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Résumé: Afin d’améliorer la robustesse des algorithmes de recalage rigide dans l’imagerie médicale, nous proposons 
dans ce présent article une approche hybride basé sur la méthode de l’appariement des régions (Block Matching) dans le 
cas du recalage d'images bidimensionnelles monomodale IRM/IRM intra-patient. Cet article présente une approche 
qu’utilise localement des mesures iconiques tout en prenant compte du contexte géométrique global décrivant une 
cohérence spatiale pour les données anatomiques. Deux étapes sont mises en œuvre, la première étape consiste à 
calculer le champ de déplacement entre ces deux images en utilisant l’appariement de région, la deuxième étape admet 
de calculer le champ de vecteur afin d’estimer la transformation rigide en utilisant le moindre carré tamisé comme 
meilleur estimateur. Nous présentons, aussi un cas d’étude illustrant l’approche proposée. 
 
Mots-clés : Recalage, rigide, IRM, mesure de similarité, estimateur. 

 

INTRODUCTION  
Le recalage est un problème commun à des 

nombreuses tâches d’analyse d'images médicales. Les 
difficultés de ce  problème sont différentes selon que 
l’on s’intéresse à des images provenant de la même 
modalité (monomodal) ou bien de modalités 
différentes (multimodal), ou bien quand ce recalage 
met en œuvre des images acquises sur un même 
patient ou patients différents  [kharrat 08a]. 

Cette variation de conditions selon le type 
d’acquisition d’images sujet d’études, influe sur la 
nature du recalage. Il peut s’agir dans ce cas de 
recalage rigide  (Figure.1).  

 

Figure.1  Principe général du recalage de l'image Icib  
sur Iref [kharrat 08b] 

Le recalage rigide consiste à rechercher une 
rotation et une translation permettant de superposer au 
mieux l’une des images à recaler sur la seconde  
[kharrat 08a]. 

La notion de recalage peut être résumée de la 
façon suivante :  

Considérons le recalage d'une image Icib  sur une 
image de référence Iref. Le problème de mise en 
correspondance des deux images consiste à 
l'estimation d'une transformation T qui à chaque point 
‘p’ de l'image de référence Iref  associe les coordonnées 
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T(p) = p + u(p) dans l'image Icib (u représente le 
champ de déformation). La transformation T est 
recherchée parmi un ensemble Φ de transformations, 
définissant l'espace de recherche des transformations 
[kharrat 08b]. Une étape préliminaire à l'estimation de 
la transformation est l'extraction à partir des images 
brutes Iref et Icib des informations pertinentes 
permettant de guider le recalage. Iref et Icib sont donc 
construites respectivement à partir de Iref et Icib  en 
utilisant les fonctions Fref et Fcib [kharrat 08c]. 

Une fois les informations extraites, il s'agit de 
définir une fonction d'énergie E permettant d'associer 
à un couple Icib (T) et Iref une valeur permettant de 
quantifier leur proximité ou bien leur ressemblance. 
Cette fonction E, appelée aussi critère de similarité, 
devrait théoriquement être minimale (ou maximale) 
lorsque l'image de référence et l'image à cible sont en 
parfaite correspondance [kharrat 08c].   

La phase d'optimisation consiste enfin à trouver la 

transformation optimaleT̂ qui minimise (ou 
maximise) la fonction d'énergie E sur l'espace de 
recherche entre les deux images Iref et Icib. Le 
problème d'optimisation peut ainsi être formulé de la 
manière suivante [kharrat 08c]  (équation 1) : 

))(,(minarg TIIET cibref
T Φ∈

=
)

 (1) 

Dans la littérature, il existe des variétés de 
méthodes de recalage  soit  géométriques basées sur 
l’extraction des primitives, soit iconiques basées sur 
l’intensité.  

Le recalage géométrique consiste à extraire les 
primitives géométrique de l’image tel que les points  
[Cachier 01], les surfaces [Ding 01] et les courbes 
[Johnson 02] des deux images à recaler afin 
d’identifier par la suite les paires des primitives. A 
partir de ces couples appariés, nous calculons la 
transformation. Plus de précision dans l’étape 
d’extraction des primitives géométriques entraîne une 
précision dans la recherche de la transformation.   

Contrairement au recalage géométrique basé sur 
l’extraction des primitives, le recalage iconique se 
fonde sur les informations de bas niveau relatives à 
l’ensemble des pixels d’images soit en comparant 
directement les niveaux de gris des images, soit en 
associant à chaque pixel une valeur déterminée à partir 
des niveaux de gris et en comparant ces ensembles de 
valeurs. Ce type de recalage consiste à trouver une 
relation globale entre les intensités des images IRM en 
maximisant ou minimisant une mesure de similarité. 

 Ces méthodes iconiques ont pour objectif de 
chercher la transformation optimale minimisant  un 
critère iconique (ou mesure de similarité) calculé pour 
évaluer la ressemblance entre les pixels. 

 

L’extraction des primitives significatives des deux 
images est cependant un problème très complexe. 
Celles-ci peuvent de plus être perturbées par la 
présence de la pathologie, pouvant entraîner de 
grandes erreurs.  

 Concernant les méthodes iconiques, ils ont 
l'avantage de ne pas nécessiter une étape de 
segmentation de primitives. Néanmoins, elles 
souffrent de plusieurs inconvénients tel que le coût 
calculatoire important dû au fait de devoir considérer 
chacun des pixels de l'image. 

Le présent article sera organisé comme suit : la 
deuxième section sera consacrée à une description 
technique de recalage d’images médicales qui intègre 
les deux approches décrites précédemment pour avoir 
une nouvelle famille d’approches de recalage nommée 
hybride [kharrat 08b], [kharrat 08c], [Atif 04]. Enfin, 
nous présentons notre approche de stratégie de blocs 
(recalage hybride)  afin d’illustrer leurs avantages sous 
forme des différents résultats de taux d’erreur au 
niveau d’angle et translation. 

1. Description de l’approche 
Les méthodes géométriques  présentent l’avantage 

de la manipulation d'une représentation compacte de 
l'image, ayant pour conséquence une charge de calcul  
beaucoup plus faible que dans le cas des méthodes 
iconiques. 

 En outre, les primitives géométriques utilisées 
portent une information de haut niveau, qui  permet de 
s'échapper des problèmes liés à l'acquisition de l'image 
tel que les artefacts et les bruits de l’image. 
Néanmoins, l’extraction des primitives est considérée  
une tâche complexe très difficile à accomplir et 
nécessite un degré de précision. Par conséquent, de 
tout  manque de précision des primitives résulte une 
transformation illogique qui peut parfois compliquer 
le problème de comparaison d’images au lieu de le 
simplifier  [Montgomery 06]. 

Tandis que les méthodes iconiques ont l'avantage 
de ne pas nécessiter de segmentation de primitives 
géométriques. Néanmoins, ces méthodes souffrent de 
plusieurs inconvénients [Pluim 03]. Le premier est lié 
au coût calculatoire important dû au fait de devoir 
considérer chacun des pixels de l'image. Le deuxième  
est lié au fait que la relation entre les intensités des 
deux images n'est pas forcément triviale, en particulier 
dans le cas d'images multimodales [Ourselin 01] 
[Pluim 03]. 

Chacun des deux types de recalage que ce soit 
géométrique ou iconique, présente un certain nombre 
d’avantages et d’inconvénients. Pour pallier à ces 
limitations et pour mieux exploiter les avantages de 
chaque méthode, plusieurs revues ont montré la 
possibilité de mettre en oeuvre l’idée de faire un 
recalage hybride combinant ces deux types de mise en 
correspondance. 

Concernant notre approche hybride, elle consiste à 
utiliser localement des mesures iconiques tout en 
prenant compte du contexte géométrique global 
décrivant une cohérence spatiale pour les données 
anatomiques. 

Par la suite, nous allons présenter une description 
de notre approche hybride basée sur la méthode 
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d’appariement de blocs (Block Matching). 

 

1.1. Description de la technique de recalage 

Deux acquisitions des images IRM à des instants 
différentes provoquent un changement de position du 
patient par rapport à l’imageur et conduit à obtenir des 
images différentes.  

Pour cela, nous avons besoin d’une opération qui 
permet de situer ces deux images dans un même 
repère géométrique. Cette technique est appelée 
recalage. 

Le recalage rigide des images IRM consiste à 
trouver une transformation rigide c'est-à-dire une 
rotation suivi d’une translation qui relie les 
coordonnées de X évoluant dans l’espace de l’image 
référence au coordonnées X’, appartenant à l’espace 
de l’image cible, tel que la forme suivante (équation 
2) [Putjarupong 04]: 

X’= R X+T (2) 

Avec R représente la rotation et T la translation. 

Nous pouvons de même l’exprimer sous la forme 
d’une matrice 3*3 (équation 3)  
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Dans notre approche, nous utilisons l’algorithme 
ICP qui va travailler géométriquement sur des 
primitives iconiques [Ourselin 01] que nous les 
mettons en correspondances en introduisant un critère 
iconique, et à partir de ces appariements nous 
introduisons la notion géométrique en incluant leurs 
positions spatiales pour chercher la transformation T.   

1.2. Description algorithmique 

Considérons deux images IRM 2D de même taille 
intra-patient dont l’une appelée image référence noté I 
et l’autre appelé image cible noté J que nous désirons 
mettre en correspondance. 

 Cela nécessite le découpage de l’image référence 
en un ensemble de sous-images que nous appellerons 
blocs. Ces blocs seront notés B dans l’image de 
référence I et B’ dans l’image cible J, de taille 
identique N*N, en premier lieu ce taille est fixé par 
32*32. Dans le cadre de notre travail, le découpage 
des images en des tailles de blocs égales s'inspire de la 
norme de compression MPEG4  [kharrat 08a].  

Nous pouvons effectuer le découpages de ces blocs 
en des sous blocs en divisant chaque fois  la taille par 
2. C'est-à-dire que les blocs sont toujours de tailles 
égales jusqu’à atteindre le minimum taille 4*4 [kharrat 
08c]. 

Ceci est illustré dans la figure ci-dessous  
(Figure2). 

 
Image I Image  J 

Figure.2  Illustration de l’appariement de régions sur 
une coupe IRM. Avec N présente la taille du bloc, 
Ω est la taille de la zone de recherche, Σ est la 
résolution du champ de vecteurs, ∆ est la densité du 
champ de vecteurs.  

Sur cette figure (Figure 2), le centre du bloc B est 
noté mi et celui du bloc B’ est noté m’i.  

Notre algorithme  de recalage admet deux images 
de référence et cible comme entrées  et une 
transformation T et une image registré J’=JΟ T  aligné 
avec l’image I comme sortie. Nous désirons recaler 
l’image J sur l’image I. L’algorithme utilisé est itératif. 
A chaque itération, deux étapes sont mises en œuvre. 
La première étape consiste à calculer un champ de 
déplacement entre l’image référence et cible. Cela est 
réalisé en utilisant la stratégie d’appariement de blocs. 
La deuxième étape utilise les centres appariés trouvés 
dans la phase d’appariement pour estimer la 
transformation S  à travers un estimateur robuste.  Puis 
nous mettons à jour la transformation totale T en 
composant S à T.  

Donc nous avons à chaque itération deux étapes 
différentes, le calcul du champ de déplacement et le 
calcul de la transformation rigide. 

1.3. Stratégie d’appariement des blocs 

Le principe de notre algorithme d’appariement de 
région, est de mettre en correspondance un bloc B de 
l’image de référence I avec un bloc B’, considéré 
comme meilleur correspondant d’un ensemble de 
blocs de l’image cible, pour un critère de similarité 
donné.  

Cette recherche est locale puisqu’elle ne se fait pas  
en parcourant toute l’image cible. Elle est effectuée 
sur une zone à partir de la position du bloc de l’image 
de référence. En faite, la position du bloc est 
déterminée par son coin gauche en haut. C'est-à-dire 
pour un bloc B de I, nous recherchons dans un 
voisinage Ω  qui est défini par 2*rayon du bloc B, de 
J le meilleur correspondant B’. 

    Lors de la phase d’appariement, nous prenons en 
considération que le pas entre deux blocs consécutifs 
dans le voisinage déterminé de l’image cible est ∆, qui 
peut bien sûr être anisotrope suivant les axes c'est-à-
dire qu’il peut avoir différent direction suivant les 
axes.  

Afin de parcourir tous les blocs de l’image 
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référence, la valeur de la densité de champ de vecteurs  
∆ ne doit pas dépasser la taille de bloc. Ce qui fournit 
un recouvrement entre les blocs.  

A chaque itération, une  fois le bloc B de I est fixé, 
nous parcourons la zone de recherche et nous  
calculons une  mesure de similarité iconique entre ce 
bloc B fixé et chaque bloc B’ de l’ensemble des blocs 
de la zone de recherche. Par conséquence, les deux 
blocs ayant le maximum de ce critère iconique, 
correspondent au couple le plus semblable. 

Chaque couple apparié sera stocké par la position 
du centre des deux blocs du fait du mouvement 
recherché du bloc. Signalons de plus que le point du 
centre est celui pour qui la relation locale entre les 
blocs est statiquement la plus juste. C’est cet ensemble 
de couples de centres qui définira par la suite la 
transformation entre les deux images à recaler. 

1.4. Choix de mesure de similarité 

Afin de mesurer le degré de similarité entre les 
différents blocs, nous utilisons n’importe quel critère 
local. Le choix de cette mesure dépend bien 
évidemment de types de relation entre les intensités 
des images à recaler.  

Vue que le recalage rigide est réaliser entre des 
images IRM et vue que nous sommes dans des 
hypothèses très fortes d’images quasiment identiques, 
avec des variations de luminance très faible entre 2 
images successives, la mesure choisis doit être 
iconique. De ce fait, la mesure de similarité  à  utiliser 
est le cœfficient de corrélation. 

Nous utilisons le critère de cœfficient de 
corrélation pour résoudre le problème de dépendance 
de la valeur des intensités des pixels. Cette mesure est 
donnée par l’équation (équation 4). Considérons I et J 
deux ensembles contenant chacun n variables 
aléatoires. 
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Où I1 et I2 sont les fonctions d’intensité dans 
chacune des deux images. 

D’après cette formule nous traitons les cas où la 
valeur de corrélation est définie. D’où plus le 
coefficient aura une valeur prés de 1 plus les deux 
images sont similaires cela signifie que les deux 
images sont très fortement corrélées; plus les deux 
images sont différentes, plus le coefficient aura une 
valeur prés de 0. Cela signifie qu’il n’existe aucune 
corrélation entre les deux images, c’est à dire que les 
variations de la première image n’ont pas d’influence 
sur les variations de la deuxième image. Les valeurs 
négatives de ce coefficient (entre 0 et -1) indiquent 
une similarité opposée entre les images. 

1.5. Moindre carré tamisé 

L’algorithme d’appariement de région retourne un 

ensemble d’appariements entre l’image référence et 
l’image cible. Ces couples appariés sont utilisés pour 
trouver la transformation optimale qui recale l’image 
cible sur l’image référence, moyennant un algorithme 
d’optimisation sous le nom de moindre carrée tamisé 
LTS (Least Trimmed Squares).  

Cet algorithme, à l’instar des moindre carré LS 
(Least Square), a pour objectif de minimiser la somme 

des erreurs quadratique 
2

ir (équation 5). 

∑
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Avec ir le résidu entre un couple d’appariements 
(équation 6). 

)(' iii mTmr −=  (6) 

En vue d’améliorer la vitesse de convergence par 
rapport à d’autre méthode d’optimisation tel que LS et 
LMS (Least Median of Squares), la méthode LTS est 
proposée, comme une méthode robuste qui réduit 
l’influence des grands résidus  puisqu’elle  consiste à 
minimiser la somme des carrés des appariements ayant 
le plus petit résidu. 

 La solution de ce problème est obtenue de 
manière itérative en partant d’une estimation initiale. 

 A chaque itération les appariements sont triés 
selon leurs résidus de façon à extraire ceux réalisant 
les résidus les plus bas. À partir de ces derniers une 
nouvelle transformation est estimée. Ces instructions 
sont itérées jusqu’à la convergence. 

1.6. Algorithme récapitulatif d’Aladin 

L’algorithme d’appariement de région et 
l’algorithme de moindre carré tamisé réalisent les 
deux étapes primordiales de l’algorithme ICP qui sont: 
la construction des appariements et le calcul de la 
transformation.  

Donc il est imposé de mettre en œuvre un 
algorithme récapitulatif qui fait l’appel à tous les 
algorithmes déjà suggérés, et  qui concrétise l’itération 
entre eux en faisant un réglage de tous les paramètres, 
ainsi qu’il garantie un test de convergence pour mettre 
fin à l’itération.    

Nous retraçons l’algorithme d’Aladin qui initialise 
les différents paramètres nécessaire pour le 
déroulement des algorithmes mentionnés auparavant, 
tel que l’algorithme d’appariement de régions et 
l’algorithme d’estimation de transformation au sens 
des moindres carrés tamisés. 

L’algorithme d’Aladin maintient le réglage de ces 
paramètres afin d’assurer le raffinement des résultats 
obtenus et par la suite garantir une meilleure 
convergence qui abouti à des résultats satisfaits. 

Après avoir trouvé la transformation optimale, 
nous allons l’appliquer à chaque pixel de l’image 
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cible. Néanmoins, l’image recalée obtenue est de 
mauvaise qualité bruitée par l’effet escalier. 

En faite, l’escalier est une construction 
architecturale constituée d'une suite régulière de 
degrés permettant de passer d'un niveau à un autre (à 
monter et à descendre).  Comme c’est illustré dans la 
figure (Figure.3). 

 
Figure.3  Image recalée sans interpolation 

Pour raffiner et améliorer l’image recalée 
résultante, nous proposons d’utiliser une interpolation 
bilinéaire  (Anti-aliasing) qui présente une  technique 
par laquelle nous diminuons l'effet d'escalier des 
images, en créant des dégradés de couleurs le long des 
contours, pour les lisser. En effet, l'interpolation 
bilinéaire prend une moyenne pondérée par la distance 
des quatre pixels de l'image originale les plus près du 
nouveau pixel (Figure 4). 

 

Figure.4 Principe d’interpolation bilinéaire 

L’image recalée résultante après l’application 
d’interpolation  est illustrée par la figure ci-dessous 
(Figure 5). 

 

Figure.5 Image recalée après interpolation 

Le procédé de moyenne altère la valeur originale 
des pixels et crée une valeur complètement nouvelle 
sur l'image finale. Ceci peut être nuisible dans notre 
cas. En effet, en visualisant la valeur de la  mesure de 
similarité (cœfficient de corrélation) entre l’image de 
référence et registré interpolé, nous constatons que 
cette valeur se minimise. 

2. Résultat et discussion 
Afin d’évaluer la performance de notre algorithme 

nous avons utilisé à ce stade la base de données de 
l’Université Vanderbilt [West 97] et nous avons limité 
nos expériences uniquement aux images IRM 2D 
intra-sujets et particulièrement au quatre premieres 
séries. Il est a signalé que les images sont de taille 
256x256 et en niveau de gris (16 bits/ pixels). 

 En premier lieu, nous présentons un exemple 
d’image recalée à partir de deux images référence et 
cible afin de la visualiser.  

En second lieu, nous allons apercevoir ce résultat 
visuel par quelques valeurs de taux d’erreur au niveau 
d’angle et translation qui sont calculés pour l’image 
recalée résultante. 

Finalement,  nous présentons le taux d’erreur de 
l’image recalée en comparant l’estimateur utilisé 
(LTS) avec celle d’autre qui sont utilisés dans la 
littérature. 

Cette évaluation permet d’apprécier à la fois la 
robustesse et la précision de l’approche établit dans 
cet article. 

 Les résultats obtenus sont convaincants et 
présentent une avancée des travaux de recalage 
d’images. 

2.1. Recalage d’image référence et cible 

Considérons deux images IRM intra-patient 
référence et cible. Nous attribuons une transformation 
manuelle à cette image de type rotation d’angle θ=10 
degrés et de translation nulle. 

Par la suite, nous essayons de recaler cette image 
sur l’image référence. Elle est presque semblable à 
l’image de référence. L’image recalée résultante est 
une image qui subit une rotation remarquable 
visuellement. Comme c’est illustré dans la figure 
suivante (Figure 6).  

  

(a)Image référence à gauche et  
image cible à droite 

(b) image recalée 

Figure.6 Recalage de l’image cible sur l’image référence 

Cependant, l'inspection visuelle n'est pas suffisante 
pour apprécier la pertinence du résultat obtenu par une 
méthode de recalage.  

Pour cela, nous allons fournir une évaluation 
rétrospective de recalage afin d’évaluer le recalage 
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avec des résultats chiffrés. 

     Notre objectif dans cette étude est, d’une part la 
quantification précise des différentes mesures de 
similarités fondées sur le cœfficient de corrélation et 
d’autre part, sa comparaison avec celle obtenu par des 
mesures de similarité classique.  

 

         En premier lieu, nous prenons les valeurs de 
quelques mesures de similarités tel que le SSD 
(Somme des Différences au Carré), SSA (Somme des 
Différences Absolu) et CC (coefficient de corrélation). 
Ces valeurs de mesures de similarités sont prises entre 
l’image référence et cible d’une part et entre l’image 
référence et recalée d’un autre part afin d’évaluer le 
recalage avec des résultats chiffrés. Ces valeurs sont 
présentées dans le tableau ci-dessous (Tableau.1): 

 Image référence et 
cible 

Image reference et 
recalée 

SSD 7.6415 1.6366 

SSA 1492777.07 639513.05 

CC 0.72 0.94 

Tableau.1Valeurs des critères de similarité avant et 
après recalage par la méthode LTS 

  Le tableau (Tableau 1) présente les valeurs des 
mesures de similarités avant et après recalage. Nous 
constatons que ces valeurs ont été améliorées après 
recalage. En effet, La valeur de coefficient de 
corrélation est comprise entre -1 et 1. Au cours du  
recalage, ce critère doit être maximisé.  

Tandis que les valeurs de SSD et SSA  doivent 
décroître jusqu’à atteindre des valeurs minimums en 
cas de deux images semblables.  

A partir  des résultats obtenues, nous apercevons 
que le CC croit après recalage outre que les valeurs de 
SSD et de SSA diminuent ce qui signifie que la 
similarité est amélioré entre l’image référence et cible 
recalée.  

2.2. Calcul de taux d’erreur 

 Dans cette expérience, nous allons dégager 
l’erreur d’image recalée. En connaissant l’angleθ , la 
translation initiale horizontale dx  et la translation 
initiale verticale dy, nous calculons la transformation 
de recalage en utilisant comme estimateur le moindre 
carré tamisé.  

Une fois nous obtenons la matrice de 
transformation ou de recalage rigide, nous serons 

capables de déterminer  l’angle 'θ  ainsi que les deux 
vecteurs de translation horizontale dx’ et  verticale 
dy’.  

Par la suite, pour savoir le taux d’erreur au niveau 

d’angle on calcule la différence entre θ  et 'θ  
(equation.6).  

   dθ =| θ ’-θ | (6) 

De même pour le taux d’erreur au niveau de 
translation horizontale noté tranx (équation 7)  et de la 
translation verticale noté trany  (équation 8). 

  Transx=|dx’-dx| (7) 

 

Transy=|dy’-dy| (8) 

Cette évaluation sera appliquée à des séries 
d’images référence et cible intra-patients distincte de 
différentes angles. 

 Concernant les paramètres d’appariement de 
régions, tel que la taille de bloc ainsi le champ dense 
et la résolution de champ sont les même pour chaque 
θ  afin de ne pas influer sur les résultats.  

Les résultats trouvés sont illustrés dans le tableau 
ci-dessous (Tableau.2): 

 θ =2° 
dx=0 
dy=0 

θ =3° 
dx=0 
dy=0 

θ =5° 
dx=0 
dy=0 

θ =10° 
dx=0 
dy=0 

θ =20° 
dx=0 
dy=0 

Dθ  1.45° 0.44° 1.1° 1.99° 12° 
Tranx 0 0 0 0 2 

Trany 0 0 0 0 1 

Tableau.2 Mesures de taux d’erreur au niveau d’angle et 
translations 

En visualisant ce tableau  (Tableau.2), nous 
pouvons déduire la faiblesse de taux d’erreur  au 
niveau de l’angle ainsi qu’au niveau des translations 
horizontales et verticales puisque le taux d’erreur  ne 
dépasse pas  2 degrés au niveau des angles et 3 pixels 
pour les translations. Cette déduction est valable pour 
les angles entre 2 degrés et 10 degrés.  

Mais pour les angles les plus grands,  de 20 degré 
par exemple, nous aurons une erreur de l’angle de 12 
degrés. Ce qui présente une erreur très élevée. 

 Pour cela, nous pouvons  remarquer la  précision 
et la performance de notre algorithme  pour les images 
de faibles angles. 

 En fait, notre objectif consiste à réaliser un 
recalage pour deux images distinctes d’une 
transformation  qui est inaperçue pour le radiologue. 

Afin de tester la robustesse de notre méthode 
d’estimation LTS par rapport aux autres méthodes, 
nous allons dans ce deuxième évaluation calculer la 
moyenne de taux d’erreur de recalage exprimée en 
pixels pour la translation et en degrés pour la rotation. 

La moyenne de taux d’erreur de recalage a été 
calculée, en utilisant la méthode de moindre carré 
tamisé(LTS), sur plusieurs transformations différentes, 
correspondant à des translation entre -20 et +20 pixels 
et à des rotations entre -30 et +30 degrés. 
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Une image IRM 2D cible a subi 20 
transformations rigides, avec différentes valeurs de 
rotation et de translation.  

 Le tableau donne la moyenne de taux d'erreur de 
recalage exprimée en pixels pour la translation et en 
degrés pour la rotation pour la méthode LTS. 

 Dans le cadre de cette évaluation, nous allons 
comparer ces valeurs lors de l’utilisation des 
différentes méthodes d’estimation tel que le moindre 
carré (MC) et le moindre carré repondéré (MCR) 
[Putjarupong 04]. 

Le moindre carré est une méthode d’estimation qui 
consiste à minimiser les résidus et qui prend en 
considération les résidus importants qui ont une forte 
influence sur l’estimateur. 

Le moindre carré repondérés consiste à minimiser  
un critère de similarité en utilisant tous les 
appariements qui semblent être proche de la solution 
finale de moindre carré tamisé.  

D’après la littérature, une étude comparative est 
illustrée par le tableau ci dessous (Tableau.3): 

Moyenne LTS MC MCR 

dθ  1.8 3.90           0.14 
Tranx      1.05     0.99 0.27 
Trany    0.98     0.77 0.20 

Tableau.3 Mesures de taux d’erreur pour la rotation et la 
translation pour LTS, MC et MCR. 

En visualisant ce tableau  (Tableau 3), nous 
pouvons déduire la faiblesse de taux d’erreur de la 
méthode LTS au niveau de l’angle par rapport à la 
méthode de moindre carré. En effet, la méthode MC 
présente un taux d’erreur de l’ordre de 4 degrés (3.90) 
au niveau de rotation. 

Le taux d’erreur obtenu pour la méthode LTS est 
de l'ordre d’un pixel pour la translation et de l'ordre de 
2 degrés pour la rotation, conduisant à une précision 
significativement supérieure à celle de la méthode 
MC.  

En effet, le taux d’erreur dans l’estimation de la 
transformation dépend principalement de la qualité 
des appariements. Or, notre recherche des blocs 
appariés se fait dans une zone de recherche donnée. 

D’où l’estimateur reste toujours sensible à 
l’ensemble des appariements aberrants. 

Les expérimentations faites sur une base d’images 
IRM 2D monomodale intra-sujet ont montré que la 
nouvelle approche qui utilise le moindre carré tamisé, 
présente toujours des résultats meilleurs que le 
moindre carré.  

Mais toujours le moindre carré tamisé comme nous 
pouvons le constater, est encore un estimateur robuste 
qui conduit à une bonne  précision.  Il apparaît donc 
comme un bon choix pour le recalage d'images 
monomodales. 

3. Conclusion 
Dans cet article, nous avons présenté une stratégie 

générale de recalage d'images médicales IRM intra-
patient basé sur la méthode de l’appariement de région 
avec un estimateur de transformation robuste. Nous 
avons présenté des expériences permettant d’apprécier 
à la fois la robustesse et la précision de l’approche 
établit dans cet article. Sa n’empêche pas que ses 
résultats peuvent être plus raffiner si on pense 
d’utiliser des filtres lors du recalage pour limiter la 
zone d’intérêt d’un part, d’autre part tester d’autre 
estimateur comme MCR dans notre application pour 
profiter de ses avantages.   

REFERENCES 
[Atif 04] J.E. Atif, Recalage non-rigide multimodal des 

images radiologiques par information mutuelle 
quadratique normalisée. Thèse, LIMSI-CNRS, 2004 

[Cachier 01] P. Cachier, J-F. Mangin, X. Pennec, D. Rivire, 
D. Papadopoulos-Orfanos, J. Rgis et N. Ayache. 
Multisubject non-rigid registration of brain MRI using 
intensity and geometric features. Proc. Of Medical 
Image Computing and Computer-Assisted Intervention 
(MICCAI’01), pp.734-742, The Netherlands-Octobre 
2001. 

[Ding 01] L.Ding, A. Goshtasby et M. Satter, Volume image 
registration by template matching, IEEE Transaction on 
Medical Imaging, 2001 

[Johnson 02] H.J. Johnson et G.E. Christensen, Consistent 
landmark and Intensity-based Image Registration, IEEE 
transactions on medical imaging, VOL.21, NO 5, Mai 
2002. 

 [kharrat 08a] Ahmed Kharrat, Saoussen Belhassani, Moncef 
Bousselmi, Recalage logiciel pour l’imagerie médicale : 
classification, comparaison et réalisation, GEI’2008 
Huitièmes Journées Scientifiques des Jeunes Chercheurs 
en GENIE ELECTRIQUE ET INFORMATIQUE. 

[kharrat 08b] Ahmed.Kharrat, Moncef.Bousselmi, 
Mohamed.Abid, «Recalage automatique rigide d'images 
médicales : IRM / IRM », accepté dans le QUATRIEME 
WORKSHOP AMINA 2008 "Applications Médicales de 
l'Informatique : Nouvelles Approches" 13, 14 et 15 
Novembre 2008 Monastir-Tunisie. 

[kharrat 08c] Ahmed.Kharrat, Mohamed.Abid, «Block 
Matching Monomodal Image Registration using Robust 
Similarity Measure and a combination of optimization 
and interpolation », accepted in the 2nd International 
Conference on Electrical Engineering Design and 
Technologies ICEEDT '08, 8-10 NOVEMBER 2008, 
HAMMAMET, Tunisia. 

[Montgomery 06] D. W. G. Montgomery, A.Abbes et 
H.Zaidi, Fully Automated Segmentation of Oncological 
PET volumes using combined Multiscale an statistical 
Model, Proc. Of Medical Image Computing and 
Computer-Assisted Intervention (MICCAI’01), 2006 

[Ourselin 01] S. Ourselin, A. Roche, S. Prima et N. Ayache, 
Block matching: a general frame work to improve 
robustness of rigid registration of medical images. 
INRIA, 2001 



E-MEDISYS 2008  

 

ISBN: 978-9973-0-0124-5 - 8 - 

[Pluim 03] J. P.W. Pluim, J.B. A. Maintz et M.A. Viegever. 
Mutual information based registration of medical 
images: a survey. IEEE Transaction on medical imaging, 
2003. 

[Putjarupong 04] P.Putjarupong, C. PINtavirooj, W. 
Withayachumnankul et M. Sangworasil, Image 
registration Exploiting Five-point coplanar perspective 
invariant and maximum-curvature point, Journal of 
WSCG, Vol.12, No.1-3, ISSN 1213-6972, WSCG’2004. 

 [West 97] J . West, M . Fitzpatrick, M. Wang, B . Dawan, C 
. Maurer Jr., R. Kessler, R. Maciunas, C. Barillot, D. 
Lemoine, A. Collignon, F. Maes, P. Suetens, D. 
Vandermeulen, P. Van den Elsen, S . Napel, T. 
Sumanaweera, B. Harkness, P. Hemler, D. Hill, D .  

       Hawkes, C. Studholme, A. Mainz, M. Viergever, G. 
Malandain, X. Pennec, M . Noz, G. Maguire, Jr. M. 
Pollack, C. Pelizzari, R. Robb, D. Hanson, and R. 
Woods. Comparison and evaluation of retrospective 
intermodality brain image registration techniques. 
Journal of Computer Assisted Tomography, 21(4) :554-
566, 1997 . 

 

 

 


