A formal method for scheduling analysis of a Partitioned M ultiprocessor
System: dynamic Priority Time Petri Nets

Walid Karamtt, Adel Mahfoudhit, Yessine HadjKacerhand Mohamed Abid

1 CES Laboratory, ENIS Soukra km 3,5, University of Sfax

B.P.:.w 1173-3000 Sfax TUNISIA
walid.karamti@ceslab.org

Keywords: Real-Time System; Petri Nets; dPTPN; Scheduling Analyssst Laxity First;

Abstract: In order to examine whether the timing constraints of a Réale application are met, we propose an ex-
tension of Time Petri Nets model that takes into account theduling of a set of tasks distributed over a
multiprocessor architecture. This paper is concerned eytiamic Priority-driven scheduling, whose policy
is known to be supported by a new formalism called dynamiorRyi Time Petri Nets (APTPN). Its ultimate
objective is to show how to deal with the Least Laxity Firsh&duling policy with a set of periodic inde-
pendent tasks. Besides, the use of dynamic priorities givésterminism aspect to the model in which a
crossing of concurrent transitions exists. Thereforegttexution of the model is accelerated and the number
of accessible states is decreased.

1 Introduction approach. Starting from an abstract modeling that
takes into account a set of constraints, the main ob-
, , jective of this technique is to determine and check the
Real-time systems (RTS) are characterized by system properties.
complex applications that require powerful architec- nany varieties of formal methods exist and the choice
tures to satisfy them. The trend is to use multiproces- ¢ the appropriate one depends on the characteristics
sor architectures, among which we can distinguish the ¢ e system and the properties to be checked. De-
presence of two families of multiprocessor schedul- ,ctive reasoning and model checking are two ma-
ing. The first is the family of global scheduling in jor categories of proving methods. Using the deduc-
which each task of application can migrate among the e method, a specification gives an abstract descrip-
processor resources to be executed. The major drawsjon, of the significant behavior of the required system.
back of the global family is the absence of an opti- Thjs hehavior is checked for the defined implementa-
mal scheduling algorithm (Kwang and Leung, 1988). {jon, through the proving of theorems which constitute
The second family is the partitioned scheduling, in e yyles of refinement. The major limitation of this

which one task of the application can be executed on c41eq0ry is that the user interacting with the prover
a single processor resource. Itis to bring the multipro- 1, st be able to guide him.

cessor scheduling problem in uniprocessor scheduling
problems in which there exist optimal scheduling al-
gorithms (Liu and Layland, 1973). The family of par-
titioned scheduling involves two steps; a step of as-
signing tasks to processors, and another for analyzingThe technique of model checking is of an irrefutable
the scheduling of each partition (L.Sha et al., 2004). advantage, allowing early and economical detection
It is important to detect errors of scheduling as early of errors at an early stage of the design process. This
as possible in order to minimize the costs for its cor- explains the growing popularity it enjoys in the indus-
rection. The analytical techniques used are based ontrial world.

the analytical work of Liu and Layland (Liu and Lay- Aiming at developing a system model, designers must
land, 1973). ensure a sufficient accuracy to preserve all the prop-
The specification with formal methods could be able erties for check and a level of abstraction appropriate
to reduce the problem impact. In fact, it represents a not to penalize the analysis phase. There are many
recent research area in order to develop a consistenformalisms proposed for modeling real-time systems.

1.1 Reated Work

Each one has its specific characteristics, more or lessnew components to those of PNs. The RTS modeling
relevant in a specific design and according to the type with Petri nets gives rise to the models that are often
of analysis considered. complex. Moreover, the addition of an inhibitor arc
Time, parallel processing and synchronization are makes the model more complex and therefore the ex-
primordial characteristics for scheduling analysis. traction of properties becomes more difficult.
Compared with other formalisms, the Time Petri A new extension PTPN (Priority Time Petri Nets) was
Nets (TPNs) (Merlin, 1974) can easily support these proposed in (Kacem et al., 2010), in which a crossing
features without leading to combinatorial explo- date is associated with each temporal event. In fact,
sion. Therefore, TPNs face problems when mod- a transition is valid when the clock shows the date
eling a scheduling policy. Indeed, TPNs is a non- of firing. In addition, PTPN uses a new method of
deterministic formalism because when two or more priorities integration to address the problem of tran-
transitions are enabled it is not specified which one sitions conflict. In this method, a priority is inserted
has to fire. In reverse, the scheduling algorithm al- on the input arcs of the dependent transitions (Kacem
ways chooses an event from the available ones ac-et al., 2010).Moreover, this method allows to mas-
cording to a defined policy. Several extensions have ter the complexity of the PTPN model by eliminat-
been created to support scheduling policy by adding ing the use of another component, such as inhibitor
priorities to transitions. arcs, to specify priorities. To control the size of the
It should be born in mind that the absence of a TPNs PTPN model, a hierarchical modeling was proposed
extension supports dynamic priorities. That is why in (Mahfoudhi et al., 2011).

we detail the extensions with static priority used for

scheduling analysis. . . .

Roux (Roux and Déplanche, 2002) presented an1.2 Contribution and outline of the

STPN (Scheduling Timed Petri Nets) to analyze pe- paper

riodic tasks on a multiprocessor architecture. The pri-

orities were introduced by the inhibitor arcs to sup-

port a fixed priority driven schedu]ing p0||Cy such Most of the Time Petri Nets extensions dedicated for

as RM (Rate Monotonic) (Liu and Layland, 1973). schedulinganalysis suchas PrTPN (Berthomieuetal.,
The contribution of his proposal lies in the calcula- 2006), STPN (Roux and Déplanche, 2002) and PTPN
tion of a reduced state space compared to that evokedKacem et al., 2010) use a fixed priority. However,
by (Berthomieu and Diaz, 1991). Such proposal was the use of a fixed priority allows the covering of a re-
improved by (Lime and Roux, 2004) and (Lime and duced space of RTS such as periodic tasks and fixed
Roux, 2009) to support the tasks with variable time Priority-driven scheduling strategies.

execution. On a single processor platform, the LLF (Least Lax-
The STPN (Roux and Déplanche, 2002) adds con- ity First) scheduling policy, a dynamic Priority-driven
straints on the crossing of the transitions to check the scheduling, is known as the most general algorithm on
respect for the firing interval. Therefore, the check RTS. Itis proven as an optimal preemptive scheduling
of these constraints is a new dimension added to thea@lgorithm (Goossens et al., 2004). However, its fea-
problem of scheduling analysis. tures upon multiprocessor platforms have been little
Berthomieu (Berthomieu et al., 2006)in his turn uti- Studied so far.

lized the inhibitor arcs to introduce the notion of pri- In this paper, we account for the scheduling analysis
orities within the Petri nets through the extension of Of multiprocessor system via a new extension of Time
PrTPNs (Priority Time Petri Nets). His proposal was Petri Nets. The major advantage of the proposed ex-
based on a method of temporal analysis of the net- tension is that it gives a solution to the modeling and
work. Indeed, from a sequence of non-temporal tran- analysis of a dynamic priority-driven scheduling pol-
sitions, his method was to recover the possible dura-icy (LLF) taking into account periodic independent
tions between the firing of transitions in order. The System tasks partitioned over a multiprocessor plat-
durations are the solutions of a linear programming forms.

problem. The present paper is organized as follows. Firstly, the
Both of PrTPN and STPN are TPNs extensions, so definitions and execution semantics of the proposed
they retain these properties, i.e., the indeterminacy of dynamic Priority Petri Nets (dPTPN) are overviewed
the date of crossing of an event. However the model- in section 2. Next, section 3 shows how our extended
ing of a scheduling policy of a hard real-time system formalismis used for specifying the scheduling anal-
requires that all dates used are determined. The pri-ysis problem through experiments. Finally, the pro-

ority is modeled through the inhibitors arcs added as Posed approach is briefly outlined and future perspec-
tives are given.

2 dynamic Priority Time Petri Nets:
dPTPN

Our challenge is the integration of a dynamic-
Priority driven scheduling policy in Petri Nets. This
strategy is based on the dynamic calculation of prior-
ities. Indeed, the value of a priority changes at run-
time.

Each system state is represented by a markingf
the net and defined byM : P — N.
ThedPTPNis defined by the 7-uplet :

dPTPN= (PN, T¢p, Tt,Br,,, Fr.,.coe f, Mo)
(1) PN: is a Petri Net;
(2) Tep={Tepy, Tepss -+ > Tep - is a finite set of com-
pound transitiork > O;
(3) Tt : T +— QT is the firing time of a transition.

(2)

In the standard PN, the events (transitions) had theyt c T t is a temporal transitior=> T (t) # O.If
same grade of emergency. Thus y\(hentransitions CON-T¢(t) = O thent is an immediate transition. Each
flict, there are no favorable transition to cross before temporal transitiort is coupled with a local clock
the others. Accordingly, the semantics of the standard (HI(t)),with HI : T — Q.

PN does not support a scheduling policy.
A real-time scheduling policy is characterized by a

(4) By, : (P x Tgp) — N is the backward incidence
function associated with compound transition;

sequence of timed events and no events conflict. Togy Fr = (P x Tep) — N is the forward incidence
cp

reach our goal, we will integrate these two features in

function associated with compound transition;

PN. To do so, we distinguish between temporal events g) coef: (P x Tep) — Z is the coefficient function
and concurrent events that are sources of conflict. We gssociated with compound transition;

propose a new extension of PN with two types of tran-
sitions T (temporal transitions) andp, (compound
transition Fig. 1).

Coef;

Figure 1:Tcp compound

The latter is all about a transition with a preprocess-
ing that precedes the crossing to calculate its priority.

Indeed, if two Tcp transitions are enabled and share at
least a place in entry then the preprocessing is made

to determine the transition which will be fired, with a
priority changing according to the state of the network
described by the marking M. By analogy in real-time
scheduling with dynamic priorities such as LLF, the
priority changes according to laxity.

In this section, we present the syntax of the new Petri
Net extension (dynamic priority Petri Net§*T PN

as well as its firing semantics. The simulation of the
sequences of firing is then explained.

2.1 Syntax

A Petri Nets (Petri, 1962) can be defined as 4-uplet :
PN=(P, T, B, F) (1)

, Where:

(1)P={p1, p2, ---, Pn} is a finite set of places > 0;
(2) T ={t1, tz, ...,tm} is afinite set of transitiom > 0
(3)B: (PxT)+— Nis the backward incidence func-
tion,;

(4 F: (PxT)+— Nis the forward incidence func-
tion;

(7) Mg : is the initial marking;
2.2 Semantics

To deal with the problem of the state space explo-
sion, it is worthwhile to mention the contribution of
the methods considered as partial order (Antti, 1989)
(Kimmo, 1994) (Buy and Sloan, 1994) building on a
relation of equivalence between various sequences of
possible firings, starting from the same state. In fact,
when two sequences are found to be equivalent, then
only one of them is selected. This relation of equiva-
lence is based on the notion of independence of tran-
sitions. Two transitions are independent if they are
not in the same neighborhood (see eq. 9).

Based on the approach of partial order and The
compounddPTPNrelies on a well-defined strategy
for the firing during a conflict of transitions. The strat-
egy builds on the construction of a sequence of the
highest priority and valid transitiort=Ts. For the fir-

ing of a markingvl, dPT PNoffers a machine of firing
calleddPTPN Firing Machine dPFMwhose mecha-
nism is described in Fig. 2. The entry of the machine
dPFM is a markingM of the dPT PN network. For
each entry, the machine builds th&Ts set, which
consists of two sub-seksTg andFTSTCp, which in turn
present the firing transitions of T and thosélgf, re-
spectively. When it is about a marking dead-end, the
dFTs setis empty B Ts is empty and:TSTCp is empty)
and thedPFM machine stops.

The modeling of an RTS witld PT PN distinguishes
between the temporal and immediate events. To do
so, the machinelPFM supplies a chain of process-
ing. Indeed, the machine, firstly, determines the valid
temporal transitions s&tTs from theF Ts set, and sec-
ondly, theVTs is analyzed. The machine fires any

A

Step
Selection

Machine
stopped

FTstcp
Firing
Firability dFTs

FTs

no—b‘ Validtity '—P
A

Setincrement Clock

ye:

New
Marking

ResetClock *

Figure 2: dPTPN Firing Machine

SetClock ﬁ

valid transition before passing to the following stage 2.2.2 Validity

and for each firing theF Ts is reconstructedqTs and

FTsr., respectively). The last stage consists in solv- A transition is valid if it is enabled and respects its
ing the problem of conflict by choosing among the firing date. We should bear in mind th&, is an
compound transitions with the highest priority that immediate transition. Therefore, we define the Valid

will be fired. Transition Set{ Ts) as a subset & Ts (VTs C FTy).
All immediate transitions must be crossed before the
analysis ofF T, . In fact, the immediate transitions VTs={te FT/HI (1) =Ts (1)} ()

are more urgent and their firing can give b_ir_th to a Xv1, is the function indicator o Ts with:
marking that presents a new conflict of transitions.
XVTs - FTS — {O, l} (8)

The main advantage of utilization of tiigy compo-
dFTs presents the enabled transitions set. In fact, nentis to solve the problem of transition conflict. The
dFT; is the union of the enabled temporal transi- bestway is to select thi, transition having the high-
tions setFTs and the enabled compound transitions est priority.

2.2.1 Firability

setF Tsp, - _
dFTs =FTsUFTs . ©) 2.2.3 Step Selection
letteT,tcdFTs & teFTsVEcFls (4) VTep € Teps Tep is selected if and only if it is enabled
ith FTs={teT/B(.,t) <M} and has the highest priority compared with its neigh-
wit Flor, = {teT/Br,(..t)<M} borhood. First of all we present the neighborhood of
For each subsdtTs and FTsTcp is associated with a transitionTep:
function indicatorgrT, andxFTSTCp. VTepy, Tep, € Tep, Tep, IS @ neighbor of dp,
lif xeFTs We consider a matriie to indicate the neighborhood
X . s
0 otherwise of all transitionsTc, compared to each place P:
XFTay, ' T — {01} (6) Ne: Tepx P — {0,1} (10)

x»—>{ 1if x € FTs,

1ifB t 0
0 otherwise (tep, D) — { if Brep(Pitep) >

0 otherwise

Three steps are applied to select the transition that has2.2.6 dPTPN State Graph

the highest priority. The first step is the calculation of
the priority for each enabled transitidgy,. In fact, the

In dPTPN a state is a node composed(M,tmp),

priority depends on the state of the dPTPN model and whereM is a marking andim pis the time for its firing.

the matrixcoef. EachTp calculate its priority using
the scalar product ofoef matrix with the marking
vector M.
Prio : FTSTCp — 7

tep — (coef(.,tep) | M)
In the second step, we mark the corresponding pri-
orities to eachlp neighborhood. More precisely we
define the following function:

Prod: FTsg, x P—Z
(tep, p) = Prio (tcp) Ne (tcp, P)

the third step, the transition having the highest priority
per palce is selected from the vecRmod(., pi).

Min: P — FTs
p—tc
with {Vtcy # tcp, Prod(tcp, p) < Prod(tcp, p)}
Finally, theFTSTCp must be updated to present only the
selected transitionsftep € Tep, Vp € P,
Prod(tcp, p) # 0 Atcp # Min(p) = XFTsr,, (tep) =0
(14)

(11)

(12)

(13)

224 Firing

We define the firing of a giveRT vector. INndPTPN
FT can be aVTs vector or arF Ts;_ | vector:

VET € {VT,FTy, } Firing (FT) —
FT=VT
g M =M + ztEFT (F (7t) - B(7t))

FT=FTg,

M =M + zteFT (Frcp (’t) - BTcp (7t))
(15)

2.25 Clocks management

According to dPTPN, the clocks management abides 565

some rules, which are:

Rulel(set)When a transition is enabled, for its first
time, then its matching clock is activated and initial-
ized with zero.

Rule2(reset)After firing V Ts, the clocks of valid tran-
sitions will reset.

Rule3(increment clock)The clock of a transition is
incrementing if the transition is enabled, no valid tran-
sition exists and th& T, is empty.
SetIncremetClodk is activated—=

|:-I—S§é ®/\FTSTcp - @/\VTS: @

(16)

The state grapBGis defined by:SG= (S A) with:
e S is a set of state;

e A:SxS— dFTs presents the arcs connecting
the reachable states. The connection arcs will be
established only when two markings of two states
are reachable vidF T vector.

The process of construction of the states graph cor-
responds to the execution of the Algorithm 1. In-
deed, it deals with a repetitive execution of theFM
machine and for every iteration a new state is con-
structed.

During the first tic of the clock associated with

Algorithm 1 State graph construction

1: M: Marking

: dFTs: enabled transitions set

. FTs: enabled temporal transitions set

: VTs: valid temporal transitions set

: HI: clocks set

F s, €nabled compound transitions set
. initializeMarking M)

: SetClock(HI)

. StateConstructioM)

10: whileM < B and M < Br., do

©CO~NOURWN

11: Firability(dFTs)
12: FTs« temporalTransitiodFT)
13: FTg,, < CompoundTransitiofdFTs)
14: if FTs# @ then
15: V Ts «— Validity(FTs)
16: if VTs # © then
17: FiringV Ts)
18: StateConstructio)
19: ResetClociH! (VTs))
20: elseif FTs,, = o then
21: SetincrementCloc¢K| (FTs))
22: end if
23: dseif FTs;, # @ then
24: StepSeIectioﬁ(TSTcp)
25: FiringdFTs)
StateConstructioM)
end if
28: end while

dPT PN the markingM is initialized by thenitialize-
Marking(M) function and the first state is built by the
function StateConstruction(M)The process of con-
struction starts with applying an iterative work. For
each iteration, the machink®F M begins with the de-
termination of the fired transitions in the vecttf Tg

by applying the functior-irability (dFTs). Vectors
FTs and FTSTCp are initialized fromdFTg to distin-
guish between the temporal transitions and Thg

transitions. 3.1 Task Mod€

The validation of the temporal transitions is analyzed

via the functionvalidity(FTs). To check the existence The modeling can be divided into two major patterns.
of the valid transitions, a conditional structure appears The first one pertains to the notion of creation, activa-
to fire them at once. However, the absence of the tion and deadline, as for the second, it describes the
valid transitions allows us to check the existence of concept of execution task.

the compound transitions. The presence of the transi-) o _

tions inF T requires a selection of the highest pri- 3.1.1 - Creation, Activation and Deadline

ority to fire it. Any firing leads to an update of the i)

marking M and a construction of a new state to con- At first, a taskTask € Taskis created. For a date
nect it with the precedent one through a weight arc 'Ri'» the creation is made, leading to the passage of
dFT.. the task towards t_he c_reated state. So,_the period "Pi”
The absence of the valid transitions and the compoundStarts. As shown in Fig. 3, each state is modelled by
transitions leads to an incrementation of the global @ Place and every event by a transition. When it is
clock of thed PT PNby calling the functiorSetincre- ~ @bout an event accompanied with a date of progress,
mentClock() This process is repeated as long as the the transition will ta!((? a date of firing similar to the}t'
markingM satisfies at least a transition. The Process ©f the event. When itis about a non-created state, it is

ends as soon as it is in a marking dead-end or duringPresented by a marked pladér(Created. The cre-
a reset of the marking. ation is modelled by a temporal transiti@reation

which takes a date of "Ri” firing.

When the local clock oHI(Creation) indicates the
date of firingR;, the transition is then valid and the fir-
ing allows to register a mark in the plaCeeatedand

P, tokens inRemainingPeriodindeed, the marking of
the placeCreatedshows that the task is created dhd

3 Model construction

The RTSQ is defined by the 3-uplet:

Q = (Task Proc, Alloc) (17) marks present the remaining duration before the dead-
with: line. For each tic of the global clock of thPT PN
(1) Task : is a finite set of real-time tasks with each the transitionncPeriodis validated. Besides, its fir-
Task € Taskdetermined by ing leads to a decrementation of the remaining du-
Task= (R, P, D;, G) (18) ration before the deadline and an incrementation of

the exhausted time of the period. Wheintokens are

Ri: the date of the first activation moved towards the pladelapsedPeriodthe period

e R: the period associated with the task is exhausted and a new period must be activated. The

e D;: the deadline associated with the task, we con- event of activation is modelled by a transitiBestart
sider an RTS withP, = D; whose firing activates a new period by depositihig

e G;: the execution period of the task for tRepe- marks inRemainingPeriodind the creation of a new
riod instance of the task by putting down a token in the

(2) Proc: afinite set of processors. placeCreated

(3) Alloc: Task— Proc, a function which allocates a
task to a processoAlloc is a surjective function. In
fact a processor is allocated to at least one task. But a Remaining
task must be assigned to only one processor. Perted
vt; € Task VP, P, € Proc, UnCreated o By
Alloc(t1) =PiAAlloc(ty)) =P =P =P, (19)
To model the syster with the newdPT PN exten-
sion, we specify each component®f The model of
scheduling analysis is described through the commu- Disabled
nication between the variousaskand Proc compo-
nents. Each processor is modelled by a simple place,
whose marking describes the state of the resource.
The presence of a mark indicates that the resource isWe present a first scenario in which the first activation
free and ready to execute a task. The absence of theof the taskT ask exists. We will then introduce a sce-
mark indicates that the resource is occupied by a sys-nario of deadline event provided with the mechanism
tem taskQ. of its detection by the modelPT PN

Elapsed

IncPeriod m Period

Pi Restart

Tdeadline Deadline

Activated

Created
Activation

Figure 3: Creation, Activation and Deadline

—— Taskl +— — — — — — e —— Task2 ' — — — — — — e

The placeCreatedindicates the presence of a mark. |
To model the activation of the first instance of the |
task, we use a mutual exclusion described by two I | ¢..q
placesDisabled and Activated According to the :

|

|

: T1allocation

|

|

|

|

|

T1Remaininig

T2Remaininig |
Period T1Ci

T2Ci Period |

P, T2Ready

initial scenario, the first instance of the task is de-
activated, where from the presence of a token in
Disabled The current marking allows the firing of
the transitiorActivationand the firing allows the sup-
ply of a mark in placeReadyandActivated The cur-

rent state proves that the current instance of the task
is activated and lends itself to be run on the processor
resource. Figure 4: Allocation Processor
With regard to the second scenario, it describes the
activation of a new period while the old instance of
the task has not finished its execution yet. The model
presents a mark in the pla@reatedand another in
the placeActivated This marking allows the firing

of the transitionActivationfor the activation of the
new instance and the transitidnrdeadlineto indi-
cate that the task overtook its deadline. The firing
of T deadlineallows the registration of a mark in the

'
T2allocation
'

T1getProc

tion.

The laxity of a request at any given moment is the
time span that it can tolerate before the time it has
to be picked up for execution; otherwise its deadline
will definitely be missed. As a request is being exe-
cuted, its laxity does not change. However, the laxity
of a task decreases as the request waits (either in the
placeDeadlineand the blocking of the entire model E)?/ae??/u:loirrllé:‘eiiilﬁ/\(l)rr\ eerlls?r:/(\;hlzzﬁt)yltosf;h;rjsckeggéﬁgg
dPTPNof the task. zero, it can no longer tolerate waiting.

312 Execution The laxity of a task is a dynamic value that changes as
the circumstances change. Four values affect its com-

The execution of a task is described by two main putation:(1) the absolute_time of the moment when we
events, the first of which pertains to the allocation of Wantto compute the laxity of the task, t,(2) the abso-
the resource processor and the second represents thléf'te va_lue Qf the de_adllne of this requet, (3) the
execution of the task on the processor. execution time of this request;, and (4) the execu-
The resource processor is a resource shared betweeH°n time that has been spent on this request since it
the various tasks of the same partition, and for a given @S generateds. The following is the simple for-
moment, a single task occupies it. The allocation of mula for computing the laxity of a request with the
the processor depends on the used scheduling stratdforementioned values.

egy. In our study we are interested in the strategy L=(Dj—t)—(C—&) (20)
based on LLF.

With dPTPN each task calls for the resource proces- InFig. 5, the D; —t) value is presented with the mark-
sor if and only if it presents a mark in the pldgeady ing of the place "RemainingPeriod” and thg ¢)

So, the event of allocation is modeled by a transition is presented with the marking of the placg™.
allocation of the typeT;p. The processor will be at- The main interest of Coef’ matrix is to provide a
tributed to the task having the transiti@hocation solution for presenting the arithmetic operators. In-
with the highest priority (having the least laxity). In- deed, to model the equatidnwith dPTPN, we in-
deed, the allocation is modeled by a registration of a tercalate the coefficient "1” on the arc connecting the
mark in the placegetProc Fig. 4 illustrates two re- place "RemainingPeriod” and th, and "2” on the
quests of allocation of the procesgel by two tasks arc between the plac&€™ and "T¢p".
(Alloc(Taskl)=Alloc(Task2)=P1). The marking of the model Fig. 4 presents
Fig. 4 shows that for each task, there are 4 places4 marks in T{RemainingPeriodand 2 marks in
and aTcp transition type as well as a place for model- T,RemainingPeriod The T,allocation transition is

ing the processor. Both transitiodallocationand the most priority because it has the least laxity (L=2-
T2allocationthat are fired by the current marking are 1=1). The firing ofT 2alloctaioninvolves the extrac-

in conflict because of the shared pld&® The prior- tion of two marks ofP1 andT,Readyand a registra-
ities of the transitions will be calculated according to tion of a mark inT,getProcto indicate that the pro-
the LLF policy. In fact, the LLF makes its schedul- cessorPl is attributed tatask. The placel;Ready
ing decisions based on the maximum time span that aalways remains marked becatask; is always pend-
request can tolerate before being picked up for execu-ing to the processor P1.

Deadline still activated. Since, thendDeadlineanust be fired
immediately, we must attribute the higher priority to
it and a smaller priority tdRelaxProqcoef=1).

execution Tdeadline

3.2 Casestudy

Incrementing Created
Activated In the present section, we introduce the technique of
how dPT PNsolve the scheduling analysis problems
of the real-time systems. It is through a case study
that ourdPT PNextension is brought to the light.

In fact, we present a generic experiment which con-
sists of a non-schedulable system. In the latter, we
establish how the way how the evolution®PT PN
model supplies a description of the temporal fault to
help the designers in refining the partitioning space
Sw/Hw. It should be born in mind that due to space
limitation, we present a pedagogical experiment.

The case study deals with three tasks running on two
processors. Using definition 17, the specifications
of the task characteristics as well as the allocation
As soon as the marking of the model indicates the of the processors by the tasks are described as follows.
presence of a mark in the plagetProc(Fig.5), the Task={T1(0,16,16,4), T2(0,8,8,2), T3(0,4,4,2),
task begins the execution by firing the immediate tran- T4(0,6,6,4), T5(0,7,7,4)};

sition execution Proc= {P1, P2};

It is worthwhile to mention that the interest of the Alloc(T1) =P1 Alloc(T4)=P2

present paper is the preemptive systems. Indeed, to Alloc(T2) =P1 Alloc(T5) =P2

manage the modeling of this type of problem, we pro- Alloc(T3) =P1

pose that each task occupies the processor during onlyThe first stage consists in modeling ©f with the
one unit of time then releases it. The corresponding dPTPN As for the second step, it consists in placing
dPTPNmodel is described by a temporal transition the marks ondPT PN constituents: a mark in each
incrementingwith a date of firing equal to 1. The fir- constituent "Processor: P1, P2". A mark in the
ing of this event allows not only the removal of amark places "Uncreated” and "Disabled” of "Task : T1,
from the placeCi and one from the placExechut T2, T3, T4, T5". We also place 4, 2, 2, 4 and 4 marks
also the registration of a mark in the placekeras on the places "Ci” of tasks T1, T2, T3, T4 and T5
well as the incrementation of the tokensedty an- respectively.

other mark. Such incrementation indicates that the At this level, let us recall that the strength of our
task ended a unit of execution during the perftid dPTPN extension is its capacity to determine step
It should be noted that there is an emergence of threeby step the valid scheduling sequence. In fact, the
eventsendCj endDeadlineandRelaxProc We con- execution of the model based alPFM allows the
sider the scenario when the three events are enabled.construction of the valid sequence. If the construction
The placemakeris a shared place between those is well established, then the system is well scheduled,
events. So they are modeled wilky, transitions and otherwise when the sequence encounters a marking,
are in the same neighborhood. We must specify the then the system is considered as non-schedulable.
priority of each transition for solving the conflict. The Moreover, the supplied scheduling sequence is opti-
current scenario shows that the task has completed itsmal becausaPT PN supports the optimal dynamic
Ci units and the deadline is triggered. In the schedul- priority LLF strategy.

ing analysis, this scenario is not considered as non-For a better presentation, we have detailed the

RelaxProc endCi

ReleaseProc "
Disabled

Ready
Releasing

Proc

Figure 5: Execution

schedulable task. Thus, the priority of thedCitran- execution of the model in Table 1. Three columns
sition is higher tharendDeadline To do so, we at- are represented; the first "step” is the number of
tribute the coefficients "3” to the input arc ehdCi the steps in the scheduling, which corresponds to a
and "2" to the input arc of "endDeadline”. state in the states graph explained previously. The

The non-schedulable system is described when thefirst step starts with "step=0". The second column is
endDeadlineand RelaxProcare enabled. It means "time”; it is the number of tics of the global clock of

that a new period is triggered when the last period is the PTPN model. The last columifirts” represents

Table 1: Model execution related to the case study

Step | Time T dFTs aFT Step | Time T dFTs aFT
STep hd STep
0 0 Creating(T1,72,T3,T4,T5) - 20 4 Restart(T3) -
1 0 Activation(T1,T2,T3,T4,T5) —— 21 4 Activation(T3) ——
2 0 @ Allocation(T1,T273,T4,T5) 22 4 @ RelaxProc(T2[5)
EndCi(T2)
3 1 Execution(T3,T4) - 23 4 Releasing(T2,T5) -
4 1 Incrementing(T3,T4) - 24 4 Q@ Allocation(T1,73,T4)
IncPeriod(T1,T2,T3,T4,T5)
5 1 Q@ RelaxProc{3,T4) 25 4 Execution(T3,T4) -
6 1 Releasing(T3,T4) - 26 5 Incrementing(T3,T4) -
IncPeriod(T1,T2,73,T4,T5)
7 1 @ Allocation(T1,T273,T4,T5) 27 5 @ RelaxProc{3,T4)
8 1 Execution(T3,T5) - 28 5 Releasing(T3,T5) -
9 2 Incrementing(T3,T5) - 29 5 %] Allocation(T1,73,T4)
IncPeriod(T1,T2,T3,T4,T5)
10 2 @ RelaxProc(T3[5) 30 5 Execution(T3,T4) -
EndCi(T3)
11 2 Releasing(T3,T5) - 31 6 Incrementing(T3,T4) -
IncPeriod(T1,72,73,T4,T5)
12 2 @ Allocation(T1,72,T4,T5) 32 6 Restart(T4) ——
RelaxProc(T3,T4)
13 2 Execution(T2,T4) - 33 6 @ EndDealine(T4)
EndCi(T3,T4)
14 3 Incrementing(T2,T4) - 34 6 Releasing(T3,T4) -
IncPeriod(T1,T2,T3,T4,T5)
15 3 Q@ RelaxProc{2,T4) 35 6 Q@ Allocation(T1,T4,T5)
16 3 Releasing(T2,T4) - 36 6 Execution(T1,T5) -
17 3 @ Allocation(T1,72,T4,T5) 37 7 Incrementing(T3,T5) -
IncPeriod(T1,72,73,T4,T5)
18 3 Execution(T2,T5) - 38 7 Restart(T5) -
19 4 Incrementing(T2,T5) - 39 7 @ RelaxProc(1,T4)
IncPeriod(T1,T2,T3,T4,T5) EndDealine(T5)

the high-priority and valid transitions in each step of
scheduling.

it will be fired before "Allocation(T1)” and "Alloca-
tion(T2)". The transitions with the highest priority

The execution process of the model starts at time 0 are presented with the red color for e&'eﬁ,Tcp.

with the initial markingMg. These two parameters
present the necessary entries to launch dkré&M

What is worthy to note is that step "step38” presents
the "Restart(T5)” event. This indicates that the period

machine. Such machine determines the high-priority T5 is provoked and a new5 instance is created

tcp and valid transitiong in the columnsFTs and
FTSTCP: Transition-name (Task-name). It is the
case of "step0”, in which the columRTs presents
"Creation(T1, T2,T3)” and no enablég}, exists. The
simultaneous firing of this set of events gives birth to
a new marking and a new step "stepl”.

As for "step2”, it presents no valid temporal event
exist and the event "Allocation(T1,T2,T3,T4,T5)"
in the columnFTSTcp. This indicates that five tasks
are ready to allocate the processors "P1” and "P2".
"Allocation(T1)” and “Allocation(T2)” and "Al-
location(T3)” belong to the same neighborhood.
However, "Allocation(T3)" has the lowest laxity
(highest priority according LLF) (I=2) . Therefore,

while the work of the last instance is not achieved.
The firing and the passage to the step "step39” brings
about a new marking which replies to the event
"EndDeadline(T5)". The firing of this event implies
the blocking of the execution, signaling a temporal
fault (deadline). The current marking describes the
combination of tasks that causes this fault. It will
be a useful feedback to the designer to change the
allocation Task/Processor.

4 Conclusion

lems. InEuro Workshop on Project Management and
Scheduling

In this paper, we have presented a new method Kacem, Y. H., Karamti, W., Mahfoudhi, A., and Abid, M.

for scheduling analysis of periodic tasks running on
multiprocessor architecture. The analysis technique is
based on proposed dynamic Priority Time Petri Nets

(2010). A petri net extension for schedulability analy-
sis of real time embedded systems.PFDPTA pages
304-314.

dPTPN. Compared to the existing research work, the Kimmo, V. (1994). On combining the stubborn set method

salient characteristic of novelty idPT PN consists

in the attribution of a dynamic priority via a com-
pound transition. ThereforédPT PN supports a dy-
namic Priority-driven policy (LLF) and its seman-
tics isolate the conflict of enabled transitions. Rather
than presenting a solution for the problems of confu-
sion,dPT PNFiring Machine accelerates tld>T PN
evolution by applying temporal filtering for temporal
transitions and priority filtering fofcp, transitions. In
regular PN, the firing of a transition requires the iden-
tification of the new set of enabled transitions. How-
ever, withdPF M, this set is established only after the
firing of the old one. Itis also guided by dynamic pri-
orities. Consequently, starting from a markg, the
dPFM fires simultaneously valid temporal transitions
and theTp having the highest priority then returns the
new markingM.

In the current paper, we deal with a partitioning
strategy of multiprocessors scheduling. This tech-
nique is concerned as a static scheduling method.
The distribution of tasks on processors is often done
through a tool based on heuristics. When the schedul-
ing analysis technique, i.e. dPTPN, detects a non-

with the sleep set method. In Valette, R., edi#dp-
plication and Theory of Petri Nets 1994: 15th Inter-
national Conference, Zaragoza, Spain, June 20-24,
1994, Proceedingsvolume 815 ofLecture Notes in
Computer Sciencepages 548-567. Springer-Verlag,
Berlin, Germany. Springer-Verlag Berlin Heidelberg
1994.

Kwang, S. H. and Leung, J.-T. (1988). On-line scheduling
of real-time tasks. IHEEE Real-Time Systems Sym-
posium pages 244-250.

Lime, D. and Roux, O. (2004). A translation based method
for the timed analysis of scheduling extended time
petri nets. INRTSS '04: Proceedings of the 25th IEEE
International Real-Time Systems Symposiyages
187-196, Washington, DC, USA. IEEE Computer So-
ciety.

Lime, D. and Roux, O. H. (2009). Formal verification of
real-time systems with preemptive schedulirReal-
Time Syst.41(2):118-151.

Liu, C. L. and Layland, J. W. (1973). Scheduling algo-
rithms for multiprogramming in a hard-real-time en-
vironment.J. ACM 20:46-61.

schedulable system, then the tool generates a new SOt Sha, Abdelzaher, T., arzén, K., Cervin, A., Baker, T.,

lution. This process causes a waste of time gener-
ating problems during implementing of the schedul-
ing strategy. However, dPTPN indicates the exact

description of the non-schedulable sequence and just

changed this sequence to obtain a valid scheduling.
This presents our challenge in future research work.
We are also interested in including performance anal-
ysis in the verification of RTS and planning to inte-
grated PT PNdesign patterns ranging building blocks
for an easy model construction and interpretation.

REFERENCES

Antti, V. (1989). Stubborn sets for reduced state space gen-
eration. InApplications and Theory of Petri Nets
pages 491-515.

Berthomieu, B. and Diaz, M. (1991). Modeling and ver-
ification of time dependent systems using time petri
nets.|IEEE Trans. Softw. Engl7(3):259-273.

Berthomieu, B., Peres, F., and Vernadat, F. (2006). Bridg-
ing the gap between timed automata and bounded time
petri nets. IFORMATS pages 82-97.

Buy, U. and Sloan, R. (1994). Analysis of real-time pro-
grams with simple time petri nets. I[IBSTA '94:
Proceedings of the 1994 ACM SIGSOFT international
symposium on Software testing and analypiages
228-239, New York, NY, USA. ACM.

Goossens, J., Richard, P., Richard, P., and Bruxelles, U.
L. D. (2004). Overview of real-time scheduling prob-

Burns, A., Buttazzo, G., Caccamo, M., Lehoczky, J.,
and Mok, K. (2004). Real time scheduling theory:
A historical perspectiveReal-Time System28:101—
155. 10.1023/B:TIME.0000045315.61234.1e.

Mahfoudhi, A., Hadj Kacem, Y., Karamti, W., and Abid,
M. (2011). Compositional specification of real
time embedded systems by priority time petri nets.
The Journal of Supercomputingrages 1-26. doi
10.1007/s11227-011-0557-9.

Merlin, P. M. (1974).A Study of the Recoverability of Com-
puting Systemdrvine: Univ. California, PhD Thesis.
available from Ann Arbor: Univ Microfilms, No. 75—
11026.

Petri, C. A. (1962). Fundamentals of a theory of asyn-
chronous information flow. IhFIP Congress pages
386-390.

Roux, O. H. and Déplanche, A. M. (2002). A t-time Petri
net extension for real time-task scheduling modeling.
European Journal of Automation (JESAB(7):973—
987.

