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RÉSUMÉ. Le présent article propose une méthode de recalage des images médicales de type IRM 
basée sur la technique du bloc Matching, utilisant l'algorithme de résolution conçu aux centres 
d’images. Cet article présente une technique permettant l’amélioration du traitement aux niveaux 
des coins tout en profitant des performances des méthodes précédentes. La méthode proposée se 
compose de quatre étapes : découpage des deux images source et cible et recherche du correspond 
de chaque bloc dans l’image cible, application des filtres, recherche de la transformation rigide en 
tenant compte de certains mesures de similarité et enfin l’optimisation des résultats en utilisant 
l’estimateur des moindre carré  tamisée. Cette approche a été expérimentée et a abouti à des 
résultats intéressants. 
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I. Introduction 

Le recalage d’images fait référence à la procédure ayant pour but de trouver une transformation spatiale reliant 
deux ou plusieurs images. Au final, le but est de situer les images dans un même repère géométrique. C’est un 
domaine de recherche aux multiples applications et impliquant un vaste nombre de technique d’imagerie 
numérique. Cette multiplicité provient essentiellement de la notion assez générale de lien entre images : les 
méthodes de recalage interviennent en fait à chaque fois qu’une correspondance spatiale entre images est 
requise. En effet, le recalage constitue un problème incontournable à de nombreuses tâches d’analyse d’images 
médicales. Il est notamment nécessaire pour la comparaison d’images mono ou multimodales et intra ou inter-
patients. Plusieurs approches ont été développées en fonction de la nature des images à recaler et des conditions 
d’acquisitions. Ce processus peut être rencontré dans la littérature sous le nom de mise en correspondance 
spatiale, fusion ou normalisation spatiale lorsque les données manipulées par l’algorithme du recalage sont des 
images médicales. Dans ce travail, nous abordons la classification de recalage en se basant sur la technique de 
résolution considérée. En effet, deux classes d’approches de recalage d’images médicales peuvent être 
distinguées : les approches basées sur l’extraction des primitives [4, 7, 8, 11] et les approches basées sur 
l’intensité : [2, 10, 12,13], appelé parfois recalage sans primitives. 
Le présent papier se situ dans le cadre de pré-traitement de l’analyse des images médicales, il présente une phase 
préliminaire visant la prise de décision suite à une diagnostique décisionnelle. Concernant cette aspect 
décisionnelle, nous citons plusieurs approches ont été cité dans la littérature tel que l’utilisation de réseau de 
neurones [3]. 
Le présent article sera organisé comme suit : la deuxième section sera consacrée à une description technique du 
recalage d’images médicales en présentant les techniques de recalage basées sur les primitives, les techniques de 
recalage basées sur l’intensité afin de les comparer avec les techniques décrites précédemment et les différentes 
possibilités d’intégration des deux approches pour avoir une nouvelle famille d’approches de recalage nommée 
hybride [5, 6, 9]. Enfin, nous présentons notre approche basée sur le recalage hybride à fin d’illustrer ses 
avantages sous forme des différents résultats avant et après l’application des filtres et essentiellement le filtre de 
Sobel en utilisant comme estimateur le moindre carrée tamisé. 



II. Recalage d’images 

1. Introduction  

La notion de recalage est associée à la définition d’une correspondance point par point entre les coordonnées 
d’un point dans un espace à celle d’un autre point dans un autre espace (appelé aussi référentiel). Dans le 
domaine médical, cette notion se trouve renforcée par le fait que ces points correspondent tous à un point 
anatomique.  
Dés lors, un certain nombre de questions viennent à l'esprit : quelles informations utiliser pour guider le recalage 
? Comment déformer une image ?  Comment définir la ressemblance entre deux images ? Comment trouver la 
meilleure transformation ?  
De ce fait, qu’elle s’inscrive dans le cadre d’une application interactive ou automatique, une procédure de 
recalage suit généralement le même schéma et réclame la définition de certains  critères à savoir : 

- Extraction des structures homologues (appelées aussi attributs ou primitives) : Ce sont les 
caractéristiques, extraites des images, qui permettent de guider le recalage.  

- Modèle de transformation : Il conditionne la manière dont l'image est géométriquement modifiée.      
- Critère de similarité : Il définit une certaine distance entre les attributs des images afin de quantifier la 

notion de ressemblance.     
- Stratégie d'optimisation : Elle permet de déterminer la meilleure transformation au sens d'un certain 

critère de similarité dans l'espace de recherche défini par le modèle de transformation.  

2. Algorithme général du recalage d’images 

Dans cette partie, nous allons poser le problème du recalage de manière plus formelle en introduisant les 
différentes notations utilisées et en décrivant le principe général de la procédure de recalage (Fig. 1). 

 
Fig. 1. Principe général du recalage de l'image Icib  sur Iref 

 
La notion de recalage peut être résumée de la façon suivante :  
Considérons le recalage d'une image Icib  sur une image de référence Iref. Le problème de mise en correspondance 
des deux images consiste à l'estimation d'une transformation T qui à chaque point ‘p’ de l'image de référence Iref  
associe les coordonnées T(p) = p + u(p) dans l'image Icib (u représente le champ de déformation). La 
transformation T est recherchée parmi un ensemble Φ de transformations, définissant l'espace de recherche des 
transformations. Une étape préliminaire à l'estimation de la transformation est l'extraction à partir des images 
brutes Iref et Icib des informations pertinentes permettant de guider le recalage. Iref et Icib sont donc construites 
respectivement à partir de Iref et Icib  en utilisant les fonctions Fref et Fcib. 
Une fois les informations extraites, il s'agit de définir une fonction d'énergie E permettant d'associer à un couple 
Icib (T) et Iref une valeur permettant de quantifier leur proximité ou bien leur ressemblance. Cette fonction E, 
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appelée aussi critère de similarité, devrait théoriquement être minimale (ou maximale) lorsque l'image de 
référence et l'image à cible sont en parfaite correspondance.   

La phase d'optimisation consiste enfin à trouver la transformation optimale T̂ qui minimise (ou maximise) la 
fonction d'énergie E sur l'espace de recherche entre les deux images Iref et Icib. Le problème d'optimisation peut 
ainsi être formulé de la manière suivante (eq.1) : 
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3. Recalage basé sur les primitives  

Ce type de recalage est basé sur l’extraction des primitives géométriques des deux images à recaler. La première 
étape de cette technique consiste à extraire un type de primitives géométriques : points d’intérêt, contours ou 
surface sur les deux images objet d’études. Ensuite, un processus d’identification des paires de primitives qui 
peuvent se correspondre est mis en place. Ce processus est appelé mise en correspondance ou appariement des 
primitives. La transformation est par la suite calculée en se basant sur l’ensemble des couples appariés. Il est à 
noter que l’étape d’extraction des primitives est considérée discriminante pour la précision de la transformation 
recherchée. Donc, le manque de précision des primitives conduit obligatoirement à une transformation aberrante 
qui peut parfois compliquer le problème de comparaison d’images plus que le simplifier [1]. C’est pourquoi, une 
validation des algorithmes de recalage en routine clinique est toujours demandée pour raffiner les algorithmes 
proposés. 

4. Recalage basé sur l’intensité  

Pour beaucoup de travaux rencontrés dans la littérature, l’étape d’extraction des primitives a été éliminée et la 
mesure de la similarité est appliquée directement sur l’intensité des voxels. Au contraire du recalage basé sur les 
primitives, ce recalage utilise l’information fournie par l’intensité de l’image toute entière. L’étape cruciale de ce 
recalage est donc la mesure de similarité adoptée et le processus d’optimisation choisi. En fait, une mesure de 
similarité est calculée pour évaluer la ressemblance entre les pixels qui doivent se correspondre après avoir 
appliquer une transformation initiale T0 [1]. 

5. Recalage hybride  

Pour faire face aux problèmes liés à l’utilisation des primitives ou à l’intensité pour assurer le recalage d’images 
médicales, des auteurs de quelques travaux, ont introduit une nouvelle catégorie d’approches. En fait, cette 
catégorie dite d’approches hybrides, utilisent une combinaison temporaire [9], spatiale [6] ou bien simultanée [5] 
des deux autres. Pour la combinaison spatiale ou simultanée des deux algorithmes de recalage, la précision est 
toujours dépendante de la précision d’extraction des primitives ce qui peut être un inconvénient lié à l’utilisation 
de ce type de combinaison. Alors que pour une combinaison temporaire, il y aura toujours une possibilité de 
raffinement des résultats car les primitives ne sont utilisées que pour une estimation grossière pour initialiser les 
paramètres de l'algorithme. Les possibilités de combinaison entre les deux types de recalage sont très 
nombreuses et les techniques décrites dans ce travail ne sont que des exemples pour illustrer la possibilité de 
combinaison temporaire, spatiale et simultanée [1]. 

III. Description de l’approche 

Pour suivre l’évolution du cancer dans le temps, afin de mettre en place une planification radio-thérapeutique 
fiable, l’imagerie anatomique se trouve insuffisante pour une délimitation confiée du cancer. En fait, 
l’interprétation visuelle de la structure anatomique au cours de la radiothérapie par le radiologue, est parfois 
impossible. En effet, en se basant sur l'interprétation visuelle uniquement, le diagnostic différentiel entre récidive 
et radionécrose peut conduire à une planification radio-thérapeutique invasive. Par exemple, dans le cas du 
cancer de rhinopharynx, un épaississement de la membrane de la cavité nasale est remarqué sans qu’une 
interprétation correcte puisse être mise en place par interprétation visuelle sur des images à résonance 
magnétique. Donc, un recalage des images médicales dans ce cas se trouve de grand intérêt. Dans notre 
application, nous nous proposons de recaler des images IRM 2D de rhinopharynx, il est à tenir compte de 



plusieurs sources de différences possibles entre l'image de référence et l'image cible [1]. En fait, l’importance 
source de différence est le changement de l'anatomie de rhinopharynx. Cette différence sera utilisée pour estimer 
le changement de volume de la tumeur et quantifier l'avancement ou le recule de la tumeur. Cela permettra de 
mettre en place une planification radio-thérapeutique fiable. Pour cette application nous optons pour une 
technique hybride de recalage rigide afin de surmonter les inconvénients du recalage basé sur les primitives et les 
inconvénients du recalage basé sur l'intensité.  
Selon notre étude bibliographique, les approches qui combinent successivement l'utilisation des deux autres 
catégories d'approches sont les plus prometteuses. Pour cette raison, nous nous proposons d'utiliser une approche 
dérivée de celle décrite dans [9]. Dans ce travail, la subdivision successive des blocs est inspirée de la 
subdivision des blocs utilisée dans la norme de compression MPEG4. Pour cette norme, il n'existe pas un critère 
de décision de l'arrêt de subdivision pour quelques blocs ou de sa continuité pour des autres. Cela veut dire que 
tous les blocs utilisés sont toujours de même taille malgré qu'il existent certainement des subdivisions inutiles sur 
des blocs qui ne sont pas discriminants et dont les correspondants sont à faible précision. Pour notre approche 
nous proposons d'utiliser la subdivision en bloc qui s'inspire de la norme de compression H.264 [1].  
Pour notre application, nous suggérons que ce critère soit basé sur l'application d'un masque d'extraction de 
contours afin de localiser les parties de l'image qui contiennent des informations anatomiques valides qui 
peuvent aider pour raffiner le recalage. Pour cela nous utilisons une stratégie d’appariement de régions, afin 
d’estimer une transformation paramétrique rigide T, initialisé à l’identité. Nous utilisons pour cela une approche 
itérative, c'est-à-dire que nous approchons pas à pas la transformation. A chaque itération, nous calculons la 
mesure de similarité ( champ de vecteur) entre les deux images de référence et cible jusqu’à ce que le recalage 
est assuré ou qu’il y a plus d’amélioration du résultat.  
Considérons deux images 2D de même taille 256*256 que nous désirons mettre en correspondance, nous notons 
(x, y) les positions sur la grille de voxels des images. Pour cela nous découpons l’image de référence en un 
ensemble de sous-images que nous appellerons blocs. Ces blocs seront notés B dans l’image de référence I et B’ 
dans l’image cible J, de taille identique N*N [1], en premier lieu 32*32, en deuxième lieu 16*16, ensuite 8*8 et 
enfin 4*4. Nous recherchons alors les meilleurs correspondants dans l’image cible d’un ensemble de blocs B de 
l’image de référence, pour un critère de similarité donné. Chaque couple de blocs sera stocké par la position de 
son centre du fait du mouvement recherché du bloc (mouvement translationnel). Signalons de plus que le point 
du centre est celui pour qui la relation locale entre les blocs est statiquement la plus juste. C’est cet ensemble de 
couples de points qui définira un champ de vecteurs entre nos deux images.  
Le principe de l’algorithme retenu est de mettre en correspondance un bloc de l’image de référence avec un bloc 
de l’image cible. Nous pouvons effectuer cette recherche sur toute l’image ou bien sur une zone autour de la 
position du bloc de l’image de référence. C'est-à-dire pour un bloc B de I, nous recherchons donc dans un 
voisinage Ω  qui est défini par 2*rayon du bloc B, de J le meilleur correspondant B’. Lors de la phase 
d’appariement, on prend en considération que le pas entre deux blocs consécutifs dans le voisinage déterminé de 
l’image cible est ∆, qui peut bien sûr être anisotrope suivant les axes. Dans la stratégie classique d’appariement 
de régions, nous nous sommes amenés à effectuer une recherche complète dans ce voisinage. C'est-à-dire que 
nous explorons toutes les positions en coordonnées entières dansΩ . En faisant l’hypothèse que, dans un 
voisinage donné, le critère de similarité que nous optimisons est convexe, alors nous pouvons effectuer une 
recherche quasi-complète (Fig. 2). En effet, en utilisant cette propriété de convexité, nous pouvons par exemple 
explorer une position sur deux, et considérer que la solution trouvée représente la position la plus proche de la 
solution réelle (recherche complète). 

 

Fig. 2. Illustration de l’appariement de régions sur une coupe IRM [9] 

Pour une direction donnée, N est la taille du bloc, Ω est la taille de la zone de recherche, ∑ est la résolution du 
champ de vecteurs, ∆ est la densité du champ de vecteurs. Sur cette figure, le centre du bloc B est noté mi et celui 
du bloc B’ est noté m’i.  



IV. Expérimentation 

Afin d’évaluer la performance de notre algorithme nous avons utilisé à ce stade la base de données vanderbilt et 
nous avons limité nos expériences uniquement aux images IRM 2D intra-sujets et particulièrement au quatre 
premier séries. Il est a signalé que les images sont de taille 256x256 et en niveau de gris (16 bits/ pixels). Nous 
avons testé l’approche basée sur l’utilisation du Coefficient de Corrélation (CC) et l’information mutuelle (MI) 
sur quatre séries d’images IRM 2D monomodale intra-sujets suivant la variation de ces trois paramètres N, ∑ et 
∆ avant (tableau1) et après l’application de filtre de Sobel (tableau2).  
Puis nous avons calculé les deux taux d’erreur moyen, un relatif aux coins de l’image présenté par (eq.2) et un 
autre décrivant celle du centre de l’image (eq.3). Nous avons ensuite  comparé ces quatre séries avec celles de 
l’algorithme d’Aladin [9].  
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Avec S est estimé à l’aide  de l’algorithme d’estimation de transformation  au sens des moindres carrés tamisé. 
Une fois S est calculée on met à jour la transformation précédente T  tel que T� ToS. Aussi P1,…, P4 les quatre 
coins de l’image dans l’équation 2,  P1 représente le centre de l’image dans l’équation 3. 

Tableau 1: Distance moyenne de recalage IRM/IRM des quatre premières séries de la base vanderbilt, pour trois 
algorithmes différents avant l’application de filtre de Sobel 

 
Méthode Erreur au centre 

Moyen (mm) 
Erreur au coin 
Moyen (mm) 

Block Matching avec 
CC 

5.22 9.91 

Block Matching avec 
MI 

4,28 11.46 

Aladin 2.39 3.70 

 
Par la suite, nous avons précédé à appliquer les trois filtres classiques Sobel, Robert et Prewitt, et nous avons 
essayé de choisir celle qui donne le meilleur résultat du taux d’erreur moyen qui est présenté au tableau suivant. 
  

Tableau 2: Distance moyenne de recalage IRM/IRM des quatre premières séries de la base vanderbilt, pour trois 
algorithmes différents après l’application de filtre de Sobel sur les deux premiers algorithmes 

Méthode / filtre de 
Sobel 

Erreur au centre 
Moyen (mm) 

Erreur au coin 
Moyen (mm) 

Block Matching avec 
CC 

3. 91 6. 15 

Block Matching avec 
MI 

3.26 8.37 

Aladin 2.39 3.70 

 
La comparaisons des performances nous amène aux observations suivantes, alors l’algorithme qui utilise le MI 
comme mesure de similarité après l’application de filtre de Sobel est efficace par rapport au premier qu’utilise le 
coefficient de corrélation, puisqu’il a donné un taux d’erreur faible au centre d’image. Alors que cette tendance 
est différente en se qui concerne le taux d’erreur au coins d’image. En effet, la performance de ces deux 
approches sont actuellement comparable : le taux d’erreur moyen de Block Matching avec MI est moins élevé et 
par conséquent plus performant et précis. Les expérimentations faites sur une base d’images IRM 2D 
monomodale intra-sujets ont montrée que cette approche présente toujours des résultats meilleurs que l’approche 
Block Matching avec CC au centre d’image. Cette différence résulte, peut être, du changement de la méthode de 
mesure de similarité utilisée, le cœfficient de corrélation pour la première et l’information mutuelle pour la 
secondaire. L’utilisation de l’information mutuelle sur cette base d’exemple se traduit par une performance 
remarquable au niveau du traitement au centre de l’image, et une dégradation au niveau des coins. Quant à 
l’utilisation de l’approche qu’utilise le cœfficient de corrélation, elle se traduit par une bonne performance au 
niveau du traitement des coins et une légère dégradation au niveau du traitement au centre. Cette constatation 



nous mène à combiner ces deux algorithmes dans un processus de recalage pour profiter des avantages du 
premier (traitement des coins) et des avantages du deuxième (traitement au centre) et atteindre une résultat 
proche de l’algorithme d’Aladin. 

Conclusion  

Dans cet article une synthèse des différents algorithmes de recalage est présentée afin de classifier les méthodes 
en trois catégories : une première catégorie d’approches qui se base sur l’appariement des primitives 
géométriques afin de montrer les avantages et les inconvénients de cette approche. Une deuxième catégorie est 
celle qui englobe les approches basées sur le calcul de similarité d’intensité sur l’image toute entière. Pour ces 
approches nous avons présenté les différents choix possibles, selon la bibliographie consultée, pour construire 
une chaîne de résolution robuste en mettant l’accent sur l’importance de choix dans chaque étape. Avant de 
terminer nous avons achever notre synthèse par la présentation de quelques approchent qui ont montré la 
nécessité de faire recours aux algorithmes hybrides qui associent, spatialement, temporairement ou 
simultanément, une approche basée sur les primitives à une approche basée sur l’intensité. Ces approches ont 
permis aux autres catégories de se compléter pour donner des approches plus robustes. Enfin, nous avons 
présenté la performance de notre approche par rapport à celle de l’algorithme d’Aladin. 
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