
A formal method for scheduling analysis of a Partitioned Multiprocessor
System: dynamic Priority Time Petri Nets

Walid Karamti1, Adel Mahfoudhi1, Yessine HadjKacem1 and Mohamed Abid1
1 CES Laboratory, ENIS Soukra km 3,5, University of Sfax

B.P.:w 1173-3000 Sfax TUNISIA
walid.karamti@ceslab.org

Keywords: Real-Time System; Petri Nets; dPTPN; Scheduling Analysis;Least Laxity First;

Abstract: In order to examine whether the timing constraints of a Real-Time application are met, we propose an ex-
tension of Time Petri Nets model that takes into account the scheduling of a set of tasks distributed over a
multiprocessor architecture. This paper is concerned withdynamic Priority-driven scheduling, whose policy
is known to be supported by a new formalism called dynamic Priority Time Petri Nets (dPTPN). Its ultimate
objective is to show how to deal with the Least Laxity First Scheduling policy with a set of periodic inde-
pendent tasks. Besides, the use of dynamic priorities givesa determinism aspect to the model in which a
crossing of concurrent transitions exists. Therefore, theexecution of the model is accelerated and the number
of accessible states is decreased.

1 Introduction

Real-time systems (RTS) are characterized by
complex applications that require powerful architec-
tures to satisfy them. The trend is to use multiproces-
sor architectures, among which we can distinguish the
presence of two families of multiprocessor schedul-
ing. The first is the family of global scheduling in
which each task of application can migrate among the
processor resources to be executed. The major draw-
back of the global family is the absence of an opti-
mal scheduling algorithm (Kwang and Leung, 1988).
The second family is the partitioned scheduling, in
which one task of the application can be executed on
a single processor resource. It is to bring the multipro-
cessor scheduling problem in uniprocessor scheduling
problems in which there exist optimal scheduling al-
gorithms (Liu and Layland, 1973). The family of par-
titioned scheduling involves two steps; a step of as-
signing tasks to processors, and another for analyzing
the scheduling of each partition (L.Sha et al., 2004).
It is important to detect errors of scheduling as early
as possible in order to minimize the costs for its cor-
rection. The analytical techniques used are based on
the analytical work of Liu and Layland (Liu and Lay-
land, 1973).
The specification with formal methods could be able
to reduce the problem impact. In fact, it represents a
recent research area in order to develop a consistent

approach. Starting from an abstract modeling that
takes into account a set of constraints, the main ob-
jective of this technique is to determine and check the
system properties.
Many varieties of formal methods exist and the choice
of the appropriate one depends on the characteristics
of the system and the properties to be checked. De-
ductive reasoning and model checking are two ma-
jor categories of proving methods. Using the deduc-
tive method, a specification gives an abstract descrip-
tion of the significant behavior of the required system.
This behavior is checked for the defined implementa-
tion through the proving of theorems which constitute
the rules of refinement. The major limitation of this
category is that the user interacting with the prover
must be able to guide him.

1.1 Related Work

The technique of model checking is of an irrefutable
advantage, allowing early and economical detection
of errors at an early stage of the design process. This
explains the growing popularity it enjoys in the indus-
trial world.
Aiming at developing a system model, designers must
ensure a sufficient accuracy to preserve all the prop-
erties for check and a level of abstraction appropriate
not to penalize the analysis phase. There are many
formalisms proposed for modeling real-time systems.

Each one has its specific characteristics, more or less
relevant in a specific design and according to the type
of analysis considered.
Time, parallel processing and synchronization are
primordial characteristics for scheduling analysis.
Compared with other formalisms, the Time Petri
Nets (TPNs) (Merlin, 1974) can easily support these
features without leading to combinatorial explo-
sion. Therefore, TPNs face problems when mod-
eling a scheduling policy. Indeed, TPNs is a non-
deterministic formalism because when two or more
transitions are enabled it is not specified which one
has to fire. In reverse, the scheduling algorithm al-
ways chooses an event from the available ones ac-
cording to a defined policy. Several extensions have
been created to support scheduling policy by adding
priorities to transitions.
It should be born in mind that the absence of a TPNs
extension supports dynamic priorities. That is why
we detail the extensions with static priority used for
scheduling analysis.
Roux (Roux and Déplanche, 2002) presented an
STPN (Scheduling Timed Petri Nets) to analyze pe-
riodic tasks on a multiprocessor architecture. The pri-
orities were introduced by the inhibitor arcs to sup-
port a fixed priority driven scheduling policy such
as RM (Rate Monotonic) (Liu and Layland, 1973).
The contribution of his proposal lies in the calcula-
tion of a reduced state space compared to that evoked
by (Berthomieu and Diaz, 1991). Such proposal was
improved by (Lime and Roux, 2004) and (Lime and
Roux, 2009) to support the tasks with variable time
execution.
The STPN (Roux and Déplanche, 2002) adds con-
straints on the crossing of the transitions to check the
respect for the firing interval. Therefore, the check
of these constraints is a new dimension added to the
problem of scheduling analysis.
Berthomieu (Berthomieu et al., 2006)in his turn uti-
lized the inhibitor arcs to introduce the notion of pri-
orities within the Petri nets through the extension of
PrTPNs (Priority Time Petri Nets). His proposal was
based on a method of temporal analysis of the net-
work. Indeed, from a sequence of non-temporal tran-
sitions, his method was to recover the possible dura-
tions between the firing of transitions in order. The
durations are the solutions of a linear programming
problem.
Both of PrTPN and STPN are TPNs extensions, so
they retain these properties, i.e., the indeterminacy of
the date of crossing of an event. However the model-
ing of a scheduling policy of a hard real-time system
requires that all dates used are determined. The pri-
ority is modeled through the inhibitors arcs added as

new components to those of PNs. The RTS modeling
with Petri nets gives rise to the models that are often
complex. Moreover, the addition of an inhibitor arc
makes the model more complex and therefore the ex-
traction of properties becomes more difficult.
A new extension PTPN (Priority Time Petri Nets) was
proposed in (Kacem et al., 2010), in which a crossing
date is associated with each temporal event. In fact,
a transition is valid when the clock shows the date
of firing. In addition, PTPN uses a new method of
priorities integration to address the problem of tran-
sitions conflict. In this method, a priority is inserted
on the input arcs of the dependent transitions (Kacem
et al., 2010).Moreover, this method allows to mas-
ter the complexity of the PTPN model by eliminat-
ing the use of another component, such as inhibitor
arcs, to specify priorities. To control the size of the
PTPN model, a hierarchical modeling was proposed
in (Mahfoudhi et al., 2011).

1.2 Contribution and outline of the
paper

Most of the Time Petri Nets extensions dedicated for
scheduling analysis such as PrTPN (Berthomieu et al.,
2006), STPN (Roux and Déplanche, 2002) and PTPN
(Kacem et al., 2010) use a fixed priority. However,
the use of a fixed priority allows the covering of a re-
duced space of RTS such as periodic tasks and fixed
Priority-driven scheduling strategies.
On a single processor platform, the LLF (Least Lax-
ity First) scheduling policy, a dynamic Priority-driven
scheduling, is known as the most general algorithm on
RTS. It is proven as an optimal preemptive scheduling
algorithm (Goossens et al., 2004). However, its fea-
tures upon multiprocessor platforms have been little
studied so far.
In this paper, we account for the scheduling analysis
of multiprocessor system via a new extension of Time
Petri Nets. The major advantage of the proposed ex-
tension is that it gives a solution to the modeling and
analysis of a dynamic priority-driven scheduling pol-
icy (LLF) taking into account periodic independent
system tasks partitioned over a multiprocessor plat-
forms.
The present paper is organized as follows. Firstly, the
definitions and execution semantics of the proposed
dynamic Priority Petri Nets (dPTPN) are overviewed
in section 2. Next, section 3 shows how our extended
formalism is used for specifying the scheduling anal-
ysis problem through experiments. Finally, the pro-
posed approach is briefly outlined and future perspec-
tives are given.

2 dynamic Priority Time Petri Nets:
dPTPN

Our challenge is the integration of a dynamic-
Priority driven scheduling policy in Petri Nets. This
strategy is based on the dynamic calculation of prior-
ities. Indeed, the value of a priority changes at run-
time.
In the standard PN, the events (transitions) had the
same grade of emergency. Thus when transitions con-
flict, there are no favorable transition to cross before
the others. Accordingly, the semantics of the standard
PN does not support a scheduling policy.
A real-time scheduling policy is characterized by a
sequence of timed events and no events conflict. To
reach our goal, we will integrate these two features in
PN. To do so, we distinguish between temporal events
and concurrent events that are sources of conflict. We
propose a new extension of PN with two types of tran-
sitions T (temporal transitions) andTcp (compound
transition Fig. 1).

Figure 1:Tcp compound

The latter is all about a transition with a preprocess-
ing that precedes the crossing to calculate its priority.
Indeed, if two Tcp transitions are enabled and share at
least a place in entry then the preprocessing is made
to determine the transition which will be fired, with a
priority changing according to the state of the network
described by the marking M. By analogy in real-time
scheduling with dynamic priorities such as LLF, the
priority changes according to laxity.
In this section, we present the syntax of the new Petri
Net extension (dynamic priority Petri NetsdPTPN)
as well as its firing semantics. The simulation of the
sequences of firing is then explained.

2.1 Syntax

A Petri Nets (Petri, 1962) can be defined as 4-uplet :

PN = 〈P, T, B, F〉 (1)

, where:
(1) P = {p1, p2, ..., pn} is a finite set of placesn > 0;
(2) T = {t1, t2, ...,tm} is a finite set of transitionm> 0
(3) B : (P×T) 7→ N is the backward incidence func-
tion;
(4) F : (P×T) 7→ N is the forward incidence func-
tion;

Each system state is represented by a markingM of
the net and defined by :M : P 7→ N.
ThedPTPNis defined by the 7-uplet :

dPTPN=
〈

PN,Tcp,Tf ,BTcp,FTcp,coe f,M0
〉

(2)

(1) PN: is a Petri Net;
(2) Tcp =

{

Tcp1,Tcp2, · · · ,Tcpk

}

: is a finite set of com-
pound transitionk > 0;
(3) Tf : T 7→Q+ is the firing time of a transition.
∀t ∈ T, t is a temporal transition⇐⇒ Tf (t) 6= 0.If
Tf (t) = 0 then t is an immediate transition. Each
temporal transitiont is coupled with a local clock
(Hl(t)),with Hl : T −→Q+.
(4) BTcp : (P×Tcp) 7→ N is the backward incidence
function associated with compound transition;
(5) FTcp : (P× Tcp) 7→ N is the forward incidence
function associated with compound transition;
(6) coe f : (P×Tcp) 7→ Z is the coefficient function
associated with compound transition;
(7) M0 : is the initial marking;

2.2 Semantics

To deal with the problem of the state space explo-
sion, it is worthwhile to mention the contribution of
the methods considered as partial order (Antti, 1989)
(Kimmo, 1994) (Buy and Sloan, 1994) building on a
relation of equivalence between various sequences of
possible firings, starting from the same state. In fact,
when two sequences are found to be equivalent, then
only one of them is selected. This relation of equiva-
lence is based on the notion of independence of tran-
sitions. Two transitions are independent if they are
not in the same neighborhood (see eq. 9).
Based on the approach of partial order and theTcp
compound,dPTPN relies on a well-defined strategy
for the firing during a conflict of transitions. The strat-
egy builds on the construction of a sequence of the
highest priority and valid transitionsdFTs. For the fir-
ing of a markingM, dPTPNoffers a machine of firing
calleddPTPN Firing Machine dPFM, whose mecha-
nism is described in Fig. 2. The entry of the machine
dPFM is a markingM of the dPTPNnetwork. For
each entry, the machine builds thedFTs set, which
consists of two sub-setsFTs andFTsTcp

, which in turn
present the firing transitions of T and those ofTcp, re-
spectively. When it is about a marking dead-end, the
dFTs set is empty (FTs is empty andFTsTcp

is empty)
and thedPFM machine stops.
The modeling of an RTS withdPTPNdistinguishes
between the temporal and immediate events. To do
so, the machinedPFM supplies a chain of process-
ing. Indeed, the machine, firstly, determines the valid
temporal transitions setVTs from theFTs set, and sec-
ondly, theVTs is analyzed. The machine fires any

Figure 2: dPTPN Firing Machine

valid transition before passing to the following stage
and for each firing thedFTs is reconstructed (FTs and
FTsTcp

, respectively). The last stage consists in solv-
ing the problem of conflict by choosing among the
compound transitions with the highest priority that
will be fired.
All immediate transitions must be crossed before the
analysis ofFTsTcp

. In fact, the immediate transitions
are more urgent and their firing can give birth to a
marking that presents a new conflict of transitions.

2.2.1 Firability

dFTs presents the enabled transitions set. In fact,
dFTs is the union of the enabled temporal transi-
tions setFTs and the enabled compound transitions
setFTsTcp

.
dFTs = FTs∪FTsTcp

. (3)

let t ∈ T,t ∈ dFTs⇔ t ∈ FTs∨ t ∈ FTsTcp
(4)

with

{

FTs = {t ∈ T/B(. ,t)≤M}
FTsTcp

=
{

t ∈ T/BTcp (. ,t)≤M
}

For each subsetFTs andFTsTcp
is associated with a

function indicatorχFTs andχFTsTcp
.

χFTs : T −→ {0,1} (5)

x 7−→

{

1 i f x ∈ FTs
0 otherwise

χFTsTcp
: T −→ {0,1} (6)

x 7−→

{

1 i f x ∈ FTsTcp

0 otherwise

2.2.2 Validity

A transition is valid if it is enabled and respects its
firing date. We should bear in mind thatTcp is an
immediate transition. Therefore, we define the Valid
Transition Set (VTs) as a subset ofFTs (VTs⊆ FTs).

VTs =
{

t ∈ FTs/Hl (t) = Tf (t)
}

(7)

χVTs is the function indicator ofVTs with:

χVTs : FTs−→ {0,1} (8)

The main advantage of utilization of theTcp compo-
nent is to solve the problem of transition conflict. The
best way is to select theTcp transition having the high-
est priority.

2.2.3 Step Selection

∀Tcpi ∈ Tcp, Tcpi is selected if and only if it is enabled
and has the highest priority compared with its neigh-
borhood. First of all we present the neighborhood of
transitionTcpi :

∀Tcp1,Tcp2 ∈ Tcp,Tcp1 is a neighbor o f Tcp2

⇔∃p∈P such that BTcp (p,Tcp1) 6= 0∧BTcp (p,Tcp2) 6= 0
(9)

We consider a matrixNe to indicate the neighborhood
of all transitionsTcp compared to each place P:

Ne : Tcp×P−→ {0,1} (10)

(tcp, p) 7−→

{

1 i f BTcp(p,tcp) > 0
0 otherwise

Three steps are applied to select the transition that has
the highest priority. The first step is the calculation of
the priority for each enabled transitionTcp. In fact, the
priority depends on the state of the dPTPN model and
the matrixcoe f. EachTcp calculate its priority using
the scalar product ofcoe f matrix with the marking
vector M.

Prio : FTsTcp
−→ Z (11)

tcp 7−→ 〈coe f(.,tcp) |M〉
In the second step, we mark the corresponding pri-
orities to eachTcp neighborhood. More precisely we
define the following function:

Prod : FTsTcp×P 7→ Z (12)

(tcp, p) 7−→ Prio(tcp)Ne(tcp, p)

the third step, the transition having the highest priority
per palce is selected from the vectorProd(., pi).

Min : P−→ FTsTcp
(13)

p 7−→ tcp
with {∀tcpi 6= tcp, Prod(tcp, p) < Prod(tcpi , p)}

Finally, theFTsTcp
must be updated to present only the

selected transitions:∀tcp∈ Tcp,∀p∈ P,

Prod(tcp, p) 6= 0∧ tcp 6= Min(p) =⇒ χFTsTcp
(tcp) = 0

(14)

2.2.4 Firing

We define the firing of a givenFT vector. IndPTPN,
FT can be anVTs vector or anFTsTcp

vector:

∀FT ∈
{

VTs,FTsTcp

}

,Firing (FT) =⇒























FT = VTs
⇔M′ = M + ∑t∈FT (F (.,t)−B(.,t))

FT = FTsTcp

⇔M′ = M + ∑t∈FT

(

FTcp (.,t)−BTcp (.,t)
)

(15)

2.2.5 Clocks management

According to dPTPN, the clocks management abides
some rules, which are:
Rule1(set):When a transition is enabled, for its first
time, then its matching clock is activated and initial-
ized with zero.
Rule2(reset):After firing VTs, the clocks of valid tran-
sitions will reset.
Rule3(increment clock):The clock of a transition is
incrementing if the transition is enabled, no valid tran-
sition exists and theFTsTcp

is empty.
SetIncremetClock() is activated⇐⇒

FTs 6=�∧FTsTcp
=�∧VTs =� (16)

2.2.6 dPTPN State Graph

In dPTPN, a state is a node composed of(M,tmp),
whereM is a marking andtmpis the time for its firing.
The state graphSGis defined by:SG= 〈S,A〉 with:

• S: is a set of state;

• A : S×S−→ dFTs: presents the arcs connecting
the reachable states. The connection arcs will be
established only when two markings of two states
are reachable viadFTs vector.

The process of construction of the states graph cor-
responds to the execution of the Algorithm 1. In-
deed, it deals with a repetitive execution of thedPFM
machine and for every iteration a new state is con-
structed.

During the first tic of the clock associated with

Algorithm 1 State graph construction

1: M: Marking
2: dFTs: enabled transitions set
3: FTs: enabled temporal transitions set
4: VTs: valid temporal transitions set
5: Hl : clocks set
6: FTsTcp

: enabled compound transitions set
7: initializeMarking(M)
8: SetClock(Hl)
9: StateConstruction(M)

10: while M ≺ B and M≺ BTcp do
11: Firability(dFTs)
12: FTs← temporalTransition(dFTs)
13: FTsTcp

← CompoundTransition(dFTs)

14: if FTs 6=� then
15: VTs← Validity(FTs)
16: if VTs 6=� then
17: Firing(VTs)
18: StateConstruction(M)
19: ResetClock(Hl (VTs))
20: else if FTsTcp

=� then
21: SetIncrementClock(Hl (FTs))
22: end if
23: else if FTsTcp

6=� then
24: StepSelection(FTsTcp

)
25: Firing(dFTs)
26: StateConstruction(M)
27: end if
28: end while

dPTPN, the markingM is initialized by theinitialize-
Marking(M) function and the first state is built by the
function StateConstruction(M). The process of con-
struction starts with applying an iterative work. For
each iteration, the machinedPFM begins with the de-
termination of the fired transitions in the vectordFTs
by applying the functionFirability(dFTs). Vectors
FTs and FTsTcp

are initialized fromdFTs to distin-
guish between the temporal transitions and theTcp

transitions.
The validation of the temporal transitions is analyzed
via the functionValidity(FTs). To check the existence
of the valid transitions, a conditional structure appears
to fire them at once. However, the absence of the
valid transitions allows us to check the existence of
the compound transitions. The presence of the transi-
tions inFTsTcp

requires a selection of the highest pri-
ority to fire it. Any firing leads to an update of the
marking M and a construction of a new state to con-
nect it with the precedent one through a weight arc
dFTs.
The absence of the valid transitions and the compound
transitions leads to an incrementation of the global
clock of thedPTPNby calling the functionSetIncre-
mentClock(). This process is repeated as long as the
markingM satisfies at least a transition. The Process
ends as soon as it is in a marking dead-end or during
a reset of the marking.

3 Model construction

The RTSΩ is defined by the 3-uplet:

Ω = 〈Task, Proc, Alloc〉 (17)

with:
(1) Task : is a finite set of real-time tasks with each
Taski ∈ Taskdetermined by

Taski = 〈Ri , Pi , Di , Ci〉 (18)

• Ri : the date of the first activation

• Pi: the period associated with the task

• Di : the deadline associated with the task, we con-
sider an RTS withPi = Di

• Ci : the execution period of the task for thePi pe-
riod

(2) Proc : a finite set of processors.
(3) Alloc : Task7→ Proc, a function which allocates a
task to a processor.Alloc is a surjective function. In
fact a processor is allocated to at least one task. But a
task must be assigned to only one processor.
∀t1 ∈ Task, ∀P1,P2 ∈ Proc,

Alloc(t1) = P1∧Alloc(t1) = P2⇒ P1 = P2 (19)

To model the systemΩ with the newdPTPNexten-
sion, we specify each component ofΩ. The model of
scheduling analysis is described through the commu-
nication between the variousTaskandProc compo-
nents. Each processor is modelled by a simple place,
whose marking describes the state of the resource.
The presence of a mark indicates that the resource is
free and ready to execute a task. The absence of the
mark indicates that the resource is occupied by a sys-
tem taskΩ.

3.1 Task Model

The modeling can be divided into two major patterns.
The first one pertains to the notion of creation, activa-
tion and deadline, as for the second, it describes the
concept of execution task.

3.1.1 Creation, Activation and Deadline

At first, a taskTaski ∈ Task is created. For a date
”Ri”, the creation is made, leading to the passage of
the task towards the created state. So, the period ”Pi”
starts. As shown in Fig. 3, each state is modelled by
a place and every event by a transition. When it is
about an event accompanied with a date of progress,
the transition will take a date of firing similar to that
of the event. When it is about a non-created state, it is
presented by a marked place (UnCreated). The cre-
ation is modelled by a temporal transitionCreation
which takes a date of ”Ri” firing.
When the local clock ofHl(Creation) indicates the
date of firingRi , the transition is then valid and the fir-
ing allows to register a mark in the placeCreatedand
Pi tokens inRemainingPeriod. Indeed, the marking of
the placeCreatedshows that the task is created andPi
marks present the remaining duration before the dead-
line. For each tic of the global clock of thedPTPN,
the transitionIncPeriod is validated. Besides, its fir-
ing leads to a decrementation of the remaining du-
ration before the deadline and an incrementation of
the exhausted time of the period. WhenPi tokens are
moved towards the placeElapsedPeriod, the period
is exhausted and a new period must be activated. The
event of activation is modelled by a transitionRestart,
whose firing activates a new period by depositingPi
marks inRemainingPeriodand the creation of a new
instance of the task by putting down a token in the
placeCreated.

Figure 3: Creation, Activation and Deadline

We present a first scenario in which the first activation
of the taskTaski exists. We will then introduce a sce-
nario of deadline event provided with the mechanism
of its detection by the modeldPTPN.

The placeCreatedindicates the presence of a mark.
To model the activation of the first instance of the
task, we use a mutual exclusion described by two
placesDisabled and Activated. According to the
initial scenario, the first instance of the task is de-
activated, where from the presence of a token in
Disabled. The current marking allows the firing of
the transitionActivationand the firing allows the sup-
ply of a mark in placesReadyandActivated. The cur-
rent state proves that the current instance of the task
is activated and lends itself to be run on the processor
resource.
With regard to the second scenario, it describes the
activation of a new period while the old instance of
the task has not finished its execution yet. The model
presents a mark in the placeCreatedand another in
the placeActivated. This marking allows the firing
of the transitionActivation for the activation of the
new instance and the transitionTdeadlineto indi-
cate that the task overtook its deadline. The firing
of Tdeadlineallows the registration of a mark in the
placeDeadlineand the blocking of the entire model
dPTPNof the task.

3.1.2 Execution

The execution of a task is described by two main
events, the first of which pertains to the allocation of
the resource processor and the second represents the
execution of the task on the processor.
The resource processor is a resource shared between
the various tasks of the same partition, and for a given
moment, a single task occupies it. The allocation of
the processor depends on the used scheduling strat-
egy. In our study we are interested in the strategy
based on LLF.
With dPTPN, each task calls for the resource proces-
sor if and only if it presents a mark in the placeReady.
So, the event of allocation is modeled by a transition
allocationof the typeTcp. The processor will be at-
tributed to the task having the transitionallocation
with the highest priority (having the least laxity). In-
deed, the allocation is modeled by a registration of a
mark in the placegetProc. Fig. 4 illustrates two re-
quests of allocation of the processorP1 by two tasks
(Alloc(Task1)=Alloc(Task2)=P1).
Fig. 4 shows that for each task, there are 4 places
and aTcp transition type as well as a place for model-
ing the processor. Both transitionsT1allocationand
T2allocationthat are fired by the current marking are
in conflict because of the shared placeP1. The prior-
ities of the transitions will be calculated according to
the LLF policy. In fact, the LLF makes its schedul-
ing decisions based on the maximum time span that a
request can tolerate before being picked up for execu-

Figure 4: Allocation Processor

tion.
The laxity of a request at any given moment is the
time span that it can tolerate before the time it has
to be picked up for execution; otherwise its deadline
will definitely be missed. As a request is being exe-
cuted, its laxity does not change. However, the laxity
of a task decreases as the request waits (either in the
ready-to-run queue or elsewhere).Its chances of being
overrun increase. When the laxity of a task becomes
zero, it can no longer tolerate waiting.
The laxity of a task is a dynamic value that changes as
the circumstances change. Four values affect its com-
putation:(1) the absolute time of the moment when we
want to compute the laxity of the task, t,(2) the abso-
lute value of the deadline of this request,Di ,(3) the
execution time of this request,Ci , and (4) the execu-
tion time that has been spent on this request since it
was generated,ei . The following is the simple for-
mula for computing the laxity of a request with the
aforementioned values.

L = (Di− t)− (Ci−ei) (20)

In Fig. 5, the (Di−t) value is presented with the mark-
ing of the place ”RemainingPeriod” and the (Ci −ei)
is presented with the marking of the place ”Ci”.
The main interest of ”coe f” matrix is to provide a
solution for presenting the arithmetic operators. In-
deed, to model the equationL with dPTPN, we in-
tercalate the coefficient ”1” on the arc connecting the
place ”RemainingPeriod” and theTcp and ”2” on the
arc between the place ”Ci” and ”Tcp”.
The marking of the model Fig. 4 presents
4 marks in T1RemainingPeriodand 2 marks in
T2RemainingPeriod. The T2allocation transition is
the most priority because it has the least laxity (L=2-
1=1). The firing ofT2alloctaion involves the extrac-
tion of two marks ofP1 andT2Readyand a registra-
tion of a mark inT2getProcto indicate that the pro-
cessorP1 is attributed totask2. The placeT1Ready
always remains marked becausetask1 is always pend-
ing to the processor P1.

Figure 5: Execution

As soon as the marking of the model indicates the
presence of a mark in the placegetProc(Fig.5), the
task begins the execution by firing the immediate tran-
sitionexecution.
It is worthwhile to mention that the interest of the
present paper is the preemptive systems. Indeed, to
manage the modeling of this type of problem, we pro-
pose that each task occupies the processor during only
one unit of time then releases it. The corresponding
dPTPNmodel is described by a temporal transition
incrementingwith a date of firing equal to 1. The fir-
ing of this event allows not only the removal of a mark
from the placeCi and one from the placeInExecbut
also the registration of a mark in the placemakeras
well as the incrementation of the tokens ofei by an-
other mark. Such incrementation indicates that the
task ended a unit of execution during the periodPi.
It should be noted that there is an emergence of three
eventsendCi, endDeadlineandRelaxProc. We con-
sider the scenario when the three events are enabled.
The placemaker is a shared place between those
events. So they are modeled withTcp transitions and
are in the same neighborhood. We must specify the
priority of each transition for solving the conflict. The
current scenario shows that the task has completed its
Ci units and the deadline is triggered. In the schedul-
ing analysis, this scenario is not considered as non-
schedulable task. Thus, the priority of theendCitran-
sition is higher thanendDeadline. To do so, we at-
tribute the coefficients ”3” to the input arc ofendCi
and ”2” to the input arc of ”endDeadline”.
The non-schedulable system is described when the
endDeadlineand RelaxProcare enabled. It means
that a new period is triggered when the last period is

still activated. Since, theendDeadlinemust be fired
immediately, we must attribute the higher priority to
it and a smaller priority toRelaxProc(coef=1).

3.2 Case study

In the present section, we introduce the technique of
how dPTPNsolve the scheduling analysis problems
of the real-time systems. It is through a case study
that ourdPTPNextension is brought to the light.
In fact, we present a generic experiment which con-
sists of a non-schedulable system. In the latter, we
establish how the way how the evolution ofdPTPN
model supplies a description of the temporal fault to
help the designers in refining the partitioning space
Sw/Hw. It should be born in mind that due to space
limitation, we present a pedagogical experiment.
The case study deals with three tasks running on two
processors. Using definition 17, the specifications
of the task characteristics as well as the allocation
of the processors by the tasks are described as follows.
Task= {T1(0,16,16,4), T2(0,8,8,2), T3(0,4,4,2),
T4(0,6,6,4), T5(0,7,7,4)};
Proc= {P1, P2};
Alloc(T1) = P1 Alloc(T4) = P2
Alloc(T2) = P1 Alloc(T5) = P2
Alloc(T3) = P1

The first stage consists in modeling ofΩ with the
dPTPN. As for the second step, it consists in placing
the marks ondPTPN constituents: a mark in each
constituent ”Processor: P1, P2”. A mark in the
places ”Uncreated” and ”Disabled” of ”Task : T1,
T2, T3, T4, T5”. We also place 4, 2, 2, 4 and 4 marks
on the places ”Ci” of tasks T1, T2, T3, T4 and T5
respectively.
At this level, let us recall that the strength of our
dPTPN extension is its capacity to determine step
by step the valid scheduling sequence. In fact, the
execution of the model based ondPFM allows the
construction of the valid sequence. If the construction
is well established, then the system is well scheduled,
otherwise when the sequence encounters a marking,
then the system is considered as non-schedulable.
Moreover, the supplied scheduling sequence is opti-
mal becausedPTPN supports the optimal dynamic
priority LLF strategy.
For a better presentation, we have detailed the
execution of the model in Table 1. Three columns
are represented; the first ”step” is the number of
the steps in the scheduling, which corresponds to a
state in the states graph explained previously. The
first step starts with ”step=0”. The second column is
”time”; it is the number of tics of the global clock of
the PTPN model. The last column ”Fts” represents

Table 1: Model execution related to the case study

Step Time
dFTs Step Time

dFTs

FTs dFTsTcp
FTs dFTsTcp

0 0 Creating(T1,T2,T3,T4,T5) −− 20 4 Restart(T3) −−

1 0 Activation(T1,T2,T3,T4,T5) −− 21 4 Activation(T3) −−

2 0 � Allocation(T1,T2,T3,T4,T5) 22 4 � RelaxProc(T2,T5)

EndCi(T2)

3 1 Execution(T3,T4) −− 23 4 Releasing(T2,T5) −−

4 1 Incrementing(T3,T4) −− 24 4 � Allocation(T1,T3,T4)

IncPeriod(T1,T2,T3,T4,T5)

5 1 � RelaxProc(T3,T4) 25 4 Execution(T3,T4) −−

6 1 Releasing(T3,T4) −− 26 5 Incrementing(T3,T4) −−

IncPeriod(T1,T2,T3,T4,T5)

7 1 � Allocation(T1,T2,T3,T4,T5) 27 5 � RelaxProc(T3,T4)

8 1 Execution(T3,T5) −− 28 5 Releasing(T3,T5) −−

9 2 Incrementing(T3,T5) −− 29 5 � Allocation(T1,T3,T4)

IncPeriod(T1,T2,T3,T4,T5)

10 2 � RelaxProc(T3,T5) 30 5 Execution(T3,T4) −−

EndCi(T3)

11 2 Releasing(T3,T5) −− 31 6 Incrementing(T3,T4) −−

IncPeriod(T1,T2,T3,T4,T5)

12 2 � Allocation(T1,T2,T4,T5) 32 6 Restart(T4) −−

RelaxProc(T3,T4)

13 2 Execution(T2,T4) −− 33 6 � EndDealine(T4)

EndCi(T3,T4)

14 3 Incrementing(T2,T4) −− 34 6 Releasing(T3,T4) −−

IncPeriod(T1,T2,T3,T4,T5)

15 3 � RelaxProc(T2,T4) 35 6 � Allocation(T1,T4,T5)

16 3 Releasing(T2,T4) −− 36 6 Execution(T1,T5) −−

17 3 � Allocation(T1,T2,T4,T5) 37 7 Incrementing(T3,T5) −−

IncPeriod(T1,T2,T3,T4,T5)

18 3 Execution(T2,T5) −− 38 7 Restart(T5) −−

19 4 Incrementing(T2,T5) −− 39 7 � RelaxProc(T1,T4)

IncPeriod(T1,T2,T3,T4,T5) EndDealine(T5)

the high-priority and valid transitions in each step of
scheduling.
The execution process of the model starts at time 0
with the initial markingM0. These two parameters
present the necessary entries to launch thedPFM
machine. Such machine determines the high-priority
tcp and valid transitionst in the columnsFTs and
FTsTcp

: Transition-name (Task-name). It is the
case of ”step0”, in which the columnFTs presents
”Creation(T1, T2,T3)” and no enabledtcp exists. The
simultaneous firing of this set of events gives birth to
a new marking and a new step ”step1”.
As for ”step2”, it presents no valid temporal event
exist and the event ”Allocation(T1,T2,T3,T4,T5)”
in the columnFTsTcp

. This indicates that five tasks
are ready to allocate the processors ”P1” and ”P2”.
”Allocation(T1)” and ”Allocation(T2)” and ”Al-
location(T3)” belong to the same neighborhood.
However, ”Allocation(T3)” has the lowest laxity
(highest priority according LLF) (l=2) . Therefore,

it will be fired before ”Allocation(T1)” and ”Alloca-
tion(T2)”. The transitions with the highest priority
are presented with the red color for eachFTsTcp

.
What is worthy to note is that step ”step38” presents
the ”Restart(T5)” event. This indicates that the period
T5 is provoked and a newT5 instance is created
while the work of the last instance is not achieved.
The firing and the passage to the step ”step39” brings
about a new marking which replies to the event
”EndDeadline(T5)”. The firing of this event implies
the blocking of the execution, signaling a temporal
fault (deadline). The current marking describes the
combination of tasks that causes this fault. It will
be a useful feedback to the designer to change the
allocation Task/Processor.

4 Conclusion

In this paper, we have presented a new method
for scheduling analysis of periodic tasks running on
multiprocessor architecture. The analysis technique is
based on proposed dynamic Priority Time Petri Nets
dPTPN. Compared to the existing research work, the
salient characteristic of novelty indPTPN consists
in the attribution of a dynamic priority via a com-
pound transition. ThereforedPTPN supports a dy-
namic Priority-driven policy (LLF) and its seman-
tics isolate the conflict of enabled transitions. Rather
than presenting a solution for the problems of confu-
sion,dPTPNFiring Machine accelerates thedPTPN
evolution by applying temporal filtering for temporal
transitions and priority filtering forTcp transitions. In
regular PN, the firing of a transition requires the iden-
tification of the new set of enabled transitions. How-
ever, withdPFM, this set is established only after the
firing of the old one. It is also guided by dynamic pri-
orities. Consequently, starting from a markingM0, the
dPFM fires simultaneously valid temporal transitions
and theTcp having the highest priority then returns the
new markingM.
In the current paper, we deal with a partitioning
strategy of multiprocessors scheduling. This tech-
nique is concerned as a static scheduling method.
The distribution of tasks on processors is often done
through a tool based on heuristics. When the schedul-
ing analysis technique, i.e. dPTPN, detects a non-
schedulable system, then the tool generates a new so-
lution. This process causes a waste of time gener-
ating problems during implementing of the schedul-
ing strategy. However, dPTPN indicates the exact
description of the non-schedulable sequence and just
changed this sequence to obtain a valid scheduling.
This presents our challenge in future research work.
We are also interested in including performance anal-
ysis in the verification of RTS and planning to inte-
gratedPTPNdesign patterns ranging building blocks
for an easy model construction and interpretation.

REFERENCES

Antti, V. (1989). Stubborn sets for reduced state space gen-
eration. InApplications and Theory of Petri Nets,
pages 491–515.

Berthomieu, B. and Diaz, M. (1991). Modeling and ver-
ification of time dependent systems using time petri
nets.IEEE Trans. Softw. Eng., 17(3):259–273.

Berthomieu, B., Peres, F., and Vernadat, F. (2006). Bridg-
ing the gap between timed automata and bounded time
petri nets. InFORMATS, pages 82–97.

Buy, U. and Sloan, R. (1994). Analysis of real-time pro-
grams with simple time petri nets. InISSTA ’94:
Proceedings of the 1994 ACM SIGSOFT international
symposium on Software testing and analysis, pages
228–239, New York, NY, USA. ACM.

Goossens, J., Richard, P., Richard, P., and Bruxelles, U.
L. D. (2004). Overview of real-time scheduling prob-

lems. InEuro Workshop on Project Management and
Scheduling.

Kacem, Y. H., Karamti, W., Mahfoudhi, A., and Abid, M.
(2010). A petri net extension for schedulability analy-
sis of real time embedded systems. InPDPTA, pages
304–314.

Kimmo, V. (1994). On combining the stubborn set method
with the sleep set method. In Valette, R., editor,Ap-
plication and Theory of Petri Nets 1994: 15th Inter-
national Conference, Zaragoza, Spain, June 20–24,
1994, Proceedings, volume 815 ofLecture Notes in
Computer Science, pages 548–567. Springer-Verlag,
Berlin, Germany. Springer-Verlag Berlin Heidelberg
1994.

Kwang, S. H. and Leung, J.-T. (1988). On-line scheduling
of real-time tasks. InIEEE Real-Time Systems Sym-
posium, pages 244–250.

Lime, D. and Roux, O. (2004). A translation based method
for the timed analysis of scheduling extended time
petri nets. InRTSS ’04: Proceedings of the 25th IEEE
International Real-Time Systems Symposium, pages
187–196, Washington, DC, USA. IEEE Computer So-
ciety.

Lime, D. and Roux, O. H. (2009). Formal verification of
real-time systems with preemptive scheduling.Real-
Time Syst., 41(2):118–151.

Liu, C. L. and Layland, J. W. (1973). Scheduling algo-
rithms for multiprogramming in a hard-real-time en-
vironment.J. ACM, 20:46–61.

L.Sha, Abdelzaher, T., arzén, K., Cervin, A., Baker, T.,
Burns, A., Buttazzo, G., Caccamo, M., Lehoczky, J.,
and Mok, K. (2004). Real time scheduling theory:
A historical perspective.Real-Time Systems, 28:101–
155. 10.1023/B:TIME.0000045315.61234.1e.

Mahfoudhi, A., Hadj Kacem, Y., Karamti, W., and Abid,
M. (2011). Compositional specification of real
time embedded systems by priority time petri nets.
The Journal of Supercomputing, pages 1–26. doi
10.1007/s11227-011-0557-9.

Merlin, P. M. (1974).A Study of the Recoverability of Com-
puting Systems.Irvine: Univ. California, PhD Thesis.
available from Ann Arbor: Univ Microfilms, No. 75–
11026.

Petri, C. A. (1962). Fundamentals of a theory of asyn-
chronous information flow. InIFIP Congress, pages
386–390.

Roux, O. H. and Déplanche, A. M. (2002). A t-time Petri
net extension for real time-task scheduling modeling.
European Journal of Automation (JESA), 36(7):973–
987.

