Fourth International Conference on Sensing Technology, June 3 — 5, 2010, Lecce, Italy

EDF scheduler technique for wireless sensors networks:
case study

Rym CHEOUR , Sébastien BILAVARN, Mohamed ABID
! CESlab, National School of Engineers of Sfax, Sfax, Tunisia
2 LEAT, University of Nice-Sophia Antipolis, CNRS, Nice, France
rym.cheour@ceslab.orgnohamed.abid@ceslab.org
Sebastien.BILAVARN@unice.fr

Abstract

Today, thanks to the recent advances in wireless technology, new products using wireless sensor networks are
employed. However, despite the excitement surrounding the wireless sensor networks, its entry into force, is not
immune to the problem of energy consumption. To overcome this deficiency and to enhance the real time aspect,
a growing interest lies in the implementation of an “Earliest Deadline First” (EDF) scheduler. Thus, we will
establish a management policy of periodic tasks that is preemptive, multiprocessor and dynamic. Our target is to
implement a real-time scheduling policy as a part of a user-level threads package under the Linux operating
system since Linux does not support EDF. Furthermore, this paper describes the technique of the EDF scheduler

and how it can yield to significant power savings.

Key words: real time scheduling, EDF, WSN, energy consumption, Linux scheduler

1 Introduction

The network technologies of wireless sensor have
become a global trend in communication, mobility
and research of flexible implementation. With these
advantages, these networks are undoubtedly among
the principal vectors of development of embedded
real time system[l]. Because they control or
monitor real time processes, they must be able to
respond to requests within a certain time limit.
Confined essentially to autonomous applications
and small networks where man could hardly
intervenes, the energy source appears to be,
therefore, the highest priority in the design and
development of sensor networks[2]. In fact, it poses
several challenges that the real-time scheduling
seems to take up[3]. In the other hand, sensors
networks are commonly used in environments
where the guarantee of the response time is vital.
The system must be flexible enough to get used to a
dynamic and changing environment able to meet its
deadlines and to detect temporal conflicts, caused
by different resourcesBesides, meeting temporal
deadlines leads to many problems that real-time
scheduling can solve [3]. Once confined to a
limited role and thanks to its impact on minimizing
the consumption of energy, especially for sensor
networks the scheduling is now a basic entity of the
development of real time systems.

A scheduling algorithm is perceived as a set of
rules that select the task to run at any time during
the life of a system [4]. Therefore, we can consider
scheduling as an algorithm that allocates the basic
units of time called time quantum. A strict real-time
system is essential to ensure the respect of
deadlines for each task. The deadlines consist of
run-ability constraints (each task must be completed

ISBN 978-0-473-16942-8 530

before the next request) [4]. Thus, a scheduling
policy is applied to check the deadline of each task,
the material constraints and the dependencies
among data.

In this paper, the EDF scheduler aims at evaluating
a task set with given properties in terms of
schedulability and compliance with given execution
time constraints. It exactly consists in implementing
and estimating such policy in an operating system,
such as the Linux.

The remainder of this paper is organized as follows.
In the first section, we introduce Linux’s most
important abstraction, the process or the task model
for basic process management including the
scheduling [5]. Then, we discuss an issue related to
the specific policies of energy’s management in the
sensors networks. The following section deals with
the fundamentals of the EDF. Next, we will give a
concise overview of the Linux process scheduler,
its scheduling algorithm and its API. Furthermore,
we outline the experimentation and the results
observed within the scheduler. Also, we compare
the performances of our scheduler developed on
Linux with the results obtained with the simulation
multiprocessor scheduling tool STORM [6].

2 State of art

The majority of scheduling strategies uses the
concept of task. Several models of recurring real-
time tasks have been defined. Belonging to one of
these families influences strongly how the system
will operate and particularly the type of the

algorithm to use. We will try to give a glance about
the task models and an overview related to the
different technique to reduce energy consumption.

Editors: S.C.Mukhopadhyay, A. Fuchs, G. Sen Gupta and A. Lay-Ekuakille

Fourth International Conference on Sensing Technology, June 3 — 5, 2010, Lecce, Italy

2.1 Tasks models

Tasks can be grouped into three families: periodic,
aperiodic and sporadic. The simplest and the most
fundamental model is provided by the periodic task
model of Liu and Layland [4]. The periodic tasks
are those whose processing is repeated on a regular
basis such as the regular monitoring of the state of a
physical sensor or sampling of the serial
communication line.

T; a periodic task is characterized by the quadruplet
(G, T, Dy, G)[7], where:

- The date of arrival Qis the moment of the first
activation of the task;

- Time of execution Cspecifies an upper limit on
the time of execution of each tagk

- The relative deadline Ddenotes the separation
between the arrival of the task and the deadline (a
task that arrives at time t has a deadline at)t+D

- A period T, denoting the duration between two
successive activations of the same task.

2.2 Optimization of energy
consumption

The wireless sensor must be fitted with a battery-
powered covering several years and offering total
energy independence. Notwithstanding, the battery
technology is not progressing fast enough to satisfy
their requirements [8]. Different solutions are
possible to minimize the energy consumption of
WSN. Autonomous power supplies can be well
designed to capture tiny amounts of energy from
their environment. Even when available, energy-
efficient products become essential to reduce
thermal losses evacuated by expensive means of
cooling which are responsible for failure. This
approach requires low-power efficient components
of energy. Seeming trivial, the process is often
complex. The first parameter we mention is the
consumption in normal times, of the processor the
sensor, the radio transceiver and others components
such as external memory and peripherals [2].

2.2.1 Management of static power
consumption

Many methods can reduce the activity of these
circuits such as clock gating or management of low-
power modes. The clock gating can cut part of the
clock tree to avoid switching of unused parts of the
circuit [2]. However, it is impossible to control all
the unnecessary commutations [8]. But, if the
scheduler is not suitable, the significant energy
savings are achieved at the expense of the system
responsiveness. Indeed, stopping and restarting
clocks cause latencies and increase consumption.
The difficulty is to know what should be done to
avoid compromising the processing of an outside
event while minimizing the amount of energy
expended. The use of these methods is often
optimal. Therefore, it is necessary to use a

ISBN 978-0-473-16942-8 531

scheduler which includes tasks’ execution wherever

possible and in return has long periods of
inactivity[2].
2.2.2 Dynamic power consumption

QDI “Quasi Delay Insensitive” circuits are a class
of almost delay insensitive asynchronous circuits
which are invariant to the delays of any of the
circuit's elements[9] [10]. The synchronization
between the blocks is done locally by requests
/acquittals. So, only the parts of the circuit making
a calculation have an activity. The rest of the circuit
consumes very little energy and wakes up
immediately when it is requested. This decreases
the consumption and reduces the dynamic
consumption significantly. This particular property
is exploited to manage the levels of tension circuit
DVS “Dynamic Voltage Scaling” -effectively.
Indeed, the dynamic adjustment of voltage (DVS) is
a very important technique to reduce energy
consumption [11]. However, sensor networks must
manage these tensions at a lower cost. This method
saves energy at around 45%[3].

2.2.3 Impact of the scheduling policy

Using tasks scheduling, we try to combine the
minimization of the consumption of a WSN node
and to ensure a maximum of performance to users.
In addition, the strategies of scheduling reduce the
consumption of energy considerably while they
reduce also the frequency of the processor [12].

It is possible to optimize the lifetime of the network
at different levels. As a node has a very low activity
within the network, it is desirable from the
standpoint of consumption, and therefore the
lifetime of the network, to reduce the electrical
activity of the circuits, particularly in periods of
inactivity [2]. Thus, it is necessary to characterize
the activity of the wireless sensors network in terms
of maximum number of instructions and deadlines
so as to schedule them and to calculate the minimal
speed of the processor required to comply with time
constraints. As this speed increases considerably
due to the intense solicitation of multiple tasks per
processor, we notice that simultanously, energy
consumption increases.

2.3 Earliest Deadline First (EDF)

The algorithm “Earliest Deadline First” (EDF) [4]
is a preemptive real time and it uses a dynamic
priority scheduling algorithm. It assigns priority to
each task depending on the deadline. As the
deadline of a task is closer, its priority is higher. In
this way, the more quickly the work must be done,
the more chance it has to be executed. This
algorithm is proved to be optimal in the sense that if
a system of tasks can be sequenced using any
policy of assigning priorities, the system can also
be sequenced with the EDF algorithm [13]. The

Editors: S.C.Mukhopadhyay, A. Fuchs, G. Sen Gupta and A. Lay-Ekuakille

Fourth International Conference on Sensing Technology, June 3 — 5, 2010, Lecce, Italy

study of schedulability gives a necessary and
sufficient condition formulated by the following
theorem: a system of periodic tasks can be
sequenced using the EDF algorithm if and only if:

Ci
Lim<l (1)
Moreover, the ins and outs of this scheduler
represent its abilty to ensure a maximum

occupancy of the CPU up to an upper limit of 100%
CPU utilization [14].

The EDF scheduler combined with an algorithm of
tension management "DVFS" Dynamic Voltage and
Frequency Scaling can calculate the voltage applied
to the processor and subsequently adapt it to the
parameters of each task[15]. Knowing the worst
case execution of the task, we can predict that the
next invocation will not exceed the deadline.
Furthermore, we can take advantage of the idle time
tasks to reduce the speed. Thus, a small decrease of
the tension slows the circuit slightly, but it can
reduce the energy consumption significantly (the
energy E is proportional to the square of the
voltage). Moreover, it is also possible to vary
dynamically the voltage of a circuit depending on
its activity to reduce consumption [10]. Since, the
good management of processes governing the
sensor network is proved to be necessary, even
crucial.

3 Proposed technique for the
processes management

The design process for a real-time application
involves splitting the application code into tasks. A
task, also called a thread, is an infinite loop that has
its own stack area, its own set of CPU registers, its
own purpose and a priority assigned based on its
importance. A running Linux application is
composed of one or more tasks. The kernel of a
Linux system is essential to execute and to enable
them to interact[15].

3.1 Multithreaded programming

Multitasking or multithreading is the process of
scheduling and switching the CPU (Central
Processing Unit) between several tasks; a single
CPU switches its attention between several
sequential tasks. Multithreaded programming is the
art of programming with threads. The most
common APl on Linux for programming with
threads is the API standardized by IEEE Std
1003.1¢c-1995 (POSIX 1995 or POSIX.1c).
Developers often call the library that implements
this API pthreads[5][16] [17].

3.2 States of tasks

Hence, as the multitasking system runs, each task
exists in one of these four states: running, ready for
execution, waiting or terminated as shown in figure

1. The transition from one state to another is done

ISBN 978-0-473-16942-8 532

through system calls or a decision of the scheduler.
When a multitasking kernel decides to move the
running task to another state and to give control of
the CPU to a new task, a context switch should be

performed12].
“
Admvitted Exit

Scheduler Dispatch

Interrupt

Figure 1: State of a task.

A new released task is ready when it can execute
but its priority is less than the currently running
task. A task is running when it has control of the
CPU. A task is waiting for an event when it
requires the occurrence of an event. Finally, a task
is interrupted when an interrupt has occurred and
the CPU is in the process of servicing that interrupt.

1/0 or event
completion

1/0 or event
Wait

3.3 Case study Linux: scheduler

Unfortunately, Linux is not in fact a real-time
system. Indeed, the Linux kernel is based on the
concept of timeshare and not real time. Several
technical solutions are already available to improve
the behavior of the kernel to make it compatible
with the constraints of a real time system [5] [17]
[18]. In this respect, the technical solutions
available are divided into two categories:

1. The patch called "preemptive" to improve the
behavior of the Linux kernel by reducing its

latency. Those changes do not transform Linux
kernel into a hard real time system. Yet, we can
obtain satisfactory results in the case of soft real
time constraints.

2. The real time auxiliary kernel believing that the
Linux kernel is not really a real time: developers of
this technology add to this core a true “real-time
scheduler” with fixed priorities. This auxiliary core
addresses real-time tasks directly and delegates
other tasks to the Linux kernel, being a lower
priority task. This technique allows the introduction
of hard real-time systems.

3.4 Scheduling policies under Linux

The scheduler is the part of a kernel that decides
which runnable process will be executed next by
the CPU. The Linux scheduler offers three different
scheduling policies, two for real-time applications
and one for other processes. A preprocessor macro
from the header <sched.h> represents each policy:
the macros are SCHED_ FIFO, SCHED RR, and
SCHED_OTHER defined in the standard
POSIX.b. SCHED_OTHER (default) which is a

Editors: S.C.Mukhopadhyay, A. Fuchs, G. Sen Gupta and A. Lay-Ekuakille

Fourth International Conference on Sensing Technology, June 3 — 5, 2010, Lecce, Italy

scheduling time-shared tasks and which also is used
by most processes. SCHED_FIFO and SCHED_RR
are provided for real-time applications that require
precise control of the selection process [5][17],[18].

A static priority value sched_priority is assigned to
each process and this value can be changed only via
system calls. For normal applications, this priority
is always 0. For the real-time processes, it ranges
from 1 to 99, inclusive. The Linux scheduler always
selects the highest-priority process to run.

3.5 Processor affinity

Processor affinity refers to the tendency of a
process to get scheduled constantly on the same
processor. As Linux supports multiple processors in
a single system, the scheduler must ensure full use
of the system’s processors, because it is inefficient
for one CPU to sit idle while a process is waiting to
run [5]. On a symmetric multiprocessing (SMP)
machine, the process scheduler must decide which
processes run on each CPU. SMP lets multiple
CPUs share the same board, memory, I/O and
operating system. Nevertheless, each CPU in a
SMP system can act independently. Due to the
design of modern SMP systems, the caches
associated with each processor are separate and
distinct.

4 Experimentation

The principle of the EDF policy is to execute the
tasks according to their urgency [2]. In contrast, the
unavailability of EDF on Linux is not necessarily
prohibitive for its use. Certainly, it is possible to
implement EDF in the application level as a
“leader" task able to schedule the activities of the
system. We apply the SCHED-FIFO algorithm to
the first N tasks ready to be executed. The kernel
places all runnable processes on a ready list. Once a
process has exhausted its timeslice, it is removed
from this list. EDF can assign a dynamic priority to
these tasks in the queue. The end of the execution
of a task or its new arrival in the system leads the
scheduler to select among all tasks ready to run one
whose deadline is the closest. Moreover, the
algorithm looks for the shortest deadline in each
invocation of the scheduler. In this case, this task is
provided with the highest priority. It will be
executed immediately and it will be allocated to the
available processor. Besides, priorities are assigned
on dynamic parameters. However, a task can be
accomplished only if all tasks which have smaller
deadlines completed their execution or are not
active yet. The notion of periodicity in Linux
doesn'’t. So, the development of our scheduler we
ought to introduce this concept.

The scheduler must be preconceived intelligibly

and should be portable and adequate to time
constraints. Therefore, this work aims at

ISBN 978-0-473-16942-8 533

implementing an architecture formed by different
modules:
e« A module "application" representing the
thread in question.
e A module "scheduler" governing the
functioning of the EDF algorithm.
* A module "utilities" that contains the basic
functions of the scheduler.

4.1 Application

More and more applications take advantage of the
high performance of threads. It maximizes the
utilization of the CPU, increases the speed of the
response time and improves the structure, efficiency
and design of our scheduler. On a multiprocessor
system, each thread can be executed on one
processor increasing then the speed of execution
significantly. A thread has a data structure which
contains the characteristics of the task. It is shared
by all tasks and is used by the operating system
especially by the scheduler for the arbitration of the
needs and the resource demands. Therefore, it
allows, for example, to evaluate the behavior of the
system when it exceeds time constraints. The
runtime behavior of a task does not depend on the
others. The table 1 shows the attributes of the
threads with a hardware architecture composed of 2
processors and a software architecture composed of
4 periodic independent tasks.

Table 1: Example Task Set

TO T1 T2 T3

WCET 8 7 10 9
PERIOD 20 15 25 14

DEADLINE 0 0 0 0

We assume that the deadline is equal to the period.

4.2 Utilities

Linux implements its own interfaces to handle time
features. It includes setting and retrieving the
current time, calculating elapsed time, sleeping for
a given amount of time, performing high-precision
measurements of time, and controlling timers[5]
This phase covers the data structures representing
the time-related chores. It provides extreme
flexibility in terms of the time management and
also in the assignment of the available processors to
the ready tasks according to Linux settings.
Otherwise, the operating processor may include
periods of inactivity that leads to unnecessary waste
of energy. To maximize the performance and the
efficiency of the scheduler, we use this idle time to
run other high priority tasks. Alternatively, we
actuate those processes to sleep, and awake them
only when needed, freeing the processor for other
tasks.

Editors: S.C.Mukhopadhyay, A. Fuchs, G. Sen Gupta and A. Lay-Ekuakille

Fourth International Conference on Sensing Technology, June 3 — 5, 2010, Lecce, Italy

4.3 The scheduler

The kernel provides a mechanism to ensure a
multitasking behavior [3]. This guarantees the
equitable distribution of the access to CPUs by the
various tasks. A process may need the CPU for
example, for calculations, for triggering an
interruption, etc. Most hardware components,
especially the CPU of a computer are not able to
perform multiple treatments simultaneously. The
choice of the next "Running" task is the
responsibility of the scheduler. A good
implementation of the scheduler can trim a few
microseconds to process and claim a high accuracy.
The figure 2 illustrates an example of execution that
follows the next steps:

* Several tasks become ready to run

* The threads are queued according to their
priorities in the ready list

e If there are more ready threads to run than
CPUs, the operating system scheduler will use
thread priority to decide which one runs first.

e Multiple threads run simultaneously per
threads

Thread3
Thread2 |—>

Figure 2: Example of execution

CPU board

Thread3

Linux

Scheduler UL

Threadl

Threadl
CPU2

Thread0

Thread2

5 Results and test of the EDF
scheduler

Achieving the EDF scheduler was initially preceded
by the implementation of a test application in C
language based on some POSIX threads each one
incorporating a WCET “Worst Case Execution
Time”. Moreover, this setting allowed us to
evaluate the performance of the Linux scheduler. It
is important to note that the actual sequence of the
task’s execution obtained with the Linux scheduler
was not the expected one. This affects the
functioning of the system and slows down its
performance.

5.1 Resaults

We try to monitor the status of execution and to
respond to any change of state due to a defect
(improper shutdown of a task)and by crossing a
threshold (exceeding the period...). We have
managed to establish a scheduling policy that is
dynamic, preemptive and especially accurate.
Certainly, the various used- time-parameters were
essential in identifying the origin of these
operational hazards. When slow tasks are run, a

ISBN 978-0-473-16942-8 534

one-second delay between the command action and
its execution is acceptable, but meeting the strict
time constraints is necessary. Indeed, a high
solicitation could affect the real-time capabilities of
the system that may not respond within the time
limit any longer. Taking into account time
constraints, which is as important as the accuracy of
the results, entails not only to deliver accurate
results, but also to meet the deadlines.

5.2 Result verification

As a matter of fact, an aspect of parallelism appears
during the execution and offers a high level of
quality and reliability. We assign to the first
processor the first two tasks and to the second one
the others tasks. The obtained results in terms of
priorities and respect of the principle of processor
affinity confirm the choice of our scheduling
algorithm. Equipped with a dynamic priority and if

a high priority task occurs it takes the place of
another with lower priority. When a task ends and
the field “onTerminated” is set to 1, the ready list
varies involving a new sequence in accordance with
the foundations of the EDF algorithm.

To control and to ensure the reliability of each task,
we get the PID, the priority, its start and the end

time. Without changing any parameter of the

scheduler, it should be noted that the results are
consistent from one simulation to another. This is
done due to the determinism of the Linux system.

5.3 Simulation with STORM

To simulate and evaluate the performances of the
scheduler, we have adopted the simulation tool
STORM which stands for “Simulation TOol for
Real time Multiprocessor scheduling”.This
smulator is able to take into account the
requirements of tasks, the characteristics and
functioning conditions of hardware components and
the scheduling rules. Depending on the scheduling
policy and the resources described via an XML file,
it runs every task over a specified time interval [4].
The results of the simulation return a set of
diagrams as following in figure 3.All these
diagrams allow us to analyze the behavior of the
system (tasks, processors, timing, performances ...).
A window shows a Gantt diagram of every task
over an interval from 0 and ends to date 50 (default
values). The title of the window refers to the name
given to the task in the XML file (PTASKT],
PTASKTZ2...). On the other hand, it allows us to
observe the assignment of the task to the processors
through the CPUA and CPUB diagrams over the
same interval. The allocation of processors is
established according to their availability and to the
priority of the task. The preemption is also
supported by this simulator. That feature reduces
the latency of the system when reacting to real-time
or interactive events by allowing a low priority

Editors: S.C.Mukhopadhyay, A. Fuchs, G. Sen Gupta and A. Lay-Ekuakille

Fourth International Conference on Sensing Technology, June 3 — 5, 2010, Lecce, Italy

process to be preempted even if it is in kernel mode
executing a system call. This allows applications to
run more reliably even when the system is under
load.

S Tl WS T -
il G| o "G
5 [} [
(& al)
] 5 e S0 5 0N % 44 t © LS 13 € % i & L &
ps WG| G
[/} (] []
a .
& 0]
0 5 0 " T A" " " R il i a] i 8 n x g g
i &
5 - T3 A'v@ﬂ
[E o i 0 []
exen .l u e N
) Load |
> 1 ms |
pletell
H
I G
. § P

Figure 3: Results with STORM

However, we note that some tasks switch from one
CPU to another unlike their execution with Linux
such as the task 3. Therefore, we should draw
attention to the fact that this simulation engine
relies on the priority of the tasks more than on the
processor affinity.

6 Conclusion

Time management and task scheduling are required
to enhance performance and to improve
predictability of the wireless sensor networks. This
requirement has led to the wide availability of
operating systems to ensure execution schedules
where deadlines are met. We have elucidated in this
paper the various steps taken for the specification,
the development and the impact of the
implementation of the EDF scheduler under the
Linux operating systemThe biggest reason for
using Linux is to provide responsiveness to real-
time events; it guarantees a deterministic and an
optimum task-level response. In addition, it
streamlines applications development in complex
systems. On the other hand, we have compared the
performances with the simulation multiprocessor
scheduling tool STORM. This scheduler has a lot of
advantages. It is more reliable through the use of
preemption, and easier to handle thanks to the
dynamic tasks management. A futuristic approach
would be to consider a dynamic algorithm, which
applies a couple of voltage and speed to the
processor depending of the features of every task in

ISBN 978-0-473-16942-8 535

the system. It can then be extended to take into
account energy configurations like the DVFS

“Dynamic Voltage Frequency Scaling”, or the

DPM “Dynamic Power Management”.

7 References

[1] David Culler, Deborah Estrin and Mani Srivastava.
“Overview of Sensor Netwotkdn IEEE Computer, vol.
37, no. 8, pp 41-49, august 2004.

[2] Aurélien Buhrig, Marc Renaudin, <Gestion de la
consommation des noeuds de réseau de capteurs sans fil »,
Colloque national du GDR SOC-SIP, 2007.

[3] David Decotigny. « Bibliographie d’introduction a
I'ordonnancement dans les systems informatiques temps-
réel». Technical report, INSA Rennes, 2002

[4] C. L. Liuand J. W. Layland.Scheduling algorithms for
multiprogramming in a hard-real-time environmént
ACM, 20(1):46-61, January 1973

[5] Robert Love, Linux System ProgrammihgO“Reilly
Media, Septembre 2007.

[6] http://storm.rts-software.org/doku. php

[71 A. Burns and A. J. Wellings.RealTime Systems and
Programming Languages” Addison Wesley Longman,
4th edition, 2009.

[8] Aurélien Buhrig «optimisation de la consommation des
noeuds de réseaux de capteurs sans,Tihese, Institut
National Polytechnique De Grenoble, Avril 2008.

[9] K. Van BERKEL. ‘Beware the isochronic fork.
Integratior?, the VLSI journal, 13(2) : 103-128, 1992.

A.J. MARTIN. “The limitations to delay-insensitivity in
asynchronous circuits In William J. Dally, editor,
Advanced Research in VLSI, pages 263—-278. MIT Press,
1990.

F. Bouesse, M. Renaudin, A. Witon, F. GermaiA *“
Clock-less low-voltage AES crypto-process@uropean
Solid-State Circuits Conference (ESSCIRC 2005),
Grenoble, France, September, 12th — 16th, 2005, pp. 403-
406.

Ahmed RAHNI «Contributions a la validation
d'ordonnancement temps réel en présence de transactions
sous priorités fixes et EDf Thesis, Ecole Nationale
Supérieure de Mécanique et d'Aérotechnique, 05
december 2008.

N. C. Audsley, A. Burns, M. F. Richardson, and A.
J.Wellings. Hard Real-Time Scheduling: The Deadline
Monotonic Approach In Proceedings 8th |EEE
Workshop on Real-Time Operating Systems and Software,
Atalanta, 1991.

J. A. Stankovic and M. Spuri and K. Ramamritham and
G. Buttazzo, Deadline Scheduling for Real-Time
Systems: EDF and Related AlgoritimsKluwer
Academic Publishers, 0-7923- 8269-2,1998

Pouwelse J., Langendoen K., Sips HDynamic voltage
scaling on a lowpower microprocessey Proceedings of
the 7th annual international conference on Mobile
computing and networking (MobiCom’'01), New York,
NY, USA, ACM Press, p. 251-259, 2001.

B. Nichols and D. Buttlar and J.P. Farrell,
“PThreads programmirigO’'Reilly, 1-56592-115-1.

T. Ungerer, B. Robic, and J. Silc.Mutithreaded
Processors”. The Computer Journal, 45(3) : 320-348,
2002.

W. Richard Stevens, Stephen A. Rago,Atdvanced
Programming in the UNIX Environment: Second Edition
Addison Wesley Professional, ISBN: 0201433079, Pages:
960, June 17, 2005

[10]

[11]

[12]

[13]

[14]

[15]

[16] 1996,

[17]

[18]

Editors: S.C.Mukhopadhyay, A. Fuchs, G. Sen Gupta and A. Lay-Ekuakille

