Intégration de I’Evidence Floue dans les Réseaux Bayésiens
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Abstract— Bayesian Networks are graphical models that are
easy to interpret and update. These models are useful if the
knowledge is uncertain, but they lack some means to express
ambiguity. To face this problem, we propose Fuzzy Evidence in
Bayesian Networks and combine the Fuzzy Logic and Bayesian
Network. This has allowed to benefit from mutual advantages
of these two approaches, and to overcome the problem of data
and observation ambiguity. This paper proposes an inference
algorithm which uses the Bayesian Network and Fuzzy Logic
reliability. This solution has been implemented, tested and
evaluated in comparison with the existing methods.

Keywords- Bayesian Networks, Fuzzy Logic, Uncertain
Evidence, Artificial Intelligence.

Résumé— Les Réseaux Bayésiens sont des modeéles graphiques
performants pour la manipulation de connaissance incertaine.
Cependant, I'une des limites majeures que rencontrent les
utilisateurs des Réseaux Bayésiens est d’exprimer les
connaissances floues.
Face a ce probléme, nous proposons I’intégration de I’évidence
floue dans les Réseaux Bayésiens en combinant la logique floue
avec les Réseaux Bayeésiens. Ceci permet de profiter des
avantages mutuels de ces deux approches et de surmonter le
probléme rencontré a savoir I’ambiglité des données.
Cet article propose un algorithme d’inférence pour I’évidence
floue dans les Réseaux Bayésiens. Cet algorithme a été
implémenté puis testé et évalué par rapport aux méthodes
existantes.

Mots clés- Réseaux Bayésiens, Logique Floue, Evidence
Incertaine, Intelligence Artificielle.

l. INTRODUCTION

Le domaine de la gestion des connaissances, qui connait
un intérét croissant, et donc également un champ
d’application potentiel pour les Réseaux Bayésiens, qui sont
actuellement I’une des techniques les plus intéressantes de
I’Intelligence Artificielle, dans la mesure ou ceux-ci offrent
un formalisme riche et intuitif de représentation de la
connaissance.

En effet, les Réseaux Bayésiens (RBs) [1, 2] constituent
aujourd’hui I’'un des formalismes les plus complets et les
plus cohérents pour [I’acquisition, la représentation et
I’utilisation de connaissances par ordinateurs.

Dans certains cas, I’utilisation des Réseaux Bayésiens
[3] se trouve limitée par I'impossibilité d’utiliser des
variables de natures flous.

La logique floue est une approche développée par Zadeh
[4], basée sur sa théorie des sous-ensembles flous (fuzzy
sets en anglais), généralisant la théorie des ensembles
classiques.

Dans la nouvelle théorie de Zadeh, un élément peut plus
OuU moins appartenir & un certain ensemble. Les imprécisions
et les incertitudes peuvent ainsi &tre modélisées, et les
raisonnements acquiérent une flexibilité que ne permet pas
la logique classique.

Cet article décrit la possibilité¢ d’intégrer I’évidence
floue dans les Réseaux Bayésiens.

L’objectif de ce travail est d’appréhender la
problématique des Réseaux Bayésiens avec évidence
incertaine, ensuite de modéliser quelques systémes par des



Réseaux Bayésiens avec évidence floue et de développer
des algorithmes d’inférence a des fins de diagnostic
exploitant la richesse de ces modeles.

Il.  RESEAU BAYESIEN

A. Définition

Classiquement, un Réseau Bayésien est un outil de
représentation des connaissances, qui permet de calculer
des probabilités conditionnelles, apportant ainsi des
solutions a différentes sortes de problématiques. La
structure de ce type de réseau est simple : En effet, selon
Judea Pearl « les réseaux bayésiens sont des graphes
acycliques orientés pour lesquels les nceuds représentent
des variables aléatoires et les arcs représentent
I’indépendance conditionnelle entre les différents nceuds »

[5].

Formellement, un réseau bayésien est défini par
Naim et al dans [1] par :

e un graphe acyclique orienté G, G = (V, E), ou V
est I’ensemble des nceuds de G, et E I’ensemble
des arcs de G,

e un espace probabiliste fini (Q, Z, p),

e un ensemble de variables aléatoires associées
aux nceuds du graphe et définies sur (Q, Z, p)
tel que :

est I’ensemble des causes (parents) de V; dans le
graphe G.

Cependant, les réseaux bayésiens doivent leur nom aux
travaux de Thomas Bayes au XVIII siecle sur la théorie de
probabilités, par son célebre théoréme.

" P(AIMP(M,)
P =S5 AT Py

P(M;) : probabilité a priori de M;.

P(A | M;) : probabilité de A conditionnellement a M;.

PMM; | A probabilitt a postériori de M;
conditionnellement & A.

L’inférence, ou la mise a jour des probabilités, dans un
réseau bayésien se résume a un calcul de probabilités a
posteriori. Connaissant les états de certaines variables
(appelées  variables d’observation), on détermine les
probabilités des états de certaines autres variables (appelées
variables cibles) conditionnellement aux observations.
Parmi les algorithmes d’inférence les plus utilisés I’arbre de
jonction.

B. Algorithme arbre de jonction

Cet algorithme est applicable dans tous types de réseaux,
arbre ou non arbre. En premier lieu il transforme le graphe
en un arbre de jonction, puis il initialise ses potentiels,
ensuite il utilise la méthode message passing pour la
propagation des messages et le calcul des probabilités a
posteriori.

En effet, I’algorithme se comporte de la fagon suivante
[6]:

e La phase de construction (ou transformation du
graphe) : elle nécessite un ensemble de sous-
étapes permettant de transformer le graphe initial
en un arbre de jonction, dont les nceuds sont des
cliques (regroupement) de nceuds du graphe initial.
Cette transformation est nécessaire, d’une part
pour éliminer les boucles du graphe, et d’autre
part, pour obtenir un graphe plus efficace quant au
temps de calcul nécessaire a I’inférence, mais qui
reste équivalent au niveau de la distribution de
probabilité représentée. Cette transformation se
fait en trois étapes : moralisation, triangulation et
création de I’arbre de jonction.

e La phase d’initialisation : il s’agit d’initialiser les
potentiels des cliques et séparateurs.

e La phase de propagation : il s’agit de la phase de
calcul probabiliste a proprement parler ou les
nouvelles informations concernant une ou
plusieurs variables sont propagées dans I’ensemble
du réseau, de maniére a mettre a jour I’ensemble
des distributions de probabilités du réseau. Ceci se
fait en passant des messages contenant une
information de mise a jour entre les cliques de
I’arbre de jonction précédemment construit.

e La phase de marginalisation : I’arbre de jonction
contiendra la distribution de probabilité sachant
les nouvelles informations, c’est-a-dire p(U| €) ou
U représente I’ensemble des variables du réseau
bayésien et e [I’ensemble des nouvelles
informations sur les variables.

L'évidence classique est une observation d'une variable
aléatoire ayant une valeur particuliere. Cependant, il n'est
pas toujours possible d'observer la valeur exacte d'une
variable ou d’avoir une confiance compléte sur une
observation, d’ou I’apparition de I’évidence incertaine.

I11.  EVIDENCE INCERTAINE

L'observation classique dans les RBs touche seulement
I’un des états du nceud observé, autrement dit, si nous avons
une observation dans un nceud X, seulement I’un de ses
états sera observé. Ainsi, nous associons la valeur 1 a cet
état et O pour les autres.

Dans ce cas, nous ne pouvons pas représenter le cas ou
notre observation est incertaine et concerne en méme temps
plusieurs états selon des pourcentages bien définis.



Généralement, il y a deux types d’évidences incertaines,
I’évidence virtuelle qui peut é&tre interprétée comme
évidence avec incertitude et représentée par des ratios de
probabilité et soft évidence interprétée comme évidence de
I'incertitude et représentée par des distributions de
probabilité.

Chacun de ces deux types d'évidence possede ses
propres caractéristiques et obéit a une mise a jour de
croyance qui differe l'une de l'autre et différe aussi de celle
de I’évidence classique.

A. Evidence Virtuelle

L’Evidence Virtuelle (EV) a été introduite par Pearl [5]
et définie comme une généralisation de I’évidence standard
dans les réseaux bayésiens. Ainsi, elle
propose l'intégration des connaissances externes du
réseau bayésien comme indiqué dans [6, 7].

Bilmes et Reynolds ont démontré dans [8, 9], que I'EV
peut augmenter la puissance de modélisation de
réseaux bayésiens de maniere significative sans
compliquer la méthodologie d'inférence fondamentale.

L’EV est utile dans plusieurs cas par exemple il y a des
scénarios ol on peut raisonner seulement sur des rapports
de wvraisemblances plutdt que sur les valeurs de
vraisemblances eux-mémes.

Pearl a proposé dans [10] la méthode des évidences
virtuelles pour traiter la mise a jour de croyance dans les
RBs lorsqu’on a un événement incertain. Par exemple,
supposons que nous considérons des informations externes
influant sur I’état (a) d’une variable (Xi) du RB.

Ainsi, I’'EV consiste a créer un nceud binaire virtuel (U)
avec un état (u) qui influence sur la probabilité de la
réalisation de I’événement (Xi = a).

Le nceud virtuel (U) posséde un seul parent Xi et sa table
de probabilité conditionnelle satisfait L(Xi) = P(u[Xi=a) :
P(u|Xi#a).

Dans cette méthode qui est généralisée dans
[11], I’évidence virtuelle sur Y < X est représentée par le
rapport de vraisemblance suivant :

L(Y)=P  (ob(ywllyw): P (blye)lye):..: P
(Ob(y(n))|y(n)),
Avec yuy, Y, - Ym) € Y représentent les instances de

Y, ob(yg) definit I’événement observe Y = yj; est vrai, et
P (ob(yq)ly) est la probabilité de I’observation de Y =y ;
sachant que Y est a I’état y ;).

Prenons un exemple de RB détaillé dans [5]. Ainsi, nous
avons initialement trois variables C pour cambriolage, S
pour alarme sonore déclenchée et W pour un témoignage de
Watson comme indique la figure 1.
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Figure 1. Exemple de RB avec Evidence Virtuelle

Dans cet exemple, notre but est de calculer la
probabilit¢ de C (un cambriolage survenu) a partir des
connaissances données sur les éléments alarme déclenchée S
=1 et témoignage de Watson W.

Cependant, dans cet exemple, on ne sait pas si I'alarme
s'est déclenchée, ainsi la variable S sera cachée. La seule
chose qui est connue est peut-étre quelques informations
extérieures du RB influant sur la valeur de S.

Dans notre cas, M. Holmes, qui est un observateur
externe, nous fournit un jugement mental, basée sur le
témoignage de Mme Gibbons, ce qui influe sur I’hypothése
« alarme déclenchée » qui aura une mesure de confiance de
80%.

Par conséquence, nous pouvons constater que I’alarme
est quatre fois plus probable qu’elle soit déclenchée (S =
1) que le contraire (S = 0).

Ainsi, I’évidence virtuelle apparait en créant la variable
G qui illustre le témoignage de Mme Gibbons comme
indique la Figure 1. Dans ce cas, on peut considérer P(g | s)
= 0.4 et P(g | not(s)) = 0.1, puis on insére I’observation G =
g dans le RB.

Contrairement a I’évidence virtuelle, qui peut étre
interprété comme une évidence avec incertitude, et
représenté par un rapport de vraisemblance, «soft
evidence » peut é&tre interprété comme une évidence
de l'incertitude et représenté par une distribution de
probabilité d'une ou plusieurs variables.

B. Soft Evidence

Soft Evidence a été introduite par Voltora [12] qui I'a
caractérisée par la distribution de probabilité R(Y), Y € X
avec Y est un sous ensemble des variables X du RB. Ainsi,
ce type d’évidence peut étre vu de plusieurs cotés.

Par exemple, on ne peut pas observer I’état précis d’une
variable mais plutdt on peut savoir la distribution de
probabilité de ses états. De plus, parfois il est plus important
de connaitre la distribution de probabilité des états d’une
variable que son état précis.

En outre, lorsque deux RBs interagissent entre eux, les
informations échangées sont souvent sous la forme d’une
distribution de probabilité de la variable partagée.

Concernant soft evidence, on constate une incertitude
dans le choix de I’état observé Xi, mais on est certain de la
distribution de probabilité. Autrement dit, la distribution de
probabilit¢ R(Xi) est une observation certaine qui sera
réservée pour la mise a jour de croyance.

Cependant, soft evidence sera traitée de la méme fagon
que I’évidence classique. En effet, cette derniére qui impose
Xi = a est un cas particulier de soft evidence (R(Xi=a) =1,
R(Xi = b) = 0 pour tous états b # a).

Ainsi, le concept de soft evidence consiste a propager les
valeurs quantifiées pour chaque état du nceud observé.

A ce sujet, Chan et Darwiche ont proposé dans [11] une
nouvelle technique qui consiste a convertir soft evidence a
I’évidence virtuelle.



Pour mieux expliquer ce concept, on peut illustrer un
exemple (cf. Figure 2) détaillé dans [13].
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Figure 2. Exemple de RB avec Soft Evidence

Posons Q(X) la distribution de valeurs quantifiées.
Ainsi, si I’observation est effectuée sur le nceud A avec les
pourcentages 90% pour I’état 1 et 10% pour I’état 2 alors
les valeurs quantifiées seront comme suit :

Q(A=1) = Q(A=1|A0=1)

= [P(Ao=1|A=1) * P(A=1)]

/ [P(A0=1|A=1) * P(A=1) + P(A0=1|A=0) * P(A=0)]
=[0.9*0.2]/[0.9%0.2 + 0.1*0.8]

= 0.6923.

Q(A=0) = Q(A=0|A0=1)

= [P(A0=1|A=0) * P(A=0)]

/ [P(A0=1|A=1)*P(A=1) + P(A0=1|A=0)* P(A=0)]
=[0.1*0.8]/[0.9%0.2 + 0.1 * 0.8]

=0.3077.

Les évidences incertaines comportent deux catégories :
évidence virtuelle et soft evidence. Mais sont dépourvus de
moyen pour exprimer I’ambiguité. Face a ce probléme, nous
avons proposeé I’évidence floue dans les réseaux bayésiens.

IV. APPROCHE PROPOSEE POUR L’EVIDENCE FLOUE

A. Evidence Floue

Pour développer notre algorithme pour I’évidence floue
dans les RBs, nous avons utilisé I’algorithme arbre de
jonction combiné avec soft evidence modifié.

Cependant on peut résumer cet algorithme dans les deux
étapes suivantes :

1. Pour chaque état i du nceud observé, on fait une
inférence classique en observant I’état i.

2. Pour chaque nceud N du RB

Pour chaque état j de N

Etat j = Y valeur de I’état j issu de I’inférence i *
degré d’appartenance de la valeur observée a I’état i
Fin Pour

Fin Pour

B. Solution Logicielle Proposée

Notre application, qui est développée en C#, est passée
par trois étapes : tout d’abord, nous avons réalisé un éditeur
graphique ‘’Bayesian Editor ©* pour la représentation des
réseaux bayésiens, puis, nous avons implémenté
I’algorithme d’inférence JLO [14, 15] pour assurer la
propagation de I’information dans le réseau, enfin, nous
avons développé le module flou qui intégre la notion de
I’évidence floue.

Afin d’étendre I’utilisation de notre éditeur au RB avec
évidence floue, nous pouvons accéder au module de
représentation des variables.

Cette interface inclut un tableau contenant les différentes
données liées a la variable floue tel que son nom, sa
fonction, l'intervalle de définition de cette fonction et la
couleur qui sera choisie dans sa représentation graphique.

Dans ce tableau, nous pouvons ajouter, insérer ou
supprimer des lignes a travers les boutons "Ajouter",
"Insérer" et "Supprimer".

Cependant, les fonctions de la variable floue incluent
plusieurs types de fonctions mathématiques notamment les
nombres négatifs, les racines carrées, les puissances, sinus,
cosinus, tangente, +, -, * et /.

Finalement, lors d'une évidence floue, nous pouvons
saisir la valeur observée pour obtenir les degrés
d'appartenance de chaque état de la variable floue dans le
deuxiéme tableau.

V. EXAMPLE

Prenons un exemple détaillé dans [16], nous avons
quatre variables : Neige (N), Encombrement (E), Tomber
(T) et Arriver en retard (R) comme indique la Figure 3.

y
#» Information
Pas ou Pew | 0,2333333
Trop | 06666667

neige.bn

Etat @ Node:N --> Position:{X=147,v=33}
Figure 3. Probabilité a postériori

Ainsi, supposons que la variable « N » est une variable
floue qui comporte deux sous-ensembles flous « Pas ou Peu
de neige» et «Trop de neige » caractérisés par des
fonctions bien déterminées qu’on peut saisir dans le tableau
spécifique de la variable floue (cf. Figure 4).
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Figure 4. Représentation de la variable floue Neige

Supposons que la quantité de la neige observée est 50.
Apres réalisation de notre inférence, nous obtenons les
probabilités a posteriori de chaque nceud (cf. Figure 3).

VI. CONCLUSION

Cet article présent une proposition d’intégration d’un
nouveau type d’évidence dans les réseaux bayésiens celui de
I’évidence floue.

Ainsi, nous avons pu en premier lieu modéliser quelques
systémes par réseaux bayésiens avec évidence floue, ce qui
nous a permis de développer un module supplémentaire de
représentation des variables flous a un éditeur graphique de
représentation de RB en deuxiéme lieu, ainsi que de
développer un algorithme exploitant la richesse de cette
récente notion, puis tester et comparer I’algorithme que nous
avons développé par un exemple illustratif et par rapport a
d’autre travaux.
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