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    Wireless sensor networks (WSN) are the subject of widespread deployment in commercial and military environments that call for 
security. Since sensor networks pose unique challenges, traditional security techniques used in traditional networks cannot be directly 
applied. A previous work defines TinySec, a link layer security protocol for TinyOS to provide integrity and confidentiality of 
messages for WSN. However, TinySec employs a simple group key management where a single shared key is stored in each sensor 
node. This makes the network unsecured and vulnerable to attacks. Therefore, TinySec must be enhanced with a more robust key 
management scheme. This paper presents the integration of a proposed key management scheme as a more robust key management 
solution for TinyOS. The more secured TinyOS is evaluated in terms of key computation time, memory, and energy consumption 
overhead. Experimental results demonstrate that the secure key management protocol introduces negligible overhead and does not 
affect the system performance. We also present performances comparison with two well known key distribution protocols, 
implemented specially for sensor networks namely, ECDLP and LEAP.  

 
Index Terms— Key pre-distribution, Security, Sensors networks 

 
 

I. INTRODUCTION 
Research advances in Micro Electro Mechanical Systems 

(MEMS), highly embedded operating systems and wireless 
communications have enabled the realization of wireless 
sensor networks. Typically, WSN are composed of a large set 
(hundreds to a few thousand) of homogeneous nodes with 
extreme resource constraints [1]. Each node is equipped with a 
limited power unit which must aliment processing, sensing, 
storage, and radio communication units. These nodes are 
usually scattered over the area to be monitored to collect data, 
process it, and forward it to a central node for further 
processing.  

The deployment of WSN is becoming more common in a 
wide range of applications ranging from home/health 
monitoring and remote environment observation to vehicle 
tracking and management of commercial inventory.  

Security is one of the most difficult problems facing these 
networks. For certain applications of sensor networks, like 
military applications, security becomes very important. First, 
wireless communication is difficult to protect since it is 
realized over a broadcast medium. In a broadcast medium, 
adversaries can easily eavesdrop on, intercept, inject, and alter 
transmitted data. Second, since sensor networks may be 
deployed in a variety of physically insecure environments, 
adversaries can steal nodes, recover their cryptographic 
material, and pose as authorized nodes in the network. Third, 
Sensor networks are vulnerable to resource consumption 
attacks. Adversaries can repeatedly send packets to drain a 
node battery and waste network bandwidth. In these and other 
vital or security-sensitive deployments, secure transmission of 
sensitive digital information over the sensor network is 
essential. The use of encryption or authentication primitives 
between two sensor devices requires an initial link key 

establishment process, which must satisfy the low power and 
low complexity requirements.  

Currently, the MICA2 mote devices represent the state of 
the art in wireless sensor networks technology based on 
commercial off-the-shelf hardware components [21]. They 
offer an 8-bit, 7.3 MHz ATmega 128L processor, 4 KB of 
primary memory (RAM) and 128 KB of program space 
(ROM) and 512 KB secondary memory (EEPROM), and a 
ChipCon CC1000 radio capable of transmitting at 38.4 Kbps 
powered by 2 AA batteries. Each MICA2 node has a default 
operating system called TinyOS. TinyOS is an open-source 
operating system designed for embedded WSN. It features a 
component-based architecture which enables rapid innovation 
and implementation while minimizing code size as required by 
the severe memory constraints inherent in sensor networks 
[20]. TinySec is a fully implemented protocol for link-layer 
cryptography in sensor networks. It is incorporated into the 
official TinyOS release and provides message integrity and 
confidentiality. However, TinySec employs a simple group 
key management, so if a sensor node is compromised by an 
adversary, overall sensor nodes in the network are likely to be 
compromised. 

In this paper, we focus on the integration of a key 
establishment protocol called the “multiple space random key 
pre-distribution scheme” [2] within the TinyOS operating 
system. This protocol provides very good network resilience 
while respecting the WSN constraints. Therefore, it is 
integrated with the TinySec protocol to avoid relying on a 
single network shared secret key. This protocol 
implementation is evaluated and validated in terms of time for 
pairwise key generation, memory utilization, and especially in 
terms of energy consumption. Experimental results show that 
the security upgrade version of TinyOS performs better than 
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two well known key distribution protocols, implemented 
specially for sensor networks namely, ECDLP and LEAP. 

The remainder of this paper is organized as follows. First, 
we discuss background and related work in Section 2. In 
Section 3 we present an overview of the multiple space 
random key pre-distribution scheme and we give a brief 
analyse of its security. Section 4 describes the implementation 
details. Section 5 presents experimental results. Finally, we 
conclude in Section 6. 
 

II. RELATED WORKS 
When setting up a sensor network, one of the first 

requirements is to establish cryptographic keys for later use 
(encryption and authentication). The inherent properties of 
sensor networks render previous protocols impractical.  

Public Key Cryptography (PKC) such as RSA or Elliptic 
Curve cryptography (ECC) has been proposed for solving the 
problem of key distribution in WSN. However, it is unsuitable 
for most sensor architectures due to its high energy 
consumption and increased code storage requirements. Despite 
this fact, several researchers have been focusing on developing 
optimized implementations of PKC algorithms for sensor 
networks [3], [4]. 

KDC-based schemes are also proposed for WSN. They rely 
on the presence of a resource-rich Key Distribution Center 
(KDC) or base station in the network to act as a trusted arbiter 
for key establishment. Examples of such schemes include 
SPINS [5] and Kerberos [6]. Here, each node needs to share 
only a single key with the base station and sets up keys with 
other nodes through the base station. The memory resource 
load on the sensor nodes is low since the heavy burden is 
placed on the KDC. This arrangement makes the base station a 
single point of failure, but because there is only one base 
station, the network may incorporate tamper-resistant 
packaging for the base station, improving the protection 
against physical attacks. 

Several alternative approaches relying on symmetric key 
cryptography have also been developed to perform key 
management on resource-constrained sensor networks. The 
simplest way is to let the network node share a single secret 
key. Unfortunately, the compromise of even a single node in a 
network would reveal the secret key and thus allow decryption 
of all network traffic. One variant on this idea is to use a 
single shared key to establish a set of link keys, one per pair of 
communicating nodes, and then erase the network wide key 
after setting up the session keys. However, this variant of the 
key-establishment process does not allow addition of new 
nodes after initial deployment. Yet another approach is the full 
pairwise scheme. This approach uses a shared unique 
symmetric key between each pair of nodes. Therefore, this 
scheme is memory-intensive and does not scale up. The 
memory overhead is n-1 cryptographic keys for every sensor 
node. Zhu et al. proposed a protocol named LEAP [7] to help 
establish individual keys between sensors and a base station, 
pairwise keys between sensors, cluster keys within a local area, 
and a group key shared by all nodes. To fully take advantage 
of the information available to the sensor networks, schemes 
using information from the environment were proposed. 

Deployment knowledge about the environment is frequently 
used for a more optimized design. For example, Du et al. 
proposed a key management scheme using deployment 
knowledge [14]. Liu et al. proposed location-based pairwise 
key establishment for relatively static sensor networks [15], 
with the prior knowledge obtained before distributing the 
sensor nodes. The memory usage per sensor is greatly 
improved while the connectivity of the sensor network is 
maintained. 

Other recent work focused on using networks with a 
heterogeneous mix of nodes, and designating nodes with 
greater inherent capabilities and energy as cluster heads in 
order to maximize network lifetime [16], [17]. 

Blom [9] and Blundo et al. [10] proposed respectively a 
matrix and a polynomial key generation schemes. These 
schemes guarantee that any two nodes will be able to perform 
pairwise key, but each of these schemes also involves an Ω(n) 
high memory cost if we require that the system be secure 
against an adversary capable of compromising a fraction λ of 
the total number of nodes. The solution is λ secure, meaning 
that coalition of less than λ+1 sensor nodes knows nothing 
about pairwise keys of others. 

Random key pre-distribution schemes represent another 
major class of key establishment protocols for WSN. 
Eschenauer and Gligor [12] proposed a probabilistic key pre-
distribution technique. Each sensor node receives a random 
subset of keys from the key pool before deployment. Any two 
nodes able to find one common key within their respective 
subsets can use that key as their shared secret to initiate 
communication. Chan et al. further extended this idea and 
proposed the q-composite key pre-distribution [13]. This 
approach allows two sensor nodes to set up a pairwise key 
only when they share at least q common keys. Du et al. 
developed a pairwise key management scheme [2]. This 
scheme combines the random key pre-distribution scheme [12] 
and the Blom scheme [9] to substantially improve network 
resilience against node capture over existing schemes, without 
increasing the memory overhead. This scheme offers a good 
security level while respecting the resources constraints of 
sensor nodes. Therefore, this paper adopts this scheme as a 
key management solution to be used with TinySec protocol [8] 
and implements it to validate its efficiency and feasibility for 
WSN.   

III. OVERVIEW OF THE MULTIPLE SPACE RANDOM  KEY PRE-
DISTRIBUTION SCHEME  

    Since Du et al. scheme [2] provides good network resilience 
with a low memory requirement; this paper focuses on the 
implementation of this protocol for WSN. Next, we briefly 
describe this scheme and discuss the reasons of this choice.  

A.  Blom’s scheme 
In [9], Blom proposes a key pre-distribution scheme that 

allows any pair of nodes to find a common secret between 
them. This scheme has a λ secure property: as long as an 
adversary compromises less than or equal to λ nodes, 
uncompromised nodes are perfectly secure; when an adversary 
compromises more than λ nodes, all pairwise keys of the 
entire network are compromised. 
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Compared to the full pairwise scheme, this scheme is 
efficient in terms of memory consumption: each node in a 
network of size n needs to store only λ+1 elements, with λ<< n, 
but it is not perfectly resilient against node capture. The size 
of an element is that of a secret key. To be more resilient, the 
security parameter λ must be high. However, this can have a 
big memory overhead. Du et al‘s scheme builds on Blom’s 
scheme and combines it with the random key pre-distribution 
method. The goal of this scheme is to improve network 
resilience against node capture without increasing the memory 
size. 

 

B. Key Pre-distribution Phase 
In the key pre-distribution phase, we must select the 

parameters that decide on the level of security of this scheme: 
these parameters are λ, ω and τ (2 < τ < ω). At the end of this 
phase, each node must carry some information to be able to 
compute a key after deployment. This phase is composed of 
three steps: 

 
Step 1 (Generating G matrix): To generate the matrix G of 
size (λ +1)×n, we must chose a primitive element from a finite 
field GF(q), where q is the smallest prime larger than 64 bits, 
the size of  TinySec key, and q > n. Figure 1 shows an 
example of matrix G. Let s be a primitive element of GF(q). A 
node k in the network must carry the kth column of G. Using 
this generator matrix each node will only carry the seed sk. 
 

Step 2 (Generating D matrix): This step consists of generating 
the ω spaces with which we will work. Each space consists of 
a tuple Si=(Di.G), i=1… ω, where Di is a random symmetric 
matrix of size (λ+1)×(λ+1) and G is the matrix generated in 
the first step. Then, ω matrices Ai= (Di.G)T, i=1… ω,  must be 
computed. Let Ai(j) represent the jth row of Ai. 
 
Step 3 (Selecting τ spaces): Each node must choose τ spaces 
from the ω spaces. For any chosen space i the node will carry 
a row from the matrix Ai, and this row must be secret and 
shouldn’t be revealed to other nodes.  
In terms of memory usage, each node needs to store (λ+1)×τ 
elements. Because the length of each element is the same as 
the length of a secret key, the memory usage of each node is 
(λ+ 1)×τ times the length of the key. 
 

C. Key agreement Phase 
After deployment, each node must carry its id, the different 

chosen spaces, and the corresponding rows of matrix Ai. 
According to Blom’s scheme, two nodes can find a common 
secret key if they have both picked a common key space. 
Therefore, to communicate with his neighbours, each node 
must broadcast a message containing his id and the spaces it 
carries. If a neighbour receiving the message finds that it 
shares a common space A with the sender, they can compute 
their shared secret key using Blom‘s scheme. (See Figure 2) 

 
 

This scheme results in a connected graph, rather than the 
complete graph provided by Blom’s scheme. In the case where 
the graph is only connected, each sensor node needs to carry 
less key information. To make it possible to find pairwise keys, 
all we need is to have a connected graph with high probability. 
According to [2], we have this equality: 

 

actualp = 2(( )!)1
( 2 )! !

ω τ
ω τ ω
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Where pactual is the actual probability that any two 
neighbouring nodes share at least one space. It depends on 
selected values of ω and τ.  So, we have interest in choosing a 
high pactual to increase the probability that our network is 
connected. Figure 3 show the values of pactual when ω varies 
from τ to 100 and τ = 2, 4, 6, 8.  For example, when we choose 
τ = 4, ω must not exceed 11 to achieve a high probability of 
connectivity (>0,9). 
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Fig. 1.  Example of matrix G. 

 

Fig. 2.  Example of generating a pairwise key from a common space. 

 
Fig. 3.  Probability of sharing at least one space when each of two 
neighbouring nodes randomly selects τ spaces from ω spaces. 
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The multiple-space key pre-distribution scheme is evaluated in 
terms of its resilience against node capture. The evaluation 
metric is: when x nodes are captured, what is the probability 
that at least one key space is broken? Each space is considered 
as the basic λ -secure Blom scheme, so to break a key space, 
an adversary needs to capture λ +1 nodes that contain this key 
space’s information; otherwise, the key space is still perfectly 
secure. This analysis shows when the network starts to 
become insecure. 
 
Fig. 4 shows both simulation and analytical results. For 
example, ω is set to 50, τ is set to 4, and the value of λ for 
each space is 49, an adversary needs to capture about 380 
nodes in order to be able to break at least one key space. 

 

IV.  IMPLEMENTATION AND DISCUSSIONS 
   This section presents the implementation of a key 
management solution to be integrated in the TinyOS operating 
system. TinyOS is written in NesC [11], a C-based language 
that provides support for the TinyOS component and 
concurrency model. Each component can correspond to a 
hardware element (led, timer, ADC, etc.) and can be reused in 
different applications. An application is composed by a set of 
components linked together to achieve a fixed goal. The 
implementation of a component is done by defining a set of 
commands, events, and tasks. Figure 5 shows the architecture 
of a TinyOS component. TinySec, de facto security 
architecture for wireless sensor networks, provides security 
properties such as integrity and confidentiality. It is composed 
of a set of components linked together. RC5 and Skipjack are 
the two cipher components already implemented in TinySec 
module. These Cryptographic algorithms are based on block 
cipher and use a single shared key.  The main object of this 
work is to implement an efficient key management scheme 
which avoids the reliance of TinySec on a single unsecured 
key.  

Figure 6 depicts the components and the interfaces of 
TinyOS used by our proposed scheme. Main is a major 
component that is executed first in any TinyOS application. 
StdControl is the common interface used to initialize and start 
TinyOS components. In the boot sequence, Main will call 
Stdcontrol init() and start() functions. In addition, our 
application uses a linear-feedback shift register 
(RandomLFSR) component to generate pseudo-random 
numbers needed by D matrices. As block cipher, we have 
chosen the Skipjack component to provide both encryption 
and authentication. The choice of Skipjack as a symmetric key 
cipher for this system is due to the fact that it has already been 
implemented and tested for the Mica2 platform in TinySec. 
Also, it is more efficient than RC5. 

Basically, our implementation uses several Timer interfaces 
(provided by a Timer component) for handling message 
transmission during key establishment phases. To enable 
sending and receiving messages our scheme uses the 
genericComm component that provides interfaces sendMSg 
and receiveMsg. This code reuse in TinyOS saves code space 
in ROM as well as data space in RAM because less variables 
and cipher contexts have to be defined. 

However, one of the major constraints on implementing any 
scheme on a sensor platform is the small available payload 
size of packets. Under TinyOS specifically, packet payload is 
limited to 29 bytes. Each of the symmetric keys deployed in a 
node are 8 bytes, which matches the key size used for the 
TinySec. In the agreement phase, after finding a common 
space, any two nodes that would like to communicate must 
exchange their corresponding rows of matrix A. A row of 
matrix A contains λ values of 8 bytes. So it is difficult to send 
all the amount of data using a 29 bytes packet, especially 
when λ is high. The solution that we have chosen is to 
generate 4 keys of 2 bytes instead of computing a unique key 
of 8 bytes. To compute a single key of 2 bytes, the rows of A 
and G matrices need only to have 8 bit values. If we choose 
λ<30, sending a single message is sufficient, else, we must 
send multiple messages. Because a continuous transmission of 
these packets fails in TOSSIM, we employed timers that fire 
every 100 ms in our simulations because this provides 
sufficient spacing for TOSSIM while still allowing for 
maximum channel utilization. Another constraint of sensor 
nodes is the small available memory space. In order to cope 
with the severe hardware constraints of sensor nodes, TinyOS 
only allows for static memory allocation. This makes it very 

 
 
     Fig. 5.  Architecture of a TinyOS component. 

Fig. 4.  The probability of at least one key space being compromised 
by the adversary when the adversary has captured x nodes (λ=49, ω = 50). 
p in the figure represents pactual. 
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space and time efficient because there is no need for 
maintaining an additional data structure to manage the 
dynamic heap. This allows using the entire RAM for storing 
information.  But the downside is that all variables and their 
sizes have to be known at compile time which makes working 
with dynamic data structures, such as linked lists or hash maps, 
almost impossible.  Another problem is the amount of 
available RAM because some applications may need more 
memory, probably just temporarily, than the node offers. This 
is where the EEPROM (also called flash) might come in 
handy. The flash is mostly larger than the RAM but reading 
from it and writing to it are operations needing a lot of time 
and energy. These memory constraints lead us to optimize the 
use of variables, especially global variables that take a lot of 
memory space. When it is necessary to use them, we make 
pointers to them to reduce this space. 

V. EXPERIMENTATION AND PERFORMANCES EVALUATION 
 In this section, we present experimental results of our 

proposed solution in terms of memory overhead and key 
computation time. Experiments were conducted with the 
TOSSIM simulator [18]. TOSSIM is actually a discrete event 
emulator designed specifically for TinyOS applications. It 
allows verification of basic properties of applications before 
they are loaded into motes for operation in the field. We also 
evaluate the average node energy consumption overhead 
needed to compute a pairwise key. To achieve this goal, the 
PowerTOSSIM simulator [19] is used. It is based on TinyOS 
and TOSSIM. PowerTOSSIM makes use of the TinyOS and 
TOSSIM component model to instrument hardware state 
transitions for the purpose of tracking power consumption. 
Simulated hardware components (radio, sensors, LEDs, etc.) 
make calls to the PowerState module, which emits power state 
transition messages for each component. These messages can 
be combined with a power model to generate detailed power 
consumption data or visualizations. 

A.  Parameter setting 
In our simulations, we fix the total number of nodes to 100. 

The security parameter λ=20. The values of ω and τ are 
chosen in a manner that the network connectivity is very high, 

with pactual > 0,9. To improve the accuracy of our results, we 
repeated the simulations at least 50 times. 

B.  Time to compute a pairwise key 
To measure the average time for computing a pairwise key, 

we use SysTime, a TinyOS component that provides a 32-bit 
system time based on the available hardware clock. The 
average time to compute a pairwise key was found equal to 6 
seconds. This time is very low compared to the time spent by 
ECDLP protocol (see Table 1). 

C.  Memory overhead 
In terms of memory space, the implementation of this 

scheme on Mica2 motes occupied approximately 14 KB of 
ROM, representing 10% of the available ROM and 521 bytes 
of RAM which represent only 13% of the RAM.  

D. Energy Overhead 
The commercially available platforms such as the Mica2 

are limited to 128 KB of program memory and 4 KB of RAM 
[20]. They are alimented with double AA batteries that offer 
energy of 2850 mAh alimented by a 3v power.  According to 
Equation (2), a sensor node provides a total energy of 30780 
joule. 

 
Watt  Joules /  sec  Volt *  Ampere = =  (2) 

 
The energy overhead introduced by our application is 417 

mj which is negligible regarding the total energy of a mote (< 
1%). Therefore, the proposed key management solution is 
very efficient and suits well the severe constraints of sensor 
nodes. Such efficiency is necessary for any security solution 
in wireless sensor devices. 

 
Table 1 shows some comparative results with two well known 
key distributions protocols implemented specially for sensor 
networks, namely Diffie-Hellman based on the Elliptic Curve 
Discrete Logarithm Problem (ECDLP) [3] and the Localized 
Encryption and Authentication Protocol (LEAP) [7]. ECDLP 
is a public key algorithm used in asymmetric cryptography. 
Indeed, elliptic curves are believed to offer security 
computationally equivalent to that of Diffie-Hellman based on 
DLP with remarkably smaller key sizes. LEAP is a key 
establishment protocol designed for symmetric ciphers. LEAP 
supposes that no single keying mechanism is appropriate for 
all the secure communications that are needed in sensor 
networks. As such, LEAP supports the establishment of four 
types of keys for each sensor node – an individual key shared 
with the base station, a pairwise key shared with another 
sensor node, a cluster key shared with multiple neighbouring 
nodes, and a group key that is shared by all the nodes in the 
network. The experimental values shown for the LEAP 
protocol in Table 1 consider only the necessary memory for 
establishing pairwise and cluster key between 2 nodes. Since 
each scheme has different parameters for measurements, this 
is a broad comparison.  
 

 
 
     Fig. 6.  Components and interfaces used by our proposed solution. 
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Table 1 shows clearly that the proposed solution 
outperforms ECDLP and LEAP with respect to all criteria. 
Our proposed scheme is very memory efficient regarding the 
fact that memory space in sensor nodes is very limited and 
must be used with care. In terms of key generation time and 
energy consumption overhead, Table 1 compares only 
between ECDLP protocol and our proposed scheme. The 
LEAP protocol has not been evaluated for these metrics.  We 
can conclude that our proposed scheme is also time efficient: 
the time (6 seconds) spent by our scheme to generate a 
pairwise key is lower than the time spent by ECDLP (34 
seconds) to generate a pair (public/private key). Energy is the 
scarcest resource of all and each milliamp consumed is one 
milliamp closer to death. As a result, every protocol designed 
for sensor nodes must be evaluated in terms of power 
consumption to be validated. The evaluation that we have 
done demonstrates that our scheme consumes 417 mj which 
represent nearly half the energy needed by the ECDLP 
protocol. 
 

VI. CONCLUSION 
   In WSN, the level of security versus the consumption of 
energy, computation, and memory resources constitute a major 
design trade-off. This paper presents an efficient solution for 
the key management problem under the TinyOS distribution. 
Performance comparisons with two well known key 
establishment protocols show that our proposed solution 
exhibits better results in terms of memory, time of 
computation, and energy overhead. Although the proposed 
solution solves the problem of key establishment facing these 
networks, there are still other points to be solved such as the 
support of node addition and revocation. Also, an open 
problem is to design an energy aware intrusion detection 
mechanism to detect compromised nodes in the network. 
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TABLE I 
A COMPARISON SUMMARY OF KEY MANAGEMENT SCHEMES IMPLEMENTED 
FOR TINYOS. 

 ECDLP LEAP Proposed 
scheme 

ROM (KB) 34.1 17.9 14 
RAM (Bytes) 1000 600 521 
Time (second) 34 - 6 
Energy (joules) 0.9 - 0,417 
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