O N UTHS WDN -

oo oo o000Vl Ul Ul Ul S b B D D DR DR DR DR W WOWWWWWWWWNNDNDNDNDNDNDNDNDNRRERERRERERERE R RO
s WNPFRPONOOCULDAEWNPRPOOVUONOODULAEWNRPOOVONOONTULAE WNRPFRP O OVONONULASE WNRPFP O OVONNOULEAE WN RO

2015 12th International Multi-Conference on Systems, Signals & Devices 1

Proof of Concept of a PIC Wireless Programmer
Interface For Prototyping

Slim Chtourou?,Mohamed Kharrat', Nader Ben Amor?, Mohamed Jallouli®, Mohamed Abid?

1.Aliyet, Tokyo, Japan (mohamed@aliyet.com)
2. Université de Sfax, Ecole Nationale d’Ingénieurs de Sfax
Computer & Embedded Systems CES laboratory, Sfax, Tunisia
(slim.chtourou@ieee.org, {nader.benamor, mohamed.jallouli, mohamed.abid}@enis.rnu.tn)

Abstract—In the near future, computers will be embedded
everywhere and the Ubiquitous computing will be widely used.
Ubiquitous computing requires multidisciplinary knowledge. To
design such systems, a specific heterogeneous prototyping
platform is required. Such platform has to be sufficiently versatile
and in the same time easy to program even for beginners. Most
ubiquitous systems are microcontrollers-based and are already
too hard to program, limiting therefore their flexibility.

In this paper we present a new concept of an easy to use wireless
prototyping platform for Ubiquitous Computing suitable for
people with limited computer skills.

The prototype realized in this paper consists of a PIC that
interfaces a Bluetooth USB dongle to communicate with the
computer and send the program file to the targeted PIC to
program it in place and from a distance.

Keywords—Ubiquitous Computing, Prototype, PIC, USB,
Bluetooth

1. INTRODUCTION

In his speech at Computex in the 2™ of June 2011, Mr. Ian
Drew, the Vice President of ARM Marketing department
stated that it is expected that the number of connected devices
will pass from 12.5 billion today to 1 trillion devices by 2025
[1]. The main reason behind such an expected exponential
increase is that most objects surrounding us will embed a
computer in the future. These objects will be able to
communicate together intelligently and execute tasks without
human intervention. Taking consideration of many aspects
such energy issue, it is expected that most of these object will
run on low speed microcontrollers. According to Ian Drew, it
is expected that microcontroller market will have the highest
market expansion growth by 2020, exceeding those of high
performance processor used today mainly in communication
devices, mobile phone and personal computers.

Ubiquitous computing, known also as pervasive computing
and ambient intelligence consists of intelligent computer that
can auto-adapt to the human environment to provide a new
service or adapt it to the customer. These computers are
expected to be integrated into everyday activities and objects
such as furniture’s tables, chairs, beds and even clothes,
introducing therefore, the new era of internet of things. [2]

As an example of possible future scenario of Ubiquitous
computing technology, a refrigerator will be able to detect
automatically foods and this by reading RFID labels of each
product and adjust internal temperature based on its content. A
shortage of some food product can be detected automatically

978-1-4799-1758-7/15/$31.00 ©2015 IEEE

too. In such a case, a notification can be sent to the user asking
him about agreeing the transaction of ordering these products.

Nowadays, the computers are embedded in many places.
However, many objects are still without computers.

Ubiquitous computing requires multidisciplinary knowledge
across ranging from systems design and engineering, systems
modeling, user interface design, computer networking,
wireless sensor communication, security and energy supply.

The first step to a new design is prototyping, this procedure
is very important to validate an industrial concept and
convince investor when seeking funds for mass production.

Prototyping is not an easy task, since embedded systems
are getting more and more complicated and their design
presents many difficulties such finding the reference design,
installing software, debugging and modifying code. There are
some open source developing platforms like Lego Mindstorms
but they remain expensive. They support few components and
are not suitable for prototyping.

The ultimate objective of Ubiquitous computing is to make
technology fade in the background and made the humans’ life
comfortable without worrying about technical details. In this
context, our objective is to create an easy to program
prototyping platform based on microcontrollers that is suitable
even for people with limited computer knowledge. It allows
them to learn basic concepts of electronics and programming
without entering complex details.

II. OVERVIEW OF EXISTING PIC PROGRAMMERS

A PIC programmer is a device that allows programming other
PICs, there are several programmer types:

A. RS232 PIC programmer
This PIC programmer can be connected to a computer via a
classic RS232 serial interface, this type of cables is getting
outdated and not included anymore in recent computer models.

Fig. 1.RS232 PIC programmer

B. USB PIC programmer

This device is similar to the RS232 PIC programmer, the only
difference is that it connects to a computer through a USB
interface

Fig. 2.USB PIC programmer

C. Bluetooth PIC programmer

Actually, it is not exactly a Bluetooth programmer, but rather
a combination of a RS232 PIC programmer and an RS232-BT
adapter as show in figure 3

Fig. 3.Bluetooth serial adapter

III. CONTEXT OF WORK

Even though there a lot of PIC programmer available, they
present some limitations: the RS232 interface is available
mainly on older computers, so in order to program PIC, a user
must use an old computer or buy a RS232 to USB adapter, the
USB PIC programmer is good but it has to be connected to the
computer in order to transfer a program to the PIC, the
Bluetooth serial adapter may seem a good solution but
actually, the Programming PIC needs first to interface that
device which is a complex tasks, not mentioning the additional
costs of purchasing the device.

In this paper we will detail the process of creating a low
cost microcontroller programmer that makes benefit of the
wireless technology to program the device from a distance
without the need to use cables, costly programmer,
programming software and compiler. Therefore, the user will
no longer need to attach the microcontroller to the computer
and install the compiler, adding therefore a high degree of user
flexibility.

In this paper we show a wireless programmer based on PIC
microcontroller that can communicate with a host computer via
a Bluetooth module. The programming PIC will receive the
program file from the Bluetooth USB module and then transfer
it to the programmable device using a serial transmission.

IV. WIRELESS PROGRAMMING PLATFORM OVERVIEW
A. System general Structure

The system includes two main components: the wireless
programmer and the ubiquitous system. In this paper, we
consider the elementary example of a microcontroller-based
ubiquitous system.

Wireless

) Programming
| maodule

device

Device to
program

Computer |

Fig. 4.0verview of the wireless device programmer

The program file (binary .hex file) will be transferred from
the computer via wireless transmission to the wireless module.
The programming device will communicate with the wireless
module through an interface to acquire the .hex file. After
receiving the program file, it will send it serially to the
ubiquitous system.

B. Wireless programmer design

It is composed of two modules: a wireless module and a
programmer microcontroller (MCU)

1) the programmer MCU

For the programming device, the choice has been set on
Microchip PIC MCU. The reasons of this choice are the
following:

e Among various microcontroller types such as AVR and
STM, PIC microcontrollers are more optimized for USB
communication.

e Even though the Arduino platform is getting widely
known, the PIC microcontrollers are more popular and
widely used in the industry.

e PIC devices are widely available with affordable prices.

For the PIC, we choose the reference 24FJ64GB002 for these
reasons:

e Previous works has been done before using this reference.

e In USB communication there are two sides: a host and a
device. The host has a full support of USB protocol,
transaction management..., while the device has a limited
support of USB protocol, just the minimum requirements
for sending receiving data. The heavier workload is
assured by the host.
In the PIC there are various families: 12F, 16F, 148F 24F,
32F..., although the 18F has a support of USB but it can
act only as a device, we need it to act as a host to be able
to control the USB wireless module. That’s why we can’t
use that reference for this case. [3,4]
In the PIC24F families there are certain devices that are
OTG device: these devices have a full support of USB
functionalities and can act at times as USB targeted host
and at times at USB peripheral. [5]

e Program memory: 64 Kilobytes (Kb): with a larger
memory space, it is possible to create more developed

applications unlike some PIC families that have a rather
little memory program space (16 Kb)

e Operating voltage range: 2 ~3.6 V: some PICs operate at
4 or 5.5V, when it comes to embedded battery operated
systems, the PIC24FJ64JB002 would be an excellent
choice.

This PIC reference is new comparing to other families like
12F or 16F, conventional programmers can’t program this
reference. So to program PIC 24FJ64GB002, we will use the
Pickit3, a microchip’s programmer & debugger kit. [6]

2) Wireless module

For the wireless module, we studied three wireless
technologies: Infrared (IR), Bluetooth (BT) and Radio
Frequency Identification (RFID). The choice is fixed to
Bluetooth technology. The reasons for this choice are the
following:

e Bluetooth is a very popular technology.

e Bluetooth modules can be found everywhere and at a
good price.

e This technology is reliable: data transmission can be done
even through obstacles and power consumption is low..

® The Bluetooth standard is official and detailed
documentation are provided unlike some other wireless
technologies such as RFID
Since a PIC can handle Bluetooth directly, we will use a
BT USB dongle.

V. WIRELESS PROGRAMMING SYSTEM’S CONCEPTION

A. Design of the system

Now that we have made a choice for the programmable
device and wireless technology, we can set the structure of the
targeted system as shown in figure 5

Wireless
Computer o (
transmission

USE

Eluetooth
USE dongle

Programming PIC
PIC24FI64GBO02

transimission

Serfal
Transmission

PIC to program
PIC16F34A

Electrical board

Fig. 5.Structure of the targeted System

B. System Principle

The programmer PIC will communicate with the Bluetooth
USB dongle using the USB interface so it can receive the code.

The data received from the programming PIC is packed just
like network packets .The received frame will be unpacked by
the PIC and it will extract the useful information known also as
payload. In our case, it is the binary hex file that has to be run
by the Ubiquitous system. To be able to do that, PIC has to use
Bluetooth commands related to the BT module.

The Bluetooth protocol has many layers. In order to
retrieve the payload, unpacking function must be used for each
layer.

After receiving the .hex file from the computer, the PIC24F
will send the file to the PIC that we want to program using
serial transmission.

C. Bluetooth Interface

1) Bluetooth layers

According to the Bluetooth specification V4.0 [7], the
Bluetooth protocol stack provides several layers of
functionality. These layers range from the low-level radio link
to the profiles as illustrated in figure 6

Applications

Profiles

RECOMM

L2CAF

HCI Transport (USB, UART,SDIC)

Link Manager

BaseBand

Fig. 6.The Bluetooth protocol stack

We want the programming PIC to send commands to the
Bluetooth module and acquire the data sent from the computer.

"Radio", "Baseband/Link controller" and "link manager"
are the lowest layers in the Bluetooth Protocol. Interfacing
these layers is like trying to create an application using binary
language only.

It is possible to communicate with these low layers with
higher layers, the HCI layer designed to abstract and simplify
physical communication between the Bluetooth stack and the
controller.

We need to interface and define the following layers:

e HCI: (Host Controller Interface) provides a command
interface to the baseband controller and link manager,
allowing access to hardware status and control registers.
This interface provides a uniform method of accessing the
Bluetooth baseband capabilities. There are three HCI
transport layer standards, they transfer the same command
but each one uses a different hardware interface. These
layers implement few functions designed to send Bluetooth
commands and data packets, and receive data packets and
events.

e L2CAP(Logical Link Control and Adaptation Protocol)
provides data flow control and management. This layer is
used to multiplex multiple logical connections using

different higher level protocols and provide packets
segmentation and reassembly.

e RFCOMM:(Radio Frequency COMMunications) is a
protocol that can create a virtual serial data stream. It is
used to transport the user data, modem, control signals and
configuration commands.

2) Bluetooth data transmission

A network that follows the OSI model is composed of
seven layers. As data goes through these layers, a header will
be added to the data so that it could be identified specifically
by that layer on the receiver side.

The same principle applies to Bluetooth layers, when the
data is transmitted from the computer via its Bluetooth module.
The information will be packaged three times: the first one is
while passing the RFCOMM layer, the second in the L2CAP
layer and the last in the HCI layer.

When this package arrives to the Bluetooth module
attached to the programmer PIC, it will undergo the reverse
process: the data will be unpacked going up from HCI layer to
the RFCOMM layer, the data is then transmitted to the PIC via
USB interface.

The process of packing, unpacking is shown in Figure 7:

Sendsr H, Header Reosiver
RFCOMM RFCOMM
L2(13AP H3H4| DATA | L2(§AP
HCI HzH3H4| DATA | HCI
Iowarllayers HiHZH3H4 DATA | Imﬂleavars

Fig. 7.Data packaging through Bluetooth layers

D. USB Interface

1) USB communication flow

In order to be able to send commands to the Bluetooth
module and retrieve the incoming data, the PIC has to interface
the Bluetooth module via the USB protocol. [8]

The USB data flow between the host and the device is
illustrated in the figure 8:

Client
Software

e

=

T
\ |
\ \
\ \

S

Interface

Communication
Flows

—
USB Logieal Deviee

Fig. 8.USB communication flow

4

The client software is responsible for sending USB
requests, it is embedded within the host which is the PIC
24FJ64GB002 in our case.

Buffers are storage space used to compensate for
differences in data rate, time of occurrence of events when
exchanging data between two USB devices.

An endpoint is the terminus of a communication flow
between the host and the device. Each endpoint on a device has
a unique identifier, a device-determined direction of data flow.
A device may contain several endpoints and each one is
uniquely referenced.

Pipes represent the ability to exchange data between the
software on the host and an endpoint on a device via a memory
buffer.

The interface guarantees the interoperability between the USB
logical devices and endpoints.

2) USB descriptors

Each USB device has descriptors that contain different
information:

e Device descriptor: this descriptor provides general
information about the USB device. These information are
global and apply to the device and all of its configurations.

e Device qualifier descriptor: it describes information about
high speed capable devices that would change if the device
were operating at other speed.

o Configuration descriptor: it contains information of the
device’s configuration, a configuration provides one or
more interfaces

e String Descriptor: this is an optional descriptor, it contains
information about the device that will be displayed in a
graphical interface. For example when a device is plugged
to the computer, a tooltip appears saying ‘’new hardware
found’’ and below, there is the device name which comes
from the string descriptor.

e Interface descriptor: this descriptor contains information of
a specific interface within a configuration. This descriptor
is returned as a part of a configuration descriptor.

e Endpoint descriptor: this descriptor contains information
needed by the host to determine the bandwidth
requirements for each endpoint. Each endpoint used for an
interface has its own descriptor.

Like the interface descriptor, the endpoint descriptor is
returned as a part of the configuration information.

3) Retrieve Bluetooth USB dongle characteristics

The programming PIC24 needs to know the USB details of
the Bluetooth device for it to be able to communicate with it.

To identify those details we will use the software USB Trace.

This software allows a user to capture all USB frames
exchanged between the computer and USB devices and furnish
also a detailed description about the device’s USB resources.

With this software, this Bluetooth USB device’s
characteristics were retrieved successfully.

E. Ubiquitous system

The ubiquitous system that will be programmed is based on
PIC 16F84A MCU.
To program a PIC, specific connections have to be made:

e The reset PIC input named MCLR (V,,) will be
powered with 12V, indicating to the PIC the beginning
of the programming procedure.

e The data will be transmitted to the PIC via its PGD
(data) pin.

® The transmission is synchronous, to guarantee this, the
clock is sent to the PIC via its PGC pin.

In order to transmit data to a PIC, a serial port can be used
to transmit the .hex file, byte by byte using a RS232
connection.

VI. SIMULATION AND RESULTS
A. Program the PIC

In this simulation, we will program a PIC 16F84. The
programming device for this simulation is the PIC 18F2550, a
simulation couldn’t be made with PIC 24FJ64GB002 since this
reference is not available in ISIS libraries. However, in this
simulation, we will focus on the data transmission aver USB
protocol, the principle is the same if excluding the fact that the
PIC will communicate with Bluetooth device.

To transfer the .hex file to the PIC, we will use the WinPic
software. After opening the file and clicking on the "program"
button we can observe USB transaction via ISIS VUSB
Analyzer.

Offset Data

004 28 FF 3F FF 3F FF 3F
SF 30 03 13 83 12 BE 00

ﬁ B S 9% % @&/ g e [] | |oxooonoozaloo 30 er on oe v 0 10

00 30 81 00 3B 30 52 00

A2
4 k M 0[00 30 93 00 ZF 30 54 00
00 30 95 00 €& 30 %6 00

1100 30 97 00 €D 30 S8 00

e Srmeor & rusivies B

(2304 3FFF 3FFF 3FFF 305F 1303 1283 DDBE) (2200 00,
3000 006F 3006 0090 3000 0091 303B 0082 0...0...0...0:.. 00 30 9% 00 7D 30 3R 00
3000 0093 302F 0094 3000 0095 3066 0096 O0...0/..0...0f.. oloo 30 9B 00 07 30 5C 00
3000 0097 306D 0098 3000 0099 3070 00%A O...0m..0...0}.. 00 30 D 00 7F 30 5E 00
3000 DDBE 3007 009C 3000 0OID 307F 0OSE 0.0 .. 0x00000050(00 30 SF 00 €F 30 A0 00
3000 0OSF 306F OOAD 3000 0O0AL 018C 018D 0

w5

0...0e.. 00 30 A1 00 BC 01 8D 01

Fig. 9.Transmission of the .hex (right) file using WinPic (left)

The file transmission was successful over USB bus, the
bytes display is inverted in WinPic that’s why we have 28 04
in WinPic, while in fact, it is 04 28 (the first value displayed in
this simulation in the figure 9).

B. Detect payload within Bluetooth packages

In this simulation, we will identify the data transmitted in
packets from a Bluetooth device to the USB module.

To detect the incoming USB packets we will use the USB
Trace software.

As a data sample, we will consider the data transmitted
after pressing a keyboard key (scan code), we will use two
different keyboards. We turn the USB buffer capture "on" and
for each keyboard, we will press the B key then the C key,

The tablel illustrates scan code values of some keyboard

characters:
TABLE L. A PORTION OF KEYBOARD SCAN CODE VALUES [9]
Key Name HID Usage ID
No Event 00
Overrun Error 01
aA 04
bB 05
cC 06
dD 07
cE 08
The result is illustrated in figure 10:
Sseq T.. Time Request L0 E. Device Object Buiffer Snippet
0 5T.. 00.. STAR..
B URE 08. BULK. IN 81 |‘Dewvice\DOODDObd 00 00305400 00 00 00 0O
B URE 09.. BULK. IN 81 |‘\Device\DOODDIbd 00 0Oy00400 00 00 00 D0
Bl URE 15.. BULK. IN 81 |‘\Device\DOODOMbd 00 0Oy0S100 00 00 00 D0
B URE 16.. BULK. IN 81 |\Device\ 00 00J0000 00 00 00 00
Bl URB 33. BULK. IN 81 VIcE o0 ooloskoo 00 00 0o 00
B URE 34.. BULK. IN 81 |'Device\DOO00OcS| 00 OOJO00 00 00 00 00
Bl URE 318. BULK. IN 81 |‘Device\000000c8 00 OOy0s00 00 00 0O DO
B URE 39.. BULK. IN 81 |‘\Device\000000c8 00 0OJ00400 00 00 00 00
—— Keyboard 1
—— Keyboard 2

Keyboard scan code
Fig. 10.captured USB packets from 2 different USB keyboards

"Périphérique USB Composite" in the USB Trace software’s
“Device Object” refers to the keyboard, in the "buffer Snippet"
column, there is an 8 bytes data.

The difference between all the packets captured is the 3™
byte which indicates whether a key is pressed or not and which
one it is.

As shown in figure 10, the packets from 1 to 4 are identical
to the packets from 5 to 8, each set of packets comes from a
different keyboard. We can identify them by their "Device
Object" value. (right before the "Buffer Snippet" column).

The data captured here is a keyboard’s key unique
identifier called scan code. A list of different key values can be
found at Microsoft MSDN site [10].

A scan code is always the same, whether we use AZERTY
or QWERTY keyboard, a USB or a Bluetooth keyboard. So we
will go and analyze data coming from a Bluetooth keyboard
and detect the scan code data within the frame.

In figurell, we capture the data transmitted from both a
USB and a Bluetooth Keyboard.

Dlevice Object Buffer Snippet Buffer Size
‘Device\D0DD0Obd 00 00 05 00 0O 00 00 00 8
\Device\00D0D0Dd 00 00 00 00 0O 00 00 0D 3
\Device \D00000bd 00 00 06 00 00 00 00 00 scan code value 8
\Device\00D000d 0D 00 00 00 DO 00 00 0D - " 8
\Device\D00DI0c8 [0000050000000000] transmitted with
\Device\00DD00cS |00 00 00 00 00 00 00 00 Bluetooth protocol g
‘Device\00DD0OcE |00 00 06 0O 0O 00 00 0O 8
“Device\D0DD0OcE |00 00 00 00 0O 00 00 0O 8
\Device\USBPDO-1 04 20 O 00 0A 00 41 00 A1 01|00 00 00 00 000D 000D 18
\Devics\USBPDO-1 04 20 O 00 0A 00 41 00 A1 01{00 00 05 00 00 0000 00| 18
\Devics\USBPDO-1 04 20 O 00 0A 00 41 00 A1 01{00 00 00 00 00 0000 00| 18
\Devics\USBPDO-1 04 20 O 00 0A 00 41 00 A1 01{00 00 06 00 00 0000 00| 18
\Device\USBPDO-1 04 20 O 00 0A 00 41 00 A1 01{D0 00 00 00 00 000D 00| 18

Fig. 11.captured USB packets from a Bluetooth keyboard

At the first look it may look different, the frame size for an
USB keyboard is 8 bytes while for a Bluetooth keyboard, it is
18 bytes. However, after taking a closer look we observe that
the last 8 bytes of this frame are identical to the frames
captured earlier with USB keyboard.

This means that the code scan value has been transmitted
successfully, the 10 first bytes are specific to Bluetooth
protocol:

1'& 2" byte: HCI CID.

3" and 4™ byte: length of the HCI packet data, the bytes read
order is from left to right. It is written OE 00 but the DATA
size in this example is 00 OE (14 in decimal) and not OE 00
(3584)).

The HCI data bytes are in fact a frame of another Bluetooth
layer which is L2ZCAP:

5" and 6" byte: L2CAP CID

7™ and 8" byte: L2CAP data length, like in HCI frame, the
read order is from left to right, so the data length in this
example is 00 0A=10,,: that is the number of remaining bytes.
The remaining bytes represent a frame of a higher Bluetooth
layer which is RFCOMM:

9" and 10" byte: RFCOMM CID

Now the remaining data represents our USB frame, the
same value that we obtained using an USB keyboard.

The process of packaging can be resumed in figure 12, the
USB frame contains the “B” scan code

HCI

L2CAP

RFCOMM
USB frame
0420 OE 00|0A 00 41 00|A1 0100 00 05 00 00 00 00 (b(b/

)

Fig. 12.USB frame inside the Bluetooth frame

VII. CONCLUSION

The ultimate objective of Ubiquitous Computing is to
establish the best possible environment for humans and
simplify complex tasks.

This paper aims to concept and design a prototyping card
for PIC wireless interface, in order to facilitate the systems’
prototyping and make the creation of an embedded system as
easy as creating a robot using Lego.

There are several microcontrollers-based Ubiquitous
systems available, however, their programmers are still not
easy to use and quite expensive. The concept of the proposed
prototype itself can be seen as a standalone system that can be
embedded into objects such as doors, chair etc. It makes
benefit of wireless technology to program various PIC
references (such as 16F and 18F etc) in their place without the
need to remove the microcontroller from its place and thus
damaging its pins.

We showed in this paper how to create a low-cost wireless
PIC programmer that can be as low as 10$ when entering the
mass production stage. It solves the problem of cable
congestion and makes the programming task easier. This
programmer is the first step in creating a prototyping platform

that enables people with limited electronics and computer
skills to master these skills and build their own prototype.

REFERENCES
[1] Computex Taipei 2011, https://www.computextaipei.com.tw, May 2011
[21 Nov 2014]

[2] Gregory Adam Greenfield., Everyware, The Dawning Age of Ubiquitous
Computing, 2006.

] PICI16F84A datasheet

] PIC18F2550 datasheet

] PIC 24FJ64GB002 datasheet
6] PICkit 3 User Guide

1 Specification of the Bluetooth System, 2010.

] Universal Serial Bus Specification Revision 2.0, 2000.
[91 Microsoft USB HID scan code map for keyboards
[10] The Unicode Standard Version 5 (2007)

