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Abstract. In a model-driven development context, the refinement of the
architectural model of a real-time application to a Real Time Operating
System (RTOS) specific model is a challenging task. Indeed, the different
design choices made to guarantee the application timing properties are
not always implementable on the target RTOS. In particular, when the
number of distinct priority levels used at the design level exceeds the
number allowed by the RTOS for the considered application, this refine-
ment becomes not possible. In this paper, we propose a software pat-
tern called Distinct Priority Merge Pattern (DPMP) that automatically
perform the re-factoring of the architectural model when this problem
occurs. First, we give an heuristic algorithm describing this pattern and
we show that this method is not always effective. Then, to address the
limitations of the first method, we propose a MILP formulation of the
DPMP pattern that allows to check whether a solution exists and gives
the optimal one. The evaluation of the second method, allows to estimate
a cost in terms of processor utilization increase during the deployment
of an application on a given RTOS family characterized by the number
of distinct priority levels that it offers.

Keywords: Real-Time Validation, Architectural Model, RTOS-Specific
Model, Software Pattern, Re-factoring, MILP Formulation;

1 Introduction

In order to increase productivity and reduce the time-to-market during the de-
velopment of Real-Time Embedded Systems (RTES), Model-Driven Develop-
ment(MDD) proposes solutions by introducing intermediate models, from re-
quirements specification to the binary code, that allows verification activities at
each level of abstraction. In a software development context of such systems, the
designer makes different architectural choices, at the design level, to describe
the realization of the application. Then, a verification of timing properties is
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performed to assess these choices. This verification step requires an abstrac-
tion of some information related to the underlying Real-Time Operating System
(RTOS) such as scheduling policy, communication mechanisms, etc. In fact, the
design model is a Platform-Independent Model (PIM), thus most of the verifica-
tion tools [1][2] used to validate this model make assumptions about the target
RTOS and consider that is an ideal one offering thus unlimited (software) re-
sources without any limitation. In that case, the refinement of the design model
to an RTOS-specific model, which corresponds to a deployment phase, is a non
trivial transformation because the assumptions made may be not verified for the
selected RTOS.

In previous works [3][4], we have proposed a model-driven approach to guide
the transition from real-time design model to an RTOS-specific model and to
verify the correctness of the resulting model in terms of timing properties. This
approach integrates two steps; a deployment feasibility tests step and a mapping
step. The approach is based on explicit description of the abstract platform used
to verify the design model and the concrete one corresponding to the RTOS.
The different platform models are created using UML enriched with the Software
Resource Modelling (SRM) sub-profile of MARTE [5]. Indeed, the deployment
feasibility tests step defines a set of tests to verify whether the real-time design
model is implementable on the target RTOS. When a problem is detected an
error is generated to inform the designer about the source and the rationale of
the problem.

In the present paper, we extend the proposed approach by introducing an
automatic pattern-based re-factoring of the design model when a deployment
problem is detected. Indeed, in this paper, we are interested in a particular
one that occurs when the number of distinct priority levels used to validate
the real-time application is greater than the number authorized by the RTOS.
Indeed, at the design level, this number is supposed to be unbounded which is
not the case for the majority of RTOSs that offer a limited number of distinct
priority levels or when for extensibility concerns this number is bounded for a
particular application in order to conserve spare priorities for additional future
functionalities.

To address this issue, we propose a software pattern that we call Distinct Pri-
ority Merge Pattern (DPMP). For a particular application, this pattern looks at
reducing the number of used priority levels by merging harmonic tasks having
distinct priorities while ensuring the respect of timing properties. In this paper,
we show that using a heuristic method to formulate this problem is not always
effective and we propose a Mixed Integer Linear Programming (MILP) formula-
tion of this pattern. Given a design model as input and a RTOS as target, our
linear program checks whether a solution exists and finds the optimized one in
terms of processor utilization. An evaluation of this pattern allows to estimate
the performance loss when deploying a real-time application on a given RTOS
family characterized by the number of distinct priority levels that it offers.

This paper is organized as follows. The first section briefly describes a design
refinement (toward implementation) method and specifies the assumptions that
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must be fulfilled by the considered design models. In section 2 we describe the
context, the problem and the solution of the proposed pattern. In section 3,
two formulations of the DPMP pattern are given; algorithmic description and
MILP formulation. Some experimental results are given in section 4 to evaluate
our proposal. Section 5 presents some related work and section 6 concludes the
paper.

2 A Method for Design Refinement

The objective of the proposed method is to reduce the gap between the design
and the implementation models during real-time application development pro-
cess. In this section we briefly describe the proposed method. Then, we give a
formal description of the design model.

2.1 Method Overview

Fig.1 gives an overview of the proposed refinement method. The entry point is
a design model that is generated following the methodology given in [1]. In fact,
this methodology introduces timing verification from the functional level in or-
der to ensure that the constructed design model satisfies the application timing
requirements.

Fig. 1. Design Refinement Method Overview

Our objective is to ensure a correct transition from a correct design model, to
the implementation model while preserving its timing properties. Indeed, we are
interested in the semantics of the software platform resources involved during
the refinement. To this end, in previous work [3], we have proposed to integrate
two steps; deployment feasibility tests (1) step and mapping step (2). The first
step defines a set of feasibility tests to verify whether the design choices are
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implementable on the target RTOS. When no feasibility concerns are raised, the
mapping step generates the appropriate RTOS-specific model. These two steps
are based on an explicit description of an abstract platform used for validation
[3] and a concrete platform which corresponds to the RTOS. The mapping ver-
ification step (3) previously introduced in [4], defines the set of properties that
must be verified to confirm the correctness of the refinement.
In this paper, we are addressing the case where the design model is not imple-
mentable on the target RTOS. In that situation, the deployment feasibility tests
step generates a warning to highlight that the input model is not implementable
for a particular reason. One objective of our work is to guide the designer by
proposing solutions whenever the refinement is not feasible. To this end, we
create a pattern base which collects a set of predefined patterns. Each pattern
aims at solving a particular deployment problem in the case where some partic-
ular assumptions are fulfilled by the considered design model. Therefore, when a
problem is detected, we verify if a pattern corresponding to this problem exists
in the pattern base. If it is not the case, our framework generates an error to
inform the designer that the design model is not implementable on the selected
RTOS and that no solution is available to solve the problem. Otherwise, when a
pattern is available (4), we perform the re-factoring of the design model by apply-
ing this pattern. This re-factoring must guarantee two points: (1) the portability
and (2) the preservation of timing properties. Regarding the first point, even
if the re-factoring of the design model is performed to handle the deployment
problems related to the target RTOS, it must still independent from the latter:
the resulting design model (denoted new design model in Fig.1) is also a PIM.
In order to ensure the second point, the new design model must be revalidated
(5). After performing the revalidation, if the timing properties are not verified,
an error is generated to mention that the model is not implementable and no
solution is available (6).

2.2 Design Model Formalization

We assume that the considered real-time design model consists of m periodic
tasks that we denote by M = {T1, T2, . . . , Tm} running in a single-processor sys-
tem. Each task Ti is defined by a set of parameters deducted from the high-level
model (functional model) and the architectural choices enabling thus the timing
validation. Indeed, a task Ti is characterized by its priority pi, its execution time
ci which is considered as input in our case, its activation period Pi supposed to
be an integer in this paper and its deadline Di that represents the time limit
in which a task must complete its execution. We assume that 0 is the highest
priority level and that tasks may share the same priority level. Let us denotes
as n the number of distinct priority levels used in the architectural model for
validation (n ≤ m) and with N the number of distinct priority levels allowed by
the platform for the considered application.

The architectural model consists also of a set of software resources R =
{R1, R2, . . . , R`} that can be shared between one or several tasks (e.g. a mutex
to access a critical section). We denote cRi,Tj

the worst-case time for the task Tj
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to acquire and release the lock of the resource Ri in case of no contention. Let
us remark that cRi,Tj

is considered as an input and that cRi,Tj
≤ cj . Due to the

presence of shared resources, a task is also characterized by a blocking time Bi.
The blocking time accounts for the time a higher-priority task has to wait, before
acquiring the lock, since a lower-priority task owns this lock. The computation
of this term depends on the synchronization protocol used to implement the
access to the shared resource. In this paper, we suppose that Priority Ceiling
protocol(PCP) [6] is used as a synchronization protocol to avoid unbounded
priority inversion and mutual deadlock due to wrong nesting of critical sections.
In this protocol each resource Ri is assigned a priority ceiling πi, which is a
priority equal to the highest priority of any task which may lock the resource.
The expression used to compute the blocking time for the PCP protocol is given
just below:

Bi = max
Tj∈HP,Rk∈R

{cRk,Tj : pj < pi and πk ≥ pi} (1)

We perform Rate-Monotonic (RM) response time analysis [7]. The analysis
results correspond to the computation of the processor utilization U and the
response time Repi of the different tasks in the model. The model satisfies its
timing constraints if and only if U ≤ 1 and ∀i ∈ {1..m} Repi ≤ Di. The expres-
sions used to compute U and Repi are given just below, where HPj represents
the set of tasks with priority higher than Tj .

U =
∑

Ti∈M

ci
Pi

(2)

Repi = ci +Bi +
∑

Tj∈HPj

⌈
Repi
Pj

⌉
∗ cj (3)

Fig.2 shows an example of execution of two periodic tasks (Ti and Tj) sharing

Fig. 2. Real-Time Concepts

the resource R. The priority ceiling of R is equal to the priority of Ti as it is
the highest.Up-raising arrows represent the instants of tasks activation, for their
part, down-raising arrows determine the deadline for each task activation. The
response time to an activation is defined as the time between the activation
and the completion instants. We also show the blocking time Bi of the task Ti
resulting from the utilization of R by Tj .
In addition, each task implements a set of functions that we denote by f ⊂
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F/card(f) ≥ 1 such as F is the set of functions defined by the application (from
the functional model).

3 Problem Statement and Solution

In this section, we identify the case where the Distinct Priority Merge Pattern
(DPMP) must be applied. Then the proposed solution is detailed.

3.1 Problem Statement

This pattern is automatically applied on the design model when the Deployment
Feasibility Tests step detects that the number of distinct priority levels used
in the architectural model exceeds the number allowed by the RTOS for the
considered application (i.e. n > N). The resulting design model after applying
this pattern must still verifying the timing requirements as specified in section
2.2.

3.2 Solution Description

In order to solve the problem (i.e. n > N), we propose to reduce n to be equal
to N by merging tasks having distinct priority levels. This operation is repeated
until the number of distinct priority levels becomes equal to N. However, the
proposed solution must preserve:

1. The high level specification i.e. the activation rate of the different functions
defined in the specification must be preserved.

2. The real-time constraints i.e. the response time of the all considered tasks is
lower than their deadline.

Let us consider an initial model M = {T1, T2, ., Tm} defining m tasks and n
distinct priority levels (n ≤ m). Let us consider also two tasks Ti and Tj ∈
M , each task is defined by a set of parameters; Ti = (pi, Ci, Pi, Di, Bi, fi) and
Tj = (pj , Cj , Pj , Dj , Bj , fj) such as pi 6= pj , Pj ≥ Pi and fi, fj corresponds
to the functions implemented respectively by Ti and Tj . We denote by T ′i the
task resulting from merging these two tasks such as T ′i = (p′i, C

′
i, P
′
i , D

′
i, B
′
i, f
′
i).

Consequently, the resulting model M ′ consists of m-1 tasks and n-1 distinct
priority levels.The obtained task T ′i is described in Fig.3(a).

The problem with the resulting model described in Fig.3(a) where one of the
two merged tasks will be executed with a rate different from the one defined in
the high level specification and thus the first constraint (1) previously defined
will be violated. In order to avoid this problem, we consider also in the solution
that only harmonic tasks may be merged (i.e. two tasks Ti and Tj are harmonic
if and only if (Pj mod Pi = 0). By considering this additional assumption

(
Pj

Pi
= q with q in an integer), the period of the resulting task which corresponds

to minimum of the two periods will be equal to Pi and the implementation of
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(a) Solution without considering harmonic
tasks

(b) Solution with harmonic tasks considera-
tion

Fig. 3. Solution Description

f ′i will be modified in such a way that the execution rate of the two functions is
preserved. The new solution is presented in Fig. 3(b).
In order to guarantee the second constraint (2), we have to re-validate the model
after merging the tasks in order to verify whether the new design model still
satisfy the timing constraints.

4 DPMP Formulation

This section presents an algorithmic description of the previously proposed so-
lution. Then, we show the limitations of this method and we propose a MILP
formulation of the DPMP pattern.

4.1 Heuristic Method

Algorithm 1 just below corresponds to an algorithmic description of the DPMP
pattern. This algorithm merges recursively tasks in pairs. After each merge, this
algorithm performs a re-validation to verify the timing properties. The algorithm
ends, when the number of distinct priority levels used in the resulting model is
equal to the number authorized by the target RTOS or when there is no harmonic
tasks in the model. The complexity of this algorithm is linear and it depends on
the number of tasks in the initial model.

Heuristic Method Limitations The problem of merging tasks with the objec-
tive to reduce the number of distinct applicative priority levels is a combinatorial
problem. In fact, the solution depends on the application (i.e. n and the period
of the different tasks) and the target RTOS. Consequently, the heuristic method
presented in previous section is not always able to find the solution.
Let’s consider an initial model M = {T1, T2, T3, T4}. Each task is characterized
by a set of parameters such as T1 = (1, 4, 10, 10, 0, f1), T2 = (2, 5, 20, 20, 0, f2),
T3 = (3, 2, 30, 30, 0, f3) and T4 = (4, 1, 60, 60, 0, f4).The initial processor utiliza-
tion is evaluated to 73,33 %. All the tasks in this model are independent and
have distinct priority levels (n=4). We can notice that task T1 is harmonic with
all the other tasks and also T2, T3 are harmonic with T4. In addition, we sup-
pose that the target RTOS authorizes only two priority levels for this application
(N=2).
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Algorithm 1: DistinctPriorityMergePattern
Input:
Ma: Design Model describing the application
N : The number of distinct priority levels allowed by the RTOS for the considered
application
Ref-Period : A reference period used to detect harmonic tasks
Output:
MRes: New design model after reducing the number of priority levels
Notations:
Ref-Task : The reference task with the lowest value of period
H-Tasks: The set of tasks which are harmonic with Ref-Task
n: The number of distinct priority levels used in the design model
begin

MRes ←−Ma

n ←− getPriorityLevelsNumber(Ma)
Ref-Task ←− getMinPeriod(Ma, Ref-Period)
if (Ref-Task 6= null) then

for (is ∈Ma / is is a periodic task) do
if (IsInteger(period(is), period(Ref-Task)) then

if (priority(is)6= priority(Ref-Task)) then
add(is, H-Tasks)

if (SizeOf(H-Tasks) ≤ 1) then
Ref-Period ←− period(Ref-Task)
DistinctPriorityMergePattern(Ma,N ,Ref-Period)

else
if (n � N) then

M ′
a ←− Merge(H-Tasks[1],H-Tasks[2])

OK ←− Re-Validate (M ′
a)

if (Ok = true) then
MRes ←− M ′

a
DistinctPriorityMergePattern(MRes,N ,Ref-Period)

return MRes

Table 1. Example: Possible Solutions and Utilization Estimation

Possible Solutions Utilization

M1 = ({T1, T2}, {T3, T4}) 100%

M2 = ({T1, T3}, {T2, T4}) 90%

M3 = ({T1, T2, T3}, T4) 111,67%

M4 = (T2, {T1, T3, T4}) 95%

M5 = (T3, {T1, T2, T4}) 106,66%

As a result, for this particular example, 5 solutions are possible. These solu-
tions are presented in Table 1. For the first solution for example, we choose to
merge T1 and T2 from one side and T3 and T4 from the other side in order to
obtain the model M1 consisting of just two tasks and thus two distinct priority
levels. For this particular example, the heuristic method didn’t find a feasible
solution as it found M3 which is not feasible due to analysis issues (utilization
111,67%� 100%). Therefore, this method is not always effective. From these
considerations, an appropriate method must be considered to solve this prob-
lem. This method must be able to confirm whether a solution for each particular
problem (application and RTOS) exists. In addition, when many solutions are



DPMP: A Software Pattern for Real-Time Tasks Merge 9

available, this method should find one which costs less performance degradation.
In next section, we propose a MILP formulation of this problem.

4.2 MILP Formulation

In order to ensure a reliable implementation of the problem taking into consid-
eration the different constraints already mentioned (timing requirements, appli-
cation), we propose in this section a MILP formulation of our problem. MILP
techniques define an objective function which corresponds to a formulation of
the considered problem. This formulation is interpretable by a solver that seeks
to find a solution for this problem under a set of defined constraints.

Objective Function Expression (4) defines the objective function for our prob-
lem. We denote by m the number of tasks in the initial model. Merge is a
boolean variable used to mention whether two tasks are merged. More in de-
tail, if Mergei,j is equal to 1, the merge corresponds to the situtation in which
Ti absorbs Tj , then Ti augments its worst-case execution time by adding the
worst-case execution time of Tj , while Tj is deleted from the model. Let us note
that more than one task can be absorbed by another task. The objective func-
tion aims at maximizing the number of merge while minimizing the processor
utilization.

maximize :
∑

i,j∈{1..m}

Mergei,j −Utilization (4)

Merging Situations Constraints The objective function aims at maximizing
the number of merge, however this function should be aware of some constraints
that limit the exploration space and eliminate non meaningful merging situa-
tions. These constraints are presented just below:

n−
∑

i,j∈{1..m}

Mergei,j = N (5)

∀i, j ∈ {1..m},Mergei,j = 0 if (isHarmonici,j = 0) or (pi = pj) (6)

∀j ∈ {1..m},
∑

i∈{1..m}∧i 6=j

Mergei,j ≤ 1 ; ∀i, j, k ∈ {1..m} ∧ j, k 6= i,Mergei,j + Mergek,i ≤ 1

(7)

In constraint (5), n and N represent two input parameters defined previously
in section 2.2. This constraint means that we have to maximize the number of
merged tasks and thus minimize the number of distinct priority levels used in the
design model until the number authorized by the RTOS. Indeed, this Equation
serves as a bound for the objective function (i.e. the number of merge). Con-
straint (6) defines a new input parameter which is isHarmonic, this parameter is
used to mention if two tasks are harmonic. Thus if the value of isHarmonici,j is
equal to 1, then the corresponding tasks Ti and Tj have harmonic rates. Conse-
quently, this constraint avoids the merge of non-harmonic tasks and avoids also
the merge of tasks having equal priority levels(pi = pj). Finally, the constraints
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in (7) are used to avoid a non-meaningful situations which corresponds to the
merge of a task already merged. In particular, the first contraint assures that a
task Tj can be absorbed by at most one other task, and the second constraint
states that either a task absorbs another task or it is absorded by another task.
We define also a new boolean variable that we denote by TASKS and which
refers to the resulting task model after merging the different tasks. Therefore,
constraint (8) is defined to create the new obtained model. In fact, whenMergei,j
is equal to 1, TASKSj will be equal to 0 and TASKSi will be equal to 1 (thanks
to constraints 7). This constraint is defined as follows:

∀j ∈ {1..m},TASKSj = 1−
∑

i∈{1..m}

Mergei,j (8)

Real-Time Constraints The constraints defined in this section are related
to real-time requirements. Indeed, the model obtained after applying the merge
pattern should satisfy the timing constraints which are expressed in constraints
(9) and (10).

∀i ∈ {1..m},Repi ≤ Di (9)

utilization ≤ Max Utilization (10)

Constraint (9) ensures that the response times Repi of the different tasks in the
resulting model are lower or equal than their deadlines. Constraint (10) verifies
whether the processor utilization is lower or equal than the maximum authorized
utilization. Constraint (11) gives the computation formula of Ti response time
while taking into consideration the different decisions of merge.

∀i ∈ {1..m},Repi = δi + θi + βi (11)

The first term of the expression (11) is δi which corresponds to the worst case
execution time of the task Ti. This term is computed as follows:

∀i ∈ {1..m}, δi = TASKSi ∗ Ci +
∑

j∈{1..m}

Mergei,j ∗ Cj (12)

The execution time of a deleted task will be equal to 0 since the term TASKSi

is equal to 0 and ∀j ∈ {1..m},Mergei,j = 0. However, the execution time of a
task resulting from the merge of different tasks will be equal to the sum of the
execution times of these tasks.
The second term in the expression is θi representing the overhead induced by the
interferences of the task Ti with the different tasks in the model having higher
priorities. This variable is defined ∀i ∈ {1..m} as the sum of two terms ζi, γi and
it is defined just below:

θi = ζi + γi (13)

ζi = TASKSi ∗
∑

j∈HPi
j∈{1..m}

TASKSj ∗ (dRepi

Pj
e ∗ Cj) (14)

γi = TASKSi ∗ [
∑

j∈HPi
j∈{1..m}

TASKSj ∗ (
∑

k∈{1..m}

Mergej,k ∗ d
Repi

Pj
e ∗ Ck)] (15)
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The interference term is equal to 0 if the corresponding task is a deleted one
(TASKSi). Otherwise, this term computes the overhead resulting from the in-
terferences of tasks Tj/j ∈ HPi. This expression takes into consideration the dif-
ferent situations when higher priority tasks correspond to deleted ones (TASKSj

in the expression) or tasks resulting from merging decision (Mergej,k in the ex-
pression). We notice that the expressions (14) and (15) are not linear and thus
in order to be interpretable by the solver these expression must be linearized.
For instance, the linearization of the expression (14) is given by the following
constraints:

∀i, j ∈ {1..m}, 0 ≤ Xi,j − (
Repi

Pj
) < 1 (16)

∀i, j ∈ {1..m},Yi,j ≤ Xi,j ; Yi,j ≤ M ∗ TASKSj ; Xi,j −M ∗ (1− TASKSj) ≤ Yi,j (17)

In order to linearize the expression (14), we define new constraints (16) (17) and
2 additional variables X and Y . The constraint (16) permits to compute the
term dRepi

Pj
e, however the constraints in (17) are defined to determine the value

of (TASKSj) ∗ dRepi

Pj
e. Eventually, the constraints in (18) and (19) are used to

compute the final value of ζi, ∀i ∈ {1..m}.

∀i ∈ {1..m}, ζi ≤
∑

j∈HPi
j∈{1..m}

Yi,j ∗ Cj ; ζi ≤ M ∗ TASKSi (18)

∀i ∈ {1..m}, [
∑

j∈HPi
j∈{1..m}

Yi,j ∗ Cj]−M ∗ (1− TASKSi) ≤ ζi (19)

Finally the third term in the expression of the response time βi represents the
blocking time. This variable is computed as follows:

∀i ∈ {1..m}, βi = TASKSi ∗ BTi (20)

This term is equal to 0 if the task corresponds to a deleted task. Otherwise, the
blocking time of the considered task is equal to BT which is defined as follows:

∀i ∈ {1..m}, BTi =

{
Bi if

∑
i,j∈{1..m} Mergei,j = 0

maxj∈{1..m} Mergei,j ∗ Bi Otherwise
(21)

The term Bi in expression (21) is an input parameter representing the blocking
time of the task Ti. Consequently, if the considered task is not merged with
other tasks in model (

∑
j∈{1..m}Mergei,j = 0), the blocking time is kept the

same. Otherwise, the blocking term corresponds to the maximum of the merged
task blocking times. The processor utilization represents an important term in
scheduling analysis. In fact, in order to confirm that the design model meets the
timing constraints the following constraint must be verified:

Utilization ≤ 1 (22)

We define the Utilization term by the constraints just below:

Utilization = µ1 + µ2 (23)
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µ1 =
∑

i∈{1..m}

TASKSi ∗ (
Ci

Pi
) ; µ2 =

∑
i∈{1..m}

TASKSi ∗
∑

j∈{1..m}

Mergei,j ∗ (
Cj

Pi
) (24)

Under these constraints, the objective function will seek for the best way to
merge tasks (i.e. the optimized solution in terms of utilization) in order to re-
duce the number of used priority levels while ensuring the respect of timing
properties.
Let’s consider the same example previously introduced in section 4.1. Consider-
ing this problem, our linear program confirms that a solution exists and generates
the following Merge matrix:

Merge =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0


This matrix shows that the solution considered by the solver is the merge of T1
and T3 and the merge of T2 and T4. The processor utilization of the resulting
model is 90%. Now if we compare this solution with the different possible solu-
tions given in Table 1, we can conclude that the latter corresponds to M2 which
is the best one in terms of processor utilization.
The solution generated by the linear program will be interpreted by our frame-
work in order to provide the information to the designer on how the design model
must be re-factored.

5 Experimental Results

In this section, we present a set of experiments to test the effectiveness of the
proposed pattern in terms of applicability and scalability. The experiments are
carried-out on Intel Core i5-3360M processor running at 2.8 GHz with 4GB of
cache memory. CPLEX is used as a MILP solver for the whole set of experi-
ments.
We define also a new parameter that we denote Cost. This parameter references
the performance loss and is defined as the difference between the utilization eval-
uated on the initial model and the utilization evaluated on the model resulting
from the application of the merge pattern in order to avoid non-implementable
design models. Expression 25 given just below defines this parameter:

Cost = Currentutilization − Initialutilization (25)

Extensibility at the Implementation Level

We define the extensibility as the capacity to integrate additional applications
(or functions) on the same platform. In this section, we suppose that the first
focus of the designer is to maximize extensibility at the implementation level
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even at the expense of some performance loss. For that achievement, the de-
signer should determine the processor utilization authorised for his application
that we denote by Max-Utilization and the number of distinct priority levels
denoted by N. This task is not trivial because it strongly depends on the ap-
plication. The previously described linear program provides a sort of guidance
for the designer to help him determining one of these parameters by fixing the
second. Therefore, two scenarios are considered: (1) the designer defines the max-
imum number of priority levels (N) that he wants to reserve for his application
and asks the linear program to determine the minimum processor utilization
necessary for this achievement.(2) the designer defines the maximum processor
utilization (Max-Utilization) authorized for his application and asks the linear
program to determine the minimum number of priority levels that are necessary
to achieve such utilization. For scheduling issues, we suppose that the considered
application is the first to be implemented on the platform and that the reserved
priority levels are the higher ones.
In order to illustrate this idea, we consider an example of an architectural model
describing an application; this model is given in table 2. The design model con-
sists of 6 tasks; each task is characterized by a set of parameters. Besides, the
model defines also two shared resources R1 and R2; the resource R1 is shared
between the two tasks T1 and T3, however R2 is shared between T2 and T5.
After, the different design choices, the designer performs validation to verify the
timing constraints. Validation results are also presented in table 2; all the tasks
meet their deadlines since their response times are lower than their deadlines.
The processor utilization for this model is evaluated to 39, 69%.

Table 2. Example of an Architectural Model

Task Period Deadline Wcet Priority Blocking Time Response Time

T1 10 10 2 0 2 4

T2 20 20 2 1 2 6

T3 40 40 2 2 1 7

T4 80 80 3 3 1 10

T5 160 160 1 4 0 10

T6 320 320 1 5 0 13

Now let’s consider the first scenario. For extensibility issues the designer wants
to reserve just 3 priority levels for this application at the implementation level.
To this end, he fixes the number N to 3 and asks the pattern to determine
minimum processor utilization that should be reserved in that case. Then, the
pattern generates the corresponding value which is equal to 46, 25%. For the
second scenario, if the designer fixes the Max-Utilization to 45%, the pattern
determines that the minimum number of priority levels that should be reserved
for such utilization is 4 (N=4). Fig.4 illustrates the variation of the Cost with
regard to the extensibility for the considered application.
We have already mentioned that the extensibility is inversely proportional to
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Fig. 4. Cost Variation Versus Extensibility

the number of priority levels reserved at the implementation level. Hence, in the
graph we evaluate the extensibility to be equal to 1

N . We can conclude that the
performance loss increases when the extensibility increases.

Insufficient Priority Levels for Large Scale Applications

In this section, we are interested on the evaluation of the merge pattern on large
scale systems. In that case, during the deployment phase, the problem of insuf-
ficient number of priority levels authorized by the target RTOS will more likely
occur. To this end, we consider different design models. Each model M consists
of {T1, T2, , Tn} ; n defines the number of distinct priority levels used in the
model. We suppose also that each task Ti ∈M is defined by a set of parameters
(pi, Ci, Pi, Di, Bi). In addition, we assume that for each model ∀i, j ∈ {1..n}, Ti
and Tj are harmonic (i.e. Pj mod Pi =0) and ∀i, j ∈ {1..n} pi 6= pj . This brings
us to identify different categories of RTOS depending on their number of distinct
priority levels. In this paper, we consider two examples of RTOSs; MicroC/OS-
II [8] and Ecos [9]. Indeed, MicroC/OS-II offers 56 applicative distinct priority
levels, however, Ecos provides the possibility to configure the number of dis-
tinct priority levels from 1 to 32 (we consider two cases where N=16 and N=8).
For each considered model, we evaluate the deployment cost when a particular
RTOS is targeted. Fig.4 (a) shows the variation of the cost (in %) for the already
mentioned RTOSs in function of the application (by increasing the priority levels
number).
This evaluation shows that, in some cases, the deployment of a real time ap-
plication requires some performance degradation, due the implementation con-
straints, to generate valid implementation models. This deployment cost is strongly
influenced by the application and the target operating system. The merge pat-
tern that we have proposed offers to the designer the possibility to estimate the
performance loss for a particular application and a RTOS and thus provides a
source of guidance for the selection of the appropriate operating system.
Fig.4 (b) illustrates the variation of the resolution time in seconds. In fact, in this
graph we evaluate the execution time of the linear program using CPLEX for
different applications and for the Ecos Operating system configured respectively
with 8 and 16 authorized applicative priority levels. From these graphics (Fig.4
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(a) Cost Evaluation For MicroC-
OS/II and Ecos

(b) Evaluation of the Resolution
Time in Seconds

Fig. 5. Evaluation of The Merge Pattern for Large Scale Applications

(b)) we can conclude that the time required by the linear program to make deci-
sion is bounded even for large scale applications. The second conclusion is that
this time depends strongly on the application and the target RTOS. In fact, it
increases when the number of distinct priority levels in the architectural model
increases and the number of priority levels authorized by the RTOS decreases.

6 Related Work

Several approaches have been proposed to provide guidelines for the software de-
velopment of RTES in a MDD context. In [10], the authors propose a generative
process to transform an application deployed on one RTOS to another based on
an explicit description of the involved RTOSs using SRM. This approach focuses
especially on the portability requirement by proposing generic transformations
enabling the deployment of the same application on several RTOSs. This work
focuses on the structural aspect but makes the assumption that the deployment
is always possible without any consideration of the potential difference between
the semantics of RTOSs resources. The authors in [11] extend the previous work
by introducing behavioural information in platforms description. This approach
focuses on the separation of concerns and portability while ensuring an auto-
matic full code generation. To achieve that, the authors introduce behavioural
patterns in platform models for a detailed description of the different services
offered by the target platform. Indeed, these previously mentioned works do not
consider real-time validation.

In order to address real-time concerns, several works focus a specific standard
and do not address the portability issue. In [13], the author extends the RT-UML
profile to support the creation and validation of OSEK-compliant models. In
[14], the authors use an OSEK-compliant abstract platform called SmartOSEK
[15] and define a set of transformation rules to create OSEK-compliant models
from UML models. In addition, this approach enables the simulation of the re-
sulting OSEK-compliant models and provides the designer with the results to
optimize this model at design level. In [16], the authors use RT-UML to an-
notate UML models describing real-time applications with timing properties.
Then they identify the mapping rules between the resulting model and RT-Java
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as a target platform. The objective of this work is to properly propagate the
real-time constraints into the RT-java specific model in order to validate them.
From the other side, many existing works define MDD approaches to guide the
design choices and generate architectural models satisfying timing properties.
In [12] authors provides an approach to automatically generate the architec-
tural model from the functional blocks. The focus of this work is to automate
this generation and ensure optimized architectural models in terms of timing
properties. In [1] authors propose a MARTE-based methodology by introducing
analysis from the functional level to guide the generation of a valid design model
in terms of timing requirements. These works still keeping portability by ensur-
ing platform-independent architectural models. However they in general end at
the design level and do not focus on deployment issues. Hence, our approach
aims at extending the latter methodology [1] by focusing on the refinement to-
ward implementation of the resulting design model. This work is a step toward
providing portability and separation of concerns from one side and early verifi-
cation of timing properties from the other side during the deployment process
of a real-time application on a several RTOSs.

7 Conclusion and Perspectives

In this paper we have proposed a model-driven approach to guide the transition
from the design to the implementation model during the development of real-
time applications. We have especially addressed the problem where the number
of distinct priority levels used to validate the design model exceeds the number
authorized by the RTOS. In that case, we have proposed a software pattern
that we have called Distinct Priority Merge Pattern(DPMP) that automatically
perform the re-factoring of the architectural model with the objective of solving
the problem. The application of this pattern preserves the high level specification
and the timing requirements while reducing the number of used distinct priority
levels. Due to the complexity of this treatment, a MILP formulation of this
pattern have been proposed. This formulation permits to confirm whether a
solution exists for the problem and finds the better one in terms of processor
utilization.

As perspective of this work, we aim at considering other problems such as
timer granularity, equal priority levels, etc and proposing for each particular
problem a software pattern to enrich our pattern base. In addition, we can extend
this work by considering the behavioural aspect and thus other problems must
be considered and consequently additional software pattern must be defined.
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