
A DATAFLOW DESCRIPTION OF ACC-JPEG CODER

Tarek OUNI Khaled JERBI Mohamed ABID

CES Lab. National Engineering school of Sfax
email: tarek.ouni@gmail.com khaled jerbi@yahoo.fr mohamed.abid@enis.rnu.tn

ABSTRACT

Video codec standards evolution raises two major problems.
The first one is the design complexity which makes very dif-
ficult the fast implementation of coders. The second is the
computing capability demanding which requires complex and
advanced architectures. To decline the first problem, MPEG
normalized the Reconfigurable Video Coding (RVC) standard
which allows the reutilization of some generic image process-
ing modules for advanced video coders. However, the second
problem still remains unsolved. Technology development be-
comes incapable to answer the current standards algorithmic
increasing complexity. In this paper, we propose an efficient
solution for the two problems by applying the RVC method-
ology and its associated tools on a new video coding model
called Accordion based video coding. The main advantage
of this video coding model consists in its capacity of provid-
ing high compression efficiency with low complexity which
is able to resolve the second video coding problem.

Index Terms— JPEG, Accordion, RVC-CAL, Data flow
computing, CAL compiler

1. INTRODUCTION

During most of two decades, MPEG has produced several
video coding standards such as MPEG-2, MPEG-4, AVC and
SVC. However, the past monolithic specification of such stan-
dards (usually in the form of C/C++ programs) lacks flex-
ibility. Such specification does not allow to use the com-
bination of coding algorithms from different standards en-
abling to achieve specific design or performance trade-offs
and thus fill, case by case, the requirements of specific appli-
cations. So as to overcome the intrinsic limitations of speci-
fying codecs algorithms by using monolithic imperative code,
Caltrop Actor Language (CAL) [1] [2], has been chosen by
the ISO/IEC standardization organization in the new MPEG
standard called Reconfigurable Video Coding (RVC). RVC-
CAL standard is developped in the ptolemy2 project [3]. It is
supported with a complete framework called OpenDF [4] and
a recently developed compiler called Open RVC-CAL Com-
piler (Orcc) [5] allowing users to define a multitude of codecs,
by combining together actors (called coding tools in RVC)
from the MPEG standard library written in CAL [1] [2], that

contains video technology from all existing MPEG video past
standards (i.e. MPEG- 2, MPEG- 4, etc.). CAL is used to
provide the reference software for all coding tools of the en-
tire library. The originality of this paper is the application of
the CAL and its associated tools on a new video coding model
called Accordion based video coding [6] [7] [8]. The main ad-
vantage of this video coding model consists in its capacity of
providing high compression efficiency with low complexity.
Such advantage comes from the original idea that consists in
applying a particular 3D scan, called Accordion, on temporal
frames generated by a temporal video decomposition which
is able to transform a set of video frames sequence to a high
correlated spatial representation called IACC. The high corre-
lation of the IACC representation, which is actually originated
from the video temporal correlation, is easy and efficiently ex-
ploited by any still image coder. It was shown in [8] that such
coder could produce a high compression ratio (close to Inter
compression models such as MPEG) with low computational
requirements (close to Intra compression models such as M-
JPEG). Additionally, this model offers the possibility of easy
reutilizing different mature image compression components
for video compression purpose. The ACC-JPEG coder, as an
example of Accordion based video coding model, consists in
associated the so called Accordion process to the JPEG stan-
dard image coder [6]. We try to prove, via this coder, the
efficiency of such model, its low computational requirements
and the ease of its implementation which become much easier
with adopting the RVC framework. Actually, we propose -via
this work- an easy and practical solution for fast designing
and implementing an efficient video coder.

In section 2, we present the Accordion based coding prin-
ciple and we give an overview on the RVC-CAL methodol-
ogy. Section 3 analyses through the proposed CAL based im-
plementation the ACC-JPEG coder performances (coding and
decoding speed, memory consumption). Section 4 concludes.

2. BACKGROUND

In this section we review the Accordion based coding ap-
proach. Then we details the data flow implementation and
the RVC CAL methodology.

2.1. Accordion

The idea behind the Accordion approach relies on the hypoth-
esis saying that the video stream contains more temporal re-
dundancies than spatial ones [9], [10]. In order to take advan-
tages from this hypothesis, the idea consists in trying to put
pixels -which have a very high temporal correlation - in spa-
tial adjacency. Thus, video data will be presented with high
correlated form which exploits both temporal and spatial re-
dundancies in video signal with appropriate portion that put
in priority the temporal redundancy exploitation.

2.1.1. Accordion Representation

The input of our encoder is the so called video cube (GoF),
which is made up of a number of frames. This cube will be
decomposed into temporal frames which will be gathered into
one 2D representation. Temporal frames are formed by gath-
ering the video cube pixels which have the same column in-
dex. These frames will be scanned while reversing the direc-
tion of odd frames in order to more exploit the spatial corre-
lation of the video cube frames extremities. This representa-
tion transforms temporal correlation of the 3D original video
source into a high spatial correlation in the 2D representation
(”IACC”) [6] [7] [8]. Figure 1 illustrates the principle of this
representation.

Fig. 1. Accordion principle

2.1.2. Accordion Algorithm

In the following we present the algorithms corresponding to
Accordion representation of a sequence of video frames. The
input of this algorithm, called ACC, has as input a group of
pictures (IK , for 0 ≤ K ≤ N − 1) called GOP (Group of
Pictures) and as output the resulting IACC image.

The inverse algorithm, denoted ACC-1, has as input the
image IACC and as output the set of images IK , for 0 ≤
K ≤ N − 1.

Let us note that :

Inputs : I0, , IN-1

Outputs : IACC
For x from 0 to (L x N)-1
For y from 0 to H-1
If (x div N mod 2 !=0) Then
n=(N-1) (x mod N)

Else
n= x mod N

End
IACC (x,y)= In (x div N,y)

End
End

Fig. 2. Accordion algorithm

Inputs : IACC
Outputs : I0, , IN-1

For n from 0 to N -1
For x from 0 to L -1

For y from 0 to H -1
If (x mod 2=0) Then
XACC= (N -1) n +(x*N)

Else
XACC= n+ (x*N)

End
In(x,y)=IACC (XACC,y)
End

End
End

Fig. 3. inverse accordion algorithm

• L and H are respectively the length and the height of
the video source frames.

• N is the number of frames of a GOF.

• IACC(x, y) is the pixel intensity with the coordinates x,
y according to accordion representation repair.

• In(x, y) is the intensity of pixel situated in the Nth frame
in the original video source.

2.1.3. Video Coding Model

In this part, we present the coding diagram based on the Ac-
cordion representation. First, the video encoder takes a video
sequence and passes it to a frame buffer in order to construct
volumetric images by combining N frames into a stack. Then,
the obtained stack will be transformed to form the accordion
representation (IACC). Here N is the constructed stack depth
(N is 8 in our experiments). Next, each IACC will be divided
into N N blocks to be processed furthermore by the eventual
used 2D transform. The encoder block diagram of the Accor-
dion based compression algorithm is in Figure x.

This Accordion based video coding model as it is illus-
trated in figure x shows a great flexibility with different possi-
bilities of extensions and reutilization of existing image pro-
cessing tools leading to designing various versions. In this
paper, as it was introduced above, we are interested by the
JPEG version known as ACC-JPEG.

Fig. 4. Accordion based video coding model

2.2. Dataflow implementation

In the following we present the dataflow programming based
on the Caltrop Actor Language and the implementation gen-
eration using the back-ends of Open RVC CAL compiler [5].

2.2.1. CAL Programming

The execution of an RVC-CAL code is based on the exchange
of data tokens between computational entities called actors.
Each actor is independent from the others since it has its own
parameters and finite state machine if needed. Actors are con-
nected to form an application or a design, this connection is
insured by FIFO channels. This connection is modeled using
XML based dialects as Xml Dataflow Format (XDF). These
languages also provide the possibility to include parameters
when instantiating an actor. Consequently, the same actor
may be instantiated several times with different parameters.
We currently use the Graphiti3 tool to manage XDF and NL
graphs.

Executing an actor is based on firing elementary functions
called actions. This action firing may change the state of the
actor. An action may be included in a finite state machine or
untagged. An untagged action is higher priority than FSM ac-
tions. An RVC-CAL dataflow model is shown in the network
of figure 5.

FIFO Actor

Consume/produce tokens

FIFO

Consume/produce tokens

and modify internal states

FIFO

Actions

State

ActorActor

Actions are implemented

sequentially and they can

be sequenced

FIFO

Actor

be sequenced

FIFO

Fig. 5. CAL actor model

3http://sourceforge.net/projects/graphiti-editor

When an action is fired, it consumes token streams from
input ports and produces token streams to output ports.

We consider a simple clip actor that clips the consumed
tokens values greater than 255 to 255 and those less than 0 to
0. This algorithm is used in the IDCT2D process of MPEG4
decoders and it is applied on the image 8x8 macro blocks.
The associated RVC-CAL code is shown in figure 6 and thus
the input streams are:

INPUT1: INPUT0, INPUT1 ... INPUT63

the output stream is:
OUTPUT: OUTPUT1, OUTPUT2 ... OUTPUT63

such as, for an integer k, OUTPUTk = clip(INPUTk)
In this case, the firing rule is the presence of 64 tokens at

least in the input FIFO and the availability of 64 memory cells
at least in the output FIFO.

actor clipActor ()
(int size=8) INPUT1 ==> int(size=8) OUTPUT:

clip: action INPUT1:[x] repeat 64 ==>
OUTPUT:[[
if x[i] > 255 then
255

else
if x[i] < 0 then
0
else
x[i]
end

end : for int i in 0 .. 63]] repeat 64
end
end

Fig. 6. RVC-CAL example algorithm of clip actor

2.2.2. CAL compiling

Orcc is a CAL compiler that takes in the front-end a set of ac-
tors and a graph (see example of graphiti generated graph in
Figure 7) that specifies the connexion between theses actors.
After some modifications in the middle-end, Orcc applies a
string template on the intermediate representation (IR) to gen-
erate a chosen back-end this principle is detailed in Figure 8.

Several existing back-ends more or less mature are de-
velopped and maintained. We cite: C, C++, Xlim, Verilog,
VHDL, Promela, Java, LLVM etc. In this paper we use the C
back-end because it is the most efficient and also because a C
implementation is the easiest to debug and validate.

3. IMPLEMENTATION AND RESULTS

To implement the ACC-JPEG coder using RVC methodology,
we start from an RVC-CAL design of the JPEG codec (see
http://orc-apps.sourceforge.net/). The design is shown in Fig-
ure 9.

We notice that the design of Figure 9 represents the high-
est granularity. It means that for instance decoder for exam-
ple, the content is not a CAL code processing the whole de-

Fig. 7. XDF Graph example

Fig. 8. Orcc compilation principle

coding but a set of actors containing each one a CAL code
inside as presented in Figure 10.

The next step consists in integrating the accordion algo-
rithm in the RawYCbCr actor and the inverse accordion int
the YCbCrToMB actor as presented in Figure 11.

We applied the C backend of Orcc on the RVC-CAL JPEG
design and we obtained a set of .C files corresponding to ev-
ery actor of the design and a top file that manages the actors
scheduling and the FIFO data exchange. We used the Cmake
tool to make a project and generate a solution for C compilers.

Table 1 gives information about the proposed design cost
(in terms of implementation simplicity).

Fig. 9. JPEG reference design

Fig. 10. Finer granularity of JPEG decoder

decoders level actors Parser size Parser size
LOC CAL LOC C

M-JPEG 2 6 184 979
ACC-JPEG 2 7 184 979

MPEG4 3 27 1285 4720

Table 1. Complexity comparison between CAL and C de-
scriptions

The design is evaluated with CIF and Q-CIF video se-
quences. Originally, the video frames look like Figure 12.
By adding the accordion algorithm, we obtained the frames
of Figures 13, 14, 15, 16. Figure 17 shows a comparison in
terms of rate-distortion between the ACC-JPEG, MJPEG and
MPEG-4. The results shown are obtained with the sequence
’Hall Monitor’ (CIF, 25Hz). We considered a general pro-
cessor as an implementation target. The main configuration
features of this target are presnted in table 2

processor Intel dual core CPU
frequency 2,5 GHz

RAM 2 Go
operating system Microsoft windows XP Professionnel

Table 2. Implementation target features

Some results about the architecture performances (pro-
cessing speed) and requirements in term of (memory and re-
sources) are given in tables 3, 4, 5. All results are recorded in
the same experimental conditions given in table 2.

Tables 3, 4 shows the coding frames frequencies recorded
for CIF and QCIF videos. We can notice that the ACC-JPEG
has almost the same processing (encoding and decoding)
speed than M-JPEG coder.

Table y illustrates the ACC-JPEG memory requirements
in comparison with other standards coders.

The memory requirements can be divided into two by
eliminating intermediate tables reserved for the construction
of the Accordion Presentation and thus it will match the theo-
retical memory requirements as it was estimated in [8]. Even
processing speed can also be improved and tends perfectly
to the M-JPEG processing speed by adjusting the state ma-

encoding FPS
resolution ACC-JPEG M-JPEG

CIF (288x352) 178 182
QCIF (144x176) 748 760

Table 3. Throughput frequency ACC-JPEG VS M-JPEG en-
coders

decoding FPS
resolution ACC-JPEG84 M-JPEG

CIF (288x352) 152 156
QCIF (144x176) 690 702

Table 4. Throughput frequency ACC-JPEG VS M-JPEG de-
coders

chine which was initially designed for M-JPEG and then not
perfectly adapted to the own ACC-JPEG constrains. Such
state machine involves large timeouts resulting to the need
to buffering of frames for the set up of the Accordion repre-
sentation.

4. CONCLUSION

In this paper a CAL description of a new video coder is eval-
uated. The presented work constitutes a demonstration of an
efficient video coder fast implementation. Regarding the pro-
posed video coder tradeoff between performances and com-
plexity of the proposed video coder and the tradeoff between
efficiency and cost of the implementation methodology, the
presented work could be considered as an economic and effi-
cient solution for many video applications including embed-
ded systems, digital multimedia devices, networks sensors
which requires low computational processing and low time
to market. Further orientations will include the implementa-
tion of the second Accordion-based-coder called ACC-JPEG
2000- proposed in [7] as a more efficient version than one
presented in this paper.

component memory consumption in Ko
Image size CIF QCIF

ACC RawYCbCr 304,128xGOF 76,032xGOF
Encoder 3,614 3,614
Decoder 66,080 33,240

YCbCr420ToMB 304,128xGOF 76,032xGOF
FIFO 65,536 32,768
Total 591,788 184,054

Table 5. JPEG memory consumption

Fig. 11. ACC-JPEG design

Fig. 12. Normal frame

Fig. 13. Frame 1

Fig. 14. Frame 2

5. REFERENCES

[1] J. Eker and J. Janneck, “CAL Language Report,” Tech.
Rep. ERL Technical Memo UCB/ERL M03/48, Univer-

Fig. 15. Frame 3

Fig. 16. Frame 4

Fig. 17. Performance comparison

sity of California at Berkeley, Dec. 2003.

[2] ISO/IEC FDIS 23001-4: 2009, “Information Technol-
ogy - MPEG systems technologies - Part 4: Codec Con-
figuration Representation,” 2009.

[3] C. Brooks, E.A. Lee, X. Liu, S. Neuendorffer, Y. Zhao,
and H. Zheng (eds.), “PtolemyII - heterogeneous con-
current modeling and design in java (volume 1: In-
troduction to ptolemyII),” Technical Memorandum
UCB/ERL M04/27, University of California, Berkeley,
CA USA 94720, July 2004.

[4] S Bhattacharyya, G Brebner, J Eker, J Janneck, M Mat-

tavelli, C von Platen, and M Raulet, “OpenDF -
A Dataflow Toolset for Reconfigurable Hardware and
Multicore Systems,” First Swedish Workshop on Multi-
Core Computing, MCC , Ronneby, Sweden, November
27-28, 2008, 2008.

[5] Jörn W. Janneck, Marco Mattavelli, Mickael Raulet,
and Matthieu Wipliez, “Reconfigurable video coding
a stream programming approach to the specification of
new video coding standards,” in MMSys ’10: Proceed-
ings of the first annual ACM SIGMM conference on Mul-
timedia systems, New York, NY, USA, 2010, pp. 223–
234, ACM.

[6] Tarek Ouni, Walid Ayedi, and Mohamed Abid, “New
low complexity dct based video compression method,”
in Proceedings of the 16th international conference
on Telecommunications, Piscataway, NJ, USA, 2009,
ICT’09, pp. 202–207, IEEE Press.

[7] Tarek Ouni, Walid Ayedi, and Mohamed Abid, “New
non predictive wavelet based video coder: Performances
analysis,” in Image Analysis and Recognition, Aurlio
Campilho and Mohamed Kamel, Eds., vol. 6111 of Lec-
ture Notes in Computer Science, pp. 344–353. Springer
Berlin / Heidelberg.

[8] Tarek Ouni, Walid Ayedi, and Mohamed Abid, “A com-
plete non-predictive video compression scheme based
on a 3d to 2d geometric transform,” International Jour-
nal of Signal and Imaging Systems Engineering, vol. 4,
no. 3, pp. 164–180, 2011.

[9] Huifang Sun Yun Q . Shi, “Image and video com-
pression for multimedia engineering fundamentals, al-
gorithms, and standards,” in CRC Press, 1999.

[10] Aaron A.M. Gokturk, S.B., “Applying 3d methods to
video for compression,” in Digital Video Processing
(EE392J) Projects Winter Quarter, 2002.

