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Résumé. L’objectif de cet article est de faire bénéficier notre application de 
recalage d'images médicales IRM et de présenter l’efficacité de l'algorithme de 
résolution conçu aux coins d’images par rapport à celle de S.Ourselin qui se 
traduit par une performance remarquable au niveau du traitement au centre de 
l’image. Notre approche se compose de quatre grandes étapes : découpage des 
deux images référence et cible et la recherche du correspond de chaque bloc 
dans l’image cible, application des filtres tel que la détection des contours, 
recherche de la transformation rigide et la mesure de similarité correspondante, 
enfin, l’étape d’optimisation en utilisant le moindre carré comme meilleur 
estimateur. Nous présentons, dans cet article, un cas d’étude illustrant notre 
approche. 
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I. Introduction 

Le recalage d’images est le processus de projection de deux ou plusieurs images, de la 
même scène, acquises à des instants différents, de point de vue différents et parfois 
par des capteurs différents. Le recalage est un problème commun à de nombreuses des 
tâches d'analyse des images médicales décrites dans l’article de Nicholas Ayache [1]. 
En effet, le recalage est nécessaire pour comparer des images acquises sur un même 
patient à des instants différents ou bien avec des modalités différentes. Aussi le 
recalage est largement utilisé dans le processus de planification de la radiothérapie 
dans les deux cas monomodale (IRM/IRM) ou multimodale (Positron Emission 
Tomographie-PET/Computed Tomographie-CT ou PET/IRM). Le recalage est 
également nécessaire lorsque l'on souhaite comparer des images de patients différents. 
Ce processus peut être rencontré dans la littérature sous le nom de mise en 
correspondance spatiale, fusion ou normalisation spatiale lorsque les données 
manipulées par l’algorithme du recalage sont des images médicales. Dans ce travail, 
nous abordons la classification de recalage en se basant sur la technique de résolution 
considérée. En effet, deux classes d’approches de recalage d’images médicales 
peuvent être distinguées : les approches basées sur l’extraction des primitives [4] [11] 



[3] [8] [7] et les approches basées sur l’intensité : [10] [13] [12] [2], appelé parfois 
recalage sans primitives. 
Le présent article sera organisé comme suit : la deuxième section sera consacrée à une 
description technique du recalage d’images médicales en présentant les techniques de 
recalage basées sur les primitives, les techniques de recalage basées sur l’intensité 
afin de les comparer avec les techniques décrites précédemment et les différentes 
possibilités d’intégration des deux approches pour avoir une nouvelle famille 
d’approches de recalage nommée hybride [5], [6], [9]. Enfin, nous présentons notre 
approche block matching (recalage hybride) à fin d’illustrer leur avantage avec celle 
de S.Ourselin. 

II. Recalage d’images 

1. Algorithme général du recalage d’images 

Pour expliciter le problème du recalage d’images médicales, nous nous proposons 
d’illustrer par un exemple simplifié: 
 
 
 
 
 
 
 
 
 
 
 
 

 Fig. 1. Exemple d’illustration du problème de recalage 
 

Soient A et B, deux images d’un même organe du corps d’un patient, acquises par un 
imageur I (Fig. 1). Supposons que les deux acquisitions ont été effectuées dans des 
instants différents. Ce qui cause une différence de position du patient par rapport à 
l’imageur et par la suite, conduit à obtenir des images différentes. 
L’opération du recalage consiste à chercher la transformation géométrique T qui relie 
les coordonnées X évoluant dans l’espace de l’image A, aux coordonnées Y, 
appartenant à l’espace de l’image B, tel que : X=T(Y).  
L’espace de recherche des paramètres de la transformation ainsi que sa nature (rigide 
ou élastique) sont deux paramètres importants dans le recalage des images. Il 
dépendent généralement de l’application médicale, de la nature de l’organe acquis et 
du mode d’acquisition. Pour trouver la transformation T, l’algorithme du recalage 
suivi est celui que nous avons décrit grossièrement par la Fig. 2. 
L’ensemble des paramètres initiaux de la transformation sont appliqués à l’image B 
pour initialiser un algorithme itératif de recherche de la transformation. L’image B 
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transformée est ensuite comparée à l’image A par calcul d’une mesure de similarité, 
soit directement sur les intensités des images, soit sur des primitives géométriques 
extraites à partir des deux images. L’algorithme met à jour itérativement les 
paramètres de la transformation et recalcule la mesure de similarité jusqu’à ce que le 
recalage est assuré ou qu’il y a plus d’amélioration du résultat et l’algorithme diverge. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig. 2. Schéma de l’algorithme général du recalage 

2. Recalage basé sur les primitives  

Ce type de recalage est basé sur l’extraction des primitives géométriques des deux 
images à recaler. La première étape de cette technique consiste à extraire un type de 
primitives géométriques : points d’intérêt, contours ou surface sur les deux images 
objet d’études. Ensuite, un processus d’identification des paires de primitives qui 
peuvent se correspondre est mis en place. Ce processus est appelé mise en 
correspondance ou appariement des primitives. La transformation est par la suite 
calculée en se basant sur l’ensemble des couples appariés. Il est à noter que l’étape 
d’extraction des primitives est considérée discriminante pour la précision de la 
transformation recherchée. Donc, le manque de précision des primitives conduit 
obligatoirement à une transformation aberrante qui peut parfois compliquer le 
problème de comparaison d’images plus que le simplifier. C’est pourquoi, une 
validation des algorithmes de recalage en routine clinique est toujours demandée pour 
raffiner les algorithmes proposés. 
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3. Recalage basé sur l’intensité  

Pour beaucoup de travaux rencontrés dans la littérature, l’étape d’extraction des 
primitives a été éliminée et la mesure de la similarité est appliquée directement sur 
l’intensité des voxels. Au contraire du recalage basé sur les primitives, ce recalage 
utilise l’information fournie par l’intensité de l’image toute entière. L’étape cruciale 
de ce recalage est donc la mesure de similarité adoptée et le processus d’optimisation 
choisi. En fait, une mesure de similarité est calculée pour évaluer la ressemblance 
entre les pixels qui doivent se correspondre après avoir appliquer une transformation 
initiale T0. 

4. Recalage hybride  

Pour faire face aux problèmes liés à l’utilisation des primitives ou à l’intensité pour 
assurer le recalage d’images médicales, des auteurs de quelques travaux, ont introduit 
une nouvelle catégorie d’approches. En fait, cette catégorie dite d’approches hybrides, 
utilisent une combinaison temporaire [9], spatiale [6] ou bien simultanée [5] des deux 
autres.  
Pour la combinaison spatiale ou simultanée des deux algorithmes de recalage, la 
précision est toujours dépendante de la précision d’extraction des primitives ce qui 
peut être un inconvénient lié à l’utilisation de ce type de combinaison. Alors que pour 
une combinaison temporaire, il y aura toujours une possibilité de raffinement des 
résultats car les primitives ne sont utilisées que pour une estimation grossière pour 
initialiser les paramètres de l'algorithme. Les possibilités de combinaison entre les 
deux types de recalage sont très nombreuses et les techniques décrites dans ce travail 
ne sont que des exemples pour illustrer la possibilité de combinaison temporaire, 
spatiale et simultanée. 

III. Notre approche:  

Pour suivre l’évolution du cancer dans le temps, afin de mettre en place une 
planification radio-thérapeutique fiable, l’imagerie anatomique se trouve insuffisante 
pour une délimitation confiée du cancer. En fait, l’interprétation visuelle de la 
structure anatomique au cours de la radiothérapie par le radiologue, est parfois 
impossible. En effet, en se basant sur l'interprétation visuelle uniquement, le 
diagnostic différentiel entre récidive et radionécrose peut conduire à une planification 
radio-thérapeutique invasive. Par exemple, dans le cas du cancer de rhinopharynx, un 
épaississement de la membrane de la cavité nasale est remarqué sans qu’une 
interprétation correcte puisse être mise en place par interprétation visuelle sur des 
images à résonance magnétique. Donc, un recalage des images médicales dans ce cas 
se trouve de grand intérêt. Dans notre application, nous nous proposons de recaler des 
images IRM 2D de rhinopharynx, il est à tenir compte de plusieurs sources de 
différences possibles entre l'image de référence et l'image cible. En fait, l’importance 
source de différence est le changement de l'anatomie de rhinopharynx. Cette 
différence sera utilisée pour estimer le changement de volume de la tumeur et 



quantifier l'avancement ou le recule de la tumeur. Cela permettra de mettre en place 
une planification radio-thérapeutique fiable. Pour cette application nous optons pour 
une technique hybride de recalage rigide afin de surmonter les inconvénients du 
recalage basé sur les primitives et les inconvénients du recalage basé sur l'intensité. 
Selon notre étude bibliographique, les approches qui combinent successivement 
l'utilisation des deux autres catégories d'approches sont les plus prometteuses. Pour 
cette raison, nous nous proposons d'utiliser une approche dérivée de celle décrite dans 
[9]. Dans ce travail, la subdivision successive des blocs est inspirée de la subdivision 
des blocs utilisée dans la norme de compression MPEG4. Pour cette norme, il n'existe 
pas un critère de décision de l'arrêt de subdivision pour quelques blocs ou de sa 
continuité pour des autres. Cela veut dire que tous les blocs utilisés sont toujours de 
même taille malgré qu'il existent certainement des subdivisions inutiles sur des blocs 
qui ne sont pas discriminants et dont les correspondants sont à faible précision. Pour 
notre approche nous proposons d'utiliser la subdivision en bloc qui s'inspire de la 
norme de compression H.264. Pour notre application, nous suggérons que ce critère 
soit basé sur l'application d'un masque d'extraction de contours afin de localiser les 
parties de l'image qui contiennent des informations anatomiques valides qui peuvent 
aider pour raffiner le recalage. Pour cela nous utilisons une stratégie d’appariement de 
régions, afin d’estimer une transformation paramétrique (rigide ou affine par 
exemple) T, initialisé à l’identité. Nous utilisons pour cela une approche itérative, 
c'est-à-dire que nous approchons pas à pas la transformation. A chaque itération, nous 
calculons la mesure de similarité ( champ de vecteur) entre les deux images de 
référence et cible jusqu’à ce que le recalage est assuré ou qu’il y a plus d’amélioration 
du résultat. Considérons deux images 2D de même taille 256*256 que nous désirons 
mettre en correspondance, nous notons (x, y) les positions sur la grille de voxels des 
images. Pour cela nous découpons notre image de référence en un ensemble de sous-
images que nous appellerons blocs. Ces blocs seront notés B dans l’image de 
référence I et B’ dans l’image cible J, de taille identique 32*32. Nous recherchons 
alors les meilleurs correspondants dans l’image cible d’un ensemble de blocs B de 
l’image de référence, pour un critère de similarité donné. Chaque couple de blocs sera 
stocké par la position de son centre du fait du mouvement recherché du bloc 
(mouvement translationnel). Signalons de plus que le point du centre est celui pour 
qui la relation locale entre les blocs est statiquement la plus juste. C’est cet ensemble 
de couples de points qui définira un champ de vecteurs entre nos deux images. Le 
principe de l’algorithme retenu est de mettre en correspondance un bloc de l’image de 
référence avec un bloc de l’image cible. Nous pouvons effectuer cette recherche sur 
toute l’image ou bien sur une zone autour de la position du bloc de l’image de 
référence. C'est-à-dire pour un bloc B de I, nous recherchons donc dans un voisinage 
V qui est défini par 2*rayon du bloc B, de J le meilleur correspondant B’. Lors de la 
phase d’appariement, on prend en considération que le pas entre deux blocs 
consécutifs dans le voisinage déterminé de l’image cible est un pixel, qui peut bien 
sûr être anisotrope suivant les axes. Dans la stratégie classique d’appariement de 
régions, nous nous sommes amenés à effectuer une recherche complète dans ce 
voisinage. C'est-à-dire que nous explorons toutes les positions en coordonnées 
entières dans V. En faisant l’hypothèse que, dans un voisinage donné, le critère de 
similarité que nous optimisons est convexe, alors nous pouvons effectuer une 
recherche quasi-complète (Fig. 3). En effet, en utilisant cette propriété de convexité, 



nous pouvons par exemple explorer une position sur deux, et considérer que la 
solution trouvée représente la position la plus proche de la solution réelle (recherche 
complète). 

 

Fig. 3. Illustration de l’appariement de régions sur une coupe IRM [9] 

Pour une direction donnée, N est la taille du bloc, V est la taille de la zone de 
recherche, P est la densité du champ de vecteurs. Sur cette figure, le centre du bloc B 
est noté mi et celui du bloc B’ est noté m’i.  
Dans [9], le rapport de corrélation est utilisé comme une mesure de similarité locale. 
Pour évaluer la performance de notre algorithme nous avons utilisé à ce stade la base 
universelle AREALL et nous avons limité nos expériences uniquement aux images 
IRM 2D intra-sujets et particulièrement au quatre premier séries. Il est a signalé que 
les images sont de taille 256x256 et en niveau de gris (16 bits/ pixels). Nous avons 
testé l’approche basée sur l’utilisation du Coefficient de Corrélation (CC) sur quatre 
séries d’images IRM 2D monomodale intra-sujet, puis nous avons calculé le taux 
d’erreur moyen entre ces quatre séries et on a précédé à la comparer avec celle de 
S.Ourselin [9] (tableau1). 

Tableau 1: Distance moyenne de recalage entre l’algorithme de S. Ourselin et notre approche 

Méthode Erreur au centre 
Moyen (mm) 

Erreur au coin 
Moyen (mm) 

Block Matching 
avec CR 

2.39 3.7 

Block Matching 
avec CC 

3.34 3.43 

 
Ces performances comparées nous amène aux observations suivantes, alors 
l’algorithme qui utilise le CR comme mesure de similarité est efficace, puisqu’il a 
donné un taux d’erreur faible au centre d’image. Alors que cette tendance est 
différente en se qui concerne le taux d’erreur au coins d’image. En effet, la 
performance de ces deux approches sont actuellement comparable : le taux d’erreur 
moyen de notre algorithme est moins élevé et par conséquent plus performant et 
précis. Les expérimentations faites sur une base d’images IRM 2D monomodale intra-
sujet ont montrée que la nouvelle approche présente toujours des résultats meilleurs 
que ceux proposé par S. Ourselin au coin d’image. Cette différence résulte, peut être, 



du changement de la méthode de mesure de similarité utilisée, la corrélation Ratio 
pour S. Ourselin et le cœfficient de corrélation pour le notre. L’utilisation de la 
corrélation Ratio sur cette base d’exemple se traduit par une performance remarquable 
au niveau du traitement au centre de l’image, et une dégradation au niveau des coins. 
Quant à l’utilisation de notre approche, elle se traduit par une bonne performance au 
niveau du traitement des coins et une légère dégradation au niveau du traitement au 
centre. Cette constatation nous mène à combiner ces deux algorithmes dans un 
processus de recalage pour profiter des avantages du premier (traitement au centre) et 
des avantages du deuxième (traitement des coins). 

Conclusion : 

Dans cet article une synthèse des différents algorithmes de recalage est présentée afin 
de classifier les méthodes en trois catégories : une première catégorie d’approches qui 
se base sur l’appariement des primitives géométriques. Nous avons présenté des 
exemples des travaux rencontrés afin de montrer les avantages et les inconvénients de 
cette approche. Une deuxième catégorie est celle qui englobe les approches basées sur 
le calcul de similarité d’intensité sur l’image toute entière. Pour ces approches nous 
avons présenté les différents choix possibles, selon la bibliographie consultée, pour 
construire une chaîne de résolution robuste en mettant l’accent sur l’importance de 
choix dans chaque étape. Avant de terminer nous avons achever notre synthèse par la 
présentation de quelques approchent qui ont montré la nécessité de faire recours aux 
algorithmes hybrides qui associent, spatialement, temporairement ou simultanément, 
une approche basée sur les primitives à une approche basée sur l’intensité. Ces 
approches ont permis aux autres catégories de se compléter pour donner des 
approches plus robustes. Enfin, nous avons présenté la performance de notre approche 
par rapport à celle de S.Ourselin. 
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