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Abstract. This paper presents a new technique called Empirical Mode
Decomposition (EMD) applied to filter a stationary and non-stationary signal and
demonstrate the influence of the number of filtered IMFs on the SNR. The result of
comparaison with wavelet transforms technique demonstrates the performance of
the proposed approach. Noisy signal is decomposed adaptively into oscillatory
components called Intrinsic Mode Functions (IMFs) by means of a process called
sifting. The EMD denoising involves filtering or thresholding each IMF and
reconstructs the estimated signal using the processed IMFs. In this paper, we apply
this approach to denoise the non-stationary signals to achieve the highest SNR as
the number of IMFs filtered..We demonstrate how the proposed method improves
the interpretive information of the signal by comparing it with widely used DWT
denoising schemes.
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1. Introduction

Signal filtering and noise reduction from fundamental problems in various applications
includes medical signal, analysis and speech signal processing [1].

Generally, the signals are noisy when they were purchased. Filtering or denoising is
often required to improve the quality of these signals and the power later use. Filtering or
denoising are often required to improve the quality of these signals and classical linear
methods such as Wiener filter, the averaging or Gaussian are the most used because of
their simplicity and ease of implementation [2]. The improvement of this method is
demonstrated in the case of stationary and non stationary signal.

In recent years, firstly wavelet transform technique is applied to analyze the non linear
and the non stationary signals then the application of Empirical Mode Decomposition
(EMD) technique is applied to analyze nonlinear and non-stationary signals has gained
importance [3] .



The paper is organized as follows. In section 2, the EMD methods used in this paper is
shortly described. Next in section 3 we describe this method in signal denoising and
filtering. Further are experiment results on the EMD approach applied in stationary and
non stationary signal in section 4. Finally, a conclusion is presented in section 5.

2. Empirical Mode Decomposition

Empirical mode decomposition proposed by Huang in 1998 deals with nonlinear and
non-stationary signals [4]. The EMD decomposes a signal into a collection of oscillatory
modes, Called intrinsic mode functions (IMF), which represent fast to slow oscillations in
the signal with correspond to high frequency(or detail in wavelet terminology) and low
frequency (approximation). In IMFs the frequency bands are different to each other,
depends on frequency in real signal.

An IMF is defined as a function with equal number of extrema and zero crossings (or at
most differed by one) with its envelopes, as defined by all the local maxima and minima,
being symmetric with respect to zero. [5]

Empirical mode decomposition (EMD) adaptively decomposes a multicomponent
signal x (t) into L Intrinsic Mode Functions (IMFs).

The sifting procedure to obtain IMFs of the signal x (t) is described as follows [6].
1) Identify all the maxima and the minima in the signal x (t).
2) Generate its upper and lower envelopes using cubic spline interpolation.
3) Compute the point by point local mean m1 from upper and lower envelopes.

4) Extract the details, h; = x(t) —m,.
5) Check  the  properties of hl and iterate k  times, then
h, (k) =h,(k-1)-m, (k) becomes the IMF once it satisfies some stopping criterion. It
is designated as first IMF
¢, =h,(k).
6) Repeat steps 1) to 5) on the extracted the data 1, (k) = x(t)-c, .
7) The step 6) is repeated until all the IMFs and residual is obtained.
The result of the sifting procedure is that x (t) will be decomposed into  IMF;(t) ,

j=1...Nandaresidual 1y (t) :

N
x(t)=j§11Mj(t)+rN(t) (1)



The EMD approach can be applied to denoise signals or images as well as wavelet
technique

3. Denoising by EMD

This approach is based on the reconstruction of filtred signal by filtred all IMFs
previously pre-treated. The method is seen as a technique for denoising. The idea of EMD
is to Threshold (as defined by wavelet denoising) each IMF separately [7].

Thus, if we consider fj(t) a non noisy finite length T and its noisy version IMF;(t) by

assumed white Gaussian and additive noise, bi(t) then

IMF,(6)=£ () +b,(0; j=1....N )

We then define fj (t) an estimate of fj (t) based on the observation of noisy

IMF; (t) .The denoising signal (reconstructed) X i (1) is given by the relation:
N
X(t)= ¥ f.(O)+r1); =1....N (3)
=i

?j (t) is obtained by a hard or soft thresholding of the decomposed IMF.

3.1. Hard thresholding

The hard thresholding is an intuitive method to keep only those samples whose
amplitudes are higher to 1j and replacing others with zero [8].

IMF; (0 if [IMF, (1) > g
O

IMF (1)

7; is called universal threshold of Donoho described by equation (5)[10].



7= 6j1/2.ln(T) (5)

G ] is also called the noise level of the j"™ IMF and T is the number of samples.

Ej = MADJ./O.6745 (6)

MADJ. = Median{ IMFj (t)— Median{IMFj (t '))G i={L.., N} (7)

Where MAD is the Median Absolute Deviation and Median { } is the median of the
variable.

3.2.  Soft thresholding
Soft thresholding is less excessive than the hard thresholding and can reduce the noise
of each IMF. This method of mitigation t; decreases the amplitude of all noisy samples

(IMFj(t) values) that are above the threshold t;. The estimate of denoised versions Fj(t)
IMF; (t) is associated calculated as following [10]:

IMF,(t)-t,  if IMF,()>1,

£.(t)=10 if[IMF; (1) < T
IMF,()+t  if IMF,(t) < —t

®)

The soft thresholding leads to smoother estimates than those obtained by hard
thresholding approach [11].



4. Experimental results

We applied the approach to the EMD denoising non-stationary signals. The noise used
is an additive Gaussian noise with gamma 6 = 50 .

The EMD approach adaptively decomposes the noisy signal into a set of intrinsic
mode function (IMFs) and a residual one. The result of decomposition is illustrated in
figurel.

To implement the EMD approach, descript in paragraph 2, on the noisy non-stationary
signal and find the reconstructed signal, we add all IMFs filtered by the equation (3 ).

Figure 2 and 3 presents respectively an example of stationary and non-stationary
signal denoised with the EMD approach.

It was noted that there is no need to filter all IMFs decomposed a noisy signal but just
filter the first IMFs, which contains the most noise on this example the first 3 IMFs are
filtered and gives maximum of the SNR(36 db). So the Figure 4 explains the behavior of
SNR on the number of IMFs filtered.

We compared the EMD denoising approach with DWT technique. The SNR level is
37db for the EMD and 14 for DWT technique denoising approach for 3 filtered IMFs.
This shows these values of SNR demonstrated that this approach (EMD) applied on non-
stationary signals has shown the efficiency in SNR criteria compared to other approaches
used as the DWT approach, especially for the Gaussian additive noise.

It was noticed that the EMD for non-stationary signal denoising is more effective for
Gaussian noise than other used filters.
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Fig. 1. Empirical mode decomposition of a noisy non-stationary signal with equation 2
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Fig 2.Results of denoising by EMD approach for the stationary signal
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Fig 3.Results of denoising by EMD approach for the non-stationary signal
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Fig4: The behavior of SNR as a function of MFTIs filtered

Fig 5: Comparison of the EMD method with DWT for denoising non-stationary signals



5. Conclusions

An efficient technique for signal denoising using Empirical Mode Decomposition
(EMD) has been proposed. This contribution consists on applying the EMD approach for
the denoising the non-stationary signals. Original signal is decomposed into successive
IMFs using empirical mode decomposition. In the next step, Each IMF is filtered
separately by soft thresholding method. The reconstruction of the signal is performed by
adding the different filtered IMFs. During implementation of this approach it was noted
that there is no need to filter all IMFs components of the original signal; just the first ones
(two or three) are necessary to give a good result. The simulations are performed for
stationary and non stationary signals. The application of this approach in the denoising
field gives a better performance compared with Discrete Wavelet technique.
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