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Abstract In the era of mobile and wireless networks, the
growing complexity of end devices and the accentuated
tendency towards miniaturization of them raise new security
challenges. Authentication is a crucial concern in resource
constrained environments, and despite the great number of
existing EAP methods, as explained in the article, we are still
in need for EAP methods tightly adapted to wireless environ-
ments and satisfying heterogeneity of terminals and their
limitations of resources. After a first comparative analysis of
existing EAP methods, this article presents a new EAP-EHash
method (EHash for encrypted hash) that is adapted to the
highly vulnerable wireless environment by supporting mutual
authentication and session key derivation and offering
simplicity, rapidity, and easy-to-deploy features. This EAP-
EHash was formally proven to satisfy the claimed security
properties, thanks to the AVISPA tool. Implementation of it on
an 802.11 testbed platform gave realistic authentication delays
averaging 26 ms and thus proved that EAP-EHash is
competitive to EAP-MDS that is known to be the simplest
of the EAP methods. Features of EAP-EHash include short
execution delays and low bandwidth consumption, and as
such, it appears attractive for wireless.
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Abbreviations

3DES Triple DES

AAA Authentication, authorization, accounting

AK Authentication key

AP Access point

AS Authentication server

AVISPA  Automated validation of internet security proto-

cols and applications

CPU Central processing unit

DES Data encryption standard

DoS Denial of service

EAP Extensible authentication protocol
EHash Encrypted hash

EK Encryption key

EP Enforcement point

IKEv2 Internet Key Exchange version 2
KDK Key derivation key

MK Master key

MD5 Message digest 5

MIC Message integrity check

MITM Man-in-the-middle

PKI Public key infrastructure

PMK Pairwise master key

PRF Pseudo-random function

PSK Pre-shared key

PTK Pairwise transient key

SHA-1 Secure hash algorithm-1

1 Introduction
In the era of wireless and mobile networks, end devices are

becoming more and more complex supporting connectivity
to multiple networks, like GSM/GPRS/UMTS, Wi-Fi, and
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Bluetooth, and offering multimedia functions, like (video)
camera, VoIP, MPEG3 reader, and even GPS geo-
localization. The growing complexity of end devices and
the accentuated tendency towards miniaturization of them
raise new challenging problems for researchers like
designing new mechanisms which take into account the
limited resources of terminals. This pretty new resource
constraint is essential for next-generation devices to benefit
from advanced networks functionalities without proceeding
to too frequent battery reloading.

Security is reported as one of the most challenging field
where strong and rapid advances are needed. Security
mechanisms are known to be usually high CPU consuming
and are critically required in wireless networks where
vulnerabilities are even more important than in wired
networks. On the one hand, cryptography serves to
introduce robustness into security mechanisms but is costly
in terms of CPU and delays. Security mechanisms’
heaviness is sometimes even worse when extra administra-
tion of cryptographic keys is required for instance. On the
other hand, reasons for larger vulnerabilities in wireless
networks compared to wired’s are related to the wireless
shared communication medium (air) that makes it more
exposed to external attacks. Where attacks onto wired
networks assumed a physical intrusion onto the inside
network of a company or an operator, eavesdropping,
hijacking of existing sessions, and spoofing authorized end
devices are much easier to perform onto wireless networks
(with infrastructure). Other attacks are potentially more or
less disruptive. Partly or fully scrambling the radio signals,
for instance, might result into signal quality degradation or
a denial of service. Another one known as man-in-the-
middle might consist in a malicious device advertising as an
access gateway (802.11 AP, GSM BTS...), so legitimate
clients connect to. The interest for the attacker is to collect
authentication data like login/passwords that would be
helpful for his next spoofing attempts. For any of the
hereabove attacks, whatever kinds of wireless networks
being under analysis—cellular, Wi-Fi, and WiMAX net-
works—the only prerequisites for attackers are to be
positioned in the coverage zone of the wireless networks,
equipped with more or less sophisticated and expensive
materials, and helped by experts (for some of the attacks).

Fig. 1 The security architecture
for controlling access to the

As a consequence, today’s security challenge is to define
strong enough security mechanisms that are robust to most
of the attacks and that satisfy the very strong constraints to
be lightweight and fast. A number of works are under
progress at the IETF standardization body. In [1], a security
architecture is defined for controlling access to a network
infrastructure, as illustrated in Fig. 1. In this architecture, an
enforcement point (EP) under the control of an administra-
tive authority (a private company, an operator...) does filter
the inbound and outbound traffic of a client device
according to the local administration’s security policy.
Usually, the EP is configured to accept inbound traffic
from authenticated clients and to limit acceptance of
messages from unauthenticated clients to the messages
supporting the authentication phase. Those latter messages
are relayed by EP back and forth between the authentication
server (AS) of the network administration and the client.
This is the duty of the AS to verify the identity of the EP.
As soon as authentication is successfully completed, the EP
applies the filtering rules specific to that client.

As shown in Fig. 1, the protocol supporting authentica-
tion exchanges between the client and EP is named the
access protocol and might be IEEE 802.1X [2] that
classically applies in the IEEE 802.11 environment or the
generic over-IP protocol PANA (a protocol for carrying
authentication for network access) [3] that supports authen-
tication exchanges over IP. The AS is usually associated to
an authentication, authorization, accounting (AAA) server
centralizing all the authentication requests. The classical
AAA protocols for performing authentication might be
either the well-known remote authentication dial in user
service (RADIUS) [4] or the more recent Diameter [5] that
supports inter-administrative domain authentication.

This article focuses on the authentication procedures
based on extensible authentication protocol (EAP) methods
and refers exclusively to the IEEE 802.11 network and
802.1X environments as EAP testing was conducted on an
802.11 platform. As such, the vocabulary is next IEEE
802.11 specific, and as given in Fig. 1 (text in italics), the
EP is referred to as authenticator or AP (for access point),
the client device as supplicant, and AS as EAP server.

Let EAP’s basic principle and reasons of success first be
explained. EAP for extensible authentication protocol as the
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network infrastructure (with fext
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Fig. 2 The EAP stack underlining separation between EAP protocol
and EAP methods

first generic protocol for authentication support introduces a
lot of flexibility into security architectures and authentica-
tion handling. The successful idea, as depicted in Fig. 2,
was to separate the EAP protocol [6] that transports the
authentication data and the EAP methods that interpret the
EAP data and check identity. The direct advantage is
the possibility of changing from one EAP method to
another while keeping the same security architecture.
Additionally, to the large choice of available methods, this
permits to rapidly activate a new EAP method in case the
older one is detected as vulnerable.

Today’s success of EAP is real as a number of network
protocols needing authentication integrate EAP for authen-
tication support. PPP [7] mainly for dial-up networks was
the first one and was followed not only by IKEv2 [8] for
[Psec environment but also RADIUS with its EAP over
RADIUS solution [5] and Diameter with its new Diameter
application for EAP support [9]. Furthermore, a number of
classical authentication protocols were adapted as EAP
methods. As such, historical protocols like transport layer
security (TLS) [10], challenge handshake authentication
protocol (CHAP) [7], subscriber identity modules (SIM)
from GSM networks, respectively, became EAP-TLS, EAP-
MDS5, and EAP-SIM. More than 50 EAP methods [11, 12]
have been designed during the past few years; among
which, only ten are today published as IETF RFC, and six
of them have been designed for the wireless context in the
last 2 years, thus proving that the EAP field is still very
challenging for industries and researchers. These EAP
methods might be based on login/password, electronic
certificate, smart card (SIM)...or might be a combination
of those elements (e.g., certificates and login/password).

In the next section, historical and recent standardized EAP
methods [11] are described to underline their properties and
vulnerabilities for use in wireless network context. Table 1
summarizes features of each of them. The need for defining
a new, simple, low-powered, and robust EAP method is
discussed. Section 3 presents our new method named EAP-
EHash (for encrypted hash) with detailed validation
handling in Section 4 and description of the testbed
platform in Section 5. Note that this EAP method is an
extended version of the one presented in [13]. Finally, an

analysis of EAP-EHash against current EAP methods is
conducted in Section 6. Section 7 concludes the article.

2 Related IETF works on EAP methods and discussions

We consider of high importance the works conducted by
the IETF since the IETF standards are largely implemented
into security products, and specifications are freely avail-
able. In this section, the historical and well-introduced EAP
methods—EAP-MD5 and EAP-TLS—are first presented.
Even if not designed for wireless, both are worth studying.
EAP-MDS is known as the simplest existing EAP method
with very light and fast processing. EAP-TLS is known for
its high robustness against malicious attacks. Those two
methods serve next in this article as references to evaluate
the simplicity and robustness of EAP methods. That is why
for a better understanding of the comparative analysis of
Section 6, details of both of them are given. Then, newly
defined methods for wireless, namely EAP-password au-
thenticated exchange (PAX), EAP-SAKE, EAP-pre-shared
key (PSK), EAP-POTP, and EAP-FAST are introduced.
Properties and vulnerabilities of all those methods are
highlighted. A synthesis is given in Table 1, and a final
discussion is proposed in Section 2.4.

2.1 EAP-MDS5

The EAP-MDS method is an adaptation of protocol CHAP
[14] that implements challenge-response principle. EAP-
MDS5 requires a PSK between client and EAP server that
generally takes the form of a password bound to a user
name or any identity (e.g., an IP or MAC address).

As illustrated in Fig. 3 that applies to IEEE 802.1X
environment, after getting the authenticator’s EAP request
(step 1), the client declines its identity (step 2) in an EAP
message which is relayed to the EAP server. The EAP
server then sends a random challenge to the client (step 3)
which calculates a hash based on the challenge and the pre-
shared key. The hash value is returned in an EAP message
(step 4). The server performs the same hash computation
and compares both values. Two identical hashes mean that
the client owns the key; it successfully authenticates itself,
and an access-accept is sent (step S5a). Otherwise, the
authentication fails, and the server rejects the authentication
(step Sb). According to that final decision, the authenticator
authorizes or denies future data exchanges of the client.

2.2 EAP-TLS
The EAP-TLS [15] is an adaptation of protocol TLS (IETF

RFC [16] obsoleted by [10]) using electronic certificates to
implement mutual authentication between client and AS.
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Fig. 3 The EAP-MD5 exchanges in the IEEE 802.11 context

As depicted in Fig. 4, after having detected a new 802.11
client, the authenticator launches the EAP-TLS authentica-
tion, requesting first client’s identity. The response is then
forwarded to the EAP server. Succeeding EAP messages
are relayed back and forth by the authenticator between
EAP client and server.

The EAP server initiates the authentication procedure
which requires seven messages. Messages 2 to 5 are
adapted from the TLS handshake protocol [16]. Those
messages enable client and server to mutually authenticate,
thanks to their public key certificates, to generate a
common master key useful for later key derivation, to
check EAP-TLS messages integrity, and to agree on a
ciphersuite (hashing function, encryption algorithm) that
serves to protect next EAP messages. As such, the EAP-
TLS exchanges include transmission of both parties’
certificates (TLS certificate) with possible explicit request
to the other party (TLS certificate request). TLS server
key exchange and TLS client key exchange enable parties

No

to agree on a common master key. TLS client hello and
TLS server_hello serve to negotiate the ciphersuite, and
TLS change cipher spec to activate the newly agreed
ciphersuite on next EAP messages. The client authenticates
to the server sending its signature in the TLS certificate
verify message and authenticates the server thanks to the
TLS finished message that proves the server holds the good
private key.

Finally, messages 6 and 7 end the EAP-TLS session. The
EAP response message proves the server is successfully
authenticated to the client and the EAP_Success message
that the authentication was successfully handled by the
server.

2.3 Recent IETF-published EAP methods for wireless
Six EAP methods—EAP-PAX, EAP-SAKE, EAP-PSK,

EAP-POTP, EAP-FAST, and EAP-generalized pre-shared
key (GPSK)—were published as RFC by the IETF in the
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Fig. 4 The EAP-TLS
exchanges in the IEEE 802.11
context
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last 2 years, with the clear objective to apply onto wireless
media. Features of them are synthesized in Table 1, and
their description refers to the properties being identified by
the IETF in Fig. 5 for wireless LAN environment.

1.[must] be able to generate symmetric keying material for some other
secure protocols like IKEV2 to initialize. Keying material [must] be
generated with 128-bits of effective key strength.

2.[must] support mutual authentication.

3 [must] share state equivalence so that both parties share the same
state of authentication protocol and attributes.

4 [must] be resistant to dictionary attacks and man-in-the-middle
attacks.

5 [must] protect the negotiation of the ciphersuite parameters that
serve to protect later EAP data exchanges.

6.[should] support the fragmentation of EAP data in case of too large
EAP data.

7.[should] hide end-user's identity for confidentiality purpose.
8.[might] support fast reconnect procedures for efficiency.

Fig. 5 List of mandatory ([must]), recommended ([should]), or

optional ([might]) properties given in [23] for EAP methods to be
eligible to IEEE 802.11 wireless LAN environment

@ Springer

EAP-PSK [17] provides mutual authentication and key
derivation based on a pre-shared key. A key hierarchy is
defined where two static long-lived keys, 128-bit authen-
tication key (AK) and key derivation key (KDK), are
derived from the pre-shared key by both the client and the
server. AK serves for server and client to mutually
authenticate, thanks to message integrity check (MIC)
adjunction to EAP messages. KDK serves to derive other
keys that are valid during the EAP session only and that
ensure a secure EAP channel (integrity and confidentiality
protection). No negotiation of the ciphersuite parameters for
securing that EAP channel is provided. Note that AK is not
a session key but a static key that directly supports
generation of MIC. As such, EAP-PSK is vulnerable to
brute-force attacks targeting MIC and to AK key cracking.

Like EAP-PSK, EAP-SAKE [18] assumes a pre-shared
key is known to both the client and the server, and it
supports mutual authentication and key derivation. The pre-
shared key serves to derive two session keys: TEK Auth
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for generating the MIC for mutual authentication and
TEK Cipher to optionally encrypt part of the EAP data.
The MIC generation function is fixed by the EAP-SAKE
method. Only the encryption algorithm for EAP data
encryption is able to be negotiated. Like any other pre-
shared key-based EAP method, EAP-SAKE is vulnerable to
dictionary attacks if the pre-shared key is a password.

EAP-GPSK [19] is a lightweight shared-key authentica-
tion method supporting mutual authentication and key
derivation and requiring two round-trip times. The session
key serves to integrity protect the messages and the
protected data encryption key to optionally encrypt some
confidential parameters. Any of the algorithms including
the key derivation function can be negotiated.

EAP-PAX [20] is based on a pre-shared key that is
combined to Diffie-Hellman key exchange for derivation of
session keys. The confirmation key is useful for MIC
generation by both parties to support mutual authentication.
The integrity check key enables each EAP-PAX message to
be integrity protected. Two modes of operation are defined:
PAX-STD and PAX-SEC. PAX-STD is the basic mode
realized in two roundtrip times with simple MICs exchange.
PAX-SEC is more secure offering confidentiality of client’s
identity. PAX-SEC assumes the server owns a public key for
the client to encrypt its identity. Note that identity protection
is securely provided only if the server’s certificate is signed
by a trusted authority known by the client.

EAP-POTP [21] is based on one-time password (OTP)
tokens, and it has two variants. In the basic variant, only the
client authenticates to the server. This mode of operation
can only be used within a secured tunnel. Thus, it
complements tunneled EAP methods like EAP-PEAP,
EAP-TTLS, and EAP-FAST where the secured tunnel
enables during establishment to authenticate the server
and then to protect the encapsulated authentication of the
client. A more advanced variant provides mutual authenti-
cation, integrity and confidentiality protection of the
exchange, and derivation of keying material.

EAP-FAST [22] consists first in establishing a TLS tunnel
with the TLS handshake protocol and Diffie-Hellman key
exchange and second in handling further authentication
through that tunnel. Fast reestablishment of tunnel is
supported thanks to a TLS extension.

2.4 Discussions

As shown in Table 1, the methods EAP-TLS, EAP-PAX-
SEC, and EAP-FAST make use of electronic certificates and
assume that a public key infrastructure (PKI), to manage the
public/private keys, is deployed. PKIs are very expensive in
terms of management and maintenance. Moreover, providing
each terminal with a certificate is very expensive, and heavy
operations of distributing certificates to terminals should not

be neglected. Finally, usage of certificates for the terminal to
authenticate the server does not fit well the context of
mobiles. Indeed, authentication occurs first to being
connected to the network, so the mobile is not able to check
the non-revocation status of the server’s certificate and might
accept an invalid server’s certificate.

EAP-PSK, EAP-MDS5, and EAP-PAX do not support the
negotiation of the ciphersuite parameters. All those param-
eters are fixed, and in case one of the parameters is found
vulnerable to some attacks, the method itself is classified as
weak and no longer usable.

All the pre-shared key-based EAP methods are vulnerable
to dictionary attacks in case the pre-shared key is generated
from a guessable quantity such as a human-selected password.
Having a high entropy for the pre-shared keys is a matter of
security policy.

In the wireless environment, rapidity, lightweight, and
limited roundtrips are of high importance to preserve
terminals’ own resources. Pre-shared key mechanisms are
light processing. Roundtrips must be limited to save the
network’s bandwidth, the power for transmission/reception,
and to be as fast as possible for users to get connected to
the network. As presented in Table 1, most of the EAP
methods described before propose an authentication in four
to six roundtrip times. EAP-MDS5 is the only existing
method with only two roundtrip times. However, EAP-
MDS suffers from the implemented unidirectional authen-
tication that make rogue access equipments undetectable to
terminals, and EAP-MDS5 is vulnerable to dictionary or
brute-force attacks.

The scientific community is still searching for new
EAP methods adapted to resource constrained and
vulnerable environments. The next sections present the
EAP-EHash method and compare the authentication
delays to those obtained by EAP-MDS5 and EAP-TLS.
The comparison to EAP-MDS is interesting as EAP-MDS
is known to be the simplest method, and measures for
EAP-TLS give information on how slow one of the most
robust methods is.

3 EAP-EHash method description

We propose a new simple, efficient, and easy-to-deploy
EAP method called EAP-EHash for use in a resource-
constrained network environment. EAP-EHash is based on
symmetric cryptography and satisfies all the mandatory
properties defined by [23]. It offers mutual authentication
and derivation of strong session keys of at least 128 bits
length. It defines mechanisms to mitigate dictionary, brute-
force and man-in-the-middle attacks. Negotiation of the
ciphersuite to protect EAP exchanges is included and is
protected, as explained in end of section 3.2.
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The simplicity of EAP-EHash and inherent lightweight
computation is due to the challenge/response authentication
system. The only one prerequisite for such EAP method is
the configuration of a PSK between the client and EAP
server.

The EAP-EHash authentication process is composed of
three main phases (Fig. 6): a negotiation phase (i.e., a
handshake between the client and EAP server), an
authentication phase, and a session key derivation phase.
Each phase is described into details with format of
messages in the following sections.

3.1 Negotiation phase

The client (or 802.11 supplicant) and the EAP server need first
to negotiate the ciphersuite, that is, the hash function and the
encryption algorithm, both being used to generate EAP-EHash
challenge/response messages during the authentication proce-
dure (second phase). Note that the negotiation phase might be
fully piggybacked into the authentication phase (i.e., requiring
no extra message exchanges) in case the default ciphersuite
proposed by the EAP server is accepted as it is by the client.
This negotiation phase is essential so as to fit the
technical requirements of low-power mobile terminals and
to offer the supplicant and the EAP server the possibility to
select the appropriate security level for their authentication
session. For instance, the EAP server can register many
profiles per user, each one corresponding to one of the
user’s terminals. Selection of the profile during negotiation
phase by the EAP server might be done according to the
identity declined by the client. A client identity (ClientID)
of the form “UserName.Terminal@realm” is one possibil-
ity. Furthermore, according to the authenticator forwarding

(o))

(%

Supplicant Authenticator EAP Server
EAP Iaanilf -Request

AF ldenlity Response

MNegotiation

AP Requesl (challenge message, default functions
phase

AP Response (supporied funciions]

EAF Requesl [challenge message
Authentication
phase

Key derivation
phase

EAP Response (response fo challenge

Fig. 6 EAP-EHash main phases
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EAP messages, the EAP server can deduce the type of
access network (IEEE 802.11, WiMAX...) from where the
client is asking connectivity. As such, the security level can
also be adapted according to the access network type that is
known as more or less vulnerable to attacks. One step
further of this discussion that is worth proposing but out of
scope of the article is the possibility for selecting the EAP
method itself according to the same criteria.

As illustrated in Figs. 6 and 7, the first exchanges
including the negotiation are as follows:

1. Upon receiving the EAP-Identity-Request message (as
seen in Fig. 6), the client sends back its identity in an
EAP-Identity-Response message.

2. Once having received the client’s identity, the intermedi-
ate authenticator forwards the message to an EAP server.

3. The EAP server then sends back an EAP-Request
packet containing a default EAP-EHash Challenge data
to the client through the authenticator. This message
contains an “Algo” field that contains the default
ciphersuite configured at the EAP server.

4. The client then checks the “Algo” field and answers
with EAP-response message. In case of positive
negotiation response, that message is part of the
authentication phase itself (Section 3.2), and the
negotiation phase is completed. Otherwise, the client
returns the list of supported functions (hash function
and encryption algorithm) in the “Algo” field, and the
EAP server detects the unapproved ciphersuite by
checking if the “Algo” value is different than the one
proposed.

5. In case of the first unapproved ciphersuite, the server
sends another EAP-Request message encapsulating a

RS

&

Supplicant EAP Server

¢
AF Reques allenge message, defau nctions) (3)

No
EAP Response mm ;

EAP Requesl {challenge message, negoliated funchions) (5)

EAF Response (supported functions) }

allure message (DO etection

-hesponse (response (o0 Lhallenge) (&, V
<: EAP Success message

Fig. 7 EAP-EHash negotiation phase
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new ciphersuite proposal that satisfies both the client
and server’s security policies. Then, the client proceeds
to the message treatment similarly to hereabove step 4.

To avoid denial of service (DoS) attacks against the EAP
server, only one negotiation is allowed. This prevents
attackers from overloading the EAP server by denying
every EAP-Request message. If a malicious client attempts
to make such a DoS attack, the EAP server must end the
EAP-EHash session with an EAP-Failure message.

3.2 Authentication phase

The supplicant and the EAP server are assumed to share a
PSK that serves for mutual authentication, and key
derivation. The very first EAP Identity-Request and EAP
Identity-Response messages (Fig. 8) include the server’s
identity (ServerID) that might be an IP address, a hostname,
a string, etc., and the client’s identity (ClientID) that might
be a login, a string, etc.

EAP-EHash defines challenge and response messages
that are piggybacked into EAP-Request and EAP-Response
messages as depicted in Figs. 6 and 7. Both of them
comprise an “Algo” value useful for the negotiation phase
(Section 3.1).

For generating the challenge message, the EAP server
generates two random numbers referred to as Challenge and
RandS, and it derives two keys AK and EK as follows:

+ AK: AK is derived from PSK as follows.
AK=F(PSK, RandS)
where F() is a one-way function like HMAC-SHA1 and
HMAC-MDS5.
* EK (Encryption Key): EK is next used to encrypt MIC
and Hash values. EK is derived from PSK as follows.

S b 3

Supplicant Authenticator EAP Server
EAP EAP EAP

RADIUS RADIUS
EAPOL EAPOL UDP UDP
IP IP

802.11 802.11 8023 8023 |

Challenge message
<}]Challenge | ServerlD |RandS | Algo |{MIC}ek [

Response message N
| RandC | Algo |{Hash}ek | /

A
N

EAP Success message

Fig. 8 EAP-EHash authentication phase (in case of successful
authentication)

EK=F(PSK, RandS || ServerID || ClientID)
where || denotes concatenation

Length of AK and EK keys is implementation dependent
but is greater than 128 bits.

Then, the EAP server forges the challenge message
(Fig. 8), which comprises the Challenge, ServerID, RandS,
ciphersuite (Algo), and a MIC that serves to prove the
integrity of the challenge message (including the “Algo”
value). The MIC is computed over the message using a one
way function F() as follows:

MIC=F(AK, Challenge || ServerID || RandS || Algo)

In order to make brute-force and dictionary attacks more
difficult, MIC is also encrypted using EK and the
symmetric algorithm. As such, attacks require to derive
keys AK and EK to calculate the MIC and then encrypt the
resulting MIC with EK.

After receiving the challenge message and in case
negotiation is successful, the client generates the same AK
and EK keys by itself and authenticates the server by checking
the received MIC value is correct. Once the server is
successfully authenticated, the client generates a random
RandC value and forges a response message that contains
RandC, Algo, and a Hash field that is then encrypted with EK.

Hash = F(AK, Challenge|| RandC||Algo)

Note that the Hash value is computed over the Challenge
value to guarantee the server that the response message is
fresh, i.e., it was generated in response to the Challenge
message.

The EAP server then is able to authenticate the client by
checking the correct value of Hash. In case of success, it
sends an EAP-Success message to the client, through the
authenticator which then grants network access to the
client.

As described in Sections 3.1 and 3.2, the ciphersuite
negotiation is protected by MIC and Hash that prove
integrity and source origin of “Algo” value.

3.3 Key derivation phase

Key derivation is a mechanism providing the client and the
authenticator (or any access network equipment) with
keying material to secure the traffic being exchanged over
the vulnerable radio link. The objective is to prevent
eavesdropping and any active attack onto the traffic.
EAP-EHash supports key derivation as depicted in Fig. 9:

1. Once the client is successfully authenticated, the EAP
server and the client share a master key MK generated
from PSK: MK=F(PSK, RandS || RandC).

2. The supplicant and the EAP server then derive a
pairwise master key (PMK) using a PRF over MK.

@ Springer
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Fig. 9 EAP-EHash key derivation mechanism

3. The EAP server then forwards PMK to the authentica-
tor. In case the EAP server is located on the AAA
server, the AAA protocol might support PMK trans-
portation. For instance, RADIUS defined the MS-
MPPE Radius attribute for that purpose.

4. A pairwise transient key (PTK) might then be derived
from PMK using the IEEE 802.11i four-way handshake
protocol [24] between the client and the authenticator.
The messages exchanged in this protocol are encapsu-
lated into EAPOL-Key packets. Note that the final PTK
is only known to the supplicant and authenticator, even
in case of PMK disclosure. Thus, it satisfies the
principle of mode independence being defined in the
key derivation framework [25].

4 EAP-EHash formal validation

For proving the robustness of the EAP-EHash method, we
proceeded to a formal validation of the authentication
phase. Many techniques of formal validation can be used
like CASPER [26], EVA [27], and automated validation of
internet security protocols and applications (AVISPA) [28].
We decided to use AVISPA which is automatic and enough
expressive to validate the security properties of authentica-
tion methods. AVISPA defines the high-level protocol
specification language (HLPSL) language [29] which is
based on temporal logic of action. Each entity in EAP-
EHash must be specified as a role. For each role, we need
to specify the sequence of exchanged messages as trans-
actions. The partial specification of EAP-EHash method is
given in Fig. 10, and the following properties are verified:

*  Mutual authentication: We specify that the server must
authenticate the client by the instruction HASH'=

@ Springer

role server(

played_by S def=
1.State=1 A RCV(respond_id.peerld)=|>
State=2 N\ RandS"=new()
A\ Challenge’:==new()
A AK"=PRF(PSK Rands’)
N EK"=PRF(PSK.RandS' serverld.pecrld)
A MAC"={MIC(AK',Challenge'.algo.serverld. RandS’) } _EK’
M SND(Challenge'. algo. serverld. RandS . MAC")
M witness(S,P,1s,RandS')
A witness(S,P,ch,Challenge’)
M secret(AK,sec_ak {P,S})
M secret(EK',sec_ek,{P.S))
2. State=2 A\ RCV(RandP . HASH")
NHASH'={HMAC(AK,Challenge.algo.RandP')} EK

State’:=3 A\ request(S,P,RandP")
M SND(success)
end role %eserver
LR IRIREPOPIRIPIPRNRIPR e
role peer(

played_by P def=
1.State=1 A\ RCV(Challenge’.algo.serverld. RandS' . MAC")
%aPeer needs lo check the validity of the MIC value
A AK'=PRF(PSK.RandS')
M EK'=PRF(PSK RandS' serverld.peerld)
AMAC'={MIC(AK',Challenge’.algo.serverld. RandS")}_EK'
=
State'=2
A RandP'=new()
A HASH"={HMAC(AK',Challenge’.algo.RandP")} _EK'
A SND(RandP".algo. HASH')
N witness(P,S,ip,RandP')
N request(P,S,rs,Rands")
A request(P,S,ch,Challenge’)
N\ secret{AK',sec_ak,{P,5})
A secrel(EK',sec_ek,{P,S})

end role Yopeer
Rk e s e e o R )
role environnement()
def=
const
p.s,iagent,
mic,h,pri:function,
psk_ps,psk_pi,psk_is:symmetric_key
intruder_knowledge={p,s,mic,h,prfpsk_pipsk_is}
composition
session(p,s,psk_ps,mic,h,prf)
fsession(p,i,psk_pi,mic,h,prf)
fsession(i,s,psk_is,mic,h,prf)
end role

Fig. 10 Extract of HLPSL specifications for EAP-EHash

{HMAC(AK,Challenge.algo.RandP’)} EK in the server
role. This instruction means that the server must verify
that the HASH received by the client is equal to its own
locally computed value. Likely, the instruction MAC'=
{MIC(AK',Challenge’.algo.serverld.RandS’)} EK’ in
the client (peer) role specifies that the client must verify
that the MAC received by the server is equal to the one
calculated locally. This proves that both client and
server successfully generated AK and EK keys, and
they know the pre-shared secret (PSK).

* Man in the middle protection: a MITM attacker targets
sharing a master key (MK as) with the server and another
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one (MK ac) with the client in order to get full control on
encrypted communications. This attack can only be done if
parameters used for generating the key are not authenti-
cated. So we verify this property by specifying that each
entity must authenticate the received random number. This
is done in HLPSL by the two primitives: witness and
request. The two instructions, witness (P,S,rp,RandP’) and
request (S,P,rp,RandP’), specify that the server must check
that the peer is the claimed one in the current session, it
reached the expected state, and it agreed on the fresh
RandP random value. Likely, witness (S,P,rs,RandS') and
request (P,S,rs,RandS'") specify that the client must
authenticate the random RandS received from the server.

+ Replay attack protection: As mentioned above, the
primitives witness and request verify that the parame-
ters RandS and RandP are generated for the current
session by the claimed entities and are not replayed by
an attacker from a previous session. This property was
successfully verified on our method.

» Secrecy of keys: In HLPSL, secrecy property is defined
with the primitive secret. The two instructions secret
(AK',sec_ak,{P,S}) and secret (EK',sec_ek,{P,S}) spec-
ify that keys AK and EK must remain secret and known
only to the server (S) and the client (P).

5 Implementation and testbed platform

This section presents the implementation and the experi-
mental results of the EAP-EHash authentication procedure
latency experimented in an 802.11 wireless architecture.
The testbed platform as depicted in Fig. 11 comprises two
HP machines equipped with a Centrino 1.7-GHz processor
and a 512-MB RAM. Linux Fedora core 6 is used as
operating system (kernel 2.6.20). A Cisco Aironet 1100
Access Point serves as the authenticator. FreeRadius
software is used as both the EAP server and RADIUS
server and the client’s software is based on Openlx
implementation (XSupplicant).

Fig. 11 EAP-EHash 802.11
testbed platform

Wpa_supplicant 0.6.4
Wireshark
IP:192.168.1.6/24

The implementation of EAP-EHash was integrated as an
extension to FreeRadius and XSupplicant softwares. The
default ciphersuite (Section 3.1) is fixed to SHA1 hash
function and 3DES encryption algorithm, and the list of
implemented ciphersuites is given in Table 2. The server’s
IP address is used as the ServerID and the client's login as
the ClientID. The structure of EAP-EHash challenge and
response messages is given in Fig. 12. It comprises a
16 bytes Challenge, 8 bytes RandS, 8 bytes RandC, and
1 byte “Algo” value. The four least significant bits of the
“Algo” value are relative to the hash functions and the four
most significant ones to the encryption algorithms.

The objective of this wireless testbed is to compare the
authentication latency of the EAP-EHash method against the
two classical EAP methods: EAP-MDS5 and EAP-TLS. The
reasons for that choice are discussed end of Section 2.4. For
each EAP method, 50 authentication latencies have been
measured at the client side using “Ethereal” network analyzer
(sniffer). For fairness of measurements, the latency corre-
sponds to the difference of time between the receiving “EAP-
Success message” and the emitting “EAP-Identity-Response”.

The benchmark testing for the EAP-EHash method
results in a latency average of 0.026 s against 0.011 and
0.112 s for EAP-MDS5 and EAP-TLS, respectively. Note
that EAP-EHash measurements were performed with a two
extra messages due to the negotiation phase: the server
proposes SHA1 and 3DES as default ciphersuite and
negotiation of SHA1 and DES is done.

Table 3 summarizes the authentication latencies mea-
sured for the three methods. Figure 13 presents the
execution time for each of the 50 trials per method.
Measurements differ from one trail to another because the
processors in terminals are timeshared between the authen-
tication process and any local uncontrolled processes, and
at any time during measurements, processors might be
solicited by any of those processes. For this reason, we
deduced that the authentication delay minimum is more
interesting than averages as it represents the closest value to
the exact execution time.

Wireless Network
Essid: « CISCO »
192.168.1.0/24

FreeRadjus 1.1.6
IP: 192.168.1.2/24

Wireless Access
Point
192.168.1.1/24
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Table 2 EAP-EHash ciphersuites

Ciphersuite 1 (default) SHAL1, 3DES
Ciphersuite 2 MDS, DES
Ciphersuite 3 SHAL1, DES
Ciphersuite 4 MDS5, 3DES

As expected, EAP-MDS5 is the fastest method as
requiring basically only two messages (excluding the EAP
identity messages) and two hashing operations. Four
messages are needed for EAP-EHash in that testbed (with
negotiation phase). Twelve SHA1 hashing functions (four
for EK and AK generation in server and client; four for
generation of MIC and Hash; four for MIC and Hash
checking) and eight DES encryption operations (four for
MIC and Hash encryption; four for MIC and Hash
decryption) are required. As expected EAP-EHash is slower
than EAP-MDS5, more than twice slower, but an extra two-
way exchange negotiation is included in the results. As
such, compared to EAP-MD5 which is really fast, EAP-
EHash is very competitive.

EAP-TLS is much more complex than the other two
methods. Exchange of six messages and several operations
(eight hashing functions, six asymmetric encryption/de-
cryption operations, and four symmetric encryption/decryp-
tion operations) are needed. Hence, the obtained testbed
results showing that EAP-TLS is the slowest method are
consistent with the logical reasoning.

6 EAP-EHash analysis
6.1 EAP-EHash properties

As highlighted by experimental results (Section 5) and the
formal validation (Section 4), EAP-EHash is well adapted
to wireless networks context as it satisfies the following
properties:

* Simplicity and lightness: EAP-EHash which is based on
symmetric cryptography functions is not computation-
ally expensive. This property is essential in wireless
networks where nodes are resource limited in terms of
batteries, computation power, and memory capacities.

* Fast authentication: EAP-EHash is based on a chal-
lenge/response authentication mechanism requiring few

Fig. 12 EAP-EHash 802.11
packet structrures

Response message‘ RandC | Algo
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Challenge message ’

messages and computation operations. The reduced
number of messages ensures a fast authentication. In
wireless context, this property is important. Nodes are
mobile. At any time, they might lose connectivity. EAP
methods are highly likely to be disrupted and ask for the
mobile to reinitialize the full procedure.

* Mutual authentication and Protection against MITM
attacks: Server and client are authenticating to each other
based on a pre-shared key. For the access network, the
need is to grant access to authorized clients only. For
clients, the need is to mitigate MITM attacks so the client
cannot connect to a rogue access point.

* Robustness to brute-force and dictionary attacks: A
dictionary attack or brute-force attack is known to be
pretty easy when challenge/response, being part of an
EAP method, is in clear text: an exhaustive or partial
search of possible keys is possible. In EAP-EHash
method, those attacks are much more complex because
the MIC and Hash digests are encrypted with EK key.

* Symmetric key derivation: A key derivation phase as
documented in Section 3.3 is possible for other secure
protocols to initialize (like 802.11i four-way handshake
or IKEv2).

* Protected ciphersuite negotiation: Negotiation of a
ciphersuite to protect EAP exchanges is provided in
Section 3.1, and protection of the negotiation is ensured
(Section 3.2).

» Fast reconnect: Even if not tested on the platform, the
EAP-EHash solution is fully compatible with the re-
authentication principle described in the standard EAP
re-authentication protocol [30].

6.2 EAP-EHash comparison to other EAP methods
and adequacy to wireless environments

EAP-EHash is a challenge/response method like EAP-MDS.
EAP-EHash is as fast as EAP-MDS according to the testbed of
Section 5 and is proven by AVISPA as robust as EAP-TLS.

As shown in Table 1, EAP-EHash offers advantages in
terms of performances over some other EAP methods
designed for wireless. In case no extra roundtrips are
requested for negotiation, EAP-EHash authentication is
done in only one roundtrip, where other methods require at
least two roundtrips like EAP-POTP, EAP-SAKE, and
EAP-GPSK. Roundtrips limitation might be important in

16 bytes 4 bytes 8 bytes 1 byte variable
Challenge ServerlD RandS ‘ Algo {MIC}ek
8 bytes 1 byte variable
{HASH}ek |
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Table 3 Statistical analysis
of authentication latencies

with 95% confidence interval
(240 samples)

EAP methods Average Standard deviation Minimum Maximum
EAP-MD5 0.01109 0.00145 0.00912 0.01599
EAP-EHash MD5-DES 0.01817 0.0038 0.01279 0.02825
EAP-EHash MD5-3DES 0.01937 0.00375 0.01369 0.02699
EAP-EHash SHA1-DES 0.02061 0.00493 0.01395 0.04133
EAP-EHash SHA1-3DES 0.01163 0.00120 0.00951 0.01696
EAP-TLS 0.16959 0.01705 0.12653 0.22384

the wireless scenarios where access to the medium takes
time. Moreover, total volume of EAP data exchanges must
be compared, and EAP-EHash gives good results with only
80 bytes being transmitted over the wireless medium, while
EAP-SAKE obtains around 130 bytes, EAP-PSK around
170 bytes, EAP-POTP more than 290 bytes, and EAP-
GPSK more than 285 bytes. Processing done by EAP-
EHash is lightweight similarly to other methods.

From a security point of view, EAP-EHash was proved
to satisfy the claimed security properties—mutual authen-
tication, protection against man-in-the-middle, and replay
attacks and secrecy of the keys—thanks to the AVISPA
tool. No such kind of validation is known to have been
performed on EAP-POTP, EAP-SAKE, EAP-FAST, EAP-
PSK, and EAP-GPSK. However, EAP-EHash does not
provide identity protection contrary to EAP-PAX-SEC and
EAP-FAST, but this property is only stated as “recom-
mended” in the wireless context. EAP-EHash is deduced to
be more robust to brute-force attacks than EAP-SAKE, and
EAP-GPSK and less robust than EAP-POTP as far as the
(usually variable) length of the key is not taken into
consideration. That is, more calculations are required for
each tested combination of the pre-shared key for EAP-
POTP, and lighter calculations are required for EAP-SAKE
and EAP-GPSK. For a better security implementation of
EAP-EHash, to avoid the pre-shared key to be divulged and
cloned into another equipment, the pre-shared key can be
safely stored on a physically protected device like a
smartcard or a trusted platform module (TPM).

EAP Methods Authentication Latencies

0,18
0,16 &

0,14 s .

0,12 4% LI aal i n

0,10 S et

0,08 .
0,06

Authentication latencies (s)

0,04 —— ! .

'WAY / - 4 % \ & -
0,02 o b W | b ] . = a8 A

A A A e A b Wl Mt g g
0,00 T T T T T T T T -
0 5 10 15 20 25 30 a5 40 45 50

Authentication trials
[+ EAPMD5 - EAP-EHash = EAP-TLS|

Fig. 13 Authentication latency of each method (over 50 trials)

We can conclude that EAP-EHash is applicable to
wireless and mobile network environments for the follow-
ing reasons:

— Its performances in terms of number of messages,
number of transmitted bytes, lightweight computations
make EAP-EHash very interesting for use on
bandwidth-limited access network (wireless networks),
within resource constrained end-devices. That helps
getting rapid connectivity to the network, even in case
of poor connectivity to the access network.

— It supports ciphersuite negotiation contrary to EAP-
PSK and EAP-PAX. This function helps adapting EAP-
EHash with suitable algorithms to the capacity of the
end-terminals and to the security level awaited on the
wireless access link.

— It provides mutual authentication which helps to detect
any attacks with rogue access equipments.

— No prerequisites for PKI make the solution easy-to-
deploy and cheaper than EAP-TLS and EAP-FAST.
Only one pre-shared key has to be installed onto the
mobile terminal, whether as a protected file or through
a physically secured device (e.g., TPM, smartcard).

— Like any other EAP methods supporting key deriva-
tion, EAP-EHash can benefit from the standard [30] to
perform fast reconnect of a mobile terminal.

7 Conclusions

Historically, networks were each defined to support one
communication usage. There were traditionally separated
data networks and voice networks. Each one had its own
mechanisms for access control and authentication of users
and did not interfere for a long time. For a few years now,
operators and Internet access providers have been in
competition to provide as many communication services
and application contents as possible, with the lowest prices
for customers. As a result, all communication services are
merged onto the same networks, and only one IP access is
enough to access to any communication services. The
reason why customers are still paying for several network
access subscriptions is the terminal which is still network
access technology dependent. However, near future termi-
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nals will integrate many access network interfaces, and they
will be able to access to any access networks according to
the customer’s quality of service needs or the prices. Those
terminals will be smaller and smaller and more and more
resource constraints. As such, CPU consuming mechanisms
that were designed in networks because of accessing
terminals being resources unlimited need to be changed.
Today, there is a strong need to design mechanisms like
authentication methods that can satisfy resource constrained
terminals and any access network’s security.

In this context, our EAP-EHash method was designed to
meet strongest constraints of access networks. The resulted
EAP-EHash method is simple, fast, easy-to-deploy, robust
to MITM attacks, and resistant to dictionary attacks. EAP-
EHash serves also to derive some keying material that is
very helpful in some vulnerable environments to initialize
security protocols (e.g., 802.11i, IKEv2). It supports
negotiation of functions used during authentication pro-
cessing and is compatible with the periodic re-
authentication standard [30]. In this article, the formal
validation of EAP-EHash using the AVISPA tool is
presented that formally proves its security properties like
robustness to MITM and brute-force/dictionary attacks. The
comparative measurements of authentication delays per-
formed on an 802.11 platform showed that EAP-EHash is
fast and competitive compared to the simplest existing
EAP-MDS5 method.
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