Confidential: not for distribution. Submitted to IOP Publishing for peer review 15 February 2011

Exploitation of the EDF scheduling in the wir eless sensor s networks
Rym CHEOUR?, Sébastien BILAVARN?, Mohamed ABID*
1 CESlab, National School of Engineers of Sfax, Sfax, Tunisia
2 LEAT, University of Nice-Sophia Antipolis, CNRS, Nice, France
rym.cheour@cesl ab.org, mohamed.abid@ces ab.org
Sebastien.BILAVARN@unice.fr

Abstract

Today, thanks to the recent advances in wireless technology, new products using wireless sensor networks are
employed. However, despite the excitement surrounding the wireless sensor networks, its entry into force, is not
immune to the problem of energy consumption. To overcome this deficiency and to enhance the rea time aspect, a
growing interest lies in the implementation of an “Earliest Deadline First” (EDF) scheduler. Thus, we will establish
amanagement policy of periodic tasks that is preemptive, multiprocessor and dynamic. Our target isto implement a
real-time scheduling policy as a part of a user-level threads package under the Linux operating system since Linux
does not support EDF. Furthermore, this paper describes the technique of the EDF scheduler and how it can yield to

significant power savings.

Key words: rea time scheduling, EDF, WSN, energy consumption, Linux scheduler

1 Introduction

The network technologies of wireless sensors have
become a globa trend in communication, mobility
and research of flexible implementation. With these
advantages, these networks are undoubtedly among
the principal vectors of development of embedded
real time systems[1]. Because they control or monitor
real time processes, they must be able to respond to
requests within a certain time limit. Confined
essentidly to autonomous applications and small
networks where man could hardly intervenes, the
energy supply appears to be, therefore, the highest
priority in the design and development of sensor
networkg 2]. In fact, it poses several challenges that
the real-time scheduling seems to take up[3]. In the
other hand, sensors networks are commonly used in
environments where the guarantee of the response
time is vital. The system must be flexible enough to
cope with a dynamic and changing environment and
to be able to meet its deadlines and to detect temporal
conflicts, caused by different resources. Besides,
meeting temporal deadlines leads to many problems
that rea-time scheduling can solve [3]. Once
confined to alimited role and thanks to its impact on
minimizing the consumption of energy, especially for
sensor networks, scheduling is now a basic entity of
the development of real time systems. Currently, the
use of multiprocessor solutions for sensor networksis
not obvious. However, as perspective in our work we
am to manage complex applications (video
processing and others). A scheduling algorithm is
perceived as a set of rules that select the task to run at
any time during the life of a system [4]. Therefore,

we can consider scheduling as an agorithm that
allocates the basic units of time called time quantum.
A strict red-time system is essential to ensure the
respect of deadlines for each task. The deadlines
consist of run-ability constraints (each task must be
completed before the next request) [4]. Thus, a
scheduling policy is applied to check the deadline of
each task, the materid constraints and the
dependencies among data. In this paper, the EDF
scheduler aims at evaluating a task set with given
properties in terms of schedulability and compliance
with given execution time constraints. It exactly
consists in implementing and estimating such policy
in an operating system, such as Linux.

The remainder of this paper is organized as follows.
In the first section, we introduce Linux’s most
important abstraction, the process or the task model
for basic process management including the
scheduling [5]. Then, we discuss an issue related to
the specific policies of energy’s management in the
sensors networks. The following section deals with
the fundamentals of the EDF. Next, we will give a
concise overview of the Linux process scheduler, its
scheduling algorithm and its API. Furthermore, we
outline the experimentation and the results observed
within the scheduler. Also, we compare the
performances of our scheduler developed on Linux
with the results obtained with the simulation tool for
multiprocessor scheduling STORM [6].

2 State of art

The majority of scheduling strategies uses the
concept of task. Several models of recurring real-
time tasks have been defined. Belonging to one of



these families influences strongly how the system
will operate and particularly the type of the algorithm
to use. We will try to give a glance about the task
models and an overview of different techniques that
reduce energy consumption.

2.1 Tasks models

Tasks can be grouped into three families: periodic,
aperiodic and sporadic. The simplest and the most
fundamental model is provided by the periodic task
model of Liu and Layland [4]. The periodic tasks are
those which processing is repeated on aregular basis
such as the regular monitoring of the state of a
physical sensor or sampling of the serid
communication line.

T; a periodic task is characterized by the quadruplet
(Oi, Ti, Di, C|)[7], where:

- The date of arrival O;, is the moment of the first
activation of thetask T;

- Time of execution C; specifies an upper limit of the
time of execution of each task ;.

- The relaive deadline Di denotes the separation
between the arrival of the task and the deadline (a
task that arrives at timet has a deadline at t+D;);

- A period T; denoting the duration between two
successi ve activations of the same task.

2.2 Power consumption

The CMOS (Complementary Metal Oxide
Semiconductor) is the dominant technology in
electronic circuit. So, the power consumed is divided
into two parts which are the static and the dynamic
power. In CMOS, the dynamic power presents 80-85
% of the whole consumption [3]. Most of the times,
we consider that the static power of the core is
negligible [9]. In this condition the total power
consumption is as done in the following equation:
P=aCV?F (1)
Therefore, the dynamic power consumption is a
function of C which isthe total capacitance of all the
circuits that need to be charged during signa
transitions. V is the supply voltage applied to the
devices, F is the operating frequency and o is the
switching activity.
2.3 Optimization of energy consumption

The wireless sensor must be fitted with a battery-
powered covering several years and offering total
energy independence. Notwithstanding, the battery
technology is not progressing fast enough to satisfy
their requirements [8]. Different solutions are
possible to minimize the energy consumption of
WSN. Autonomous power supplies can be well
designed to capture tiny amounts of energy from their
environment. Even when available, energy-efficient

products become essential to reduce thermal losses
evacuated by expensive means of cooling which are
responsible for failure. This approach requires low-
power efficient components of energy. Seeming
trivial, the process is often complex. The first
parameter we mention is the consumption in normal
times of the processor, the sensor, the radio
transceiver and others components such as externa
memory and peripherals[2].

2.3.1 Static power consumption

Many methods can reduce the activity of these
circuits such as clock gating or management of low-
power modes. The clock gating can cut parts of the
clock tree to avoid switching of unused parts of the
circuit [2]. However, it isimpossible to control all the
unnecessary commutations [8]. But, if the scheduler
is not suitable, the significant energy savings are
achieved at the expense of the system responsiveness.
Indeed, stopping and restarting clocks cause latencies
and increase consumption. The difficulty is to know
what should be done to avoid compromising the
processing of an outside event while minimizing the
amount of energy expended. The use of these
methods is often optimal. Therefore, it is necessary to
use a scheduler which includes tasks execution
wherever possible and in return has long periods of
inactivity[2].

2.3.2 Static power consumption

QDI “Quasi Delay Insensitive” circuits are a class of
amost delay insensitive asynchronous circuits which
are invariant to the delays of any of the circuit's
elements [10] [11]. The synchronization between the
blocks is done locally by requests /acquittals. So,
only the parts of the circuit making a calculation have
an activity. The rest of the circuit consumes very
little energy and wakes up immediately when it is
requested. This decreases the consumption and
reduces the dynamic consumption significantly. This
particular property is exploited to manage the levels
of voltage circuit DVS “Dynamic Voltage Scaling”
effectively. Indeed, the dynamic adjustment of
voltage (DVS) is a very important technique to
reduce energy consumption [12].

2.3.3 Dynamic Power management

Most of microprocessor systems are characterized by
a variable amount of calculations in time. Thus, the
Dynamic Power Management (DPM) is a technique
that reduces the consumption on the system level
which, judiciously and selectively, decides to place
certain parts of the system in modes (or states) known
as low consumption. This comes from the finding
that the systems are often conceived and dimensioned
for loads and performances peaks which are far from
being reached most of the time. While cutting off the



supply or the clock dynamicaly of the unused
resources of the system, the DPM exploits the phases
of rest to decrease the static consumption in the
system. If the energy and performance overheads in
sleep-state transition were negligible, then a simple
greedy algorithm that makes the system enters the
deepest dleep state when idling would be perfect [13].
The DPM, in generd, is not atrivia problem. Indeed,
the cost of transitions between the states is a little
expensive from the energy point of view [14].

2.3.4 Dynamic voltage and frequency scaling

The appearance of variable voltage processors has led
to greater autonomy and energy savings. Dynamic
voltage and frequency scaling (DVFS) is an effective
technique for reducing CPU energy. The DVFS tries
to combine the performance and the lifetime of the
battery. A number of modern microprocessors such
as Inte’s XScale and Transmetas Cruso are
equipped with the DVFS functionality[3]. The first
feature of this technique provides high performance
only for a short time reduced, while the rest of the
time alow CPU power is largely sufficient [13] [14].
Most micro-processor systems are characterized by a
time-varying computational load. DVFS exploits the
CMOS property that a linear reduction in the supply
voltage results in a cubic reduction in the power
consumption at the expense of alinear slow down in
the processor frequency [12]. It is better thus to run
the processor at the weakest frequency compatible
with the necessary performance level. When used a a
reduced frequency, the processor can operate at a
lower supply voltage.

As wireless sensor networks interfere in a growing
number of applications ranging from simple
environmental monitoring like temperature detection
to complex calculation such as video processing. This
last type of application requires a high load at the
sensor level and leads to a problem of optimization. It
is in this perspective that EDF DVFS technique is
justifiesitself.

2.4 Impact of the scheduling policy

By using tasks scheduling, we try to combine the
minimization of the consumption of the processor
and to ensure a maximum of performance to users. In
addition, the strategies of scheduling reduce the
consumption of energy considerably while they
reduce also the frequency of the processor [15]. It is
possible to optimize the lifetime of the network at
different levels. As a node has a very low activity
within the network, it is desirable from the standpoint
of consumption, and therefore the lifetime of the
network, to reduce the electrica activity of the
circuits, particularly in periods of inactivity [2]. Thus,
it is necessary to characterize the activity of the

wireless sensors network in terms of maximum
number of instructions and deadlines so as to
schedule them and to calculate the minimal speed of
the processor required to comply with time
congtraints. As this speed increases considerably due
to the intense solicitation of multiple tasks per
processor, we notice that simultaneously, energy
consumption increases.

2.5 Earliest Deadline First ( EDF)

The algorithm “Earliest Deadline First” (EDF) [4] is
a preemptive real time and it uses a dynamic priority
scheduling algorithm. It assigns priority to each task
depending on the deadline. As the deadline of a task
is closer, its priority is higher. In this way, the more
quickly the work must be done, the more chance it
has to be executed. This adgorithm is proved to be
optimal in the sense that if a system of tasks can be
sequenced using any policy of assigning priorities,
the system can aso be sequenced with the EDF
algorithm [16]. The study of schedulability gives a
necessary and sufficient condition formulated by the
following theorem: a system of periodic tasks can be
sequenced using the EDF algorithm if and only if:

NCENE
i=1

m represents the number of the processor.

Moreover, the ins and outs of this scheduler represent
its ability to ensure a maximum occupancy of the
CPU up to an upper limit of 100% CPU utilization
[17].

The EDF scheduler combined with an algorithm of
voltage and frequency management "DVFS'
(Dynamic Voltage and Frequency Scaling) can
calculate the frequency applied to the processor and
subsequently adapt it to the parameters of each task
[18]. Knowing the worst case execution of the task,
we can predict that the next invocation will not
exceed the deadline. Furthermore, we can take
advantage of the idle time tasks to reduce the speed.
Thus, a small decrease of the frequency slows the
circuit dlightly, but it can reduce the energy
consumption significantly. Moreover, it is aso
possible to vary dynamicaly the voltage and the
frequency of a circuit depending on its activity to
reduce consumption [11]. Since, the good
management of processes governing the sensor
network is proved to be necessary, even crucial.

2.6 EDF scheduler in TinyOS

An interesting way to reduce consumption in sensor
networks was originally proposed with TinyOS
developed at Berkeley University [19]. TinyOS is an
event-driven operating system that is confined to
specific applications of wireless sensors networks



[19]. It does not have space kernel-user and does not
allow dynamic allocation of tasks. In addition, the
mechanism of preemption between tasks is absent.
What may cause various problems such as starvation
and monopolizing the processor at the expense of
other tasks. Similarly, it should also be noted that the
scheduler is fixed and it is impossible to modify. A
non-preemptive  EDF  agorithm  has  been
implemented with TinyOS. However its complexity
and its static and non-preemptive property have
limited its performance. Therefore, Linux seems to
suit better the implementation of the EDF scheduler.

3 Proposed technique for the processes
management

The design process for a rea-time application
involves splitting the application code into tasks. A
task, aso called athread, is an infinite loop that has
its own stack area, its own set of CPU registers, its
own purpose and a priority assignment based on its
importance. A running Linux application is
composed of one or more tasks. The kernel of a
Linux system is essentia to execute the tasks and to
let them interact[20]. As the kernel has always the
highest priority, it is necessary to pay attention to the
response times of the scheduler which is located in
user space. The reason to develop in user spaceisthat
it ismuch easier than in kernel space and it will alow
us to evaluate the energy profits by measuring
consumption on a board.

3.1 Multithreaded programming

Multitasking or multithreading is the process of
scheduling and switching the CPU (Centra
Processing Unit) between several tasks; a single CPU
switches its attention between several sequentia
tasks. Multithreaded programming is the art of
programming with threads. The most common API
on Linux for programming with threads is the API
standardized by IEEE Std 1003.1¢c-1995 (POSIX
1995 or POSIX.1c). Developers often call the library
that implements this API pthreads 5][20] [21].

3.2 States of tasks

The proposed technique provides various task types.
Hence, as the multitasking system runs, we assign for
each task one of these four states: running, ready for
execution, waiting or terminated as shown in figurel.
The transition from one state to another is done
through system calls or a decison made by the
scheduler. When a multitasking kernel decides to
move the running task to another state and to give
control of the CPU to a new task, a context switch
should be performed [15].

Admitted

v
I’ID » E\{ent o ”D wart
completion Wait

Figure 1: States of atask.

A new released task is ready when it can execute but
its priority is less than the currently running task. A
task is running when it has control of the CPU. A
task is waiting for an event when it requires the
occurrence of an event. Findly, a task is interrupted
when an interrupt has occurred and the CPU isin the
process of servicing that interrupt.

3.3 Case study Linux: scheduler

Unfortunately, Linux is not in fact areal-time system.
Indeed, the Linux kernel is based on the concept of
timeshare and not real time. Severa technica
solutions are aready available to improve the
behavior of the kernel to make it compatible with the
constraints of a real time system [5] [20] [21].
Respectively, the technical solutions available are
divided into two categories:

Exit

Scheduler Dispatch

Interrupt

1. The patch called "preemptive” to improve the
behavior of the Linux kernel by reducing its latency.
Those changes do not transform Linux kernel into a
hard real time system. Y et, we can obtain satisfactory
results in the case of soft real time constraints.

2. The real time auxiliary kernel believing that the
Linux kernel is not realy areal time one: developers
of this technology add to this core a true “red-time
scheduler” with fixed priorities. This auxiliary core
addresses real-time tasks directly and delegates other
tasks to the Linux kernel, being a lower priority task.
This technique alows the introduction of hard real-
time systems.

3.4 Scheduling policies under Linux

The scheduler is the part of a kernel that decides
which runnable process will be executed next by the
CPU. The Linux scheduler offers three different
scheduling policies, two for real-time applications
and one for other processes. A preprocessor Macro
from the header <sched.h> represents each policy:
the macros are SCHED FIFO, SCHED_RR, and
SCHED_OTHER defined in the standard POSIX.b.
SCHED_OTHER (default) which is a new
scheduling time-shared tasks and which aso is used
by most processes. SCHED_FIFO and SCHED_RR
are provided for rea-time applications that require



precise control of the selection process [5][20][21]. A
static priority value sched_priority is assigned to each
process and this value can be changed only via
system calls. For norma applications, this priority is
always 0. For the red-time processes, it ranges from
1 to 99. The Linux scheduler aways selects the
highest-priority processto run.

3.5 Processor affinity

Processor affinity refers to the tendency of a process
to get scheduled constantly on the same processor. As
Linux supports multiple processors in a single
system, the scheduler must ensure full use of the
system’ processors, because it is inefficient for one
CPU to sit idle while a process is waiting to run [5].
On a symmetric multiprocessing (SMP) machine, the
process scheduler must decide which processes run
on each CPU. SMP lets multiple CPUs share the
same board, memory, I/O and operating system.
Nevertheless, each CPU in a SMP system can act
independently. Due to the design of modern SMP
systems, the caches associated with each processor
are separate and distinct.

4 Experimentation

The principle of the EDF policy is to execute the
tasks according to their urgency [2]. In contrast, the
unavailability of EDF on Linux is not necessarily
prohibitive for its use. Certainly, it is possible to
implement EDF in the application level as a"leader"
task able to schedule the activities of the system. We
apply the SCHED-FIFO policy to the first N tasks
ready to be executed. The scheduler places all
runnable processes on a ready list. Once a process
has exhausted its time dice, it is removed from this
list. EDF can assign a dynamic priority to these tasks
in the queue. The end of the execution of atask or its
new arriva in the system leads the scheduler to select
among all tasks ready to run one whose deadline is
the closest. Moreover, the agorithm looks for the
shortest deadline in each invocation of the scheduler.
In this case, this task is provided with the highest
priority. It will be executed immediately and it will
be dlocated to the available processor. Besides,
priorities are assigned on dynamic parameters.
However, atask can be accomplished only if all tasks
which have smaler deadlines completed their
execution or are not active yet. The notion of
periodicity in Linux doesn't exist. So, in the
development of our scheduler we ought to introduce
this concept.

The scheduler must be preconceived intelligibly and
should be portable and adequate to time constraints.
Therefore, this work ams at implementing an
architecture formed by different packages:

» A package called "application" representing the
threadsin question.

A package called "scheduler" governing the
functioning of the EDF agorithm.

» A package called "utilities’ that contains the basic
functions of the scheduler.

4.1 Application

More and more applications take advantage of the
high performance of threads. It maximizes the
utilization of the CPU, increases the speed of the
response time and improves the structure efficiency
and design of our scheduler. On a multiprocessor
system, each thread can be executed on one processor
increasing then significantly the speed of execution.
A thread has a data structure which contains the
characteristics of thetask. It is shared by all tasks and
is used especialy by the scheduler for the arbitration
of the needs and the resource demands. Therefore,
the parameters of each thread allow, for example,
supervising the behavior of the system. The runtime
behavior of a task does not depend on the others.
Table 1 shows the attributes of the threads with a
hardware architecture composed of two processors
and a software architecture composed of 4 periodic
independent tasks.

Table 1: Example Task Set

TO Tl T2 T3

WCET 8 7 10 9
PERIOD 20 15 25 14
DEADLINE 0 0 0 0

We assume that the deadlineis equal to the period.
4.2 Utilities

Linux implements its own functions to handle time
features. It includes setting and retrieving the current
time, calculating elapsed time, sleeping for a given
amount of time, performing high-precision
measurements of time and controlling timers [5].
This phase covers the data structures representing the
time-related cores. It provides extreme flexibility in
terms of time management and also in the assignment
of the avalable processors to the ready tasks
according to Linux settings.

Otherwise, the operating processor may include
periods of inactivity that leads to unnecessary waste
of energy. To maximize the performance and the
efficiency of the scheduler, we use this idle time to
run other high priority tasks. Alternatively, we
actuate those processes to sleep and awake them only
when needed, freeing the processor for other tasks.
The synchronization mechanism used here to suspend
and resume task executions is based on pthread
conditions.



3 The scheduler

The kernel provides a mechanism to ensure a
multitasking behavior [3]. This guarantees the
equitable distribution of the access to CPUs by the
various tasks. A process may need the CPU for
example, for caculations, for triggering an
interruption, etc. Most hardware components,
especialy the CPU of a computer, are not able to
perform multiple treatments simultaneously. The
choice of the next "Running" task is the responsibility
of the scheduler. A good implementation of the
scheduler should not excess a few microseconds to
process and provide low response time.

Figure 2 illustrates an example of execution that
follows these steps:

 Several tasks become ready to run
» The threads are queued according to their priorities
inthe ready list

* |f there are more ready threads to run than CPUs,
the scheduler will use thread priorities to decide
which one runs first.

A Ready queue CPU board
Thread0 Li
Thread3 Inux Thread3
Scheduler crU1
Threadi [ “Thraadi \

Threadl
Threadd Uz

Thread2

3

Thread2
Thread3

Figure 2: Example of execution
5 Results and test of the EDF scheduler

Achieving the EDF scheduler was initially preceded
by the implementation of a test application in C
language based on some POSIX threads. We take an
example task set, composed of four periodic tasks
whose parameters are shown in Table 1. Those tasks
are independent and are assigned to a platform made
of two processors. We have defined a specific
structure of task which contains the necessary
information for the scheduler such as the “actual
execution time”’ (aet), the state of the task (ready,
waiting...), the next deadline and incorporating a
WCET “Worst Case Execution Time”, aperiod and a
deadline etc, as shown in figure 3. Thus, we have
considered the same task set as it is done with
STORM. Moreover, this setting alowed us to
eva uate the correctness and the performance of the
user space scheduler. It is important to note that a
false sequence of execution affects the functioning of
the system and slows down its performance.

Typedef struct task
pthread (posix thread, ypedef struct_mytask {

mutex, cond) Short task_id;

signal (suspend thread) double wret;

double beet;
sched (SCHED_FIFO, priority,

onActivate —, CPU_SET) double aet;
double deadline;

Platform double next_deadline;
AET {epufreq, double period;

acmprncm\‘ double begintime;

or states)

double endtime;

onBlock — select() — EDF_P_Sche double preemptdelay;

Period duler pid_t pid;
(deadline) /
onUnBlock —» «— select()

On Terminated enum state_t state;
pthread_mutex_t mut_wait;

unsigned int rt_prio;
unsigned int cpu;

Task execution pthread_cond_t cond_resume;
pthread_t *pthread;
} mytask;

Figure 3: Scheduler architecture
5.1 Results

By adding monitoring data to the code, we have been
able to rectify incorrect executions (e.g. improper
shutdown of atask, exceeding the period, etc.). Asa
result, we succeeded in establishing a scheduling
policy executing from the Linux user space that is
dynamic, preemptive and accurate. The time
overhead added by the scheduler never exceeds
0.01second. Indeed, a high solicitation could affect
the real-time capabilities of the system that may not
respond within the time limit. Taking into account the
time constraints, which is as important as the
accuracy of the results, entails not only to deliver
accurate results, but aso to meet the deadlines.
Moreover, the tasks have to meet the condition of
schedulability of equation (2) to be valid.

As a matter of fact, an aspect of paraleism appears
during the execution and offers a high level of
performance. The obtained results respect the
priorities alotted to each task and are conform to the
EDF policy: every task changes its priority
proportionaly with the approach of its deadline.
Being multiprocessor, our strategy of scheduling will
be given the responsibility to distribute these tasks
between two processors. Besides, the scheduler
attempts to schedule the same processes on the same
processors for as long as possible in accordance with
the processor affinity. We have assigned to the first
processor the first two tasks and to the second one the
other tasks. Theresult is that the task 1 and task 2 run
only on CPU 1 and the other processes run on the
other processor. Moreover, we compare the results of
the execution with the parameters of the tasks aready
established. We raise the state of the task and we
announce aso the process ID (each process is
represented by a unique identifier: PID), the priority,
its start and the end time. This approach enabled us to
have a comprehensive view of the scheduler.
Equipped with a dynamic priority, if a process is
running with a high priority the scheduler will



immediatel y preempt the running process, and switch
to the newly runnable process. When atask ends and
the field “onTerminated” is set to 1, the ready list
changes involving a new sequence in accordance
with the foundations of the EDF agorithm. Without
changing any parameter of the scheduler, it should be
noted that the results are consistent from one
simulation to another. This shows the correctness of
our implementation choices in particular for
preemptions.

5.2 Simulation with STORM

To verify the scheduling results, we have used a
simulation tool called STORM (Simulation TOol for
Real time Multiprocessor scheduling)[23][24]. The
original need to develop STORM came from the
works of the IRRCyN research unit* .

This simulator considers the requirements of tasks,
the characteristics and execution conditions of
hardware components and the scheduling rules.
Depending on the scheduling policy and the
resources described in a XML file, it runs every task
over a specified time interval [4]. The results of the
simulation are a set of diagrams as illustrated in
figure 4. All these diagrams permit analyzing the
behavior of the system (tasks, processors, timing,
performances ...).

Ubrary

Software
components

Hardwara
components

salcallca

Figure 4: The STORM simulator [6]

A window displays a Gantt diagram of every task
over an interval from O to 50 (default values). The
title of the window refers to the name given to the
task in the XML file (PTASKT1, PTASKT2...). In
two other diagrams, we can observe the tasks
assigned to processors CPUA and CPUB over the
same interval. We can verify the alocation of tasks
on processors according to their availability and to
the priorities. Preemption is also supported by this
simulator. That feature reduces the latency of the
system when reacting to real-time or interactive

1

The development of STORM came from the works of the
PHERMA research project ("Parallel Heterogeneous Energy
efficient  Real-time ultiprocessor  Architecture” (see
http://pherma.irccyn.ec-nantes.fr).

events by alowing low priority processes to be
preempted. Preemption helps aso, to satisfy the
constraints especially the rea time constraint.

Figure5: Resultswith STORM

Moreover, STORM allows multiprocessor simulation
and analyzes energy consumption based on
estimations. This ssimulator also provides support for
DPM techniques but not DVFS. Being under
development, a preliminary study of this tool has
been necessary to determine its operation before any
action of implementation. To facilitate the
development and the checking of the best
performance, the development of the scheduler was
based on the specification of the EDF scheduler of
STORM. Indeed, we tested its performances by
considering four tasks as it is described in figure 5.
Sorting the queue of the ready tasks will be in
ascending order of deadlines which are characteristic
of tasks entered in the XML specification. Indeed, the
first activation (onActivate) and the following
activations (onUnblock) will induce an addition of
the corresponding task to the ready queue, whereas
the events of termination of jobs (onBlock) or of task
(onTerminate) correspond to a reection of the
corresponding task from the ready tasks queue.
According to this first evaluation, we note that
STORM checks initially the utilization ratio of
processors and then assign the tasks so that they can
run in parallel. In the simulation, we consider that al
processors are identica and of type’ CT11MPCore”.
However, we note that some tasks switch from one
CPU to another unlike their execution with Linux
such as the task 3. The STORM EDF scheduler
follows the EDF policy but it proceeds differently.



Therefore, we should draw attention to the fact that
this ssimulation engine relies on the priority of the
tasks more than on the processor affinity.

6 Conclusion

The most substantiad challenge of designers in
wireless sensor networks remains always how to
reduce the energy consumption in order to maximize
the lifetime of the nodes. Therefore, we were
interested in ensuring a judicious sharing of the
energy resources through the DVFS and DPM
techniques. We developed an EDF scheduler working
in the “user space” level under Linux, so that we can
extend it to the use of these techniques and to be able
to try the strategies and to measure the energy gain
on some boards. Besides, the time management and
the task scheduling are required to enhance
performance and to improve predictability of the
wireless sensor networks. This requirement has led to
the wide availability of operating systems executing
schedules where deadlines are met. Thus, scheduling
algorithms provide a reliable mean to save the power
consumption by trading off the energy against the
fidelity and predicting the computation requirements
of each task. We have elucidated in this paper the
various steps taken for the specification, the
development and the impact of the implementation of
the EDF scheduler under the Linux operating system.
The mgor advantage of Linux is the availability of
many APl that facilitates the development and make
experimentation easier on boards. It guarantees aso a
deterministic and an optimum task-level response. In
addition, it streamlines applications development in
complex systems. On the other hand, we have
compared the correctness of execution with the
simulation multiprocessor scheduling tool STORM.
A futuristic approach would be to consider an
algorithm which applies a couple of voltage and
speed to the processor depending of the state of tasks
in the system. Future works will be to extend this
scheduler to exploit DVFS and DPM techniques.
This will permit evaluating the power by measuring
power consumption on concrete development board.

7 References

[1] David Culler, Deborah Estrin and Mani Srivastava.
“Overview of Sensor Networks”. In IEEE Computer, vol. 37,
no. 8, pp 41-49, August 2004.

[2] Aurélien Buhrig, Marc Renaudin, « Gestion de la
consommation des noeuds de réseau de capteurs sans fil »,
National Symposium of GDR SOC-SIP, 2007.

[3] David Decotigny. « Bibliographie d'introduction a
I’ ordonnancement dans les systémes informatiques temps-réel
». Technical report, INSA Rennes, 2002

[4] C.L.LiuandJ. W. Layland. “Scheduling algorithms for
multiprogramming in a hard-real-time environment”. ACM,
20(1):46-61, January 1973

[5] Robert Love, “Linux System Programming”’, O'Reilly
Media, Septembre 2007.

[6] STORM: http://storm.rts-sof tware.org/doku.php

[7] A. Burns and A. J. Wellings. “Real Time Systems and
Programming Languages’. Addison Wesley Longman, 4th
edition, 2009.

[8] Aurélien Buhrig, «optimisation de la consommation des
noauds de réseaux de capteurs sans fil», PhD. Thesis, Institut
National Polytechnique of Grenoble, Avril 2008.

[9] Andrea Castagnetti, Cécile Belleudy, Sébastien Bilavarn,
Michel Auguin, “Power consumption modeling for DVFS
exploitation”, 13th Euromicro Conference on Digital System
Design: Architectures, Methods and Tools,p579-586, 2010.
[10] K. Van BERKEL. “Beware the isochronic fork.
Integration”, the VLSI journal, 13(2): 103-128, 1992.

[11] A.J. MARTIN. “The limitations todelay-insensitivity in
asynchronous circuits’. In William J. Dally, editor, Advanced
Research in VLSI, pages 263-278. MIT Press, 1990.

[12] F. Bouesse, M. Renaudin, A. Witon, F. Germain, “A
Clock-less low-voltage AES crypto-processor”, European
Solid-State Circuits Conference (ESSCIRC 2005), Grenoble,
France, September, 12th — 16th, 2005, pp. 403-406.

[13] Amit Sinha, Anantha Chandrakasan “Dynamic Power
Management in Wireless Sensor Networks’, |IEEE Design &
Test of Computers, April 2001.

[14] Luca Benini, Alessandro Bogliolo, Giuseppe A.
Paleologo, Ro Bogliolo, and Giovanni De Micheli. "Policy
Optimization for Dynamic Power Management". |EEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 18 :813,833,1999.

[15] Ahmed RAHNI «  Contributions a la validation
d'ordonnancement temps réel en présence de transactions sous
priorités fixes et EDF» PhD. Thesis, Ecole Nationae
Supérieure de Mécanique et d’ Aérotechnique, December 2008.
[16] N. C. Audsley, A. Burns, M. F. Richardson, and A.
JWellings. “Hard Rea-Time Scheduling: The Deadline
Monotonic Approach”. In Proceedings 8th IEEE Workshop on
Real-Time Operating Systems and Software, Atalanta, 1991.
[17] J. A. Stankovic and M. Spuri and K. Ramamritham and G.
Buttazzo, “Deadline Scheduling for Real-Time Systems: EDF
and Related Algorithms’, Kluwer Academic Publishers, 0-
7923- 8269-2,1998

[18] Pouwelse J., Langendoen K., Sips H., « Dynamic voltage
scaling on a lowpower microprocessor », Proceedings of the
7th annual international conference on Mobile computing and
networking (MobiCom’01), New York, NY, USA, ACM
Press, p. 251-259, 2001.

[19] TinyOS: http://www.tinyos.net/

[20] B. Nichols and D. Buttlar and J.P. Farrell, “PThreads
programming”, O’ Reilly, 1-56592-115-1, 1996.

[21] T. Ungerer, B. Robic, and J. Silc. “Mutithreaded
Processors’. The Computer Journal, 45(3) : 320348, 2002.
[22] W. Richard Stevens, Stephen A. Rago, “ Advanced
Programming in the UNIX Environment: Second Edition”,
Addison Wesley Professional, ISBN: 0201433079, Pages: 960,
June 17, 2005.

[23] Richard Urunuela, Anne-Marie Déplanche, Y von Trinquet
“simulation for multiprocessor  real-time  scheduling
evaluation”, EUROSIM, Prague,2010

[24] Richard Urunuela, Anne-Marie Déplanche, Y von Trinquet
“ A Simulation Tool for Real-time Multiprocessor Scheduling
Evaluation”, Emerging technologies and factory Automatism
(ETFA), Spain, 2010



	Contents of paper093Cheour.docx
	Go to page 1 of 8
	Go to page 2 of 8
	Go to page 3 of 8
	Go to page 4 of 8
	Go to page 5 of 8
	Go to page 6 of 8
	Go to page 7 of 8
	Go to page 8 of 8


