

From Task Model to the User Interface Generation: an
Approach Based on Multi-Agent Systems

Adel Mahfoudhi1, Jamel Slimi1, Mourad Abed3, Mohamed Abid2

1 Department of Computer Science, Science Faculty of Sfax Rte Soukra km 3,5 BP : 802 3018 Sfax (TUNISIA)
adel.mahfoudhi@fss.rnu.tn

2 National Engineering School of Sfax Sfax (TUNISIA)
Mohamed.Abid@enis.rnu.tn

3 LAMIH (UMR CNRS 8530) Université of ValenciennesBP : 311 – 59304 Valenciennes cedex9 (France)
mourad.abed @univ-valenciennes.fr

ABSTRACT
The User Interface (UI) plays a crucial role in the
development of the interactive applications; its simplicity
of use can be sometimes otherwise important criteria of the
application assessment. A good application that is
represented by a non adequate interface can be judged like
non success application, from where the utility of UI
generator that can guarantee us a legible, intuitive and easy
interface to manipulate by any users.
The multi agents systems are endowed with interesting
capacity susceptible to help the specialists of the UI to the
conception and to the development of the interactive
systems. In order to take advantage of these professions, we
proposed a method for the UI generation based on a multi
agent model. Our approach is based on a set of rules
assuring the passage from the task model to the multi agent
model and from this last toward the user interface
generation.

KEY WORDS
Formal Method, Task Model, Multi-Agent Model, PAC
Model, UI Generation, Petri nets.

1. Introduction

Several research projects have been dedicated to the
modelling of user tasks in the field of interactive system
design (see, for example, the work concentrating on the
following methods: MAD [1], DIANE [2], GOMS [3]).
However, their actual use is far from being a widespread
practice. One of the possible reasons for this is that they do
not use truly formal methods, which make it possible to
provide the task models with conciseness, coherence and
non-ambiguity [4]. What is more, these projects suffer not
only from their lack of integration into a global design
process covering the entire life cycle of the User Interface
(UI) but also from the lack of modelling support software.
In order to overcome these problems, current research
projects are oriented towards a methodological framework
which covers all stages from the first activity analysis stage

up to the stage of the detailed specification of the UI [5]:
The methods MAD* [6], DIANE+ [7], GLADIS++ [8],
ADEPT [9] Unified User Interface Design [10], OBSM
[11] and TRIDENT [12] go in this direction. These design
methodologies are based on several models (task model,
user model, interface model) and are aided by tools for the
implementation of these models.
Our research work falls into this category, but we
emphasise the formal aspects of model representation and
their transformation throughout the stages of the design
process. The TOOD method [13] [14] is based on the
representation that the user has of the task, apart from the
considerations of computer processing. Like the UML/PNO
method [15], HOOD/PNO [16] and ICO [17]), the TOOD
method uses the object approach and the object Petri nets to
describe, on the one hand, the functional aspects and the
dynamics of the user tasks, and on the other hand the
behavioural aspects of the HCI and of the user in order to
specify how the tasks are performed [18].
In this paper, we propose a set of rules allowing the user-
interface generation based on multi-agents PAC
architecture.
The integration of the PAC model in the TOOD
methodology take place via two passages: the first from the
task model to the PAC model and the second from the
operational model to the PAC model. After the integration
of the PAC model, we define the rules of the user-
interfaces generation.

2. TOOD and the cycle of development of
User Interface

The TOOD design process can be divided into four major
stages, (Figure 1).

 Requirements

Document

Specification

Global Design

Detail Design

Task Analysis

Implementation

Extant and Requirements
 Analysis

Structural
Task
Model
(STM)

Dynamic Model
DSTM

Instance Generic ModelStatic Model
SSTM

Operational
Model
(OM)

Local Interface
Model
LIM

User Model
UM

Aggregation

Abstract
Interface

Model
AIM

H C I Implementation

Realisation
of the HCI

Implementation
Interface Model

IIM

Figure 1. TOOD and the development cycle for the interface

Name : T111 : -----
Description : -----
Decomposed from : T11 :

 into :
- T1111 : ------
- T1112 : ------
- T1113 : ------

Triggers :
- E111-1 : -----

Controls :
- C111-1 : -----
- C111-2 : ----

Input :
- I111-1 : -----
- I111-2 : -----

Output:
- O111-1 : -----
- O111-2 : -----

Reactions :
- R111-1 :-----

Resources :
- M-1 : -----
- M-3 : -----

c

Tx

Trigger

Controls

Input
Data

Output
Data

Reactions

E

C

I

Task-Object name

 Body

M

Resources

1
2
3

1
4
2
4
3 O

ut
pu

t
In

te
rf

ac
e

In
pu

t
In

te
rf

ac
e

R

O

Figure 2. Generic structure of the class-task

• The analysis of the existing system and of the need

is based on its user’s activity and it forms the entry
point and the basis for any new designs.

• The Structural Task Model (STM) is concerned
with the description of the user tasks of the system. It
makes it possible to describe the user task in a
coherent and complete way.

• The Operational Model (OM) makes it possible to
specify the UI objects in a Local Interface Model
(LIM), as well as the user procedures in a User
Model (UM) of the system to be designed. It uses the
needs and the characteristics of the structural task
model in order to result in an Abstract Interface
Model (AIM) which is compatible with the user’s
objectives and procedures.

• The realisation of the UI is concerned with the
computer implementation of the specifications
resulting from the previous stage, supported by the
multi-agent software architecture defined in the
Interface Implementation Model (IIM).

3. Analysis of the existing system
To know what the operator is presumed to do using the
new system, we must know what is achieved in real work
situations (the activity analysis) using an existing version
of the system or a similar system.

4. Structural Task Model (STM)

After the stage of the existing system analysis and its
user's activity, the structural task model (STM) makes it
possible to establish a coherent and complete description
of tasks to be achieved on the future system, while
avoiding the inconveniences of the existing system and
adding the new required functions and features. For that,
two types of model are elaborated: a static model (SSTM)
and a dynamic model (SDTM).

The construction of the structural model is composed of
four iterative stages:

1. Hierarchical decomposition of tasks.
2. Identification of objects and their components.
3. Definition of the dynamics of the elementary

tasks (terminal tesk).
4. Integration of the task competition

4.1. Static Structural Task Model (SSTM)
The structural model enables the breakdown of the user’s
stipulated work with the interactive system into
significant elements, called tasks. Each task is considered
as being an autonomous entity corresponding to a goal or
to a sub-goal, which can be situated at various
hierarchical levels. This goal remains unchanged in the
various work situations. In order to perfect this definition,
TOOD formalises the concept of tasks using an object
representation model, in which the task can be seen as an
Object, an instance of the Task Class. This representation,
consequently, attempts to model the task class by a
generic structure of coherent and robust data, making it
possible to describe and organise the information
necessary for the identification and performance of each
task.
Two types of document (graphical and textual), as shown
in figure 2, define each task class.
The task class is studied as an entity using four
components: the Input Interface, the Output Interface, the
Resources and the Body. We also associate a certain
number of identifiers to these describers, which makes it
possible to distinguish the Task Class amongst the others:
Name, Goal, Index, Type and Hierarchy.

4.2. Dynamic Structural Task Model (DSTM)
The Dynamic Structural Task Model (DSTM) (figure 3)
aims at integrating the temporal dimension (sequencing,
synchronisation, concurrency, and interruption) by
completing the static model.

T11 To configure the flight entry

M1-1
M1-2
M1-3
M1-4
M1-5

E1-1
E1-2
E1-3
E1-4
E1-5
C1-1
C1-2
C1-3
C1-4
I1-1
I1-2
I1-3
I1-4
I1-5

T111 SU
P
(E
1-
1,
E1
-2,
E1
-3,
E1
-4,
E1
-5)

β

(E
1-
1)
=
<C
1-
1,
C1
-2,
C1
-3,
C1
-4,
I1-
1,
I1-
2,
M
1-
1,
M
1 β

(E
1-
2)
=
<I
1-
3,
I1-
4,
M
1-
3,
Mβ

(E
1-
3)
=
<I
1-
3,
I1-
4,
M
1-
3,
Mβ

(E
1-
4)
=
<I
1-
3,
I1-
4,
M
1-
1,
Mβ

(E
1-
5)
=
<I
1-
5,
M
1-
1,
M χ

(E
1-
3)
=
(I1
-4
=
A
UTχ

(E
1-
4)
=
(I1
-4
=
M
A ρ

(R
1-
1)
=
<O
1-
1,
O1
-2,
O1
-3,
M
1-
1,
M
1- ρ

(R
1-
2)
=
<O
1-
4,
O1
-5,
M
1-
3,
M
1 ρ

(R
1-
3)
=
<O
1-
4,
O1
-5,
M
1-
1,
M
1 ρ

(R
1-
4)
=
<O
1-
6,
M
1-
1,
M

R1-1
R1-2
R1-3
R1-4

O1-1
O1-2
O1-3
O1-4
O1-5,
O1-6

E1-1

E1-4

T112

T113

R1- 1
et
R1-2
et
R1-4
R1-1
et
R1-3
et
R1-4

E1-4

E1-2
E1-3

t1 t2 Activity

δ β χ φ ρ
σ

Figure 3. TCS : Task Control Structure

The dynamic behaviour of tasks is defined by a control
structure, called TCS (Task Control Structure), based on
an Object Petri Net (OPN). It is merely the transformation
of the static structure. This TCS describes the input
interface’s describer objects, the task activity, and the
release of describer objects from the output interface as
well as the resource occupation.

Each TCS has an input transition t1 and an output
transition t2 made up of a selection part and an action
part. The functions associated with each transition allow
the selection of objects and define their distribution in
relation to the task activity (Figure 3).

The selection part of transition t1 is made up of three
functions: δ, β, χ

• Priority function δ makes it possible to select the

highest priority trigger for the task. This function is the
basis of the interruption system. It allows the initiation
of a task performance, even if another lower priority
task is being carried out. However, the performance of
the task in relation to this trigger remains subject to the
verification of the completeness and coherence
functions.

• Completeness function β checks the presence of all
the describer objects relating to an observed event, that
is to say the input data, the control data and the
resources used to activate the task class in relation to a
given trigger event.

• Coherence function χ assesses the admissibility of
these describers in relation to the conditions envisaged
for the task. This function is a set of verification rules
which use simple logical or mathematical type
operators and which obey a unique syntax making their
formulation possible.

The selection part of transition t2 has a completeness
function ρ which checks the presence of output data and

resources associated with the reactions released by the
body of the task.
The hierarchical tasks are considered to be control tasks
for the tasks of which they are composed. Consequently,
the action parts of the input and output transitions of their
TCS possess respectively an emission function φ and a
synchronisation function σ. Function φ defines the
emission rules (constructors of the input transition) for
transition t1, for the activation of the sub-tasks, as well as
the distribution of data used by these sub-tasks. Function
σ defines the synchronisation rules (constructors of the
output transition) for the sub-tasks.

5. Operational Model (OM)

This stage has as an objective the automatic passage of
the user tasks description to the specification of the HCI.
It completes the external model describing the body of
terminal task-objects in order to answer the question how
to execute the task? (in terms of objects, actions, states
and control structure).

At this level we integrate resources of every terminal task-
object in its body. These resources become, in this way,
component-objects.

In the TOOD method, the interactive systems conception
is supported by the Operational Model (OM) that has like
objective the description of the user-interface to a high
level of abstraction and the automation of the transition of
the specification to the application conception [13].
The Operational Model (OM) is based on two stapes:
- The UI composing specification for each terminal

task supported by the User Model (UM) and the
Interface Local Model (ILM).

- The global interface specification supported by the
Interface Abstract Model (IAM).

The objective of the user's model is to understand and to
formalize the user's behavior and as a consequence of to
establish an interface conception centered user.
The ILM describes the Interactive Objects (IO) behavior:
the Object Controls Structure (ObCS). The ObCS defines
the dynamics of these IO in terms of states, of offered
service, of internal operation. These IO helps the user in
the achievement of his task placing at his disposal a set of
services. The ObCS is based on the Object Petri Net
(OPN) formalism that facilitates their graphic
representation (figure 4).

The IAM describes classes of user-interface objects. The
construction of a user-interface object class suggests the
aggregation of all IO in the same name, of the ILM. This
mechanism of aggregation is comparable to the relation of
composition of the HOOD method (Hierarchical Object
Oriented Design).

Figure 4. Interactive Object ObCS.

6. From the Task Model towards Multi-
Agents Model
6.1. Multi-agents model: principle and objectives
Agent-based models structure an interactive system as a
collection of specialised computational units called
agents. An agent has a state, possesses an expertise, and is
capable of initiating and reacting to events [19] [20] [21].
A system based on the multi-agents model is composed of
a certain number of communicating specialized agents
between them and reacting to event considered like
stimuli in order to produce stimuli for other agents
[22].An agent is a complete information processing
system: it includes event receivers and event transmitters,
a memory to maintain a state, and a processor which
cyclically processes input events, updates its own state,
and may produce events or change its interest in input
event classes. Agents communicate with other agents
including the user.
The properties of modularity and reuse offered by the
multi-agents models permit to reduce the complexity of
interactive systems conception, of easiness the transition
toward the models of oriented objects conception. The
multi-agents models provide a support to the structuring
and to the organization of the dialogue [23]. The PAC
model is software architecture model.
The PAC model structures an interactive system in three
components: the Presentation, the Abstraction and the
Control. PAC (Presentation, Abstraction, and Control):
the facets of an agent are used to express different but
complementary and strongly coupled computational
perspectives. A PAC agent has a Presentation (i.e., its
perceivable input and output behaviour), an Abstraction
(i.e., its functional core), and a Control to express
dependencies. The Control of an agent is in charge of
communicating with other agents as well as expressing
dependencies between the Abstract and Presentation
facets of the agent. In the PAC style, no agent Abstraction
is authorized to communicate directly with its
corresponding Presentation and vice versa.

Figure 5. Structuring of an interactive system according to PAC.

In PAC, dependencies of any sort are conveyed via
Controls. Controls serve as the glue mechanism to express
coordination, formalism transformations that sit between
abstract and concrete perspectives [24].
PAC provides a setting of systematic construction
applicable to all levels of an interactive system
abstraction; it admits a straightforward separation
between his components: Abstraction, Presentation and
Control.

The passage from the task model to the multi-agents
model is composed of two big parts: the first consists in
integrating the PAC model in the TOOD methodology
that is based on the model of the task and the operational
model and the second consists to the UI generation from
the agent’s specification.

6.2. Integration of PAC agent in TOOD
The integration of the PAC model in TOOD will follow
two stages: in the first place it’s a passage of the tasks
hierarchy specifying the UI toward an agent’s hierarchy
and in second place it’s a passage of the interface OM and
ILM toward the PAC model. These two passages are
automated via a set of rules that we will explain
progressively.
We take as a basis, in these two passages, on a set of
generic rules allowing the PAC model to support the task
model so that we can complete the phase of user-interface
generation.

6.2.1 Construction of the agent's arborescence
In the TOOD methodology the specification of UI is
based on the task model that to as objective to represent
the interface following an arborescence of tasks going
from the task root, which includes the whole interactive
system, to the controls tasks to arrive to the terminals
tasks. Of this fact the agent's UI specification will take the
same structure that the task model. Indeed, we associate
an agent root to the task root, controls agents to the
controls tasks and terminals agents to the terminals tasks.
Rule 1: to associate to the task root an agent root.
Rule 2: to associate to each control task a control agent.
Rule 3: to associate to each terminal task a terminal
agent.

Figure 6. From the Task's arborescence to agent's arborescence.

To enrich the arborescence of agents gotten while
applying these three rules, we must take in account the
interactive objects and the user's objects, which will be
integrated in PAC arborescence by a passage of the
operational model toward the PAC model.

6.2.2. From the interface Operational Model and
interface local model toward the PAC model
The objective of the Operational Model is to describe the
user-interface, to formalize and to automate the passage of
the specification to the interactive systems conception. In
the Interface Local Model, we have a description of the
interactive objects behavior and a description of the
interactions between these objects and the user. Every
interactive object specifies the domain objects that assure
the interaction between the user and the application. Of
that made, we associate to each interactive object an agent
that supports it and to each objects of the domain an agent
that also supports it.
Rule 4: to associate to each interactive object of the
Interface Local Model an agent resource.
Rule 5: to associate to each object of the domain of the
Domain Object Model a domain agent.

After the application of these five first rules, we get an
arborescence of agent PAC supporting the user-interface
of the interactive application. This arborescence is
composed by:
- -An agent root that will support the interactive

application. It controls the set of the agents.
- The control's agents to organize the dialogue between

the agent root and the terminal agents.
- The terminal agents that manipulate the interactive

object agents.
- The objects user’s agents and of the interactive object

agents.

6.2.3. Reduction of the agent’s hierarchy
The systematic association of resources agents and the
domain agents to the interactive objects and to the domain
objects presents an inconvenience when it is about a same
interactive object used by two different agents: there is
redundancy of agent. To surmount this problem us are
going to aggregate the two interactive objects agents to
train only one agent (figure 7).
Rule 6: To aggregate two identical interactive objects
agents, if they are supported by two different terminal
agents.

Figure 7. Agent’s aggregation.

Figure 8. Agent’s communication.

6.3. Agent’s communication

Agent's hierarchy expresses the potential that an agent has
to supervise and to coordinate the activities of lower
abstraction level agents, and in particular to assure the
information consistency shared by himself and its
subordinate agents. Indeed, this hierarchy has two direct
consequences:

- An agent cannot be invoked that by the agent of

which he is the direct underling.
- The agents of dialogue coins treat parts of their

dialogues to their subordinate agents.

In our approach, this communication inter agents is based
on the operational model.
The Object Controls Structure (ObCS) that describes an
agent's internal and external behavior is representing by
its control facet. Every agent's internal behavior is
deducted by the execution of each object terminal task
that will be achieved by the activity and the behavior of
its interactive objects and users objects. Indeed, an
interactive object agent can solicit the agent's facet
presentation that supports it through the internal fluxes
and can solicit the facet presentation of its subordinate
agent through the external fluxes.
The establishments of the agent’s hierarchy and the
communication between its components have for
objective to generate the application UI.

7. User interface generation
The concept of interface generator is based on the agent’s
behavior specification to create an interactive system.
The generator has for objective to facilitate the
development and to identify the interface reusable
elements.
We will complete our gait by a set of rule already assuring
the interface generation from agent's arborescence.

Figure 9. Affectation of the agent’s frame.

In the first place, we affect a frame to each presentation
facet of agents root, of controls agents and terminal
agents. Each frame will take the agent's name that
supports it.
Rule 7: To affect to an agent's facet presentation a frame
carrying its name. Agent’s resources and the agent’s
domain objects won't follow this rule since they have a
very definite presentation (zone of seizure, list of choice,
combo-box . . .).

7.1. Second reduction of the agent’s hierarchy
The systematic affectation of a frame to every
presentation facet generates an interface with an important
frame number. Among these frame, there is that don't
have a meaningful role in the interface. Of this fact we are
obliged to merge the two agents that are at the origin of a
useless frame provided that they are bound by a
hierarchical tie.
Also, we can solve this problem by a masking of the
presentation facet of the most superior agent in the
hierarchy.
Rule 8: To merge the two agents that are at the origin of
a useless frame.
Rule 9: To conceal the presentation facet of the most
superior agent.
The choice of one of the two rules is let to the designer's
common sense. Up to here, we have a set of frame
emptiness representing the presentations facets of the
agent’s roots, controls and terminals. It remains the
investment of the interactive objects in these frames to
finish the application interface generation part.

7.2. Interface construction
Three techniques of frame's components investment exist:
- The static investment that consists in positioning the

components of the interface manually.
- The investment under constraints that positions the

components the some in relation to the other.
- The implicit investment that encapsulates the

components in containers, which will be positioned in
the final interface.

Figure 10. Application of the rules 10 and 11.

In our gait, we will use the implicit investment. Indeed,
we will place the interactive objects in containers, every
container will carry the agent's resource name that
supports it, and then these containers will be placed in the
frame of the terminal agent presentation facet that
supports these interactive objects (figure 10).

Rule 10: to associate a container to the presentation facet
of each agent interactive object.
Rule 11: to place the containers in the terminal agent’s
presentation facets.

In the same way, for the objects of the domain that will be
regrouped in the tab of the interactive object that
manipulates them. We defined the facets of presentation
of the terminal agents. It remains to define the
presentation facets of the control agents. We can use the
same logic-temporal relations (the sequence, the
parallelism and the choice) applied in TOOD on the task
model, in our agents model.
Rule 12: if an agent supervises a set of agents that
executes them in choice, we associate to the agent
presentation facet a container that is under the shape
beyond figure 11.

Figure 11. Presentation of control agent.

Rule 13: if the agent supervises a set of agents that
executes them in parallel or in sequence, we apply the
rules 6 and 7.

8. Conclusion

The use of the object oriented approach and object Petri
nets presents several advantages for the modeling of the
user task. Indeed, the TOOD task model, through its static
and dynamic description, allows the modularity of
specifications, the expression of interruptions and
concurrency.
Moreover, the TOOD method can contribute towards
helping with communication between the different actors
in the design process through its formal description.
In the objective to generate the user interface, we have
described in this paper a set of generic rules. These rules
defining our approach to integrate the agent model in the
TOOD methodology. They have for objective to guide
the passage of the task model toward the PAC model.
This model will allow the user interface generation based
on agents PAC.

References:
1. Scapin, D.L. & Pierret-Golbreich, C., Towards a

method for task description: MAD. Work with Display
Unit'89 in Berlinguet, L & Berthelette, D. (Eds.) CAP
1990.

2. Barthet, M.F., Logiciels interactifs et ergonomie :
modèles et méthodes de conception, Dunod 1988.

3. Card, S.K, Moran, T.P, Newell A., The Psychology of
HCI. In Lawrence Erlbaum Ass (Ed.). London. 1983.

4. Palanque, P. Spécifications formelles et systèmes
interactifs, Habilitation à diriger des recherches,
university of Toulouse I, France 1997.

5. Hartson, H.R., 1998. Human–computer interaction:
interdisciplinary roots and trends. International Journal
of Human–Computer Studies 43, 103–118.

6. Gamboa-Rodriguez, F., Spécification et
implémentation d'ALACIE: Atelier Logiciel d'Aide à la
Conception d'Interfaces Ergonomiques. Thèse en
sciences: Université Paris XI 1998.

7. Tarby, J-C & Barthet, M-F., The Diane+ Method in
CADUI'96, 1996 pp95-119.

8. Ricard, E. & Buisine, A., Des tâches utilisateur au
dialogue homme-machine: GLADIS++, une démarche
industrielle. IHM96, 1996 pp71-76.

9. Johnson, P., Johnson, H. Wilson, S., Scenario-based
design and task analysis. In Carroll, J.M. (Ed.).
Scenario-based design: Envisioning work and
technology in system development. Willey 1995.

10. Anthony Savidis, Constantine Stephanidis. Unified
user interface design: designing universally accessible
interactions. Interacting with Computers 16 (2004)
243–270.

11. Kneer, B., Szwillus, G., 1995. OBSM: a notation to
integrate different levels of user interface design,
Proceedings of the ACM DIS’95 Symposium on
Designing Interactive Systems, MI, USA, pp. 25–31.

12. Vanderdonckt, J., Conception assistée de la
présentation d'une interface homme-machine
ergonomique pour une application de gestion
hautement interactive. Thèse, Faculté Notre Dame de
la Paix Louvain, Belgique 1997.

13. Mahfoudhi.A, TOOD: une méthodologie de
description orientée objet des tâches utilisateur pour la
specification et la conception des interfaces hommes-
machine, thèse en automatique humaine, University of
Valencienne Hainaut-Combrésis, 1997(in french).

14. Adel Mahfoudhi, Mourad Abed, Dimitri Tabary. From
the formal specifications of users tasks to the
automatic generation of the HCI specifications. In:
Blanford, A., Vanderdonckt, J., Gray, P. (Eds.), People
and Computer XV—Interaction without Frontiers.
Springer, Berlin 2001.

15. Delatour, J. & Paludeto, M., De HOOD/PNO à
UML/PNO : Une méthode pour les systèmes temps
réels basée sur UML et objets à réseaux de Petri.
Rapport LAAS N°:98248 1998.

16. Paludetto, M. & Benzina, A., Une méthodologie
orientée objet HOOD et réseaux de Petri. : Concepts
et outils pour les systèmes de production in J-C.
Hennet (ed.) Cépadués, p293-325 1997.

17. Palanque, P., Bastide, R & Paterno, F., Formal
specification as a tool for objective assessment of

safety-critical interactive systems. In proceedings of
the IFIP TC13 conference on HCI, Interact’97, pp
323-330. Sydney 1997.

18. Huhn Kim, Wan Chul Yoon. Supporting the cognitive
process of user interface design with reusable design
cases. Int. J. Human-Computer Studies 62 (2005) 457–
486

19. Clavary.G, Coutaz.J, Nigay.L,Klemmer, From Single-
User Architectural Design to PAC*: a Generic
Software Architecture Model for CSCWR, Proceedings
CHI, ACM Publi.,pp.242-249, 1997.

20. Hong Liua,, Mingxi Tang, John Hamilton Frazer :
Supporting dynamic management in a multi-agent
collaborative design system Advances in Engineering
Software 35 (2004) 493–502

21. S.K. Lee, C.S. Hwang: Architecture layers and
engineering approach for agent-based system.
Information and Software Technology 45 (2003) 889–
898

22. Buisine.A, vers une démarche industrielle pour le
dévelopment d’Interfaces Homme-Machine, thesis,
university of Rouen, 1999(in french).

23. Coutaz.J, interface homme ordinateur: conception et
realisation, Dunod computer Ed, Paris, 1990 (in
French).

24. Coutaz.J, Nigay.L, Salber.D, Agent-Based
Architecture Modelling for Interactive Systems,
published in critical issues in User Interface
Engineering, pp 191-209, 1995.

