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Abstract— Bayesian Networks are graphical models that are 
easy to interpret and update. These models are useful if the 
knowledge is uncertain, but they lack some means to express 
ambiguity. To face this problem, we propose Fuzzy Evidence in 
Bayesian Networks and combine the Fuzzy Logic and Bayesian 
Network. This has allowed to benefit from mutual advantages 
of these two approaches, and to overcome the problem of data 
and observation ambiguity. This paper proposes an inference 
algorithm which uses the Bayesian Network and Fuzzy Logic 
reliability. This solution has been implemented, tested and 
evaluated in comparison with the existing methods. 

Keywords- Bayesian Networks, Fuzzy Logic, Uncertain 
Evidence, Artificial Intelligence. 
 
Résumé— Les Réseaux Bayésiens sont des modèles graphiques 
performants pour la manipulation de connaissance incertaine. 
Cependant, l’une des limites majeures que rencontrent les 
utilisateurs des Réseaux Bayésiens est d’exprimer les 
connaissances floues. 
Face à ce problème, nous proposons l’intégration de l’évidence 
floue dans les Réseaux Bayésiens en combinant la logique floue 
avec les Réseaux Bayésiens. Ceci permet de profiter des 
avantages mutuels de ces deux approches et de surmonter le 
problème rencontré à savoir l’ambigüité des données. 
Cet article propose un algorithme d’inférence pour l’évidence 
floue dans les Réseaux Bayésiens.  Cet algorithme a été 
implémenté puis testé et évalué par rapport aux méthodes 
existantes. 

Mots clés- Réseaux Bayésiens, Logique Floue, Evidence 
Incertaine, Intelligence Artificielle.  

I. INTRODUCTION  
Le domaine de la gestion des connaissances, qui connaît 

un intérêt croissant, et donc également un champ 
d’application potentiel pour les Réseaux Bayésiens, qui sont 
actuellement l’une des techniques les plus intéressantes de 
l’Intelligence Artificielle, dans la mesure où ceux-ci offrent 
un formalisme riche et intuitif de représentation de la 
connaissance.  

En effet, les Réseaux Bayésiens (RBs) [1, 2] constituent 
aujourd’hui l’un des formalismes les plus complets et les 
plus cohérents pour l’acquisition, la représentation et 
l’utilisation de connaissances par ordinateurs. 

Dans certains cas, l’utilisation des Réseaux Bayésiens 
[3] se trouve limitée par l’impossibilité d’utiliser des 
variables de natures flous. 

La logique floue est une approche développée par Zadeh 
[4], basée sur sa théorie des sous-ensembles flous (fuzzy 
sets en anglais), généralisant la théorie des ensembles 
classiques.  

Dans la nouvelle théorie de Zadeh, un élément peut plus 
ou moins appartenir à un certain ensemble. Les imprécisions 
et les incertitudes peuvent ainsi être modélisées, et les 
raisonnements acquièrent une flexibilité que ne permet pas 
la logique classique. 

Cet article décrit la possibilité d’intégrer l’évidence 
floue dans les Réseaux Bayésiens.  

L’objectif de ce travail est d’appréhender la 
problématique des Réseaux Bayésiens avec évidence 
incertaine, ensuite de modéliser quelques systèmes par des 



Réseaux Bayésiens avec évidence floue et de développer 
des algorithmes d’inférence à des fins de diagnostic 
exploitant la richesse de ces modèles. 

II. RÉSEAU BAYÉSIEN 

A. Définition 
Classiquement, un Réseau Bayésien est un outil de 

représentation des  connaissances, qui permet de calculer 
des probabilités conditionnelles, apportant ainsi des 
solutions à différentes sortes de problématiques. La 
structure de ce type de réseau est simple : En effet, selon 
Judea Pearl « les réseaux bayésiens sont des graphes 
acycliques orientés pour lesquels les nœuds représentent 
des variables aléatoires et les arcs représentent 
l’indépendance conditionnelle entre les différents nœuds » 
[5]. 

Formellement, un réseau bayésien est défini par 
Naïm et al dans [1] 

• 

par : 

• 

un graphe acyclique orienté G, G = (V, E), où V 
est l’ensemble des nœuds de G, et E l’ensemble 
des arcs de G, 

• 

un espace probabiliste fini (Ω, Z, p), 

un ensemble de variables aléatoires associées 
aux nœuds du graphe et définies sur (Ω, Z, p) 
tel que : 

1
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=∏ , où C(Vi) 

est l’ensemble des causes (parents) de Vi

Cependant, les réseaux bayésiens doivent leur nom aux 
travaux de Thomas Bayes au XVIII siècle sur la théorie de 
probabilités, par son célèbre théorème. 
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graphe G. 
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P(Mi) : probabilité a priori de Mi
P(A | M

. 
i) : probabilité de A conditionnellement à Mi

P(M
. 

i | A) : probabilité a postériori de Mi 

L’inférence, ou la mise à jour des probabilités, dans un 
réseau bayésien se résume à un calcul de probabilités  a 
posteriori. Connaissant les états de certaines variables 
(appelées  variables d’observation), on détermine les 
probabilités des états de certaines autres variables (appelées 
variables cibles) conditionnellement aux observations. 
Parmi les algorithmes d’inférence les plus utilisés l’arbre de 
jonction.  

conditionnellement à A. 

B. Algorithme arbre de jonction 
Cet algorithme est applicable dans tous types de réseaux, 

arbre ou non arbre. En premier lieu il transforme le graphe 
en un arbre de jonction, puis il initialise ses potentiels, 
ensuite il utilise la méthode message passing pour la 
propagation des messages et le calcul des probabilités a 
posteriori. 

En effet, l’algorithme se comporte de la façon suivante 
[6] : 

• La phase de construction (ou transformation du 
graphe) : elle nécessite un ensemble de sous-
étapes permettant de transformer le graphe initial 
en un arbre de jonction, dont les nœuds sont des 
cliques (regroupement) de nœuds du graphe initial. 
Cette transformation est nécessaire, d’une part 
pour éliminer les boucles du graphe, et d’autre 
part, pour obtenir un graphe plus efficace quant au 
temps de calcul nécessaire à l’inférence, mais qui 
reste équivalent au niveau de la distribution de 
probabilité représentée. Cette transformation se 
fait en trois étapes : moralisation, triangulation et 
création de l’arbre de jonction. 

• La phase d’initialisation : il s’agit d’initialiser les 
potentiels des cliques et séparateurs. 

• La phase de propagation : il s’agit de la phase de 
calcul probabiliste à proprement parler où les 
nouvelles informations concernant une ou 
plusieurs variables sont propagées dans l’ensemble 
du réseau, de manière à mettre à jour l’ensemble 
des distributions de probabilités du réseau. Ceci se 
fait en passant des messages contenant une 
information de mise à jour entre les cliques de 
l’arbre de jonction précédemment construit. 

• La phase de marginalisation : l’arbre de jonction 
contiendra la distribution de probabilité sachant 
les nouvelles informations, c’est-à-dire p(U|  e) où 
U représente l’ensemble des variables du réseau 
bayésien et e l’ensemble des nouvelles 
informations sur les variables. 

 
L'évidence classique est une observation d'une variable 

aléatoire ayant une valeur particulière. Cependant, il n'est 
pas toujours possible d'observer la valeur exacte d'une 
variable ou d’avoir une confiance complète sur une 
observation, d’où l’apparition de l’évidence incertaine. 

III. EVIDENCE INCERTAINE 
L'observation classique dans les RBs touche seulement 

l’un des états du nœud observé, autrement dit, si nous avons 
une observation dans un nœud X, seulement l’un de ses 
états sera observé. Ainsi, nous associons la valeur 1 à cet 
état et 0 pour les autres. 

Dans ce cas, nous ne pouvons pas représenter le cas où 
notre observation est incertaine et concerne en même temps 
plusieurs états selon des pourcentages bien définis. 



Généralement, il y a deux types d’évidences incertaines, 
l’évidence virtuelle qui peut être interprétée comme 
évidence avec incertitude et représentée par des ratios de 
probabilité et soft évidence interprétée comme évidence de 
l’incertitude et représentée par des distributions de 
probabilité. 

Chacun de ces deux types d'évidence possède ses 
propres caractéristiques et obéit à une mise à jour de 
croyance qui diffère l'une de l'autre et diffère aussi de celle 
de l’évidence classique. 

A. Evidence Virtuelle 
L’Evidence Virtuelle (EV) a été introduite par Pearl [5] 

et définie comme une généralisation de l’évidence standard 
dans les réseaux bayésiens. Ainsi, elle 
propose l'intégration des connaissances externes du 
réseau 

Bilmes et Reynolds o
bayésien comme indiqué dans [6, 7]. 

nt démontré dans [8, 9], que l’EV 
peut augmenter la puissance de modélisation de 
réseaux bayésiens de manière significative sans 
compliquer la méthodologie d'inférence fondamentale. 

L’EV est utile dans plusieurs cas par exemple il y a des 
scénarios où on peut raisonner seulement sur des rapports 
de vraisemblances plutôt que sur les valeurs de 
vraisemblances eux-mêmes.  

Pearl a proposé dans [10] la méthode des évidences 
virtuelles pour traiter la mise à jour de croyance dans les 
RBs lorsqu’on a un événement incertain. Par exemple, 
supposons que nous considérons des informations externes 
influant sur l’état (a) d’une variable (Xi) du RB. 

Ainsi, l’EV consiste à créer un nœud binaire virtuel (U) 
avec un état (u) qui influence sur la probabilité de la 
réalisation de l’événement (Xi =  a). 

Le nœud virtuel (U) possède un seul parent Xi et sa table 
de probabilité conditionnelle satisfait

Dans cette méthode qui est généralisée da

 L(Xi) = P(u|Xi=a) : 
P(u|Xi≠a).  

ns 
[11], 

L(Y) = P (ob(y

l’évidence virtuelle sur Y ⊆ X est représentée par le 
rapport de vraisemblance suivant : 

(1))|y(1)) : P (ob(y(2))|y(2)) :… : P 
(ob(y(n))|y(n)

Avec y
), 

(1), y(2), …, y(n) ∈ Y représentent les instances de 
Y,  ob(y(i)) définit l’événement observé Y = y(i) est vrai, et 
P (ob(y(i))|y(i)) est la probabilité de l’observation de Y = y(i) 
sachant que Y est à l’état y(i). 

Prenons un exemple de RB détaillé dans [5]. Ainsi, nous 
avons initialement trois variables C pour cambriolage, S 
pour alarme sonore déclenchée et W pour un témoignage de 
Watson comme indique la figure 1. 

 
Figure 1. Exemple de RB avec Evidence Virtuelle 

Dans cet exemple, notre but est de calculer la 
probabilité de C (un cambriolage survenu) à partir des 
connaissances données sur les éléments alarme déclenchée S 
= 1 et témoignage de Watson W.

Cependant,
  

 dans cet exemple, on ne sait pas si l'alarme 
s'est déclenchée, ainsi la variable S sera cachée. La seule 
chose qui est connue est peut-être quelques informations 
extérieures du RB influant sur la valeur de S. 

Dans notre cas, M. Holmes, qui est un observateur 
externe, nous fournit un jugement mental, basée sur le 
témoignage de Mme Gibbons, ce qui influe sur l’hypothèse 
« alarme déclenchée » qui aura une mesure de confiance de 
80%. 

Par conséquence, nous pouvons constater que l’alarme 
est quatre fois plus probable qu’elle soit déclenchée (S = 
1) que le contraire (S = 0). 

Ainsi, l’évidence virtuelle apparaît en créant la variable 
G qui illustre le témoignage de Mme Gibbons comme 
indique la Figure 1. Dans ce cas, on peut considérer P(g | s) 
= 0.4 et P(g | not(s)) = 0.1, puis on insère l’observation G = 
g dans le RB.  

Contrairement à l’évidence virtuelle, qui peut être 
interprété comme une évidence avec incertitude, et 
représenté par un rapport de vraisemblance, « soft 
evidence » peut être interprété comme une évidence 
de l'incertitude et représenté par une distribution de 
probabilité d'une ou plusieurs 

B. Soft Evidence 

variables. 

Soft Evidence a été introduite par Voltora [12] qui l’a 
caractérisée par la distribution de probabilité R(Y), Y ⊆ X 
avec Y est un sous ensemble des variables X du RB. Ainsi, 
ce type d’évidence peut être vu de plusieurs cotés.  

Par exemple, on ne peut pas observer  l’état précis d’une 
variable mais plutôt on peut savoir la distribution de 
probabilité de ses états. De plus, parfois il est plus important 
de connaitre la distribution de probabilité des états d’une 
variable que son état précis. 

En outre, lorsque deux RBs interagissent entre eux, les 
informations échangées sont souvent sous la forme d’une 
distribution de probabilité de la variable partagée.   

Concernant soft evidence, on constate une incertitude 
dans le choix de l’état observé Xi, mais on est certain de la 
distribution de probabilité. Autrement dit, la distribution de 
probabilité R(Xi) est une observation certaine qui sera 
réservée pour la mise à jour de croyance.  

Cependant, soft evidence sera traitée de la même façon 
que l’évidence classique. En effet, cette dernière qui impose 
Xi = a est un cas particulier de soft evidence (R(Xi = a) = 1, 
R(Xi = b) = 0 pour tous états b ≠ a). 

Ainsi, le concept de soft evidence consiste à propager les 
valeurs quantifiées pour chaque état du nœud observé. 

À ce sujet, Chan et Darwiche ont proposé dans [11] une 
nouvelle technique qui consiste à convertir soft evidence à 
l’évidence virtuelle. 



Pour mieux expliquer ce concept, on peut illustrer un 
exemple (cf. Figure 2) détaillé dans [13]. 

 
Figure 2. Exemple de RB avec Soft Evidence 

Posons Q(X) la distribution de valeurs quantifiées. 
Ainsi, si l’observation est effectuée sur le nœud A avec les 
pourcentages 90% pour l’état 1 et 10%  pour l’état 2 alors 
les valeurs quantifiées seront comme suit : 
 
Q(A=1) = Q(A=1|Ao=1)  
= [P(Ao=1|A=1) * P(A=1)]  
/ [P(Ao=1|A=1) * P(A=1) + P(Ao=1|A=0) * P(A=0)] 
= [0.9 * 0.2] / [0.9 * 0.2 + 0.1 * 0.8] 
= 0.6923. 
 
Q(A=0) = Q(A=0|Ao=1)  
= [P(Ao=1|A=0) * P(A=0)]  
 / [P(Ao=1|A=1)*P(A=1) + P(Ao=1|A=0)*  P(A=0)] 
= [0.1 * 0.8] / [0.9*0.2 + 0.1 * 0.8] 
 = 0.3077. 

Les évidences incertaines comportent deux catégories : 
évidence virtuelle et soft evidence. Mais sont dépourvus de 
moyen pour exprimer l’ambigüité. Face à ce problème, nous 
avons proposé l’évidence floue dans les réseaux bayésiens. 

IV. APPROCHE PROPOSEE POUR L’EVIDENCE FLOUE 

A.  Evidence Floue 
Pour développer notre algorithme pour l’évidence floue 

dans les RBs, nous avons utilisé l’algorithme arbre de 
jonction combiné avec soft evidence modifié. 

Cependant on peut résumer cet algorithme dans les deux 
étapes suivantes : 
 
1. Pour chaque état i du nœud observé, on fait une 

inférence classique en observant l’état i. 
 
2. Pour chaque nœud N du RB 

Pour chaque état j de N 
Etat j = ∑ valeur de l’état j issu de l’inférence i * 
degré d’appartenance de la valeur observée à l’état i  
Fin Pour 
 

Fin Pour 

B. Solution Logicielle Proposée 
Notre application, qui est développée en C#, est passée 

par trois étapes : tout d’abord, nous avons réalisé un éditeur 
graphique ‘’Bayesian Editor ‘’ pour la représentation des 
réseaux bayésiens, puis, nous avons implémenté 
l’algorithme d’inférence JLO [14, 15] pour assurer la 
propagation de l’information dans le réseau, enfin, nous 
avons développé le module flou qui intègre la notion de 
l’évidence floue. 

Afin d’étendre l’utilisation de notre éditeur au RB avec 
évidence floue, nous pouvons accéder au module de 
représentation des variables.  

Cette interface inclut un tableau contenant les différentes 
données liées à la variable floue tel que son nom, sa 
fonction, l'intervalle de définition de cette fonction et la 
couleur qui sera choisie dans sa représentation graphique. 

Dans ce tableau, nous pouvons ajouter, insérer ou 
supprimer des lignes à travers les boutons "Ajouter", 
"Insérer" et "Supprimer". 

Cependant, les fonctions de la variable floue incluent 
plusieurs types de fonctions mathématiques notamment les 
nombres négatifs, les racines carrées, les puissances, sinus, 
cosinus, tangente, +, -, * et /. 

Finalement, lors d'une évidence floue, nous pouvons 
saisir la valeur observée pour obtenir les degrés 
d'appartenance de chaque état de la variable floue dans le 
deuxième tableau. 

V. EXAMPLE 
Prenons un exemple détaillé dans [16], nous avons 

quatre variables : Neige (N), Encombrement (E), Tomber 
(T) et Arriver en retard (R) comme indique la Figure 3. 

 

 
Figure 3. Probabilité à postériori 

 
Ainsi, supposons que la variable « N » est une variable 

floue qui comporte deux sous-ensembles flous « Pas ou Peu 
de neige » et « Trop de neige » caractérisés par des 
fonctions bien déterminées qu’on peut saisir dans le tableau 
spécifique de la variable floue (cf. Figure 4). 



 
    Figure 4. Représentation de la variable floue Neige 

 
Supposons que la quantité de la neige observée est 50. 

Après  réalisation de notre inférence,  nous obtenons les 
probabilités à posteriori de chaque nœud (cf. Figure 3). 

VI. CONCLUSION 
 
Cet article présent une proposition d’intégration d’un 

nouveau type d’évidence dans les réseaux bayésiens celui de 
l’évidence floue. 

Ainsi, nous avons pu en premier lieu modéliser quelques 
systèmes par réseaux bayésiens avec évidence floue, ce qui 
nous a permis de développer un module supplémentaire de 
représentation des variables flous à un éditeur graphique de 
représentation de RB en deuxième lieu, ainsi que de 
développer un algorithme exploitant la richesse de cette 
récente notion, puis tester et comparer l’algorithme que nous 
avons développé par un exemple illustratif et par rapport à 
d’autre travaux. 
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