A Dynamic Hybrid Cache Coherency Protocol
for Shared-Memory MPSoC

Hajer CHTIOUIT, Rabie BEN ATITALLAHZ, Smail NIARZ,
Mohamed ABID, Jean-Luc DEKEY SERt
TCES Laboratory, University of Sfax, Tunisia,
T INRIA-FUTURS, DaRT project, Lille, France,
chtioui_hajer@yahoo.fr, { rabie.ben-atitallah, smail.niar , jean-luc.dekeyser} @inriafr,
mohamed.abid@enis.rnu.tn

Abstract—

In Multi-Processor System-on-Chip (MPSoC) architectures
equipped with shared-memory, caches have significant impact
on performance and energy consumption. Indeed, if the
executed application depicts a high degree of reference
locality, caches may reduce the amount of shared-memory
accesses and data transfers on the interconnection network.
Hence, execution time and energy consumption can be greatly
optimized.

However, caches in MPSoC architectures put forward the
data coherency problem. In this context, most of the existing
solutions are based either on data invalidation or data update
protocols. These protocols do not consider the change in the
application behavior. This paper presents a new hybrid cache-
coherency protocol that is able to dynamically adapt its
functioning mode according to the application needs. An
original architecture which facilitates this protocol's
implementation in Network-On-Chip based MPSoC
architectures is also proposed. Performances, in terms of
speed up factor and energy reduction gain of the proposed
protocol, have been evaluated using a Cycle Accurate Bit
Accurate (CABA) simulation platform. Experimental results
in comparison with other existing solutions show that this
protocol may give significant reductionsin execution time and
energy consumption can be achieved.

Index Terms—Shared-memory (MPSoC), Cache coherence,
Hybrid protocol, Performance evaluation, Energy
consumption.

. INTRODUCTION

M ulti-Processor System-on-Chip (MPSoC) architectures
are becoming an incontrovertible solution for
embedded systems designed for applications that require
intensive parallel computations. In this paper, we focus on
MPSoC equipped with a centralized shared memory and a
non-shared-bus network-on-chip (NoC). These
architectures are very attractive as they facilitate both the
development of paralel applications, due to their
programming model, and the possibility to integrate on-chip
a large number of processors. However, the important
disparity in term of speed between processor and memory is
especialy important in shared memory MPSoC. In this
situation, caches may represent an interesting mechanism
aiming at reducing both memory access latencies and
energy consumption. .

Nevertheless, the problem of data coherence emerges. In
this way, when a processor modifies a cached data element
that is also located in another processor’s cache, a protocol

must be used to maintain data coherency. Generaly
speaking, two families of protocols are used.

The invalidation protocol consists in sending invalidation
messages to sharer caches that contain the modified bloc.
At the opposite, in the update protocol the addressed of the
modified data and its value is send to al other sharers.
Several studies [1] have demonstrated that the use of a
unique protocol (invalidation or update), does not take into
account the patterns of data accesses realized by the
processors. Hence, the necessity for dynamic hybrid cache
coherence protocol, which takes advantage of the two
protocols and that, adapts the way in which the datais used.
Asthe new protocol can be changed during the execution of
the application, it can be considered as dynamic. Various
dynamic hybrid protocols have been proposed and
implemented in the past [2] [3] [4] [5] [6]. Although these
protocols require an important quantity of hardware and
software resources as well as energy consumption, they
achieve a limited improvement of overall performance
compared to a single protocol. This is mainly due to the
inadequacy between the applications need and the
architecture.

The main objective of this paper is to improve the
performance and the energy consumption of shared
memory NoC-based MPSoC by integrating an efficient
dynamic hybrid update/invalidate cache coherence protocol.
It is based on a hardware solution that uses an original
architecture which facilitates its implementation.
Furthermore, the proposed protocol is able to capture
changes of the data access patterns at run-time and
automatically to switch to a new more efficient protocol
when necessary.

This paper is organized as follows. In the second section
we summarize the main existing works in the design of
dynamic hybrid cache coherence protocol. In the third
section, we detail the key points that have been taken into
account in the design of our cache coherency protocol. The
environment of simulation that has been used is presented
in the last section. This section presents also the
experimental results that demonstrate the benefit of the new
protocol and its supporting architecture

Il. STATE OF THEART

The limited performances due to the use of a unique
protocol to maintain coherency of data with different access
patterns in NoC-based MPSoC, has caused the emergence

of several dynamic hybrid protocols. These protocols can
be grouped into two families depending on the moment at
which the decision to choose the appropriate protocol is
make: “prior to application execution” or “during the
execution of an application”.

In the first family of protocol, caled “on-line hybrid”
protocols, the selection (invalidation or update) is based on
previous accesses to the cache block. In the write-once
protocol [7] is an example of this group. The first write to
the cache block in the write once protocol, results in an
update to the main memory and an invalidation of the block
in the other caches. The next write by the same processor to
same block results in a modification of the block only in the
local cache and the memory is no longer updated. The
Archibald scheme [2] [3] extends the write-once protocol
by allowing a greater number of updates. The competitive
scheme is another example of protocol of this family. It is
widely used with snoopy protocols [4] and with directory
protocols [5]. It associates with each block a counter. It is
the update protocol that is chosen when the block is
referenced for the first time and the counter in incremented
with each write access. Once it reaches a given threshold,
the protocol switch to the invalidation mode. It is
interesting to notice here that having the same threshold for
all the blocks is not relevant. To solve this problem,
Anderson and Karlin [8] proposed using different
thresholds for the blocks. This threshold is calculated
according to the number of consecutive writes realized by
the same processor. Despite of the improvements, this
approach is still suboptimal for migratory data, i.e., data
that is read, modified, and written by many processors
during the same period. Grahn and Per Stenstrom [9]
proposed a mechanism to detect dynamically migratory
data. As this solution requires gathering information from
all the processors; it generates an important traffic overhead
in the interconnection network [10].

The second family of protocols realizes an “off-ling”
profiling of the application. In theses protocols, the decision
to use update or the invalidation mode is realized not only
on previous accesses to the block, but also by extracting
information from the source code, during code compilation.
In [6] acombined hardware-software strategy is used. More
precisely, the predictive capability of the compiler to select
either update or invalidate mode for each memory write
accessis exploited.

The cache coherency protocol that is proposed in the
next section has interesting features compared to the
competitive scheme [4] [5]. It requires neither complex
traffic communications [9] nor a sophisticated network [11]
[12]. Moreover, its implementation uses a reduced resource
overhead, asonly few flags and counters are needed.

I11. DYNAMIC HYBRID CACHE COHERENCE PROTOCOL

The proposed cache coherence protocol is based on a full
bit-vector directory [13]. This directory (d) is shared among
all the processors and maintains information about the data
stored in caches. It is implemented generally as a matrix of
m lines and p columns, where m is the number of memeory
blocs and p the number of processor in the MPSoC. If

processor j (0 <j < p) holds a copy of bloci (0 <i<m), the
element d[i, j] is set. Moreover, when a processor executes
a store operation into a shared data, it must first examine
the directory and send update or invalidate messages to
processors sharing this data. In the first part of this section,
the interaction between the directory and the shared
memory MPSoC architecture is presented. Then, in the
second part, we give a detailed description of the hybrid
solution that we propose.

To have efficient cache architecture either in mono or in
multiprocessor configuration, several cache parameters
must be selected. Among these parameters there is the write
policy. Here we used the write-through technique. In this
mechanism, all write operations in the cache are aso
applied simultaneously in the centralized shared memory..
In the context of MPSoC, the write-back technique, where
data is updated only when the block is gected, requires a
more complex mechanism to maintain coherence between
the cache and the shared memory.

To exploit the fact that the shared memory is updated
after each write cache operation, we implement a
centralized directory within the shared memory unit.
Consequently, when a processor sends a write packet
through the NoC to this unit, the update operation of the
directory is triggered. This mechanism simplifies the
coherency maintain, since it does not require dedicated
packets to update the directory.

To update or invalidate shared blocks within the
different caches, in the context of non-shared-bus based
multiprocessor architectures, several solutions have been
explored. The naive solution consists in sending an
update/invalidate packet by the shared memory controller to
the different caches through the NoC. This solution is not
interesting because the NoC becomes the bottleneck of the
system and this approach may lead to performance
reduction.

Our proposition is to add a unidirectional bus, that
transfers update/invalidate packets from shared memory to
caches. This architecture is simple and reduces the
overhead on the NoC. Figure 1 shows the architecture of
the overall system.

Processor o Processor n-1

T 0T T 1

Centralized
Directory

Shared Memory

Figure 1: Architecture of the overall system

ADR and DATA correspond respectively to the address
of the block to be updated or invalidated and the
corresponding value in case of update protocol. Finally,
NUM is used to identify the processor number that has
caused the write operation. This information is needed to

invalidate or update all the caches except that cache with

number NUM. Each entry of the directory represents the

state of a block in the different caches and may have four
different values (states):

» E (Exclusive): The current value of the block is valid
only in this cache and in the shared memory.

e S (Shared): The current value of the block is valid in
this cache, in other caches and in the shared memory.

* | (Invalid): The block is not valid in the corresponding
cache. It has not been yet loaded or has been but
replaced by another block.

e O (invalidated by other): The block is not valid in this
cache, because it has been invalidated by another
processor.

The states: E, S, and | have the same meaning to states
E, Sand | inthe MSI and MESI protocols[14]. In this work
we add a new state caled invalidated by the other “O”
which is a specia case of the Invalid state. This new state
plays an important role in the proposed hybrid protocol. It
distinguishes blocks that has not been yet loaded or ejected
from blocks that have been loaded but invalidated by
another processor. As explained in the following sections,
this state helps in choosing the appropriate protocol for a
given memory bloc in a given application phase. Our four
state (ESIO) protocol uses two bits per bloc. The
approximations that we realized with CACTI [15]
demonstrate that only 3% of the area of the shared memory
is used by the directory.

Figure 2 shows the finite state machine (FSM) that
controls each directory entry. In this figure, we use the
following notation:

* OR (Other Read): Read by a remote processor.

LR (Local Read): Read by the local processor.

OW (Other Write): Write by a remote processor.

LW (Local Write): Write by the local processor.

BE: Block Ejection due to replacement.

INV: Invalidation operation.

U: Update operation.

In this figure, “OW/LW & U” indicates there is a write

operation by a remote processor or a write operation by the

local processor and the protocol to use is the update.

By this FSM we provide the necessary conditions for

changing from one state to another using update/invalidate

protocol. In the next subsection we provide the necessary
conditions to switch between these two protocols.

Hybrid protocol implementation (¢’ est un sous-titre?)

In this subsection we discuss the key points related to
the design of the proposed hybrid protocol. We present the
criteria that must be taken into account in choosing the
appropriate protocol for a given block. These criteria are
determined dynamically during the execution. Figure 3
provides an overview of the hybrid protocol algorithm that
is presented in detail in the following sections

LW/OwW&u
LW/ OW & INV

LW/OW & U A LW/OW&U
LW & INV ‘G@e OR

OW & INV OW & INV

LW/OW&u
LW/ OW & INV

a) FSM of the hybrid protocol in the directory
LR

LW & U/INV OW/LW&U
ow&u OW/LW&INV

OW&INV

b) FSM of the hybrid protocol in the cache
Figure 2: FSM of the hybrid protocol

When ESIO is used, the selection of the protocol is
realized when a write operation is triggered by a processor
and captured by the shared memory controller. For this
purpose a bit-vector, called “P, is used to represent the
protocol to use. If “P’ is O then the protocol is the
invalidation otherwise it is the update. Initially, the protocol
to use is the invalidation. If there is a read operation of a
memory block that has “O” state in the directory, then this
block it has been invalidated by another processor So, the
protocol must be switched from invalidation to update.
Detecting unnecessary update operations of a block, is
required to return to the invalidation protocol.

The detection of unnecessary update operations is done
by controlling read operations. Usually, in existing
protocols, several messages have to be sent to the
processors, thus increase data traffic in the NoC. To avoid
these problems several solutions are proposed to determine
a threshold of update operations which must be achieved
before returning to the invalidation. These solutions can not
adapt well with data access patterns. In this work we
propose a new method that estimates at run-time and for
each memory block the suitable threshold value. Recall this
threshold represents the number of update operations to
realize before switching to the invalidation mode. This
threshold increases and decreases according to variation in
data access patterns.

Shared memory

Type of miss?

Read

operation

Read
Or
Write?

-~

Write No

I

No Yes l

Transfer of the block
towards the processor

. P=1 . P=1

L UC-- L UCH

.if UC=0thenP=0 | | W=UC

. Transfer of the block . Transfer of the block

towards the processor towards the processor
| l

Yes Yes No

i

W--
. Request of update
towards the caches

W+
. Request of invalidation
towards the caches

. Request of update
towards the caches
.P=0

Figure 3: Algorithm of the hybrid protocol Exemple quelle est la valeur de P quant Read et type of miss==I ? miss=1 c-a-d lebloc
est &l’état invalid dansle cache & cause d’un remplacement par un autre block donc le protocole n’est pasinfluencé. |1
est influencé quesi lebloc est al’ état O c-a-d le bloc est invalid dans le cache a cause d’ une application du protocole
invalidation

First, we associate for each memory block a counter that
is initially set to zero and represents the update threshold
value. This counter is noted “UC” for Update Counter. To
determine dynamically the threshold value, we associate
with each memory block a second counter, noted “W”. It is
incremented after each invalidation operation of the
memory block. If there is a read operation of this memory
block that has “O” state in the directory, then “W” counter
istested and two situations are possible;

o W isreatively smal (is less than A): In this case,
cache misses caused by the invalidation protocol are
very close to each other, so the memory block needs
to be updated and the protocol must switch to update
(Psetto 1) and “UC” isincremented because at this
period of run-time update protocol is the best. Then
“W” takes 0 because is used also as an intermediate
counter which takes initially the value of “UC”, it
decreases after each update operation until reaches O,
then the protocol must switch to invalidation (“P’
takes 0). Consequently “W” allows to not erase the
old value of “UC" because it will be used after.

e W isrelatively important (exceeds A), cache misses
caused by invalidation operation are distant from
each other. Consequently, during this period of time,
the invalidation protocol may give better
performance than the update protocol. The P bit

associated with the corresponding block is set to 1
and the “UC” counter is decremented. \When “UC”
reaches O then P is set to O and this algorithm is
repeated.

Consequently, with the ESIO, the “UC” counter, that
represent the update threshold, varies according to the
intensity of read operations in a certain period of time. This
allows to choose dynamically which protocol (either update
or invalidate) to use. In the rest of the paper, we fixed A at
1000 cycles.

IV. SIMULATION FRAMEWORK AND BENCHMARKS

In this section we present the framework and the
benchmarks used during the experiments. We also detail the
results that we obtained. We choose to use the SoCLib
platform [16], to simulate and to evaluate the proposed
hybrid protocol. SoCLib is a library of reusable hardware
components which makes it possible to model and to
simulate MPSoC architectures. During the experiments, the
NoC that has been used to connect the processors to the
shared memory is a crosshar (figure 4). However the
proposed protocol can be used for other NoC such as multi-
stage interconnection network (MIN), hierarchical bus, etc.

The experimental results that we present here have been
obtained with two benchmarks: the Fast Fourier Transform
(FFT) application and the matrix multiplication (MM).

These two applications have parallelized. However parallel
programs exhibit different shared memory access patterns,
this knowing as the granularity of blocks sharing. It is one
of the key factors affecting the performance of cache
coherence protocol; therefore, it is important to study the
influence of this factor on our protocol effectiveness.

Instruction Data
Locks Timer Shared Shared
Engine Mem!1 Mem0
ver_to vaita Ve vei_To
* v +* v £ 3 +* v
‘ LOCAL CROSSBAR ‘

43 + 3 + v

‘ VCI_I0 ‘ | VCILI1 | ‘ vCI 12 ‘ ‘ VCI 13 ‘
* v * v

| 1 & D cache ‘ 1 & D cache 1 & D cache ‘ ‘ 1 & D cache ‘

* 3 * v + ¥ +3

MIPS R3000 ‘ MIPS R3000 | | MIPS R3000 ‘ ‘ MIPS R3000 ‘

Figure 4: Architecture of SoCLib platform

In this work, we classify shared blocks between the

processors into 2 sets. Fine grain shared blocks and coarse
grain shared blocks. Fine grain shared blocks refers to
blocks containing data that is written by the same processor
all over the application execution. The other processors
only read the shared blocks. This type of sharing is for
instance present in pipelined or producer/consumer parallel
tasks. At the opposite coarse grain shared blocks
corresponds to blocks of data elements that are read and
written by several processors. In this case, all the processors
cooperate in the calculation of the final result. Domain
decomposition and task decomposition are examples of
paralelisation approach leading to this type of blocks
sharing.
Jai fait une recherche sur la notion granularité de partage
des données et j’a trouvé que chacun I’explique de fagon
différente. Je vois qu’on peut la définir de cette facon et ca
reste une définition lié au cadre du travall réalisé dans ce
papier. Je préfere garder la notion granilarité, si on va
mettre « SWMR » ou « MWMR» ¢’ est une appellation trés
spécifique.

Based on this classification, we write 3 versions of FFT
application. In the first version of the FFT application, the
pipeline model has been used and consequently shared data
are al of fine grain. In the second version task
decomposition has been used and thus all the blocks of date
are of type coarse grain. Finally, in the third version, both
for some tasks we used the producer/consumer model
where for some other tasks functions task decomposition
has been used. Consequently this first version contains both
fine and coarse grain shared data and is mixed grain shared
data FFT version. We present for each FFT version, a
performance comparison between three directory-based
protocols: hybrid, invalidation and update protocols. This
comparison isin terms of missratio and execution time and
energy consumption. This MPSoC platform incorporates
consumption models for each type of components
(processor, memory, interconnect network, cache, etc.).
These models are detailed in [17].

V.EXPERIMENTAL RESULTS

1. Performance comparison Hybrid vs. Update vs.
Invalidation

1.1. FFT: Mixed grain shared data

Figure 5 gives the experimental results obtained with the
first parallelized version of the FFT. Figure 5.a proves that
the proposed hybrid protocol reduced the miss ratio
compared to the invalidation protocol. The improvement
rate varies from 59% for a 4KB D-cache towards 82% for
32 KB D-cache. This improvement is due to the reduction
in the number of cache misses caused by invalidating
coarse grain shared data. The reduction of the miss ratio
involves on the one hand the reduction of the execution
time in cycles (figure 5.b). In fact, the reduction in the
number of cache misses decreases significantly the traffic in
the NoC consequently the execution time is reduced. In
addition, the energy consumption is also reduced with the
hybrid protocol (figure 5.c). This reduction varies from 3%
for 4 KB D-cache up to 9% for 32 KB D-cache. The
improvement rate becomes more significant by increasing
the cache size; this is due to the fact that the number of
cache misses caused by invalidation increases by increasing
the cache size.

The improvement made by the hybrid protocol is also
compared to the update protocol. Figure 5.c shows that the
energy consumption is reduced with the proposed protocol;
the improvement rate varies between 8% and 7.5% for the
different cache sizes. The reason behind this reduction is
the reduction of unnecessary updates of fine grain shared
data with hybrid protocol. Nevertheless, this gain does not
appear in term of execution time reduction in this FFT
version, because the unnecessary updates are done by the
bus and not by the crossbar.

0,45

0,4 1
0,35 -
0,3 1
0257 B Hybrid
0,2 B Invalidation
0,15 - O Update
0,1
0,05
[T T T
4KB 8KB

16KB 32KB
Data cache size

Miss ratio in %

a. Missratio according to the data cache size

4 @ Hybrid
B Invalidation
b O Update
4KB

8KB 16KB 32KB
Data cache size

IS
F
[

N
I
v

N
o
w

Execution time (Mcycles)
S
i

N
S

w
©
o

b. . Execution time according to the data cache size

EHYB
NV
C—uPD
—#~— HYB/INV
—¥— HYB/UPD

Reduction in %

Energy consumption
w
w

4KB 8KB 16KB 32KB
Data cache size

c. Energy consumption according to the data cache size

Figure 5: Performance comparison for FFT mixed (fine and coarse) grain
shared data (four processors)

1.2. FFT: Finegrain shared data

Figures 6.a and 6.b show the performances in terms of
miss ratio and execution time for the second version. The
obtained values are amost comparable for the three
protocols (hybrid, invalidation and update). Indeed, in this
version coarse grain shared data to be updated is not
present. Therefore, the energy consumption with the hybrid
protocol and the invalidation protocol is the same one. On
the other hand, according to figure 6.c hybrid protocol
reduces the energy consumption compared to the update
protocol. The improvement rate varies between 9.30% and
8.30% for the different cache sizes. This reduction is due to
the fact that the hybrid protocol eliminates unnecessary
updates of fine grain shared data.

Although this version gives good better results with the
invalidation protocol than with the update protocol, we
notice that with the hybrid protocol performances are high.
This proves that the proposed hybrid protocol adapts
dynamically with the data access patterns of the application
and it does not make updates only if it is necessary.

0,035

0,03
0,025 -

0,02 © Hybrid
0,015 - B Invalidation

O Update

0,01 1

0,005 -
0 - T T T
4KB

8KB 16KB 32KB
Data cache size

Miss ratio in %

a. Missratio according to the data cache size

I
ey

)

IS
e
v

3
3 40 1
§ 39,5 4
2 394 @ Hybrid
= 38,5 | Invalidation
2 38 O Update
E]
$ 37,51
X
w 37 4
36,5 T T T

4KB 8KB 16KB 32KB
Data cache size

b. Execution time according to the data cache size

w
5
=
5]

(

o P, N W B O ® N ® ©

mJ)

w
w

3 HYB
NV
C—uPD
—— HYB/INV
—*— HYB/UPD|

w
~

Reduction in %

w

Energy consumption (
w
o~

N
©

~
©

32KB

B 1
Data cache size

c. Energy consunption according to the data cache size

Figure 6: Performance comparison for FFT fine grain shared data (four
processors)

1.3. FFT: Coarse grain shared data

As indicated in figure 7, athough this FFT version
functions better with the update protocol, the results
illustrated by figure 7 prove that the performances with the
hybrid protocol are almost similar with the update protocol.
Nevertheless, the energy consumption with our hybrid
protocol is lower than with the update protocol. The
improvement rate is 3% (figure 7.c). This is due to the
elimination of a certain number of unnecessary updates.
Therefore, our new protocol realizes block invalidation only
if itisnecessary. So, it is able to adapt dynamically with the
data access patterns of the application. This is also proven
by figure 7.a which indicates that the missratio isimproved
by the hybrid protocol compared to the invalidation
protocol. The improvement rate varies between 30% for a 4
KB D-cache up to 33.50% for 32 KB D-cache. In the same
time, execution time is reduced by up to 8% (figure 7.b)
and energy consumption is reduced by up to 7% (figure
7.0).

144
1,24

11 Hybrid
0,81 B Invalidation
0,6 4 O Update
0,4
0,2

0 T T T

4KB

8KB 16KB 32KB
Data cache size

Miss ratio in %

a. Missratio according to the data cache size

| o Hybrid

1 | Invalidation

1 0 Update
4KB

8KB 16KB 32KB
Data cache size

W W A
® © o
L

time (Mcycles)

w
b

w
>

w
o

Execution

w
=

b. Execution time according to the data cache size

[HYB
- NV
CuPD
—4— HYB/INV
—*— HYB/UPD

Reduction in %

Energy consumption (mJ)

4KB 8KB 16KB 32KB
Data cache size

¢. Energy consumption according to the data cache size

Figure 7: Performance comparison for FFT Coarse grain shared data (four
processors)

This section demonstrated that for a mixed grain shared
data application the proposed hybrid protocol can reduce
both cache misses and unnecessary updates. Moreover in
the extreme cases (Fine grain shared data application and
Coarse grain shared data application), it is able to be
adapted easily to data access patterns at run-time.

2. Performances comparison with increasing number of
processors on FFT and matrix multiplication

To determine the effect of increasing the number of
processors on the proposed protocol performances we
parallelized the FFT application on 8, 12 and 16 processors.
In this section, we compare the energy consumption for the
hybrid, invalidation and update protocols.

‘D Hybrid m Invalidation O Update

Energy consumption (mJ)

4 KB 8 KB

Proc | Proc | Proc | Proc | Proc | Proc | Proc | Proc | Proc | Proc | Proc | Proc | Proc | Proc | Proc | Proc

Data cache size

16 4 8 12 16

16 KB 32 KB

Figure 8: Energy consumption according to the data cache size and the number of processors for hybrid, invalidation and update protocols (FFT mixed (fine and
coarse) grain shared data)

The results are given in figure 8 shows that, by increasing
the number of processors, energy consumption increases for
all the protocols. In addition, our hybrid protocol performs
well. However the improvement is more interesting
compared to the invalidation protocol than to the update
protocol. Thisis due to the fact that by increasing the number
of processors the number of cache misses also increases.

The results obtained with the paralelized version of
matrix multiplication (MM) application on four processors
are shown in figure 9. The upper part of this figure (figure
9.a) proves that the proposed hybrid protocol reduces the
miss ratio compared to the invalidation protocol by up
80.6%. The reduction of the miss ratio allows a reduction of
both the execution time (figure 9.b) and the energy
consumption (figure 9.c). A gain of up 18.5% is obtained for
the energy consumption. The improvement obtained by the
hybrid protocol is also compared to the update protocol for
the MM application. Figure 9.c indicates that the energy

consumption is also reduced with the proposed protocol by
up to 3.5% for 32 KB cache size.

12

0,8 1

@ Hybrid
0,6 @ Invalidation
O Update

Miss ratio in %

04

0,2 1

4KB 8KB 16KB 32KB

Data cache size

a. Missratio according to the data cache size

a1
t=}

o
[S)

O Sériel
B Série2
O Série3

w
S
.

|

|

Execution time (Mcycles)

o
L

4KB 8KB 16KB 32KB

Data cache size

b. Execution time accordinsg to the data cache

w
3,

20

w

I HYB
=N
C—UPD
—a—HYB/INV
—»—HYB/UPD

~
35}

15

r10 .

-
o

o
[

Energy consumption
(mJ)
o
Reduction in %

o
o

4KB 8KB 16KB 32KB

Data cache zise

c¢. Energy consumption according to the data cache size

Figure 9: Performance comparison for the matrix
multiplication application on four processors

3. Overhead reduction for the hybrid protocol

Using the CACTI [15] models, we measures the overhead
of our protocol in terms of required area. Results indicate that
25% of the shared memory area is used by the proposed
protocol. This overhead is quit important. To reduce this cost
simulations with MM application have been performed to
measure the performance of the hybrid protocol when the
number of counters within the shared memory is reduced. In
other words, instead of associating the “UC” and “W”
counters with one block, these 2 counters will correspond to
b consecutive blocs. In our experiment b may have the
values: 2, 4, 8, 16 and 32. Due to lack of space, we give here
only the experimental result for the energy consumption gain
(figure 10).

57 +—

T T T T T
1 Block 2 Block 4 Block 8 Block 16 Block 32 Block

Counter Number per blocks

Figure 10: Energy consumption according to the number of blocks
associated per counter for the MM application (four processors)

This figure shows that in addition to area gain, there is a
improvement in energy consumption when the “UC” and
“W” counters are associated with 2 or 4 memory blocks. The
reason behind this gain is the spatial locality, i.e. memory

accesses to memory blocks in the same memory area have the
same patterns and thus need the same protocol. By
associating a counter for each 4 neighbor blocks the area of
the proposed protocol is only 6% of the shared memory.

V1. CONCLUSION

In order to solve performance limits due to the use of
unique protocol to maintain data cohenecy in MPSoC
equipped with a non-shared-bus network-on-chip (NoC), we
have designed a new dynamic hybrid protocol. The ESIO is
based on a completely hardware solution and using a full bit-
vector directory. We have evaluated this protocol using the
SoCLib MPSoC simulation platform with 2 parallel
applications; FFT and MM. The results show that our hybrid
protocol can significantly reduce both cache misses,
compared to invalidation protocol, and unnecessary updates,
compared to update protocol. The proposed protocol may
reduce the energy consummation by factors of 9% for the
FFT and 18.5% for the MM. More importantly, our protocol
is able to adapt automatically to data access patterns at run-
time.

REFERENCES

[1] H. Chtioui, R. Ben Atitallah, S. Niar, M. Abid, J. L.
Dekeyser, Gestion de la cohérence des caches dans les
architectures MPSoC utilisant des NoC complexes,
Symposium en Architecture de machines (SympA '2008)
February 2008.

[2] J. Archibald, J. L. Baer, Cache Coherence Protocols:
Evaluation Using a Multiprocessor Simulation Model.
ACM Transactions on Computer Systems, Nov. 1986.

[3] J. K. Archibald, A Cache Coherence Approach for Large
Multiprocessor Systems, 2nd International Conference on
Supercomputing, 1988.

[4]A .R. Kalin, M S. Manasse, L Rudolph, D. Sleator,
Competitive Snoopy Caching, 27th Annual Symposium
on Foundations of Computer Science, 1986.

[5] H. Grahn, P. Stenstrom, and M. Dubois, Implementation
and Evauation of Update-Based Cache Protocols Under
Relaxed Memory Consistency Models, Future Generation
Computer Systems, June 1995.

[6] F. M. Toussi and D. J. Lilja, The Potentia of Compile-Time
Analysis to Adapt the Cache Coherence Enforcement
Strategy to the Data Sharing Characteristics, IEEE
Transactions on Paralel and Distributed Systems, May
1995.

[7] 3. R. Goodman, Using Cache Memory to Reduce Processor-
Memory Traffic. 10th Annua International Symposium
on Computer Architecture, June 1983.

[8] C. Anderson, A. R. Karlin, Two Adaptive Hybrid Cache
Coherency Protocols, 2nd |EEE Symposium on High-
Performance Computer Architecture, 1996.

[9] H. Grahn and P. Stenstrom, Evaluation of a competitive-
update cache coherence protocol with migratory data
detection, Journal of Parallel and Distributed Computing,
1996.

[10] D. lvosevic, S. Srbljic, and V. Sruk, Time Domain
Performance Evaluation of Adaptive Hybrid Cache
Coherence Protocols, 10th Mediterranean Electrotechnical
Conference, 2000.

[11] E. Bolatin, Z. Guz, |. Cidon, R. Ginosar and A. Kolodny,
The Power of Priority: NoC based Distributed Cache

Coherency, First International Symposium on Networks-
on-Chip, May 2007.

[12] N. Eidey, L. S. Peh, L. Shang, In-Network Cache
Coherence, International Symposium on
Microarchitecture, 2006.

[13] L. M. Censier and P. Feautrier, A New Solution to
Coherence Problems in Multicache Systems, |EEE
Transactions on Computers, December 1978.

[14] R. Sendag, A. Yilmazer, J. J. Yi, and A. K. Uht,
Quantifying and Reducing the Effects of Wrong-Path
Memory References in Cache-Coherent Multiprocessor
Systems, Parallel and Distributed Processing Symposium,
April 2006.

[15] CACTI home page
http://research.compag.com/wrl/people/jouppi/CACTI.

[16] SoCLib project: An integrated system-on-chip modeling
and simulation platform, 2003.Technica report, CNRS,
URL: http://soclib.lip6.fr/.

[17] R. Ben Atitallah, S. Niar, A. Greiner, S. Meftali, and J. L.
Dekeyser, Estimating energy consumption for an MPSoC
architectural exploration, Architecture of Computing
Systems, March 2006.

