
Chapter 6

Anatomy of a Continuous/Discrete System Execution
Model for Timed Execution of Heterogeneous Systems

Faouzi Bouchimma1, Luiza Gheorghe1, Mohamed Abid2, Gabriela Nicolescu1

1Ecole Polytechnique de Montreal, 2ENIS, Tunis

1. Introduction
Modern embedded systems like micro-electro-mechanical systems (MEMS),
mixed-signal systems and real-time controllers integrate discrete and contin-
uous components. These systems can be found in various domains such as
health, communication, as well as the defence, and automotive industries. The
design process of these systems needs to be improved, International Technology
Roadmap for Semiconductor (ITRS) announcing a “shortage of design skills
and productivity arising from a lack of training and poor automation with a need
for basic design tools” as one of the most daunting challenges in the domain
[ITR06].

Designers currently build the different discrete and continuous components
by using powerful existing tools specialized for an application domain (e.g. Sys-
temC or VHDL for the electronic digital part which is discrete, Matlab/Simulink
for the mechanical part which is continuous) and they are generally not too
fond of changing their tools. New CAD tools, enabling the global execution
of continuous/discrete systems, are consequently mandatory. These tools must
be based on global execution models which are independent from the specifi-
cation languages and simulators and provide several implementations enabling
integration of different existing tools in order to exploit their features.

One of the main difficulties in the definition of new CAD tools for continu-
ous/discrete (C/D) systems pertains to the heterogeneity of the concepts manip-
ulated by the discrete and continuous components. In the case of validation tools,
the key issue consists of defining global execution models, accommodating
several of the discrete and continuous execution semanticists. Co-simulation

75
G. Nicolescu and A.A. Jerraya (Eds.), Global Specification and Validation of Embedded Systems – Integrat-
ing Heterogeneous Components, 75–108.
c© 2007 Springer.

Faouzi
Note
Accepted set by Faouzi

Faouzi
Note
Completed set by Faouzi

76 Global Specification and Validation of Embedded Systems

(as defined in Chapter 4) is currently the most popular validation technique
for heterogeneous systems. This technique was successfully applied for hard-
ware/software discrete systems [Val95], but rarely applied to C/D systems.
It allows a joint simulation of heterogeneous components with different
simulation models.

This chapter proposes the anatomy of a C/D global execution. This model is
based on a generic architecture integrating several synchronization models,
which provide adequate accuracy/performance compromises. These models
result from a discrete and continuous model study and the concepts involved in
continuous/discrete simulation such as time and event management.

The remainder of this chapter is organized as follows: the following section
introduces continuous and discrete simulations as well as the main concepts per-
taining to such models. Section 4.2 addresses time distribution in timed simula-
tion models and defines a time model for the global execution model. Section 3.3
discusses event management in continuous/discrete systems, defines new syn-
chronization models and a generic simulation model for continuous/discrete
systems execution. Section 5 proposes implementation solutions for the defined
execution model. The application of the execution model for the validation of
three heterogeneous systems is discussed in Section 6. Section 7 presents the
experimentations and concludes the chapter.

2. Continuous Simulation Model vs. Discrete Simulation
Model

Discrete and continuous systems are characterized by different physical prop-
erties and modeling paradigms. For example, mechanical systems and analog
circuits respectively, are usually modeled by analog equations derived from
Newton’s and Kirchhoff’s laws while discrete system models are based on
mathematical logic resulting from Boolean logic and arithmetic expressions.

2.1 Discrete Systems Modeling and Simulation
This section introduces the concurrent processes formalism used in discrete
systems modeling and presents their execution model.

Discrete systems are commonly modeled by concurrent processes describing
their behavior using Boolean and/or algebraic expressions. These processes are
generally grouped into modules according to their functionalities within the
system. Modules are connected by signals through input/output ports.

Discrete model execution is based on events. An event represents an occur-
rence or happing of significance to a process. The process may wait for an event
or any set of events or it may (request to) receive asynchronous notification that
an event has occurred. For instance, modifying a signal value at a given moment
causes an event. In this case, the event is represented by a couple (signal value,

Anatomy of a Continuous/Discrete System Execution Model 77

time of occurrence). Events represented only by their time of occurrence (e.g.
clock event) are called pure events.

Processes are considered event-sensitive when events trigger executions. If
several processes are sensitive to one or several events (with the same time
of occurrence) then, these processes must be executed in parallel. However,
executions often occur on sequential machines which can only execute a single
instruction at a time, therefore one process.

Thus, this type of execution cannot really parallelize processes. The solution
consists of emulating parallelism, which is based on a simple yet effective
strategy: in order to execute each process “as if” the parallelism were real, it is
necessary that its environment (its inputs) does not change when executing other
processes. Thus, the process execution order loses its importance and everything
takes place as if a parallel execution occurred. This requires that shared variables
(signals) between processes keep their values until the execution of all parallel
processes finishes.

Processes preserve the sequential aspects. The same instructions and control
structures are found with C, Pascal and Ada languages. The only exception
concerns the signal assignment: expressions assigning variables to signals are
considered parallel expressions. Each assignment expression can thus be seen
as a process. An example of two processes with Signals A, B, and C appears
below.

Process 1
A <= B and C;
B <= Init when Select = ‘1’ else C;
C <= A and B;

Is equivalent to:

Process 2
C <= A and B;
A <= B and C;
B <= Init when Select = ‘1’ else C;

During simulation, the simulator must maintain a timer and associate a
notification time for each event. Its main role consists of maintaining the event
order in a global queue according to their notification times. A simulation cycle
is performed at each discrete time. Within a simulation cycle, the event with
the first ordered time stamp in the event queue is processed and the processes
sensitive to this event are executed. This may generate other events that trigger
the execution of other processes. Once all events with a time stamp identical to
the current time are treated, the simulator advances its time to the value associ-
ated to the nearest discrete scheduled event and starts a new simulation cycle.

78 Global Specification and Validation of Embedded Systems

Process execution does not advance the simulator local time. Consequently,
within the same simulation cycle the “cause” and the “effect” events will share
the same time of occurrence, which violates the causality principle. To address
this problem, the simulator uses a virtual time interval, called delta, the dura-
tion of which equals zero. The role of a delta-cycle is to order “simultaneous”
events within a simulation cycle, i.e. identifying which event caused another.
Thus, event “causes” and “effects” are consistently differed by a delta. Simula-
tion cycles are composed of several deltas. The simulator uses a delta counter
set at zero before launching a simulation cycle. If the processes executed at
the beginning of the simulation cycle generate events, then the simulator anno-
tates these events with a time stamp indicating the “real” current time with an
additional delta. If there are no processes to execute at the current time (“real”
current time plus zero delta), the simulator increments the delta counter (current
time equals the “real” current time plus one delta) and executes the processes
which are sensitive to the indicated events.

Although discrete event simulators can virtually execute any discrete system,
their concept of rigorous event order may not be necessary. In fact, simulator
variants have been proposed to increase discrete system performance:

• Synchronous systems simulation does not require global event sorting as
signals can process events only as the clock ticks. Within a clock cycle,
events can be totally or partially ordered, or entirely unordered, depending
on the model [Cha96; Cha96; Cha96].

• Data flow model simulation solely uses partial ordering of events. Events
associated to the different signals may not have ordering relationships.
The advantage of this method: it avoids over-specifying a design when
complete orders are not required [Cha96; Cha96]. In [Pat04], this solution
makes it possible to improve a discrete event scheduler by increasing
synchronous data flow simulation performance.

2.2 Continuous Systems Modeling and Simulation
This section introduces the computation models used for continuous systems
modeling. Their simulation model is also presented.

Modeling continuous systems. A continuous system is generally described
using ordinary differential equations (ODEs). An ODE refers to an equality
involving a function and its derivatives. ODEs can be written in the form (1) as
a system of first-order ordinary differential equations. Higher order ODEs can
be reduced to a system of first-order equations. Although higher order equations
solved directly are sometimes more efficient, few tools are yet available for this
purpose [Gup85].

Anatomy of a Continuous/Discrete System Execution Model 79

ẏ =
dy

dx
= f(x, y), y(x0) = y0 where y is a vector (1)

The form (1) is called explicit ODE. Another ODE form is the fully implicit
ODE:

f(x, y, ẏ) = 0 (2)

Most fully implicit ODEs can be written as [Gup85]:

M(x, y) ẏ = f(x, y) where M is a matrix. (3)

The form (3) is called linearly implicit ODE. The inversion of the matrix M
converts this form to the conventional form (1).

In the case of continuous systems, the form (1) becomes:

ẋ =
dx

dt
= f(x, u, t), x(t0) = x0 (4.1)

y = g(x, u, t) (4.2)

where, t is the time, u is the inputs vector, x is the state variables vector, and y
is the output vector.

Thus, a state space completely specified by the equations (4.1) and (4.2) is
obtained. Formula 4.1 gives the set of state equations with its initial conditions
and 4.2 indicates the set of output equations. Assuming there are n state vari-
ables, m input variables, and r output variables, these equations can be written
in scalar for as a set of n state equations and r output equations:

n state equations

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = f1(x1(t), , xn(t), u1(t), , um(t), t), x1(t0) = x10

.

.

ẋn = fn(x1(t), , xn(t), u1(t), , um(t), t), xn(t0) = xn0

r output equations

⎧
⎪⎪⎨

⎪⎪⎩

y1 = g1(x1(t), , xn(t), u1(t), , um(t), t)

.

.

yr = gr(x1(t), , xn(t), u1(t), , um(t), t)

Linearity. The nature of the functions f and g in equations (4.1) and (4.2)
consist of classifying linear and nonlinear systems. The system is said to be
linear if its functions are both linear. In this case, the model given by (4.1) and
(4.2) is reduced to the following system:

ẋ(t) = A(t)x(t) + B(t)u(t) (5.1)

y(t) = C(t)x(t) + D(t)u(t) (5.2)

A(t) (n, n), B(t) (n, m), C(t) (r, n) and D(t)(r, m) are matrices with n, m
and, r are specified above.

80 Global Specification and Validation of Embedded Systems

Time-Invariant Systems. For time-invariant systems, functions f and g do
not explicitly depend on time. In this case, equations (4.1) and (4.2) become:

ẋ(t) = f(x(t), u(t)) (6.1)

y(t) = g(x(t), u(t)) (6.2)

Assuming this time-invariance property, for linear system whose matrices A(t),
B(t), C(t) and D(t) are all constant, we obtain:

ẋ = A x + B u (7.1)

y = C x + D u (7.2)

Differential-Algebraic Equations. If the set of equations describing the
continuous system consists of both algebraic and differential equations, the
equations are called differential-algebraic equations (DAE). The equations may
be written as

F1(x, y, z, ẏ) = 0, y(x0) = y0

F2(x, y, z) = 0,
(8)

where F1 is a set of N equations and F2 of M equations, with N ≥ M .

Example. Figure 6.1 illustrates a simple continuous system, an RLC circuit.
The second-order differential equation describing this circuit is given by

equation (9):

Vin = LC
d2Vout

dt
+ RC

dVout

dt
+ V out (9)

To solve this equation numerically, it must be rewritten as an equivalent system
of first-order equations:

Making the assumption expressed by equation (10) and combining it with
equation (9), the following system of first order equations is obtained:

y1 = Vout (10)

y2 = V̇out

Figure 6.1. RLC circuit

Anatomy of a Continuous/Discrete System Execution Model 81

1
1

LC.s2+RC.s+1

Transfer Fcn
Vin

1

Vout

Figure 6.2. Modelling RLC circuit as a block, using the transfer function

⎧
⎪⎪⎨

⎪⎪⎩

ẏ1 = y2

ẏ2 = 1/LC (Vin − RC y2 − y1)

Vout = y1

(11)

The same circuit can be easily described by the first-order ODE given by
Forms 7.1 and 7.2:

[
ẋ1

ẋ2

]

=
[

0 1/C
−1/L −R/L

] [
x1

x2

]

+
[

0
1/L

]

Vin (12)

Vout = [1, 0]
[
x1

x2

]

, where x1 = Vc and x2 = Il are the state variable

The system described by equation (11) and the system specified by equation
(12) are equivalent. These systems can be modeled by using text editor or special
blocks (the majority of continuous simulators provide special blocks).

Figure 6.2 shows the circuit from Figure 6.1 modeled as a single block
specified using its transfer function given by the expression (13):

H(s) =
Vout(s)
Vin(s)

=
1

LCs2 + RCs + 1
(13)

Using (12) (13), the circuit can be described using primitive blocks: the adder,
the gain and the integrator blocks. The integrator represents the principal block
[Cal91] (see Figure 6.3).

Continuous models simulation. Simulating a continuous model requires
solving numerically differential and algebraic equations. A widely used class
of algorithms discretizes the continuous time line into a set of ordered discrete
time instants and computes numerical values of model variables at these ordered
time instants. The interval between two consecutive time instants is called the
integration step and, depending on the algorithm used, this step can be either
fixed or variable. As explained in the previous section, continuous systems can
be modeled using several blocks. During the simulation, the equations modeling
the blocks composing the system are solved at each integration step, according
to the order determined by the data dependence rule.

The criteria used to select integration steps are the accuracy, stability, and
signal continuity. In the case of accuracy, both fixed and variable integration

82 Global Specification and Validation of Embedded Systems

1
Vin

Vout

R/L

Gain1

1

1

y2y2' y1
s

Integrator

Gain

±−

Gain2

1/LC

Integrator1

1
s

1/LC

Figure 6.3. Modeling RLC circuit as a set of primitive blocks

steps can be used. However, the variable step algorithm improves the simulation
performance. It reduces the step size and increases accuracy when model states
change rapidly and it increases the step size to avoid unnecessary steps when the
model states change slowly. When continuous models present discontinuities
in form of finite jumps and/or stability problems, it is necessary to use:

• Variable step algorithms – to solve discontinuity problems observed at
the solutions level, especially when interacting with discrete environ-
ments where signals change values discontinuously. In case of discon-
tinuity, the algorithm reduces the step size again and this process can
be repeated several times before the trouble spot is passed successfully
[Gea84].

• Specific algorithms with a variable step – to resolve stiff 1 nonlinear
systems of equations were used in the case of mechanical, thermal, and
other models. This system exhibits time constants whose values differ by
several orders of magnitude. Algorithms not designed for stiff problems
are inefficient as they control the step size with accuracy rather than
stability requirements [Cha96].

2.3 Heterogeneity in Continuous/Discrete Systems
Table 6.1 presents the main concepts characterizing continuous and discrete
models: the notion of time, the means of communication and the process acti-
vation rules. Considering these concepts is a key issue for composing these two

1If, in a certain interval of integration, a numerical method is forced to use a step length which is excessively
small in relation to the smoothness of the exact solution in that interval, then the problem is said to be stiff
in that interval.

Anatomy of a Continuous/Discrete System Execution Model 83

Table 6.1. Basic concepts for discrete and continous simulation models

�������
Model
type

Concepts
Time Communication

means
Process activation

rules
Discrete • Global notion for all

system processes.
Set of events
located discretely
on the time line

•Processes are
sensitive to events.
They can be
executed in parallel.

• Advances discretely
according to event
time stamps.

•At a given discrete
time (simulation
cycle), the
execution order is
determined using
the delta
concept.

Continuous • Global variable
involved in data
computation.

Piecewise-
continuous signals

•Processes (blocks)
are executed
sequentially at each
integration
step.

•Advances by
integration steps.

•The order of
execution is
determined by
using the technique
known from static
data flow (data
dependency).

types of simulation models. Their composition must preserve the accurate data
communication between them. This requires time synchronization and signal
adaptation.

The next section introduces the time distribution approaches used to distribute
time among processes. It also fixes the time distribution model for the global
simulation model involving discrete/continuous simulation. This time model
will be used when proposing the synchronization models.

3. Time Distribution Approaches
When designing hardware or software embedded systems, time is consid-
ered an important factor. In most cases, it must be considered with a high
level of accuracy and measured with physical units. Timed simulation models
assure that these requirements are fulfilled by providing a physical time model.
Three approaches are proposed to calculate and distribute time among system
processes [Jan04]: the local time counter approach, the time stamps approach

84 Global Specification and Validation of Embedded Systems

and the absent event approach. An overview of these approaches appears
below.

3.1 Local Timer Approach
This approach considers a local time counter for the entire model. In order to
obtain the global time, each process accesses this counter. In a typical usage, a
time-out period is set by the process and the time counter emits an event when
the time period has expired. This approach is typically used by programming
languages supporting real-time process modeling such as SDL-RT [SDL06],
and others derived from C. Generally, the time is not defined by the language;
it is supplied by a physical source of time, a timer or a quartz oscillator counter.

A correct functionality requires that all the processes share the same global
time value at a given time instance. This is obvious for systems where all
processes use the same clock (e.g. single processor systems). However, syn-
chronization is required with distributed processes (e.g. multiprocessors) using
various sources of time. Most hardware languages consider time as an integral
part supplied by a virtual counter. A model composed of several processes des-
cribed by different languages requires a synchronization mechanism for local
time. Such synchronization is mandatory for accurate event exchanges between
distributed processes. Figure 6.4 illustrates two processes P and P′ with their
local times T and T′ respectively. If T �= T ′, then an incorrect event exchange
will occur: event e is emitted by P at time T and consumed by P ′ at time
T ′ �= T and vice versa.

3.2 Time Tag Approach
In this approach, there is no shared source of time. Each event exchanged
between two processes is annotated with a time tag that represents the global
time of the event occurrence. A process receives information on time only
via explicit events on its input ports. It is clear that two processes will be
synchronized if they receive two events characterized by the same time of
occurrence. For instance, the two processes P and P′ illustrated in Figure 41 are
synchronized if t = t′.

T T'

e

e'
P P'

Figure 6.4. Distributed processes exchanging events

Anatomy of a Continuous/Discrete System Execution Model 85

This approach increases process interdependency and eliminates unnecessary
synchronization. However, it lacks total knowledge of the global time while
not connected to a clock source process. Therefore, situations which require
complete global time knowledge cannot be modeled with this approach.

3.3 The Absent Event Approach
In this approach, the concept of absent event enables time information commu-
nication. The time line is divided into discrete time slots and, at every time slot,
all processes send events to all output signals. If no useful events are generated
by a process at a given time instance, an absent event is emitted instead. The
absent event value is distinct from all other possible values in the system. Its
role is to inform the other processes about the time elapsed in the process that
emitted it. Thus, all of the system processes are aware of the global time.

3.4 Summary
In conclusion, the first approach associated with synchronized processes is
the most flexible. Although the second approach is interesting, as it preserves
process independence properties, it remains applicable to a restricted number
of models (used especially in data flow models). However, a time source could
be added to this latter approach, but it would make it equivalent to the first
approach. Finally, contrary to the third approach, where the time line is divided
into discrete time slots, the first and the second approach can be used naturally
for continuous time models.

4. Time Distribution Model Involved
in Continuous/Discrete Execution Model

Continuous time and discrete execution models are timed models, where time is
an explicit component integrated by the simulators. The continuous simulation
model uses the local time counter-approach, while the discrete simulation model
(discrete events) uses this approach with an additional time tag approach. At
all simulation instants, both models can access the local time of the simulators
on which they are executed. Thus, each process can annotate its emitted events
with its own time stamps.

The global execution model cannot be characterized by a local time as this
requires a tight synchronization between the continuous and discrete simulators.
The approach based on event tags can be used for this type of global execu-
tion model. Thus, the events exchanged between the two simulators convey
the time information. This avoids the need of a complete synchronization for
each simulation time step. Using the event tag approach, a simulator performs
synchronization only to accurately reach the time instants given by the event
tags (stamps).

86 Global Specification and Validation of Embedded Systems

5. Global Execution of Heterogeneous
Continuous/Discrete Systems

Continuous and discrete models interact via events. The instances of consum-
ing and emitting these events must be considered with respect to causality and
correct event exchanges. This section addresses event management in continu-
ous/discrete systems co-simulation. We also propose a global simulation model
based on accurate synchronization models.

5.1 Event Management in Continuous/Discrete Systems
In continuous/discrete systems, an event occurs when signal values change or
once a variable exceeds a given threshold. In the first case, the event is defined
by the couple (value, time stamp) while in the latter, it consists of a pure event
solely defined by its time stamp. The events exchanged between the continuous
and discrete models composing a continuous/discrete system are:

• The discrete model (DM) sends two types of events:

• The signals update events caused by the modification of its discrete
output signals

• The sampling events which are pure events sent to the continuous
model to indicate the sampling instants of its output continuous
signals

• The continuous model (CM) can send state events. State events are pure
and unpredictable events whose time stamps depend on the CM state
variables (e.g. a zero-crossing event, a threshold overtaking event).

It is important to notice that the data path goes from the DM to the CM for
signal update events, while it travels in the reverse direction (from CM to DM)
for the case of sampling events.

Event exchanges must respect the causality principle during systems execu-
tion. A model is considered causal when causes precede effects. Here is one
of the definitions for “causality”: “The output of a process at time t should not
depend on inputs that are later than t” [Liu02].

This section presents a study of event exchanges in the case of continu-
ous/discrete global execution, where we examine compliance with causality
and discuss incorrect situations that occur in event exchanges. Such situations
are illustrated in Figure 6.5 and discussed below.

In Figure 6.5a, the DM generated an event at the time tj while the CM was
at the time ti, where ti < tj . Since its time is continuous, the CM proceeds from
this time and generates a state event at time tk. This state event is caused by the
consumed event at time tj (tk <tj), violating the causality principle. In this case,

Anatomy of a Continuous/Discrete System Execution Model 87

e (v, t)

P P'

e'(v', t')

Figure 6.5. Processes synchronized by the time stamps approach

a possible solution consists of controlling the CM in order to take into account
an event sent by the discrete model solely once its local time matches the time
stamp of this event (each event is sent with a time stamp). Hence, even if a state
event is generated at time tk, the causality principle is not violated as this event
was not caused by a discrete event not yet taken into account. However, this
state event sent to the DM will have a time stamp that is inferior to the local time
of the discrete simulator. This situation is illustrated on Figure 6.5c. In this case,
in order to take into account the state event, the DM must be able to perform a
rollback to a required time stamp. For most simulators, this rollback represents
a daunting task since significant memory resources are required [Ree04]. To
avoid the rollback, the CM local time must be consistently superior or equal
to the discrete model local time. This solution is very effective. However, as
further explained in Section 5.2, it may be preferable to run the DM before the
CM for improved performance.

In Figure 6.5b, the CM generates a state event at time tj . The DM is at the
time ti, where ti < tj . This case also presents a causality violation since the DM
can generate an event at time tk, where tk < tj . Note that the DM may generate
an event regardless of the state event and this new event can impact the CM state
variables and can subsequently cause a state event cancellation. The solution
remains in controlling the DM to provide the time of each of its next output
events. Then, the CM accurately reaches this time instant and sends its possible
state events without any risks. This takes care of the causality problems.

Figure 6.5d illustrates another case where causality is violated. The CM is
at time ti and the DM generates an event at time tj <ti. In this case, an initial
solution consists of using a continuous simulator that can perform rollbacks.
However, this situation can be avoided when adopting the previously mentioned
strategy: running the DM before the CM. Thus, the CM cannot exceed the time
of the following input event from the DM. Indeed, it has to proceed until this
time and then stop. Consequently, the DM must always provide the time stamp
of its next event. This solution requires a DM able to predict the time stamp of
its next output event.

This discussion shows that preserving causality is an important requirement
to be considered when defining interfaces for the global execution model of a
continuous/discrete model.

88 Global Specification and Validation of Embedded Systems

5.2 Synchronization Models
This section introduces a generic synchronization model for the global execution
of continuous/discrete systems. An alternative synchronization model allowing
the minimization of the interaction between the continuous and the discrete
simulator is also presented.

Generic continuous/discrete synchronization model. Figure 6.6 gives an
overview of the generic synchronization model, where the continuous simulator
runs before the discrete simulator.

Assuming that the continuous and the discrete simulators are synchronized at
the A time instant, the discrete simulator executes (without modifying time) all
processes sensitive to the current notified events and updates signals (without
modifying its time). Then it sends the time stamp of its next output event (point
B, Figure 6.6) to the continuous simulator. Before increasing its time, it switches
the simulation context towards the continuous simulator (arrow 1, Figure 6.6).
The latter computes signals by solving differential equations until it accurately
reaches the time sent by the discrete simulator (point C, Figure 6.6). Two cases
are possible:

• This time corresponds to the occurrence time of a sample event. In this
case, the continuous simulator updates the signals with the values cal-
culated at this time and switches the simulation context to the discrete
simulator (arrow 3). The latter will advance to the occurrence time of the
stamp event (Figure 6.6, arrow 4) and restarts the cycle.

• This corresponds to the occurrence time of a signal update event. In this
case, the continuous simulator stops temporally allowing the discrete

DM

CM

b. CM runs ahead when
sends an event

tiDM

CM
ti

a. DM runs ahead when
sends an event

tj

tjtk

tkt

t t

t

DM

CM
ti

d. CM runs ahead when
receives an event

DM

CM

ti

c. DM runs ahead when
receives an event

tj

tj

t

t

t

t

Figure 6.6. CM/DM events exchange

Anatomy of a Continuous/Discrete System Execution Model 89

simulator to advance to the indicated event time stamp, to compute signals
and send their values and the next event time stamp. Finally, it stops
temporally allowing the continuous simulator to resume its execution.
The latter proceeds to this time with the new signal values and the cycle
starts over (Figure 43, arrows 5 and 6).

The continuous model may generate a state event. In this case, the continuous
simulator indicates its presence, sends its time stamp to the discrete simulator
and the simulation context is switched (Figure 6.6, arrow 7). The discrete simu-
lator must be able to consider the state event by advancing the local time to the
event time stamp and by executing the processes that are sensitive to it (since it
is an external event).

One of the key features of this synchronization model is that it eliminates the
need for rollbacks. As mentioned above, this requires that the discrete simulator
can predict the time stamp of the next event corresponding to the following
synchronization instant. Sampling events occur for each sampling period, so
their time stamps are easily predictable. The difficulty is given by the signal
update events.

Depending on the DM behavior, there are two modes which respect the
presented synchronization model:

• The first mode, the Predictable Events mode (PE) can be used when
signal update events are predictable (e.g. periodic events). In this mode,
event time stamps and sampling events are placed and sorted in a special
queue. In order to obtain the time stamp of the subsequent output event,
the queue is consulted to find the minimum time stamp. Then, the type
event (sampling or update signal) is verified and the information is sent
to the continuous simulator.

• The second mode, the full synchronization mode (FS) can be used when
signal update events are unpredictable. In this mode, the discrete simu-
lator sends its next discrete time (always known) which may correspond
to the time stamp of a signal update event. The synchronization overhead
specific to this mode depends on the DM computation granularity.

Synchronization model for systems including unpredictable signal update
events. In software models, signal computation requires several discrete
steps. Generally, predicting the total number of steps is very difficult. In this
case, the synchronization overhead of the FS mode may be inconvenient because
the number of unnecessary synchronization steps will be much superior to the
number of useful synchronization steps. Also, the PE mode cannot be used
since signal update events are not periodic. The solution consists of running
the discrete simulator in advance until it generates and sends an event to the

90 Global Specification and Validation of Embedded Systems

Discrete simulator
4

3
1

A B

C

8

75

2 6 10

9
t

t

Continuous simulator

Simulation Step Synchronization

Occured / Next event

State event detected by
the discrete simulator

Reached time event

State event generated by
the continuous simulator

Discrete simulation step if the state event doesn't occur

Figure 6.7. Generic continuous/discrete synchronization model

continuous simulator (with its time stamp). The synchronization model appears
in Figure 6.7. This model defines a new mode which is the unpredictable events
mode (UE).

Section 5.1 reported that, in this case, the causality problem can be solved
by considering event time stamps. The difficulty is that the CM can generate
a state event, requiring the discrete simulator to backtrack (Figure 6.6c). This
model is recommended if the CM never generates state events as it eliminates
all unnecessary synchronization. However, if the CM generates state events,
rollbacks are necessary.

We suggest the use of this model, enhanced with state event consideration
for control systems, where the DM represents a software component specified
at the ISA abstraction level. State events model external interruptions. In this
case, the checkpoint-based technique [Fle95] provides an effective solution,
allowing light-rollbacks which require reduced memory resources. Indeed, only
a backup of memory data segment, processor registers as well as input and output
signal values will be made for each output discrete event time stamps used as
checkpoints. In the case where the CM generates a state event, the discrete
simulator performs a light-rollback toward the time stamp of the previous output
event, restores the saved data, initializes the time counter with this time stamp
and starts over with this time, taking into account the state events. The new
counter replaces the discrete simulator local time and becomes the time source
whose unit equals the period of the processor clock.

Summary. Table 6.2 shows the possible synchronization modes that can
be used according to the continuous and the discrete model. The FS mode can
usually be used but the overhead created by this mode may not be acceptable

Anatomy of a Continuous/Discrete System Execution Model 91

Table 6.2. Synchronization modes depending on the continous and discrete models
��������������Discrete Model

Continuous Model Predictable Events Unpredictable Events

State Events FS, PE FS, UE with state event
considerations (ISA level)

No State Events FS, UE

(e.g. at the ISA level). If the CM does not generate state events, then the UE
mode is recommended since it avoids unnecessary synchronization.

5.3 Global Execution Model
To run continuous and discrete simulators with respect to the presented synchro-
nization models, new simulation interfaces must be added to allow detecting:

• State events generated by the continuous model and the consideration of
these events by the discrete simulator

• Discrete simulator events (by the continuous simulator)

• The end of the discrete simulation cycle and event sending

A generic architecture for the global continuous/discrete execution model
is illustrated in Figure 6.8. Continuous and discrete execution models commu-
nicate through a co-simulation bus via simulation interfaces (as introduced in
Chapter 4). For both models, these interfaces implement two main layers: the
synchronization layer and the communication layer.

Communication is assured by two layers: “data exchange” and “signal con-
version and data exchange”. Data exchange consists of reading or writing signal
values that connect both models. Signal conversion consists of converting con-
tinuous signals to discrete signals and vice versa. The synchronisation layer
will be detailed in the following section.

5.4 The Synchronization Layer
This layer consists of six sublayers (Figure 6.8). Their task consists of supplying
mechanisms that can address the three difficulties presented in Section 5.3. Their
role and response to each difficulty is explained in the following sections.

State event detection and consideration. Most continuous simulators pro-
vide adequate mechanisms to detect the state events generated by the continuous
model. Once detected, this event is sent by the “detection and sending of state
events” layer. The discrete model “State events consideration” layer must be

92 Global Specification and Validation of Embedded Systems

1 5
13

9

10
12

864
2

3
Sampling event State event Signal update event

Discrete simulator

Continuous simulator

7 11

Figure 6.8. Handling of unpredictable updates

State events consideration

End of discrete simulation cycle
detection and events sending

Context switch

Data exchange

Detection and sending
of state events

Discrete events detection

Context switch

Signals conversion
and data exchange

Synchronization
layer

Communication
layer

Simulation
interface

Continuous model

Cosimulation bus

Discrete model

Figure 6.9. Global Execution for accurate continuous-discrete simulation model

able to take this into account. Then, the next discrete time must reflect the event
time stamp rather than the internal event time stamp scheduled by the discrete
simulator (Figure 6.6). In the case of the UE mode (Figure 6.7), this synchro-
nization layer must initialize the new timer (see Section 6.5.2.2) with the last
sampling event time stamp (light-rollback) and to restore the saved data.

Detecting events from discrete model. The continuous simulator must
move forward until the discrete model event is detected (without missing it).
This may not correspond with its discretization time. The “discrete event detec-
tion” layer (Figure 6.9) must force the continuous simulator, to adjust its inte-
gration steps which detect the event and satisfy the resolution criteria (accuracy,
continuity, and stability), when approaching the event time stamp coming from
the discrete model Figure 6.10 illustrates this phenomenon. It is also possible
to use a fixed integration step that can be changed to a variable step when the
simulator comes near a discrete event time stamp.

Detecting the end of discrete simulation cycle. Most discrete events simu-
lators (such as the VHDL [IEE99] and SystemC [Sys03]) use the delta concept.

Anatomy of a Continuous/Discrete System Execution Model 93

t ’

Integration step
adjustment

t

Omitted event

Detected discrete
event

Variable step

Discrete event

t

t

Continuous simulator
behaviour without
interaction with discrete
simulator

Time axis for the
discrete simulation

Correct Continuous
simulator behaviour
when it interacts with
discrete simulator

Figure 6.10. Detecting events from the discrete model

The problem of detecting the end of the discrete simulation cycles appears for
this type of simulator.

For these simulators, delta-cycles are performed during delta time spans.
They essentially contain two phases: an evaluation phase to execute processes
and an update phase to update signals that were modified at the evaluation step.
At a given discrete time, an unpredictable number of delta cycles may occur
(Figure 6.11; Section 2.1) until the simulated model stabilizes: no signals to
change, or in a general way, no more zero-delayed events to consider at the
current time. Then, the discrete simulator increases its local time to the value
of the following discrete time (next event time stamp). To guarantee that the
context switch layer transfers the simulation control to the continuous model
only once at a given discrete time, the discrete signals that connect both models
have been stabilized, the “end of discrete simulation cycle detection and event
sending” layer (Figure 6.9) becomes necessary.

6. Implementing the Global Execution Model
This section presents solutions to implement the synchronization and the com-
munication layers for SystemC (used as an example of discrete event simulator)
and Simulink (as an example of continuous simulator). To better illustrate, first,
here is a brief presentation of SystemC and Simulink simulators.

6.1 SystemC
SystemC [Sys03] is a standardized modeling language intended to facilitate
system level design and intellectual property exchange at multiple abstraction
levels, for systems containing both software and hardware components. The
SystemC simulator includes an effective and relatively simple scheduler. As
indicated, the SystemC scheduler uses the delta-cycle concept (see Section 2.1).
Its task consists of determining the order of the execution process by considering

94 Global Specification and Validation of Embedded Systems

sensitivity lists and events in its global queue. The last one is ordered according
to the time stamps of these events. The first element in the queue thus represents
the next event to occur. Events are classified into two types: zero-delayed and
timed events. The time stamp of a timed event translates into a next “real” time.
The time stamp of a zero-delayed event consists of two components: the current
“real” time plus the sum of the number of deltas: both components are used to
order the events in the queue.

6.2 Matlab/Simulink
Highly popular and widely known by the modeling and simulation commu-
nity, Simulink [Mat06] offers several libraries in the automotive and power
electronics sectors, etc. and seven solvers designed for stiff (appearing in non-
linear systems) and nonstiff problems, which can provide the utmost accuracy.
Simulink solvers subdivide the simulation time span into major and minor inte-
gration steps, where a minor integration step represents a subdivision of a major
integration step. Solvers produce results for each major integration step, using
the resolution results at the minor integration steps to improve result accuracy
at major integration steps.

The order in which blocks are updated is critical for result validity. The data
dependence rule is used during the initialization phase in order to statically
determine the order of block activation. In fact, if block outputs are depend
on its inputs, they must be updated after the blocks that drive their inputs (e.g.
adder or gain computing block). This approach is called direct-feedthrough.
All of the other blocks are called nondirect-feedthrough (e.g. integrator block).
To assure a valid update order, Simulink uses the following rule: nondirect-
feedthrough blocks can be executed, first in no particular order, followed by
direct-feedthrough blocks in an order which respects the above-mentioned rule.

6.3 Implementing the Synchronization Layer
The following section details the implementation of the different synchroniza-
tion sublayers in the global simulation model.

Implementing discrete event detection sublayer. Simulink does not make
it possible to control integration variable steps in a direct manner. Consequently,
it is difficult to guarantee accuracy to detect discrete events (the discrete event
time stamp).

To cope with this difficulty, the “discrete event detection” sublayer was
implemented in a special S-function. The last one is devoid of input or out-
put ports. Its role is to create breakpoints that must be reached accurately by the
solver (without going beyond). The time mode used in this S-function (VARI-
ABLE SAMPLE TIME) allows for choosing its next time execution equal to

Anatomy of a Continuous/Discrete System Execution Model 95

t+δ t+2δ … t+nδ

t

discrete cycle

Simulation time

Figure 6.11. A simulation cycle is composed of an unpredictable number of delta cycles

/* Function: mdlGetTimeOfNextVarHit */
#define MDL_GET_TIME_OF_NEXT_VAR_HIT
static void mdlGetTimeOfNextVarHit(SimStruct *S)

{

/*time of the next breakpoint to consider by the solver */
double NextBreakpointTime;

/* read the sample event time stamp in memory*/
double SamplingEventTime= *((double*)lpMapAddress + 200);

/* read the signal update event time stamp in memory*/
double UpdateEventTime = *((double*)lpMapAddress + 100);
if(SamplingEventTime < UpdateEventTime)

NextBreakpointTime = UpdateEventTime;
else NextBreakpointTime = SamplingEventTime;

/* set the next breakpoint*/
ssSetTNext(S, NextBreakPointTime);

}

Figure 6.12. Function creating breakpoints

the next discrete event sent by the SystemC synchronization layer. In this case,
Simulink adjusts the integration steps to satisfy the resolution criteria and to
accurately reach the time execution of this S-function (which is the time stamp
of the SystemC event). Once the sublayer detects that the event is reached, it
sends (sampling event) or receives (signal update event) data. The code given
in Figure 6.12 illustrates the function (member of the “discrete event detection”
sublayer) that creates breakpoints.

Detection the end of discrete simulation cycle and events sending sublayers.
To guarantee that SystemC sends data and transfers the simulation control to

Simulink only after discrete signals have been stabilized, detecting the end of the
discrete simulation cycle is necessary. Since SystemC does not provide such
mechanism, a modification to its scheduler was made to detect the discrete
simulation cycle end and to switch the simulation context to Simulink. This
functionality was added to the simulate() function in the sc simcontext class of

96 Global Specification and Validation of Embedded Systems

the SystemC scheduler. This function essentially contains the simulation loop.
Figure 6.12 shows the pseudo-code that provides a part of this function and
indicates the end of the discrete cycle location.

Synchronization sublayers for state event cases. In the case of state events,
there are two synchronization sublayers: the “state event consideration” sub-
layer (in the discrete model synchronization layer) and the “detection and send-
ing of state event” sublayer (in the continuous model synchronization layer).

To detect state events, the “detection and sending of state events” layer
(Simulink side) adds a “Hit Crossing” component from the Simulink library.
This component compares the input signal to the hit crossing the offset value.
If the signal increases, falls or remains at the offset value, the block output is
set to “1”. Once a state event is detected, the indicated layer communicates its
presence by setting a special flag and sending its time stamp.

For the “state event consideration” layer (SystemC side), the solution con-
sists of inserting a pure event (without value) into the SystemC simulator queue
whose time stamp is equal to the time of the state event occurrence. The event in-
sertion must occur before the discrete simulator increments its timer (Figure 6.7,
between arrows 3 and 4). Otherwise, it must backtrack in order to take it into
account. Figure 6.13 locates this insertion point of such an event. The scheduler
modification solely consists of creating a set of events which can be notified in
the case of state event presence. Their notification causes the execution of the
SEC Method in the code below.

For the “state event consideration” layer (the part implemented by the Sys-
temC interface), the usual syntax to create processes sensitive to events was used
(see the code below). From the designer point of view, a user process which is

1. Initialization Phase – Execute all processes (except SC_CTHREADs) in an unspecified order.

2. Evaluate Phase – Select a process that is ready to run and resume its execution.

3. If there are still processes ready to run, go to step 2.

4. Update Phase – Execute any pending calls to update() resulting from request_update() calls made
in step 2.

5. If there are pending delayed notifications, determine which processes are ready to run due to the
 delayed notifications and go to step 2.

6. If Mode = FS then Send the next discrete time to Simulink and Switch context to Simulink,
 else

If Mode = PE then send the next signals update events or sampling events
time stamp and Switch context to Simulink.

Else (mode = UE) if signals update events flag = "1" then Switch context to Simulink

7. If state event, then add to the scheduler queue a timed event with time stamp equal to the
 state event time stamp.
8. If there are no more timed notifications, the simulation is finished.

Figure 6.13. SystemC enhanced scheduler

Anatomy of a Continuous/Discrete System Execution Model 97

#define et_mat0
sc_get_curr_simcontext()->et_mat[0]

/* this definition is in the file defining environment variables added for
heterogeneous simulation */
InterfaceIn.h
...
sc_out <sc_bit> StateEventPort;
SC_CTOR(InterfaceIn)
{

...
//creation of et_mat0 event associated with //state event
et_mat0 = new sc_event; // et_mat0 will be notified by SC scheduler

//make SEC_Method sensitive to et_mat0,
//as consequence to the state event
SC_METHOD(SEC_Method);
sensitive(et_mat0);

... }
InterfaceIn.cpp
......
Void InterfaceIn::SEC_Method()
{
StateEvPort.write(~StateEvPort.read());
}

Figure 6.14. “State event consideration” layer in SystemC interface

sensitive to a state event must be marked sensitive to the input signal (reserved
for this state event) coming from the SystemC interface. The following code
in Figure 6.14 illustrates an example of the “state event consideration” layer in
the SystemC interface.

In the case of state events, Simulink indicates its presence to the SystemC
scheduler, which notifies the event (here et mat [0]) associated with it by the
event time stamp. This notification causes the execution of the SEC Method
process (see Figure 6.14).

6.4 Implementing the Communication Layer
To ensure “data exchange” between simulators, a shared memory created by the
file Mapping API from Windows was used. It has a defined structure composed
of data ports which connect signals, flag ports and time ports to exchange event
time stamps.

For “signal conversion”, a sampler was used to adapt continuous signals
to discrete components. A signal generator (zero-order hold) was also used
to extrapolate events points in order to adapt discrete signals to continuous

98 Global Specification and Validation of Embedded Systems

components. By nature, the shared memory can play the role of zero-order
hold, consequently no component was added. The sampler consists of sampling
signal values at synchronization points. In this case, its role is limited to reading
signal values once the Simulink synchronization layer detects a sampling event
from SystemC.

6.5 Discussion
The presented global simulation model remains independent from languages
and environments. However, the modification of the discrete simulator was nec-
essary during the implementation phase and discrete simulators must allow these
modifications. If discrete simulators provide mechanisms to detect the end of
the simulation cycle, modifications are unnecessary and commercial simulators
can be used. For instance, in the case of the ModelSim VHDL simulator simu-
lation interfaces are implemented as foreign-language interface (FLI) functions
[Mod06]. In order to solve detection discrete cycles (i.e. switch simulation con-
text only after discrete signals are stabilized), the “context switch” layer can be
implemented by a VHDL process with a MTI PROC POSTPONED priority.
Postponed processes (when triggered) run once at the end of the discrete cycle
for which they are scheduled after all other processes. They can schedule an
event in zero delay [Mod06].

7. CODIS a Co-Simulation Tool for Continuous/Discrete
Systems

COntinuous DIscrete Simulation (CODIS) is a consistent tool which can au-
tomatically produce global simulation model instances for discrete/continuous
systems simulation using SystemC and Simulink simulators. This is done by
generating and providing interfaces which implement the proposed simulation
model layers. It respects the presented synchronization models and offers vari-
ous options for a most adequate mode. Figure 6.15 gives the overview of the flow
of global simulation model generation. The inputs in the flow are the continuous
model in Simulink and the discrete model in SystemC which are schematic and
textual respectively. The flow output is the global simulation model.

7.1 Simulink Interfaces
Simulink interfaces are classified into four types. They do not change if the
synchronization mode changes and can be parameterized from their dialog box.
The interface types are:

Inter in implements the communication layer (input function), the “context
switch” layer and a part of the “discrete events detection” layer which is respon-
sible for detecting the passage of the solver by the discrete event time stamps

Anatomy of a Continuous/Discrete System Execution Model 99

(signal update events) and synchronizing them. Its parameters consist of the
number of input signals.

Inter out implements the communication layer (output function), the “con-
text switch” layer and a part of the “discrete events detection” layer which is
responsible for detecting the passage of the solver by the discrete event time
stamps (sampling events) and synchronizing them. Its parameters are identical
to those of the Inter in.

Inter state implements “detection and sending of state events” as well as
the “context switch” layer. Its parameters are the state event numbers.

Sync implements the remainder portion of the “discrete events detection”
layer. It is responsible for creating break points which the solver (a variable
step solver) must reach with accuracy. These break points are the time stamps
of the received events (signal update events and sampling events). It does not
have any parameters.

The Simulink interfaces are functional blocks programmed in C++ using
S-Functions. These blocks are manipulated like any other components of the
Simulink library. They contain input/output ports compatible with all model
ports that can be connected directly using Simulink signals. Users start by
dragging the interfaces from the interface components library into their models
windows. These items are then parameterized and finally connected to the inputs
and outputs of users’ models. Before the simulation, the functionalities of these
blocks are loaded by Simulink from the .dll libraries (Figure 6.15).

User
parameters SystemC model Simulink model

Interface components

Simulation libraries

Simulink model

Simulation inter.

Cosimulation bus

Parameterize interfaces

Link

SystemC model

Simulation library

Modified
SystemC.lib

.lib

Simulation inter.

Automatic interfaces
generation

Generation
Script

.dll

Figure 6.15. Flow of automatic generation of the simulation interfaces

100 Global Specification and Validation of Embedded Systems

7.2 SystemC Interfaces
For SystemC, as indicated above, some of the synchronization functionalities
have been implemented at the scheduler level (which is a part of the state event
management and the detection of the end of the discrete simulation cycle).

The interfaces are classified in the following fashion:
InterIn implements the communication layer (input function), a part of the

“state event consideration” layer and the “context switch” layer (UE mode). It
ensures synchronization with input data thanks to the sampling clock events
(intern events). It can be viewed as a sampler circuit and contains its own
parameters: (1) the names, numbers and data type of input ports, (2) the sampling
periods, and (3) the mode used (e.g. FS, PE).

InterOut implements the output communication function and additional
synchronization functionalities in the case of the UE mode. Its parameters are:
(1) the names, number, and data type of output ports; and (2) the mode used.

Figure 6.16 presents an example of the “InterOut” interface with the UE
Mode:

The interfaces are automatically generated by a script generator which is
equipped with parameters defined by the user’s input. Once the interfaces are
generated, their connection is made within the function sc main. The model is
compiled and the link editor calls the SystemC library and a static library, called
a “simulation library” (see Figure 6.15).

8. Experimentations
To analyze the capabilities of the continuous/discrete simulation model and its
implementation, two illustrative examples were used: an engine controller used
to activate a manipulator arm, and a sigma/delta converter. For both examples,
the discrete part was modeled using SystemC and the continuous part using
Simulink.

8.1 The Arm Controller
To regulate the engine speed, a closed-loop proportion, integral, derivative (PID)
controller was used. The engine control is provided by a discrete controller pro-
viding speed orders calculated according to the arm position. The arm advances
first at a progressive speed, then constantly and finally the speed is reduced. It
runs at a constant speed when it returns to its initial position (Figure 6.18).
The continuous submodel consists of the PID model, a sensor, an engine model
and an integrator. The position sensor (“Hit Crossing” component) was used to
signal the arrival of the arm in the desired position (state event), see Figure 6.17.

In order to evaluate the different synchronization models implemented in
the presented simulation tool, the transaction level and ISA level execution

Anatomy of a Continuous/Discrete System Execution Model 101

InterOutUE.h
#include "systemc.h"
#include "cosim.h"
SC_MODULE(interOut)
{

sc_in<double> data; //signals can be double or bit vector
sc_in<double> data1;
void send_data();

SC_CTOR(interOut)
{

SC_METHOD(send_data);
sensitive << data ;
sensitive << data1;
dont_initialize();

}
};
InterOutUE.cpp
#include "InterOutUE.h"
void interOut :: send_data()
{

// use the WriteSignalToSimulink function to send the time stamp of
//signals update events
WriteSignalToSimulink (sc_simulation_time()/1000000000, 100);

// possible signal conversion
.........

// send signals values
WriteSignalToSimulink (data.read(), 0);

WriteSignalToSimulink (data1.read(), 1);
// indicate the presence of new events

SwitchContextFlag ();
}

Figure 6.16. Excerpt of SystemC interface

models (presented in Chapter 3) were considered for the discrete part of the
arm controller. At the first level, timing annotation functions were used to
compute the time necessary since the system provides feedback. At this level,
the system was simulated using the FS mode. For the ISA level, a SystemC
implemented instruction set simulator for the DLX processor was used. The
processor frequency was fixed at 4 MHz and the sampling period was fixed at
0.4 s. At this level, the UE mode with state event consideration (see Section
6.5.2.2) and the FS mode were used.

Table 6.3 presents the simulation time for an arm controller simulated during
a period of 60 s.

102 Global Specification and Validation of Embedded Systems

Table 6.3. CPU time for the arm controller simulated for 60 s

Abstraction level for the discrete submodel ISA level Transaction level
Synchronization mode FS UE FS
CPU time 25 min 5.31.s 0.26 s

S-Function

Gain

Gain 1

Gain 2 Der

Int Moteur Integrator S-Function1

S-Function2

Inter_in
Inter_out

Inter_state

sync

Scope1Scope

2 Speed-order

Position

S-Function3

Hit
Crossing

++++–
++

1
s

1
s

1
s2+2s+5

5

10

1 du/dt

Figure 6.17. The continuous subsystem

Accuracy analysis. The accuracy analysis for the FS mode is presented. In
the above example, the arrival of the arm at the desired position is a state event
that occurs at the moment 15.4990 s. The Inter state interface (Figure 6.17) sig-
nals the presence of this event to SystemC. Then the discrete controller sends a
request to reduce the speed to zero. The state event was considered with accu-
racy by the discrete part and the passage of the order to zero was completed at
the state event time stamp. These results are illustrated in Figures 6.18 and 6.19.

Figure 6.19 shows that SystemC scheduler planned an event e1at time 15.6 s
while the arrival of the state event will force the scheduler to increment its time
15.4990 s. As shown in the figure, the e1 event, which is a clock event, will
be treated after the state event. Figure 6.18 also shows the synchronization and
data exchange accuracy. The continuous submodel sets the order to 1.5 at the
time stamp with the value 3.2001 s, the moment it was modified by the discrete
controller.

8.2 ∆/Σ Converter
Sigma-delta (Σ/∆) converter is an over sampling analog-to-digital conversion
technique. The analog input is over sampled N times faster than the requested
digital output frequency and quantified by one bit, ±1. The quantified value
is fed back to the analog section, refined by an average filter and collected by
a digital accumulator. For every Nsample, the converter produces the digital

Anatomy of a Continuous/Discrete System Execution Model 103

Figure 6.18. Speed, speed order and position (from Scope in Figure 6.17)

Figure 6.19. State event consideration (discrete controller output)

Figure 6.20. ∆/Σ converter overview

output and resets the accumulator (see Figure 6.20). For this example the sam-
pling frequency was 5.12 Khz. Figure 6.21a shows the modulated signal (scope)
and Figure 6.21b shows the input and the digital output signals.

104 Global Specification and Validation of Embedded Systems

Figure 6.21. Σ/∆ converter signals

Table 6.4. CPU time for ∆/Σ converter

Application ∆/Σ converter
Simulated time 2s
CPU time 0.8s

Table 6.4 presents time results for the converter simulation. This model sim-
ulation was conducted with UE mode since its continuous submodel does not
generate state events.

Result discussion. Table 6.3 shows the acceleration of the FS model at
communication level vs. the FS model at the ISA level for the discrete part of
the arm controller. It is important to note that the discrete model at ISA level
presents a better accuracy. However, the accuracy of the data exchange between
the continuous and the discrete part is the same.

Table 6.4 also clearly shows the advantage of using the UE mode compared to
the FS mode (where the continuous and discrete models are tightly synchronized
resulting in unnecessary overhead): a speed-up of about two orders of magnitude
was obtained.

8.3 Bottle Filling System
Figure 6.22 illustrates the model of the bottle filling system of the system that
should respect the following specification. The jobs (bottles) are externally
generated where the generation process may be random. These jobs are queued
in a “job buffer” (an FIFO). If there is no job in “setup” or in “job in process”,
the valve v1 is ON and the first job in the “job buffer” proceeds to “setup”. The
“setup” process model the delay required forn the positioning of the bottle at
the right spot. After “setup” is completed, the job is placed in “job in process”.
When this happens, v2 and v3 are notified so that the actual physical process that
defines the job can start. The “time-driven process”, in the continuous model,

Anatomy of a Continuous/Discrete System Execution Model 105

RM
Buffer

v3
start/stop

v2
flow ctrl

Time-Driven
Process

Job
Buffer

v1
on/off Setup

Job in
Process

V4
on/off

Tank Lelvel

State Event
Row
Material

Jobs

Continuous Model (Simulink)

Discrete Model (SystemC)

Figure 6.22. The bottle filling model

consists in filling an initially empty bottle with the raw material (RM) fluid to
a given level (10 lit). It is activated by valve v3 as soon as a job is ready to
start. The valve v2 acts as a controller of the bottle filling flow in the “time-
driven process”, which can have three values: 0 if there is no job in the “job in
process”, the “RM buffer” inflow (0.025 l/s) if the last one is empty and 0.033
l/s if not. When “time-driven process” is completed (the bottle level reaches 10
l), it sends a state event to valve v4 to open and let the current job to leave. At
this time, “the job in process” opens v1 to accept the next job and after a small
delay (the time to react to the state event), it signals v2 to stop the RM flow and
v3 to reset the “time-driven process”. For this application, the “setup” time is
set to 60 s and the initial “RM buffer” level is set to 3 l. We give in Figure 6.23
an overview of the continuous model and its simulation interfaces.

Simulation results. The simulation was performed using the FS synchro-
nization mode, since the continuous model generates state events and the signals
update events are not periodic.

For the results given by Figure 6.24, the job arrival rate is set to 180 s. In this
figure the outflow represents the bottle filling flow. The filling process starts with
a 0.033 l/s. Each time the tank level is equal to zero, the outflow is switched to
0.025 l/s. The hit signal represents the state events generated when a bottle level
reaches 10 l. The discrete model reacts to these events by switching the control
signal to zero. Once a job is presented in “job in process”, the DM switches its
value to “1 in order to open v2 and v3. The signal ‘job buffer’, from the discrete
model, represents the number of accumulated job in the “job buffer”. This signal
is sent to Simulink just for viewing purpose. We remark, in Figure 6.24 that

106 Global Specification and Validation of Embedded Systems

Raw Material

0.025 Inflow

Outflow
Tank Level

Tank Level

R.M. Buffer

Tank Level

Tank Level

control

Job buffer
S-Function1

Sim_Inter_in
control

monitor 2

vol

v2

outflow
outflow

so

syno state

S-Function3

S-Function2
hit : state event

bottle level

Time-driven Process

bottle level

Hit
Crossing

1
s

Figure 6.23. The continuous model overview

Figure 6.24. Simulation results

Anatomy of a Continuous/Discrete System Execution Model 107

the number of accumulated jobs is increasing. Our experimentations shows that
if jobs are accumulated in the “job buffer” (more than one job) then we risk
usually to exceed the buffer capacity. To avoid this situation, the job arrival rate
must be superior or equal to 400 s. This value depends on the outflow, the inflow
and the “setup” time.

9. Conclusion
This chapter presented the anatomy of a discrete/continuous global simulation
model. The first section presented the concepts manipulated by both models,
the time distribution model as well as event management. In the second part,
based on previous studies, several synchronization models that resulted from
a deep analysis of synchronization issues with respect to accuracy and per-
formance constraints were introduced. In the third part, the architecture of a
generic global simulation model was proposed, providing semantics for the ac-
curate global validation of discrete/continuous systems. It allows for the use of
powerful tools in both domains. The global simulation model was implemented
by simulation interfaces in order to produce global simulation model instances
for discrete-continuous systems simulation using SystemC and Simulink. Fi-
nally, to evaluate the proposed simulation model, co-simulation results from
two discrete/continuous applications were illustrated.

References

[Bal03] Balarin, F. et al., “Metropolis: An Integrated Electronic System
Design Environment”, Computer, vol. 36, issue 4, April 2003,
pp. 45–52.

[Cel06] Celoxica, http://www.celoxica.com/methodology/
[Cal91] Callier F. M., Desoer C. A., Linear System Theory, Germany,

Springer-Verlag, 1991.
[Cha96] W.T. Chang et al., “Heterogeneous Simulation – Mixing Discrete-

Event Models with Dataflow”, RASSP special issue of J. on VLSI
Signal Processing, 1996.

[Fle95] J. Fleischmann et al., “Comparative Analysis of Periodic State Sav-
ing Techniques in Time Warp Simulators”, Parallel and Distributed
Simulation, 1995.

[Fre00] P. Frey et al., “Verilog-AMS: Mixed-Signal Simulation and Cross
Domain Connect Modules”, Behavioral Modeling and Simulation
Workshop, 2000.

[Gea84] C. W. Gear et al., “Solving Ordinary Differential Equations with
Discontinuities”, ACM Transaction on Mathematical Software, vol.
10, 1984, pp. 23–44.

108 Global Specification and Validation of Embedded Systems

[Gup85] K. Gupta, et al., “A Review of Recent Developments in Solving
ODES”, Proc. of CSUR, vol. 17, No. 1, 1985.

[IEE99] IEEE Standard VHDL Analog and Mixed-Signal Extensions, IEEE
Std 1076.1-1999, 23 December 1999.

[ITR06] International Technology Roadmap for Semiconductor Design,
2003.

[Jan04] Jantsch A., Modeling Embedded Systems and SOCs, USA, Morgan
Kaufmann, 2004.

[Liu02] J. Liu et al., “On The Causality of Mixed-Signal and Hybrid Models”,
Hybrid Systems: Computation and Control, 2003, pp. 328–342.

[Mat06] Matlab-Simulink, www.mathworks.com
[Mar02] Martin D. E et al., “Integrating Multiple Parallel Simulation

Engines for Mixed-Technology Parallel Simulation”, Simulation
Symposium, 2002.

[Mod06] Modelica, www.modelica.org
[Mod06] ModelSim R© SE Foreign Language Interface, version 5.7d.
[Nic02] G. Nicolescu et al., “Validation in a component-based design flow

for Multicore SoCs”, in Proc. ISSS, 2002.
[Pat04] H. D. Patel et al., “Towards A Heterogeneous Simulation Kernel

for System Level Models: A SystemC Kernel for Synchronous Data
Flow Models”, Proc. ISVLSI’04.

[Pto06] Ptolemy, http://ptolemy.eecs.berkeley.edu/ptolemyII
[Ree04] D. K. Reed et al., “An Application of Parallel Discrete Event Simu-

lation Algorithms to Mixed Domain System Simulation”, DATE’04,
pp. 1356–1357.

[SDL06] SDL RT, specification & description language – real time, available
at http://www.sdl-rt.org

[Sys03] SystemC LRM, 2003, available at www.SystemC.org
[Tah93] El Tahaway et al., “VHDeLDO: A new mixed mode simula-

tion”, DAC Conference, 1993, with EURO-VHDL’93. Proceedings
EURO-DAC’93.

[Vac03] A. Vachoux, et al., “Analog and Mixed Signal Modeling with Sys-
temC”, Circuits and Systems, ISCAS’03.

[Val95] C. A. Valderrama et al., “A unified model for co-simulation and
co-synthesis of mixed hardware/software systems”, Proc. 1995
European Conference on Design and Test.

