Master-Slave Control structure for massively
parallel System on Chip

Blind Review

Abstract—The performance of massively parallel processing
system depends mostly on the control configuration that is
inherently part of the system. In particular, centralized control
configuration is rigid and limits system scalability, and dis-
tributed control configuration is difficult to control in processing
elements (PEs) interaction. Maintaining a flexible autonomous
computation coupled with regular synchronous communication
can assure a efficient parallel processing. The master-slave control
structure is specified in such a way that previous features of the
massively parallel System-on-Chip (mpSoC) are preserved and
performance is improved. In this paper, we define the prototyping
of a master-slave control structure for mpSoC in a FPGA-based
platform. The structure implementation and related experiments
using the vhdl language running on virtex6é ml605 of Xilinx board
are described.

I. INTRODUCTION

By the end of the eighties, massively parallel processing
computers were much known in the community as high
performance machines, especially in term of computing speed.
Most of those machines can be classified into two general
categories based upon the number of instruction streams active
concurrently with the computational engine. Those parallel
processing systems that execute a single thread of control are
labeled Single Instruction, Multiple Data (SIMD) machines.
Those that have the capability of executing many separate
threads of control are called Multiple Instructions, Multiple
Data stream (MIMD) machines. Despite their success and their
suitability for a class of applications, the popularity of the
SIMD machine is decreasing because of its rigidity mainly
due to the centralized control which allows only synchronous
broadcast and execution of each instruction. Otherwise, the
distributed control in MIMD, makes the task of processors
interaction difficult to manage. To broaden the applications
scope, mixed-mode parallel processing systems add a new
dimension in that they are capable of executing instruction in
both SIMD and MIMD modes of parallelism and can switch
between the two modes at instruction level granularity. But
when using classic control system to switch from MIMD to
SIMD mode, some processors may remain idle while they
wait for the other processors to reach the switch point. This
overhead and this difficult inter-PEs coordination control can
degrade the performance of mixed-mode systems.

Nevertheless, nowadays, many modern application domains
are concerned by the conjunction of regular parallel algorithms
and high computing resources. They include signal and image
processing applications such as software radio receiver, sonar
beam forming, or image encoding/decoding. Furthermore, the
implementation of the system on a single chip will be of

prime interest for those applications that also require some
degree of embeddedness. Present massively parallel System-
on-Chip (mpSoC) have demonstrated their suitability for these
modern applications but they are still limited by their rigidity
due to classic control configuration, which is the inherently
part of a mpSoC system. Therefore, the implementation of the
control structure that coordinates the use of shared resources,
must be carefully designed to avoid limiting system scalability.
We define the master-slave control structure, which provides
parallel local control when independent parallel execution is
possible and global coordination when global synchronization
is needed. This solution gives more execution flexibility and
improves the scalability of systems, which can handle hun-
dreds or even thousands of independent Processing Elements
(PEs).

The objective of this paper is to reconsider the interest and
the feasibility of a master-slave control structure into massively
parallel architecture, especially in the context of single chip
system integration. The goal of this structure is to provide in a
single System-on-Chip two levels of control units: the Master,
which controls system execution and allows synchronous com-
munication and the array of slaves, which achieves parallel
multifunctional control: parallel PE activities, parallel inter-PE
communication, parallel synchronization, and parallel instruc-
tions execution. This structure allows autonomous processing
with simple and regular communication, which improve the
system execution time. We provide an RTL version that leads
to a physical realization onto FPGA.

The next section presents some significant works related
to control structure in massively parallel systems. Section
3 introduces the master-slave control paradigm. The design
of SCU controller is described in section 4. The structure
implementation and the performance evaluation are presented
and discussed in section 5.

II. RELATED WORKS

A small number of projects over the last thirty years used the
idea of a hierarchical control structure for parallel computer.
The EGPA project [1] was based on a pyramidal hardware
hierarchy. The processors on the bottom layer were connected
in a square mesh pattern and executed user code, while higher
levels were used by the operating system. However, it was
never extended beyond two levels, and no operating system
algorithms were published for it.

Systems like Micros [2] and Chopp [3] used the software
approach, creating a dynamic virtual hierarchy as needed.
Thus, some of the processors were used for control, and

those left over were available for users. These hierarchies
were only used to map groups of processes to processors,
thus partitioning the machine. Once a group of processes was
mapped, it was executed without preemption until all processes
terminated. Therefore, these systems were not interactive.

Several prototypes of mixed-mode (SIMD/MIMD) systems,
e.g., PASM [4], TRAC [5] and OPSILA [6], were implemented
before the mid 1990s using a static two-level hardware control
structure. In these systems, the processors serving as control
units and the computing PEs were most often exclusively
defined at static time and there was an interconnection network
between these two groups. Thus, the sole assignment of a
processor either as a control unit or a PE was fixed throughout
execution. This can cause performance degradation due to
inefficient utilization of the available resources. Hence, they
are less scalable and the partitioning is also not optimal.

Fifteen years after the decline of traditional massively
parallel systems, significant evolutions of system design, sil-
icon integration technology and growing application com-
puting power requirement have change the context and it
clearly seems important to consider and verify the feasibility
and performances of massively parallel machines on a chip.
We note the Hierarchical SIMD (H-SIMD) [7] System-on-
Chip with hierarchical control composed of three layers:
the host controller, the FPGA controller and nano-processor
controllers. The switch between pairs of data memory banks
overlaps operand communications with computations, thus
hiding communication overheads to improve performance. The
limit of this architecture is that the external host controller
requires additional hardware resource other than the FPGA
platform.

Recent years have seen related research known by mixed-
mode HERA system on chip [8]. Every PE in HERA is
equipped with its own control unit so that not only the whole
system is dynamically partitionable, like previous mixed-
mode systems, but also the role of each PE can be changed
dynamically at runtime by using an HERA instruction, as
needed. Although, the flexibility and the performance of this
system, the switching mode and PEs communications seem to
be tedious and time consuming.

Our purpose here is to present the new master-slave control
approach which allows switched execution mode in the same
parametric and modular hardware implementation. This struc-
ture is designed into mpSoC where each PE executes parallel
instructions and then synchronously communicates with its
neighbors via regular X-net network. The key features include:
mask identification, node activity, autonomy execution, regular
communication and barrier synchronization. All these features
are controlled by the SCU component.

III. MASTER-SLAVE CONTROL STRUCTURE

Generally speaking, the control of resources in a massively
parallel system can be centralized or distributed, or some com-
bination of the tow. Specifically, the following configurations
have been proposed:

1) Centralized configuration in SIMD system: In this ap-
proach, the operating system runs on the master pro-
cessor and broadcasts parallel instructions to the PEs.
The master is a critical component in such systems; if
it becomes overloaded, the whole system is affected.
As a consequence, this design has limited scalability. In
addition, at each clock cycle, each PE executes the same
instruction under the direction of the master in lockstep
manner. This synchronous execution induces the system
rigidity.

2) Distributed replicated configuration in MIMD system: In
this decentralized approach, the operating system runs
on each processor with full copy of its data structures.
This avoids the critical control of master processor but
places a large demand on storage space. Also, the key
point in parallel computing is that the processors can
interact easily, and such interaction is difficult to control
in a loosely coupled system.

\
\
1
]
I
’

/
2

1

PE1S
scu

Network
Control
MCU fe= =222/

MCUInst

G, &

o | (B
[T=E = |
scus scua scus
@——e Memory Connection [|
<«—> Processor Connection r Pet 3 l—“ ﬂ o] l—» R =
]

\ | scus scu7 scus !

Slave Controls Network

Fig. 1. Hardware prototype of Master-Slave control structure for mpSoC

A novel control structure is proposed for the massively
parallel System-on-Chip, referred to as master-slave control.
Its concept departs from the first configuration, the centralized
configuration. However, instead of a uni-processor master
controlling a set of parallel PEs, the master cooperates with a
grid of parallel slave controllers which supervises the activities
of cluster of PEs. We define, as shown in fig 1, the hardware
implementation of this configuration in massively parallel
system:

e The Master Control Unit (MCU), which controls the
order execution in the whole system. It is a simple
processor, which fetches and decodes program instruction
and broadcasts execution ordres to Slave Control Unit.
It control the end execution to establish synchronous
communication.

e The Slave Control Unit (SCU), which controls: local node
and PEs activities, parallel instructions execution and
synchronous communication. It is a crucial component in
the master-slave control structure. The SCUs grid allows
independent parallel execution.

The hardware architecture is composed of a single MCU
and multiple Slave controllers (SCUs) combined with local
processing element (PE) (or a cluster of 16 PEs), known
collectively as Nodes. The MCU and SCU array are con-
nected through single level hierarchical bus and the SCUs
are connected together through X-net interconnection network.
This network is clocked synchronously with the SCUs and
respectively with the PEs. SCU controllers in the grid care
for the instruction execution activities that involve a large
degree of parallelism and the communication activities that
need to coordinate all the PEs in the grid. Note that the SCU
controllers do not limit performance; they do not become a
sequential bottleneck. They participate only in the controlling
and scheduling of very large groups of PEs execution at a
time. Their functionality will be detailed later.

The idea of master-slave control should be distinguished
from other hierarchical or clustered approaches proposed for
parallel computing. Such proposals are usually motivated by
memory latency considerations and the desire to build a
scalable system. The use of two control levels is therefore
visible to the user in its effect on the communication between
various processors. With master-slave control structure, the
PEs in massively parallel system can execute independently
and then can communicate synchronously. Such a construction
has the advantage of allowing the designer to optimize distinct
processors for their intended tasks and to implement sim-
ple interconnection network without additionally buffers and
complex routing algorithms. Separate communication phase
from computation one, not only allows structural and regular
processing, but also gives the flexibility on the choice of
computation mode (SIMD or SPMD) in the same hardware
implementation, which improve the system execution time.

IV. DESIGN OF MASTER-SLAVE CONTROL STRUCTURE

Distinguish computation stage of that of communication
needs the separation of these two stages in different blocks.
This repartition should be provided by the designer at pro-
gramming level. Then, the execution of computation blocks
will be done in SIMD (by sending the parallel instruction)
or SPMD (by sending the reference address of local memory
program) computation mode according to the program descrip-
tion. In fact, operating system must decide not only which
program executes when, but also where. Specifically, we can
allocate groups of PEs to distinct parallel instruction blocks
that run side by side, rather then always giving the whole
system to one program and switching from one program to
another. To perform this feature while avoiding the centralized
control, we define second control level, other than the MCU,
achieved by the SCU component.

A. SCU architecture

The SCU is the major component in the master-slave
structure. It is composed of 4 connected modules, as shown
in fig. 2, to control four main mechanisms:

e Local activity: achieved by the SCU_Activity module.
It controls the local activity through the broadcast with

ORTREE, END(15:0)

OR_TREE

CMD(15:0) PE_INST (15:0)

INSTR(31.0)
< —

DATA_RCE (15:0)
et

SCU_Activity =2l

MCU interface
eoepeul 3d

local_Control || ..
_
E

—E SIMD/SpMD.

|

COM_Control

-4 Ela
N ofg
3 EH
CONLINSTR (15:0)x6

SCU_ROUTER
A xet (1bif) x 6

SCU_COM

MASK(2:0)
—

s1)

(©

J

SCU

Fig. 2. Architecture of the Slave Control Unit (SCU)

L

@oeIeUl YioMiou

mask mechanism [9]. Only activated SCUs receive in-
structions from the MCU while the others are in the idle
state;

o PEs activity/parallel execution: achieved by the lo-
cal_Control module. It controls the activity of PEs in-
volved in the processing and the execution of parallel
instructions;

e Regular communication: achieved by the SCU_COM
module. It controls the inter-SCUs data transfer using
communication instructions, which specify the commu-
nication parameters (direction and distance);

¢ System synchronization: achieved by the OR_Tree mod-
ule. It is a barrier synchronization that allows the SCU
controller to always know if all activated PEs achieved
the processing.

These mechanisms will be presented in details through the
next sections.

1) SCU-activity: The overhead due to the “mask” construc-
tion involves the time spent by the Control Unit in determining,
which PEs should be enabled/disabled in the grid. To reduce
the effects of this overhead, master-slave control achieves
massively parallel masking operations in two steps using the
broadcast with mask [9] mechanism through the SCU-activity
module. First, it identifies active nodes according to a specific
mask. In fact, using the mask instructions shown in table I,
this module sets to 1 the bit flag (BF) register inside each
node involved in the processing. Consequently, only nodes
with BF register set to 1 will receive parallel instructions.
Second, when the mask is mapped onto the SCUs-grid, the
SCU-activity module decodes broadcast instructions, which
are presented in table I. According to these instructions, the
MCU broadcasts parallel execution orders to selected nodes
while the mask is not changed. Each active SCU receives 32
bits parallel instruction and then sends the first sixteen most
significant bits (MSB) to CMD output (it represents the control
SCU instructions) and the last sixteen least significant bits
(LSB) to ISCU output (it represents the SIMD instructions or
SPMD reference address for PEs).

We notice that the use of SCU-activity module in the master-
slave control structure allows the sub-netting of the SCU

TABLE I
MASK AND BROADCAST INSTRUCTIONS SET

Mask Instructions
selbf (000) | activate SCUs in the selected set
selbfand (001) | activate SCUs in the intersection of sets
selbfor (010) | activate SCUs in the union of sets
selbfxor (011) | activate SCUs in the union of sets except
the intersection part
Broadcast Instructions
brdbf (100) | broadcast parallel instructions to active SCUs
brdbfb (101) | broadcast parallel instructions to inactive SCUs
brdall (111) | broadcast parallel instructions to all the SCUs

PE_INST(15:0)

R_SCU, | ropE, | aulluy | le—]
(1s:0) PEO
oatafheehs.
Sibit) R_SCU, R_PE,
(15:0) (15:0) R willbits
R_ISCU H
(15:0) ™

5

¥

15CU(15:0}

CMD(15:0) :
il {—p Instruction |siMp mivp

decoder |p¢ st
[PE

E1bing |

it E(15:0)
R_SCU, R_PE,; —f——f
; L w wlfbi e
(15:0) (15:0) N PE15
oush)
o0,
lmr IA lcOM_\NST IMD_SPMID (1hith16

R_COM
(15:0)

lcoM (15:0) |pir(2:0)

IA(lhit] COM_INST(15:0)

Fig. 3. Architecture of the local-Control

grid which optimizes the data flow transfer and increases the
parallel broadcast domains. This control of the network traffics
improves the power allocation to the processing nodes. After
sub-netting the network, the parallel execution orders will
be broadcasted to local-control module, which controls the
computation and communication phases. This module will be
detailed in the next section.

2) Local-control: The overall structure of the local-control
is shown in fig. 3. The main sub-module in local-control is
the Instruction Decoder, which is the master of inter-nodes
communication and cluster PEs activities. First, it selects the
computation mode (SIMD or SPMD) and activates the PEs
according to the local mask. It transfers data between SCU/PEs
or inter-SCUs in the network, if it is requested, and controls
PEs instructions execution through the tree of end signals. The
switch between the two modes of parallelism and the control
of computation/communication in cluster of PEs are done in
a single clock cycle at instruction level granularity as defined
in Table II.

The local-control defines specific registers:

« R_COM, which contains data to be sent into the inter-
connection network;

o R_ISCU, which contains reference address or parallel
instruction to be sent to the active PEs in the cluster;

« R_SCUi and R_PEi, which serve as temporary memory
for SCU data and PE data, respectively.

The data busses in this module are 16 bits wide and each

instruction is a 16-bits word.

The simplicity of the PEs activities and the decentraliza-
tion of parallel execution control, through the local-control
module, makes the task of the selection of execution modes
(SIMD/SPMD) easy and flexible in the same mpSoC architec-
ture. These features improve system scalability to fit modern
application requirements.

3) SCU-COM: The SCUs components in mpSoC system
are connected in two-dimensional mesh to form the X-net
interconnection network via specific communication module
called: SCU-COM. In fact, SCU-COM module at each SCU
component allows communications with any of 8 neighbors
using only 6 wires per component. Each SCU-COM has two
hierarchical routers presented in the fig. 4:

(a) R-SCUXnet with 5 connections: 4 at its diagonal
corners and one connected to the COM-Control
module, which manages directions and distances of
communications;

(b) R-Xnet with 4 connections at its diagonal corners,
forming an X pattern.

Each Xnet router can take 4 different directions: North West,
North East, South West, South East. But, the data should be
able to move in 8 directions. This is done with the couple ("R-
Xnet” , "R-SCUXnet”), which receives the specific direction
from COM-Control and then calculates the one to take.

Local
n in

Direction

e u\\—‘““

13
RGN

(a)

(b)

Fig. 4. Architecture of the SCU-Router

In some cases, the connections at the SCU array edges
are wrapped around to form a torus, which facilitates several
important matrix algorithms. All SCUs have the same direc-
tion controls so that, for example, every NE-COM sends an
operand to the North and simultaneously receives an operand
from the South. The X-Net uses a bit-state implementation,
clocked synchronously with the SCUs to identify nodes, which
participate in communication; all transmissions are parity
checked. Inactive SCU-COMs can serve as pipelines stages to
expedite long distance communication jumps through several
SCU-COMs. This transfer of data occurs without conflicts.

TABLE II
SCU INSTRUCTIONS

Name
CMD(16bits) ISCU(16bits) | Function
Opcode(6bits) (5bits) (5bits)
TAC_IND (000000) R_SCUi address Activate PEs according to the mask in R_SCUi register
SPMD TAC_ALL (000001) Activate all PEs
Instruction TIC_IND (000010) R_SCUi address Deactivate PEs according to the mask in R_SCUi register
TIC_ALL (000011) Deactivate all PEs
SIMD SIMD_IND (000100) R_SCUi P_INST Activate PEs according to the mask in R_SCUi register
Instruction SIMD_ALL (000101) P_INST Activate all PEs
Transfer MOV (000110) | R_SCUi/R_PEi | R_SCUj/R_PEj Move R_SCUj/R_PEj register in R_SCUi/R_PEi register
Register MOV_I (000111) R_SCUi value Move value in R_SCUi register
MOV_R_COM (001000) R_SCUi Move R_COM register in R_SCUi register
Communication | MOV_W_COM (001001) R_SCUi Move R_SCUi register in R_COM register
Instruction COM_S (001010) DIR DIST SEND data from R_COM register to network
COM_R (001011) DIR DIST RECEIVE data from network to R_COM register

Sending and receiving data through networks are managed
by different communication instructions. A given Xnet com-
munication allows all the SCUs to communicate together in
a given direction at a given distance through the SCU-COMs
modules. Direction and distance are here the same for all the
SCUs. Such communication is realized in several communi-
cation phases driven by the SCU through the local-Control
module that decodes the communication instructions and then
sends the appropriate micro-instructions (SEND_XNET and
RECEIVE_XNET) to the SCU-COMs modules to establish
the communications links.

Through this regular and modular interconnection network,
synchronous communications can be achieved via simple rout-
ing design without additionally buffers and complex routing
algorithms.

4) OR-Tree: The Barrier synchronization is a high latency
operation and a number of machines have proposed or imple-
mented fast barrier mechanisms in hardware. Several systems
have implemented either dedicated barrier networks [10],
[11] or provided hardware support within existing data net-
works [12], [13]. The OR-Tree is a mechanism for global
OR; serves as a test for checking the state of the network of
nodes. It is performed by a tree of "OR” gates which compares
the end execution signals of all the nodes in pairs. It is a
barrier synchronization that allows the controllers to know if
all activated PEs finished the computation. The master-slave
control structure supports two hardware barrier mechanisms.
The first one integrated in the SCU component to test the end
execution in cluster of PEs and the second one in the SCU-grid
to test the end execution in the SCU network.

Using a combination of conditional and recursive instan-
tiation, a structural architecture for OR-Tree is defined in
fig. 5. In fact, The OR-Tree module takes a generic parameter
width, a compile-time value specifying how many inputs the
OR-Tree operates on. It also takes an array of inputs, width
elements long, and produces a single output representing the
logical disjunction of all the inputs. Using a combination of
conditional and recursive instantiation, a structural architecture
for OR-Tree is defined.

Architecture structural of OrTree is
signal lout, rout: std logic;
begin
baseCase : if width = 1 generate
o <= ins(0);
end generate;
recursiveCase: if width > 1 generate
left : entity OrTree
generate map (width/2)
port map (lout, ins(width/2 downto 0));
right: entity OrTree
generate map ((width+1)/2)
port map (rout, ins(width-1 downto width/2));
joint: o <= lout or rout;
end generate;
end structural;

Fig. 5. Structural architecture of an OR-Tree in VHDL

V. EXPERIMENTAL RESULTS
A. Hardware cost

Using the TP blocks of master-slave control structure in
mpSoC, it was easy to prototype different configurations on
the FPGA Virtex6 ML605 device. The table IV shows some
synthesis results varying the mpSoC parameters as well as its
integrated components. The processor used in these designs is
the forth [14].

TABLE III
SYNTHESIS RESULTS ON VIRTEX6 ML605

Logic Utilization
Module LUTs | Registers
SCU-Activity 4 2
local-Control 652 304
SCU-COM 202 50
OR-TREE 3 0

Almost the entire cost of providing master-slave control
structure is silicon area used by the SCU component. The SCU
contains four control modules, which are likely to be small as
shown in table III. In fact, table IV shows that for 100 nodes
with 2-bytes instructions buses on the current Virtex-6 ML60S5,
having 100 PEs with 4KB memory each one, the SCUs occupy
about 38% total consumed on-chip logic area; For 16 PEs,

with 4KB per PE, it is around 16%. These numbers are large,
but as feature size decreases, the incremental cost of adding
SCU functionality to mpSoC control system quickly becomes
small.

Memory still a critical component in the context of mpSoC
scalability. Indeed, the challenge for massively parallel on-chip
implementation is the reduction and optimization of memory
allocation. This problem does not arise in this case because
the consumption of memory blocks does not exceed 13%.
In addition, comparing different configurations, we note that
although it is expensive on surface occupation, the mpSoC
with master-slave control is not enormously power consumer.

We clearly notice that the mpSoC with master-slave control
structure consumes more FPGA area than the simple mp-
SoC system. Thus, depending on his needs the designer can
integrate the needed components (interconnection network,
number of SCU controllers and number of PEs per cluster) in
the selected mpSoC configuration. The use of reconfigurable
IP blocks significantly facilitates the monitoring of processing
nodes with rapid modification of system configuration. Con-
sequently, the master-slave control permits this system to be
flexible, scalable and easily tuned according to the application
requirements.

B. Validation

What performance improvement may be expected by adding
the master-slave control to mpSoC ? This section gives better
insight on the performance of the proposed flexible mpSoC
system. The fig. 6 presents the execution time results running
FIR filter application on mpSoC using master-slave control and
compared to other systems using centralized (SIMD system)
or distributed (MIMD system) controls. The result is based
on an impulse response with a length of four, which in the
chosen implementation requires four multiplications and three
additions per output signal. The rest of the instructions are
overhead in forms of communication and memory instructions.

Execution Time (ps)

1’5 I I I I
D’ I

mpSoC (FORTH + X- mpuSoC(mliPsf ESCA (DSP + mesh MDﬁDSPwlthout Revolver (DSP+RISC
net network) linear network) network) processors)

-

w

°

distributed control
(MIMD)

master-slave control centralized control (SIMD)

Fig. 6. Execution time of FIR filter processing

From these experiments we demonstrate the effectiveness of
mpSoC with master-slave control to compute FIR application.
We notice that this mpSoC architecture allows more rapid
processing than mppSoC [15] and ESCA [16] SIMD archi-
tectures. This can be explained by the use of a simple planar

and modular design in our mpSoC architecture. In fact, the
use of a master-slave control decentralizes system monitoring,
which allows autonomous and rapid processing.

In addition, the integration of reconfigurable and regular
X-net network supplies reliable synchronous communication
through simple interconnection without additionally buffers
and complex routing algorithms. With this network, indepen-
dent PEs can interact easily opposed to MIMD architecture
where PEs coordinations are difficult to control. This can
explain why the overall execution time in our mpSoC system
is less than in Revolver architecture [17].

We notice comparable results between our mpSoC execution
and the DSP [18] execution. This is explained by the fact
that the DSP is realized on an ASIC and presents a higher
frequency than the FPGA based mpSoC with master-save
control. Nevertheless, the DSP is slightly faster than our
proposed SoC.

This analysis demonstrates the efficiency of master-slave
control to compute data intensive processing application. In
fact, it allows the PEs of our mpSoC to adopt a faster
instructions execution than the PEs of existing massively
parallel machine and provides parallel inter-nodes coordination
when needed without compromising system speed-up. Giving
these results, it is possible and convenient to increase the
performance of massively parallel system, both from the
technological and from the architectural point of view.

C. Evaluation

Performances. The master-slave control is interesting for
general purpose parallel algorithms which require the simul-
taneous execution of a number of parallel tasks. It coordinates
the partitioning and the control of resources among the running
programs due to the changing needs of switched computation
models. This structure permits the development of large,
modular parallel systems by allowing the different modules
to be programmed and executed as if they were independent
jobs. The mpSoC using this technique scales very well, and
its use dramatically decreases the total execution time because
the synchronization is needed only in the communication stage
which allows a simple system control with a single clock
domain (one distributed clock). In this last case, this becomes
clearly an advantage for data parallel applications on large
scale where power efficiency is required. Nevertheless, be
aware that there is a small area overhead when designing
the master-slave control that needs extra-hardware components
(the SCUs) in mpSoC system to switch and control computa-
tion modes.

Ease of use. The designer has to configure the parallel
processing system and then broadcast parallel instructions
or reference memory addresses to activated nodes accord-
ing to the chosen computation modes (SIMD or SPMD).
To better monitoring the computation modes in the same
hardware implementation and coordinate between PEs without
compromising scalability, the master-slave control structure
is integrated onto an existing mpSoC architecture. So that,
the designer does not need a new design to achieve previous

TABLE IV
SYNTHESIS RESULTS ON VIRTEX6 ML605

System Number Logic Utilization Total Memory Power
SCUs LUTs Registers | % 18Kb Block RAM % | Consumption
(4096 bytes RAM-PE) (mWatts)
mpSoC 16 19155 2209 14 8 1 2989
with centralized 64 81245 8823 56 32 7 | 3000
control 100 135515 14309 93 55 13 | 3215
mpSoC 16 19282 2645 15 8 1 2987
with master-slave 64 81544 11644 57 32 7 3179
control 100 142887 23222 97 55 13 | 3329
features, but only adds control instructions as shown in table II. [6] P. Duclos, F. Boeri, M. Auguin, and G. Giraudon, “Image processing
This ease of use is an argument in favor of a systematic usage on a simd/spmd arghitecture: Opsila,” in Ninth International Conference
. on Pattern Recognition, Nov. 1988, pp. 430 — 433.
of this control structure. [71 Xu and Xizhen, “A hierarchically-controlled simd machine for 2d dct
Implementation. The master-slave control structure is com- on fpgas,” in SOC Conference, 2005, pp. 276 — 279.
posed of two levels of reconfigurable IP blocks. In addition to (8] X. Wang and S. G. Ziavras, “Exploiting mixed-mode parallelism for

. . . matrix operations on the hera architecture through reconfiguration,” in
the MCU, which Only spemﬁes the mask Conﬁguratlon and IEEE Proceedings, Computers and Digital Techniques, Jul. 2006, pp.
the computation mode, the grid of SCUs controls the PEs 249 — 260.
activities, the parallel instructions execution and synchronous ~ [? H. Krichene, M. Baklouti, P. Marquet, J. L. Dekeyser, and M. Abid,

.. “Broadcast with mask on a massively parallel processing on a chip,”
data communication. Independent control and management in High Performance Computing and Simulation (HPCS2012), Madrid,
for processing nodes not only gives more flexibility to the Spain, Jul. 2012, pp. 275 — 280.
system, but also increase system scalability through the use [10] R. H. Arpaci, D. E. Culler, A. Krishnamurthy, S. G. Steinberg, and

. . K. Yelick, “Empirical evaluation of the CRAY-T3D: a compiler per-
of relatlvely 51mple and reconﬁgurable IPs. Such a structure spective,” in The 22nd annual international symposium on Computer
is interesting to support parallel distributed computations. architecture (ISCA95), New York, NY, USA, May 1995, pp. 320 — 331.

[11] C. E. Leiserson, Z. S. Abuhamdeh, D. C. Douglas, C. R. Feynman,

VI. CONCLUSION M. N. Ganmukhi, J. V. Hill, W. D. Hillis, B. C. Kuszmaul, M. A. S.

Pierre, D. S. Wells, M. C. Wong-Chan, S. W. Yang, and R. Zak, “The

In this paper, we have defined master-slave control structure network architecture of the connection machine CM-5,” vol. 32(2), New
as a new concept in the field of massively parallel processing York, NY, USA, May 1996, pp. 145 — 158.

. [12] D. K. Panda, “Fast barrier synchronization in wormhole k-ary n-cube
SyStem'On'Chlp' This structure avoids the limits of centralized networks with multidestination worms,” in The Ist IEEE Symposium on
control type systems, in which the master can become a High-Performance Computer Architecture (HPCA95), Washington, DC,
bottleneck, and totally distributed systems, which lack global USA, Jan. 1995, p. 200.

c. .. . [13] S. L. Scott, “Synchronization and communication in the T3E multipro-
PEs coordination. Combining the goals of being scalable, and cessor,” in The 7th international conference on Architectural support
fulﬁlling the paradigm of simultaneous parallel executions, for programming languages and operating systems:ASPLOS-VII, New
the master-slave control structure provides, in a potentially York, NY, USA, 1996, pp. 26 - 36.
. . . [14] R. Haskell and D.M.Hanna, “A VHDL forth core for FPGAs,” Micro-
simple and straightforward manner, the best attributes of both processors and Microsystems, vol. 28, pp. 115 — 125, Apr. 2004.
the SIMD and SPMD modes of computation in a same on- [15] M. Baklouti, “A rapid design method of a massively parallel system
Chip System. When it is actually implemented, we can carry on chip: from modeling to fpga implementation,” in http://tel.archives-
. . ouvertes.fr/tel-00527894/en/, Dec. 2010.
out a full cost/performance analysis. The ideas presented here [16] P. Chen, K. Dai, D. Wu, J. Rao, and X. Zou, “Parallel algorithms

are a step towards building a new theory of massively par-
allel execution model based on Synchronous Communication
Asynchronous Computation: SCAC model.

REFERENCES

W. Handler, A. Bode, G. Fritsch, W. Henning, and J. Volkert, “A tightly
coupled and hierarchical multiprocessor architecture,” in Computer
Physics Communications, Jul. 1985, pp. 87 — 93.

A. van Tiborg and L. Wittie, “Wave scheduling - decentralized schedul-
ing of task forces in multicomputers,” in IEEE Trans. Computers, 1984,
pp. 835 — 844.

H. Sullivan, T. Bashkow, and D. Klappholz, “A large-scale, homoge-
neous, fully distributed parallel machine, ii,” in Proc. 4th Ann. Int’l
Symp. Computer Architecture, Mar. 1977, pp. 118 — 124.

H. J. Siegel, T. Schwederski, W. G. Nation, J. B. Armstrong, L. Wang,
J. T. Kuehn, R. Gupta, M. D. Allemang, D. G. Meyer, and D. W.
Watson, “The design and prototyping of the pasm reconfigurable parallel
processing system,” in Parallel Computing: Paradigms and Applications,
International Thomson Computer Press, London, UK, Jun. 1996, pp. 78
- 114.

G. J. Lipovski and M. Malek, “Parallel computing: Theory and compar-
isons,” in John Wiley & Sons, New York, USA, Jun. 1987.

[2]

[3]

[4]

[5]

(17]

(18]

for FIR computation mapped to ESCA architecture,” in International
Conference on Information Engineering (ICIE), Beidaihe, Hebei, Aug.
2010, pp. 123 - 126.

J. Oberg and P. Ellervee, “Revolver: A high-performance mimd archi-
tecture for collision free computing,” vol. 1, Vasteras, Aug. 1998, pp.
301 — 308.

C. Xiaoyi, Y. Qingdong, and L. Peng, “Data bypassing architecture
and circuit design for 32-bit digital signal processor,” in Journal of
Electronics, Nov. 2005.

