for any security solution
in wireless sensor devices.

Table 1 shows some comparative results with two well known
key distributions protocols implemented specially for sensor
networks, namely Diffie-Hellman based on the Elliptic Curve
Discrete Logarithm Problem (ECDLP) [3] and the Localized
Encryption and Authentication Protocol (LEAP) [7]. ECDLP
is a public key algorithm used in asymmetric cryptography.
Indeed, elliptic curves are believed to offer security
computationally equivalent to that of Diffie-Hellman based on
DLP with remarkably smaller key sizes. LEAP is a key
establishment protocol designed for symmetric ciphers. LEAP
supposes that no single keying mechanism is appropriate for
all the secure communications that are needed in sensor
networks. As such, LEAP supports the establishment of four
types of keys for each sensor node — an individual key shared
with the base station, a pairwise key shared with another
sensor node, a cluster key shared with multiple neighbouring
nodes, and a group key that is shared by all the nodes in the
network. The experimental values shown for the LEAP
protocol in Table 1 consider only the necessary memory for
establishing pairwise and cluster key between 2 nodes. Since
each scheme has different parameters for measurements, this
is a broad comparison.

536

TABLE I
A COMPARISON SUMMARY OF KEY MANAGEMENT SCHEMES IMPLEMENTED
FOR TINYOS.

ECDLP LEAP Proposed
scheme
ROM (KB) 34.1 17.9 14
RAM (Bytes) 1000 600 521
Time (second) 34 - 6
Energy (joules) 0.9 - 0,417
Table 1 shows clearly that the proposed solution

outperforms ECDLP and LEAP with respect to all criteria.
Our proposed scheme is very memory efficient regarding the
fact that memory space in sensor nodes is very limited and
must be used with care. In terms of key generation time and
energy consumption overhead, Table 1 compares only
between ECDLP protocol and our proposed scheme. The
LEAP protocol has not been evaluated for these metrics. We
can conclude that our proposed scheme is also time efficient:
the time (6 seconds) spent by our scheme to generate a
pairwise key is lower than the time spent by ECDLP (34
seconds) to generate a pair (public/private key). Energy is the
scarcest resource of all and each milliamp consumed is one
milliamp closer to death. As a result, every protocol designed
for sensor nodes must be evaluated in terms of power
consumption to be validated. The evaluation that we have
done demonstrates that our scheme consumes 417 mj which
represent nearly half the energy needed by the ECDLP
protocol.

VI. CONCLUSION

In WSN, the level of security versus the consumption of
energy, computation, and memory resources constitute a major
design trade-off. This paper presents an efficient solution for
the key management problem under the TinyOS distribution.
Performance comparisons with two well known key
establishment protocols show that our proposed solution
exhibits better results in terms of memory, time of
computation, and energy overhead. Although the proposed
solution solves the problem of key establishment facing these
networks, there are still other points to be solved such as the
support of node addition and revocation. Also, an open
problem is to design an energy aware intrusion detection
mechanism to detect compromised nodes in the network.

REFERENCES

[1] 1.F.Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey
on sensor networks”, IEEE Communication Magazine, vol. 40, no. 8,
Aug. 2002, pp. 102-116.

[2] W. Du, J. Deng, Y. S. Han, and P. K. Varshney, “A pairwise key pre-
distribution scheme for wireless sensor networks”, in Proceedings of the
10th ACM Conference on Computer and Communications Security
(CCS), Washington DC, USA, October 27-31 2003, pp. 42-51.

[3] D.J Malan., M. Welsh and M. D. Smith, “A public-key infrastructure for
key distribution in tinyos based on elliptic curve cryptography”, in 2nd
IEEE International Conference on Sensor and Ad Hoc Communications
and Networks (SECON 2004), 2004, pp. 71-80.

[4] R.J. Watro, D. Kong, S. f. Cuti, C. Gardiner, C. Lynn, and P. Kruus,
“Tinypk: securing sensor networks with public key technology”, In 2nd

537

(3]

(6]
(71

(8]

(9]

(1]

[12]

[13]

[14]

[15]

[16

[17]

[18

[19

[20]

ACM Workshop on Security of ad hoc and Sensor Networks
(SASN’04), Washington, DC, October 2004, pp. 59-64.

A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. D. Tygar, “SPINS:
Security protocols for sensor networks”, In Seventh Annual ACM
International ~ Conference on Mobile Computing and Networks
(MobiCom 2001), July 2001.

J. Kohl and B. Neuman, “The Kerberos Network Authentication”
Service (V5). RFC 1510, Sep. 1993

S. Zhu, S. Setia, and S. Jajodia, “LEAP: Efficient security mechanisms
for large-scale distributed sensor networks”, ACM Conference on
Computer and Communications Security (CCS '03), October, 2003, pp.
62-72.

C. Karlof, N. Sastry, and D. Wagner, “Tinysec: a link layer security
architecture for wireless sensor networks”, In SenSys '04: Proceedings
of the 2nd international conference on Embedded networked sensor
systems, ACM Press, 2004, pp. 162-175.

R. Blom, “An optimal class of symmetric key generation systems,”
Advances in Cryptology: Proceedings of EUROCRYPT 84, Lecture
Notes in Computer Science, Springer-Verlag, 1985, 209:335-338.

C. Blundo, A. D. Santis, A. Herzberg, S. Kutten, U. Vaccaro, and M.
Yung, “Perfectly-secure key distribution for dynamic conferences,”
Lecture Notes in Computer Science, 1993, 740:471-486,.

D. Gay, P. Levis, R. V. Behren, M. Welsh, E. Brewer, and D. Culler,
“The nesC Language: A Holistic Approach to Networked Embedded
Systems”, In Proceedings of Programming Language Design and
Implementation (PLDI) 2003, June 2003.

L. Eschenauer and V. D. Gligor, “A key-management scheme for
distributed sensor networks”, In Proceedings of the 9th ACM conference
on Computer and communications security, November 2002.

H. Chan., A. Perrig, and D. Song, “Random key predistribution schemes
for sensor networks” In IEEE Symposium on Research in Security and
Privacy, 2003.

W. Du, J. Deng, Y. Han, S. Chen, and P. Varshney, “A key management
scheme for wireless sensor networks using deployment knowledge”, In
IEEE Infocom’04, 2004.

D. Liu and P. Ning, “Location-Based Pairwise Key Establishments for
Relatively Static Sensor Networks,” in 2003 ACM Workshop on
Security of Ad Hoc and Sensor Networks (SASN’03), October 31, 2003.
S. Hussain, F. Kausar, A. Masood, “An efficient key distribution scheme
for heterogeneous sensor networks”, In proceeding of the International
Conference On Communications And Mobile Computing, 2007.

P. Traynor, R. Kumar, H. Bin Saad, G. Cao and T. La Porta, “LIGER:
Implementing Efficient Hybrid Security Mechanisms for Heterogeneous
Sensor Networks”, in proceeding of ACM MobiSys’06, June 19-22,
2006.

P. Levis, N. Lee, M. Welsh, and D. Culler, "TOSSIM: Accurate and
scalable simulation of entire TinyOS applications", in Proceedings of the
First ACM Conference on Embedded Networked Sensor Systems
(SenSys) 2003, Nov. 2003.

V. Shnayder, M. Hempstead, B. Chen, G. Werner-Allen, and M. Welsh.
“Simulating the Power Consumption of Large-Scale Sensor Network
Applications”, In Proceedings of the Second ACM Conference on
Embedded Networked Sensor Systems (SenSys'04), 2004.
http://webs.cs.berkeley.edu/tos.

[21] Crossbow technology inc. URL: http://www..xbow.com

