
Fast Hardware implementation of an Hadamard
Transform Using RVC-CAL Dataflow Programming

Khaled Jerbi∗†, Matthieu Wipliez∗, Mickaël Raulet∗, Olivier Déforges∗, Marie Babel∗ and Mohamed Abid†
∗IETR/INSA. UMR CNRS 6164, F-35043 Rennes, France, mail: Firstname.Name@insa-rennes.fr
†CES Lab. National Engineering school of Sfax, Tunisia, mail: Firstname.Name@enis.rnu.tn

Abstract—Implementing an algorithm to hardware platforms is
generally not an easy task. The algorithm, typically described in a
high-level specification language, must be translated to a low-level
HDL language. The difference between models of computation
(sequential versus fine-grained parallel) limits the efficiency of au-
tomatic translation. On the other hand, manual implementation
is time-consuming, because the designer must take care of low-
level details, and write test benches to test the implementation’s
behavior. This paper presents a global design method going
from high level description to implementation. The first step
consists in describing an algorithm as a dataflow program with
the RVC-CAL language. Next step is the functional verification
of this description using a software framework. The final step
consists in an automatic generation of an efficient hardware
implementation from the dataflow program. The objective was
to spend the most part of the conception time in an open source
software platform. We used this method to quickly prototype and
generate hardware implementation of the Hadamard transform,
an algorithm used in many signal processing algorithms, from
an RVC-CAL description.

I. INTRODUCTION

Signal processing algorithms are increasing in complexity.
This complexity involves a very long description code. For
designers this code is very hard to implement on hardware
platforms. Hardware implementation requires the description
of the process using an HDL language like VHDL or Ver-
ilog. These dataflow languages are not easy to develop and
especially to validate. The validation of a dataflow design
requires the development of stimulus code such as a VHDL
test bench in our case and the use of simulation tools.
This is what explains the elapsing gap between validating
and implementing a process. Therefore designers can hardly
satisfy the time to market constraints. To solve this problem,
designers are establishing solutions to describe the process in
a higher level way. In the video coding field, a new high level
description language for dataflow applications called RVC-
CAL [1] was normalized by the MPEG community through the
MPEG-RVC standard [2]. This standard provides a framework
to define different codecs by combining communicating blocks
developed in RVC-CAL.

The objective of our work is the hardware generation from
an RVC-CAL description [3]. In this paper, we introduce an
original global approach to fasten the validation of an RVC-
CAL design and consequently the dataflow generation. This
approach was applied on the Hadamard transform used in
several signal processing algorithms. In section II, we present
the approach and the used languages and frameworks. Section

III shows an application of the method on the Hadamard
transform and also provides some implementation results.

II. DATAFLOW PROGRAMMING FOR HARDWARE
IMPLEMENTATION

The purpose of this work is to obtain a dataflow descrip-
tion directly from an RVC-CAL design. Presently, the only
hardware generator from CAL is a tool called Cal2HDL [4],
[5]. It uses an intermediate representation of the OpenDF
project [6]. Nevertheless,this tool is still unable to treat with
all the RVC-CAL structures (loops and repeats). Therefore,
the existing development method consists of developing a CAL
code synthesizable with Cal2HDL. Then this code is validated
through the OpenDF simulator and finally synthesized into
Verilog/VHDL using Cal2HDL. The limitation is the fact that
a synthesizable code is very long and accordingly so difficult
to manage and to correct. In addition, the feedback of the
OpenDF simulator and the HDL generator are not accurate
enough. So the errors correction is therefore relatively a long
task.

In the following, we present a new approach for functional
verification of an RVC-CAL code. As presented in figure 1,
the design is described with a high level RVC-CAL. Then a
software platform is used for functional validation and FIFO
sizing. Once the code is correct, it undergoes a modification
to be compatible with Cal2HDL by unrolling the loops and
the repeat structures. The validation of this code is realized
with the same software platform. Before implementing the
design, Cal2HDL provides an important feedback about the
delay of every action in every actor. The implementation is
finally insured using a hardware synthesis and prototyping
platform.

A. Dataflow programming with RVC-CAL language

MPEG RVC is under development as part of the MPEG-B
standard [3], which defines the framework and the language
used to describe components. RVC-CAL [3] is a textual and
domain specific language for writing dataflow models (figure
2), more precisely for defining actors of a dataflow model at
a high level description. An actor represents an autonomous
entity and a composition of actors explicitly describes the
concurrency of an application. The RVC-CAL Actor Language
has been defined to be platform independent and retargetable
to a rich variety of platforms.



High level
RVC-CAL

Low level
RVC-CAL

C 

Orcc

C Compiler

Debug
Errors

High level OK

Code
modification

Cal2HDL

VHDL/ Verilog

Hardware 
sythesis tool

Results

Software validation Hardware synthesis

Low level OK

Cal2HDL feedback

Fig. 1. Method overview

An RVC-CAL actor is a computational entity with input
ports, output ports, states and parameters. An actor communi-
cates with other actors by sending and receiving tokens (atomic
pieces of data) through its ports. An actor can contain several
actions. An action defines a computation, which consumes se-
quences of tokens from input ports and produces sequences of
tokens to output ports. Actions have data-dependent conditions
for their execution. The execution of an action may change the
actor internal state, so that the produced output sequences are
functions of the consumed input sequences and of the current
actor state. RVC-CAL supports higher-level constructs such as
multiple-token reads/writes, and list generators.

FIFO Actor

Consume/produce tokens

FIFO

Consume/produce tokens

and modify internal states

FIFO

Actions

State

ActorActor

Actions are implemented

sequentially and they can

be sequenced

FIFO

Actor

be sequenced

FIFO

Fig. 2. CAL dataflow model

B. Functional verification on a software platform

CAL code validation is usually based on the OpenDF sim-
ulator. It has to be stimulated with manually given tokens via
data generation and data display actors. The result is a set of
values that have to be verified. The originality of our approach
is to realize the CAL validation step using Open RVC-CAL
Compiler (Orcc) [7]. orcc Compiler is an opensource software
(http://sourceforge.net/projects/Orcc/) developed in the IETR
laboratory of the INSA of Rennes. The orcc Compiler is a
source-to-source compiler that compiles RVC-CAL dataflow
programs to a target language. Available languages include

C, C++ and Java. This compilation is obtained through in-
termediate transformations. First the CAL code is parsed for
syntactic and semantic analysis. Then this analysis leads to
an intermediate representation. Finally the analysis of the
representation results in the target language. We use the C
language in our work. After compilation, we can easily assign
a video or an image as an input and visualize the output.

It is very important to mention that Orcc compilation,
video processing and display using the C compiler are very
fast steps. In addition, the software debug is very fast and
efficient. Consequently, the CAL errors are easier detected and
corrected. Moreover, we can use Orcc to define the optimal
FIFO sizes for a lower memory consumption in the hardware
implementation.

C. HDL generation

Dataflow generation is done with a tool called Cal2HDL.
This tool parses the CAL code, generates an XML representa-
tion for each actor and synthesizes the static single assignment
(SSA) threads into circuits based on basic operators. The final
description is made up of a verilog file for each actor and a
VHDL file for the top. The connection between the actors is
insured by synchronous or asynchronous FIFO buffers.

For the moment, Cal2HDL does not support all the struc-
tures used in RVC-CAL description such as repeats and loops.
These structures have to be manually modified into several
actions managed by finite state machine. Figure 3 shows an
exeample of an action writing the 16 values of a buffer named
”tab” in the output port called ”OUT”. The instruction ”repeat
16” enables the access to the 16 first values of the buffer ”tab”.

write: action ==> OUT:[tab] repeat 16
end

Fig. 3. High level RVC-CAL example

This action has to be modified into the code presented in
figure 4. The modifications consist of deleting the ”repeat”
structure to have an action that produces only one token and
repeats the basic action 16 times. The repetition process starts
by executing the ”write” action until the ”write done” action
is validated. Everything has to be managed by a finite state
machine defined by the structure ”schedule fsm” in figure 4.

After this transformation we obtain a synthesizable code and
Cal2HDL can generate the adequate hardware description.

III. HARDWARE IMPLEMENTATION OF AN HADAMARD
TRANSFORM

The Hadamard is a transform used in many image and
video coders notably the LAR (Locally Adaptive Resolution)
[8], a coder developed in the IETR/INSA laboratory. It is
composed of two layers: the spatial coder called the Flat
LAR and the texture coder based on the Hadamard transform.
The Flat LAR has already been developed with RVC-CAL
and implemented in a previous work [9]. Therefore, from
this preliminary implementation we would almost achieve the



write: action ==> OUT:[out]
do
counter := counter + 1;

end

write_done: action ==>
guard
counter = 16

do
counter := 0;

end

schedule fsm write:
write (write ) --> write;
write (write_done) --> nextstate;

...
end

Fig. 4. low level RVC-CAL example

implementation of the whole LAR codec following the MPEG-
RVC standard recommandations.

This section explains the mechanism of the Hadamard trans-
form, the dataflow implementation and the synthesis results
obtained when considering the methodology described above.

A. Hadamard transform

The Hadamard transform derives from a generalized class
of the Fourier transform. It consists of a multiplication of a
2mx2m matrix by an Hadamard matrix (Hm) that has the same
size. Here are examples of Hadarmard matrices:

H0 = 1 , H1 = 1√
2

∣∣∣∣ 1 1
1 −1

∣∣∣∣ , etc ...

Hadamard matrices are reversible. Therefore, the Hadamard
transform is reversible and consequently the coding can be
losslessly realized.

B. Hardware implementation

The LAR coding is dependent from the content of the
image. It applies in the Flat LAR a morphological gradient
to extract information about the local activity on the image.
Then follows a Quadtree structure whose resulting output is
the block size image represented by variable size blocks (2x2,
4x4 or 8x8). The higher the activity, the lower the block
size is. We integrated the Quadtree structure in the Hadamard
design because this image is used farther to apply the adequate
transform on the corresponding block. It means that if we have
a block size of 2X2 in the size image this block will undergo a
2X2 Hadamard (H1) and a normalization specific to the 2X2
blocks.

The implemented Hadamard transform is presented in figure
5.

As a first step, the memory management block stores the
pixels values of the original image line by line. Once an 8x8
block is obtained, the actor divides it in sixteen 2x2 blocks
and sends them in a specific order as presented in figure
6. This order is very important to improve the performance
of remaining actors. Then, in the Quadtree, a morphological
gradient is applied to pull out the local activity and generate
the block size image.

H1 H2 H3

Quad tree

Memory
management

Block size

Image
2x2

blocks

H2 input
Memory

Management

H1 H1
H2 output
Memory

management

H3 output
Memory

management

H3 input
Memory

management

Fig. 5. Hadamard developed model

We also notice that an (H2) transform can be achieved
using the (H1) results of the four 2X2 blocks constituting the
4X4 block. Idem for the (H3) one. This ascertainment is very
important for decreasing the complexity of the process. In fact,
the Hadamard transform of the LAR applies an (H1) transform
for the whole image then it applies the (H2) transform only for
the 4X4 and 8X8 blocks and the (H3) transform only for the
8X8 blocks. The (H2) and the (H3) transforms are different
from the full transforms as they are much less complex.
Consequently, as shown in figure 5, we designed the H2 and
the H3 using H1 actors associated with memory management
units. They sort tokens in the adequate order and, considering
the block size, whether the block is going to undergo the
transform or not.

1 2 5 6

3 4 7 8

9 10 13 14

11 12 15 16

2x2 Block

Fig. 6. Memory management unit output order

The different functions of the Hadamard have been first
developped with a high level RVC-CAL description for a
352x288 image size. To optimize the transform, we added a
ping-pong data management algorithm. The principle of this
algorithm is to avoid the latency caused by data storage by
combining the tokens reading and writing in the same action.



The tip is to write the input data in the half of a memory size
then to use this data while writing in the other half. Finally
we just have to switch the reading and the writing pointers in
opposite from a half memory to the other.

A reverse Hadamard block was added for validation. The
whole design was compiled with Orcc to obtain the C code of
the actors. C code were compiled with a C compiler. To test
the design we applied images and videos in the inputs. The
objective was to obtain an output exactly equal to the output
as presented in figure 7.

Fig. 7. Software validation

Once the required pixel values are obtained the design is
validated and consequently the RVC-CAL code. At this level,
the VHDL/Verilog generation is not possible since Cal2HDL
can not generate code from the high level RVC-CAL. It was
necessary to change the RVC-CAL code into another low level
code synthesizable with Cal2HDL as explained in Section II.
Thus, we obtained a dataflow implementation of the Hadamard
transform.

C. Results

The HDL project manager environment used is Xilinx ISE
Foundation 11.1 and the hardware simulation tool is ISE
simulator (Full version). We develop the testbench manually
by initializing the different signals and generating the stimulus
values for the inputs.

After compilation, simulation, RTL synthesis and place
and route on an FPGA: family=virtex4; device=xc4vsx35;
Package=FF668; speed = -12, we obtain the area consumption
results presented in table I.

Criterion value
Slice Flip Flops 1,244/30.720 (4%)
Occupied Slices 2,019/15.360 (13%)
4 input LUTs 3,464/30.720 (11%)

FIFO16/RAMB16s 29/3192 (15%)
Bonded IOBs 47/448 (10%)

TABLE I
CONSUMPTION FOR 352X288 IMAGE SIZE

The time synthesis performances are mentioned in table
II Optimization solutions are in development to decrease the
latency and consequently increase the frequency. In terms of
development time, the whole design took about 60 days to be
achieved. It is very important to mention that over 90% of
the conception time was achieved in the open source software
platform. The most disturbing part of the flow was the manual
transformation of the RVC-CAL from high to low level. We
are currently looking for solutions to automate this step. How-
ever, this global framework introducing a software functional

Criterion 352x288
Output frequency(MHz) 22.4

maximum frequency(MHz) 112
Latency(µs) 79.4

processing time(ms) 4.5
Minimum input arrival
time before clock(ns) 4.339

Maximum output required
time after clock(ns) 8.001

Maximum combinational
path delay(ns) 5.083

TABLE II
TIMING RESULTS

checking before the synthesis process is significantly faster
than a hardware implementation directly from the RVC-CAL
description.

IV. CONCLUSION

This paper presented a method to automatically generate an
efficient functional hardware implementation from an RVC-
CAL dataflow program. The presented method was used to
obtain a hardware implementation of a variable-size Hadamard
transform. We believe that frequency can be increased, and
latency decreased, by further optimization of memory man-
agement actors.

With our method, the design cycle of a hardware implemen-
tation consists in doing the functional verification in software,
and testing the hardware implementation once the program
is correct. We used the Orcc Compiler to generate C code
from RVC-CAL descriptions and to fix the optimal FIFO
sizes. The C code was then compiled and run to test the
program behavior. The hardware implementation was obtained
by automatically transforming the RVC-CAL descriptions with
Cal2HDL. Currently, high-level RVC-CAL descriptions must
be manually transformed to lower-level code for Cal2HDL to
be able to synthesize it. Automating this transformation will
further reduce design time and will be a direction of future
works.

REFERENCES

[1] J. Eker and J. Janneck, “CAL Language Report,” University of California
at Berkeley, Tech. Rep. ERL Technical Memo UCB/ERL M03/48, Dec.
2003.

[2] S. S. Bhattacharyya, J. Eker, J. W. Janneck, C. Lucarz, M. Mattavelli, and
M. Raulet, “Overview of the MPEG reconfigurable video coding frame-
work,” Journal of Signal Processing Systems, 2009, dOI:10.1007/s11265-
009-0399-3. To appear.

[3] ISO/IEC FDIS 23001-4: 2009, “Information Technology - MPEG systems
technologies - Part 4: Codec Configuration Representation,” 2009.

[4] R. Gu, J. W. Janneck, S. S. Bhattacharyya, M. Raulet, M. Wipliez,
and W. Plishker, “Exploring the concurrency of an MPEG RVC
decoder based on dataflow program analysis,” Circuits and Systems
for Video Technology, IEEE Transactions on, vol. 19, no. 11, pp.
1646–1657, 11 2009. [Online]. Available: dx.doi.org/10.1109/{TCSVT}
.2009.2031517http://hal.archives-ouvertes.fr/hal-00440492/en/

[5] “Cal2hdl-openforge source : http://openforge.sourceforge.net.”
[6] S. Bhattacharyya, G. Brebner, J. Eker, J. Janneck, M. Mattavelli, C. von

Platen, and M. Raulet, “OpenDF - A Dataflow Toolset for Reconfigurable
Hardware and Multicore Systems,” 2008, first Swedish Workshop on
Multi-Core Computing, MCC , Ronneby, Sweden, November 27-28,
2008.



[7] J. W. Janneck, M. Mattavelli, M. Raulet, and M. Wipliez, “Reconfigurable
video coding: a stream programming approach to the specification of new
video coding standards,” in MMSys ’10: Proceedings of the first annual
ACM SIGMM conference on Multimedia systems. New York, NY, USA:
ACM, 2010, pp. 223–234.

[8] O. Déforges, M. Babel, L. Bédat, and J. Ronsin, “Color LAR Codec: A
Color Image Representation and Compression Scheme Based on Local
Resolution Adjustment and Self-Extracting Region Representation,” IEEE
Trans. Circuits Syst. Video Techn., vol. 17, no. 8, pp. 974–987, 2007.

[9] K. Jerbi, M. Raulet, O. Déforges, and M. Abid, “Design of an Embedded
Low Complexity Image Coder using CAL language,” DASIP 2009
proceeding, September 2009.


