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Abstract—Web services provide an instantiation of the
loosely coupled Service Oriented Architecture (SOA) and
facilitate the process of enterprise application integration.
However, with the explosive growth of the number of Web
services published over the Internet, identifying a high quality
of composite services by taking into account both functional
and non-functional requirements of end users has become a
real challenge that needs to be addressed. We propose in this
paper an approach that adresses this challenge by considering a
two-phase composition process. The composition first proceeds
to generate an abstract plan based on Web service types using
Dynamic Description Logics (DDL). This abstract plan is then
concretized into an executable plan by selecting the appropriate
Web service instances based on non-functional requirements.

Keywords-Web service composition; Matching; ontology; Dy-
namic Description Logic; planning; QoS

I. INTRODUCTION

Web services are becoming the prominent paradigm for
distributed computing and electronic business. They have
received much interest in industry due to their potential
in facilitating seamless business-to-business or enterprise
application integration. One of the key benefits of utiliz-
ing services is the potential for automatically formulating
compositions of services resulting in integrated software
applications. Web service composition is the process of
realizing the requirements of a new Web service using
the existing component Web services. The specification of
composite Web services must reflect their functional and non
functional capabilities. The functional capability of a Web
service describes its core functionality. The non-functional
capabilities, on the other hand, help in characterizing the
service further by capturing its optional features, such as
QoS parameters.

With the rapid expansion of Web service related applica-
tions in fields such as e-business, e-government and e-health,
there is a clear need for infrastructures and frameworks that
can be used to develop applications on the basis of Web
service compositions. However, the explosive growth of the
number of services published over the Internet makes the
identification of high quality composite services by taking
into account both functional a non-functional requirements
a real challenging task that should be addressed.

In this context, this paper presents a two-step Web services
composition framework that provides support for seman-
tic matching while composing services, employs efficient
decoupling of functional and non-functional requirements,
and leads to improved discovery, selection, and composition
processes. First, this framework differentiates between Web
service types, which are groupings of similar (in terms of
functionality) Web services, and the actual Web service in-
stances that can be invoked. This separation will allows us to
work efficiently with large collection of Web services. Then,
the composition process starts by generating an abstract
plan based on Web service types (abstract composition),
which is subsequently concretized into an executable plan
by selecting the appropriate Web service instances (concrete
composition). Composition at the abstract level is reduced
to formulas satisfiability checking in Dynamic Description
Logic (DDL) language, extension of the description logics
(DLs) with a dynamic dimension. By embracing knowledge
in actions into DLs, DDLs couple the static information
provided by ontologies and the dynamic processing provided
by Web services, and offer a uniform way to represent
and reason about both static and dynamic aspects of the
Web content. Our approach employed classical DL-TBoxes
to capture the constraints of the domain, DL-ABoxes to
describe the states, and DL-formulas to encode the client
requirements respectively. Actions in DDLs were used to
abstract the functionalities of the existing Web services [1].

Concerning the composition at the concrete level, in order
to turn the abstract plan into an executable workflow that
can be deployed and executed, specific instances must be
chosen for the component service types in the plan. This
level uses optimization techniques in selecting the best Web
service instances to produce an executable workflow. The
focus is now on quantitatively exploring the available Web
service instances for workflow execution. It queries the
registry for deployed Web service instances and performs
end to end QoS optimization to accomplish this task. The
generated executable workflow must then be deployed onto
a runtime infrastructure, and executed in an efficient and
scalable manner. This latter task is beyond the scope of this
paper and is outlined as future work.

The remainder of the paper is structured as follows.



Section 2 reviews and discusses the related existing efforts.
In section 3, we introduce the main ingredients of our
approach and discuss its main features. Section 4 details the
composition process at abstract and concrete levels. Finally,
Section 5 concludes the paper and outlines the future work.

II. RELATED WORK

Recently, research on automatic Web services discovery
and composition has been receiving a lot of attention. In
what follows, we briefly review and discuss the existing
efforts that are more closed to our contribution.

Dynamic description logic is used in [2], [3], [4], [5] to
model and reason about Web services and their dynamic
behaviors. In [2], service realizability and executability are
handeled by checking formulas satisfiability and consistency
through a simple DDL-based service model. [3] uses an im-
perative algorithm to enumerate all composition sequences.
[4] is a DDL-based Web service composition approach that
consists in generating a partial order diagram and running
the composition process using a fast algorithm according
to the generated diagram. In [5], the authors proposed an
extension of the Arithmetic and Logic Class (ALC), called
Service Dynamic Description Logic (SDDL), to support
the discovery and composition of Web services. [6] pro-
poses a new DDL-based composition model, which supports
context-based service using bottom-up filtering approach.
This contribution increases the DDL-reasoning efficiency by
providing context-aware support and reduces the reasoning
space. But it is limited by the fact that it is based on abstract
reasoning without detailing the orchestration process and
the action-based reasoning. Also none of these approaches
considers non-functional characteristics or QoS attributes.

Some other approaches tried to simplfy the compo-
sition process by analyzing and reformulating the user-
requirements into mathematical or formal expressions
through different languages. For example, authors in [7] and
[8] studied the problem of rewriting queries using views to
speed up the query computation in an optimized manner.
Some algorithms [9], [10] have been developed to enable
a query referring to the view relations by reformulating the
user-query based on virtual schema into a query that directly
refers to the existing data sources. These algorithms have
some limits when it comes to maximally query containment
and when the comparison predicates still be included in the
queries or the views.

In [11], an extension of the semantic Web service com-
position algorithm described in [12] was proposed in order
to consider non-functional properties such as response time,
cost and availability. However, this algorithm performs an
exhaustive search in the repository which becomes infeasible
as the number of available service increases.

In [13], three different approaches for service composition
were used and compared: (i) an Iterative Depth-First Search
approach; (ii) a Greedy Approach; (iii) and an Evolutionary

Approach. These approaches consider a subsumption-based
matching of services, but none of them considers non-
functional characteristics or QoS attributes.

[14] presents an integrated approach for automated se-
mantic Web service composition using AI planning tech-
niques. An important advantage of this approach is that the
composition process, as well as the discovery of the atomic
services that take part in the composition, are significantly
facilitated by the incorporation of semantic information. The
implementation was performed through the development and
integration of two software systems, namely PORSCE II
and VLEPPO. However user preferences and QoS were not
adressed in this approach and just outlined as future goal.

Lin et al. [15] described a way to augment the Web service
composition process by using qualitative user preferences.
Bellur et al. [16] suggested the techniques for augmenting
existing matchmaking algorithms with preconditions and
effects in the context of Web services. Lecue et al. [17]
addressed the scalability issue by selecting compositions that
satisfy a set of constraints rather than attempting to produce
an optimal composition. The method in Shin et al. [18] con-
siders the functional semantics of a Web service on the basis
of domain ontology. However, they conducted experiments
using only a small number of Web services. Bener et al.
[19] presented an architecture for semantic matching of Web
services on the basis of input and output descriptions of
semantic Web services as well as precondition and effect
matching.

[20] proposed an approach to trigger and perform com-
posite service replanning during execution because the actual
QoS values may deviate from the estimation. WSQosX [21]
is a workflow engine which calculates an execution plan that
maximizes the overall QoS by use of heuristics. [22] sug-
gested an efficient QoS-oriented Web services composition
algorithm that combines tabu search and simulated annealing
meta search and [23] proposed a Qos-aware composite
service binding approach based on genetic algorithms (GAs).
Recently, LOEM [24] is proposed to reduce computation
time for determining the optimal composite solution by
a heuristic service composition method. QSynth [25] is
proposed to address both scalability and accuracy based
by using QoS objectives of service request. The problem
with these approaches is that they are almost QoS local
optimization or mono-objective based, and can not resolve
the problem of Web services selection with QoS global
optimization and multi-objective.

III. USER QUERIES AND SERVICES SPECIFICATION
USING DDL

In this section, we start by briefly reviewing the main
features of the Dynamic Description Language formalism.
Then, we explain how these features can be used to specify
and compose Web services.



A. Dynamic Description Language (DDL) overview

Description languages [26] are unsufficient to handle the
dynamic knowledge such as services and behaviors. To
overcome this shortfall, DDLs were proposed as extensions
of description logics with a dynamic dimension. DDL is
based on the idea that the occurrence and the development
of actions can influence the world evolution from one state
to another. DDL is referred to any one of the general
family of logics with the ability of supporting dynamicity
such as DALC , DSHOIQ and DALCO@. In this paper, we
use DALCO. With this logic, description logic concepts
can be used for describing the state of the world, and the
preconditions and effects of atomic actions; Complex actions
can be modeled with the help of standard action operators,
such as the test, sequence, choice, and iteration operators;
And both atomic actions and complex actions can be used
as modal operators to construct formulas.

The primitive symbols of DALCO contain a set of concept
names (NC), a set of relation names (NR), a set of individual
names (NI ) and a set of atomic action names (NA) included
in construction operators named TBox. DALCO specifies
actions by their preconditions and effects, together with their
categories. The knowledge about action categories can be
used to construct a hierarchy structure of actions.

Concepts in DALCO are defined as follows:
C,D→ {u}|¬C|C ∩D|∃R.C| ≤ nR.C| ≥ nR.C| < π > D
Where C, D ∈ NC , u ∈ NI , R ∈ NR, ≤ n R.C and ≥n
R.C are qualifying number restriction and π is an action.
In the sequel, we use ⊥,>, C∪ D), and ∀R.C to abbreviate
(C∩¬C), ¬⊥, ¬(¬C ∩ ¬ D), and ¬∃ R. ¬C, respectively.

Formulas in DALCO are built up with the following rules:
Φ,Ψ→ C(u)|R(u, v)|Φ→ Ψ|¬Φ|∀uΦ|Φ∨Ψ|[π]Φ| < π >
Φ, Where u, v∈ NI , R∈ NR and π. Formulas of the form
C(u), R(u,v),Φ → Ψ,¬Φ,¬Φ, ∀uΦ, Φ ∨ Ψ, [π]Φ, < π > Φ
are respectively named as concept assertion, role assertion,
formula assignment, negation formula, universal formula,
disjunction formula, conditional assertion and diamond as-
sertion.

We still define the logical connectives ”→” and ”↔” in
terms of ”¬”, ”∨”, as usual, and define ”[π]Φ” as ”¬ < π >
¬Φ”.

A Formula assignement is defined by σ where:
σ {Φ1,.., Φn}→{Φ′1,..,Φ′n} and means that if Φ is a variable
formula, Φ′ is the instance of Φ with assignment σ.

An Action in DALCO is defined as the couple < P,E >
where P is a finite set of formulas specifying the condition
for the execution of the atomic action and E is a finite set
of formulas of the form C(u) or R(u, v), or their negations;

Complex actions can be constructed with classical ac-
tion constructors in dynamic logics, and both atomic and
complex actions are actions that are built up as follows.
π, π′ → α|Φ?|π ∪ π′|π;π′|π∗, where α, π, π′ are atomic
services, and Φ is a formula in ALCO.

Intuitively, an atomic action encodes the changes of the
domain caused by the action through the specifications of
the pre-conditions under which the action is applicable and
how the action affects the states of the domain. Moreover,
both atomic and complex actions can be used as modal
operators to construct formulas. Such mechanism enables to
make assertions about the properties of the accessible worlds
from the current world. For example, we can state that ”the
action π can be executed with the formula Φ holds after
its execution” by the formula: ”< π > Φ”, while ”[π]Φ”
encodes ”after each execution of π”, the formula Φ holds in
the reached world”.

The definitions of ABox and TBox in DALCO are the
same as that in ALCO. TBoxes capture the domain con-
straints of an application domain. ABoxes (with no semantic
conflicts) describe the worlds at certain times, and the
transitions on the possible worlds are captured by actions.

An action box is a finite set ActBox of atomic actions
in DALCO.

In DALCO, a domain specification is defined as a tuple:
DS = < T,A,ActBox >, where T is a TBox, consisting of
domain constraints; A is an ABox for the initial world; Act-
Box is an action box that captures the dynamic knowledge
about world evolvements. Table I gives the TBox, ABox,
and ActBox of an online shopping scenario.

Semantics of DDL are detailed in [27]. For space reasons,
we just introduce the main reasoning strategies in what
follows.

A model for DALCO is considered as a pair M= (I,W),
where I =(∆I , .I ) is an ALCO-interpretation and W is a set
of ALCO-interpretations, seen as possible worlds. I consists
of a nonempty domain ∆I and a mapping .I that assigns
each atomic concept to a subset of ∆I , an individual name
to an element of ∆I , and each role to a subset of ∆I*∆I .

The satisfaction of a set of formulas F in (I,W), written
as (I,W)|= F, is defined in TableII:

1)(I,W)|= C(p) iff pI ∈CI(w);
2)(I,W)|= R(p,q) iff (pI ,qI )∈ RI(W );
3)(I,W)|= ¬Φ iff (I,W) 6|= Φ;
4)(I,W)|= Φ ∨Ψ iff (I,W)|= Φ∨ (I,W)|= Ψ;
5)(I,W)|= Φ ∧Ψ iff (I,W)|= Φ∧ (I,W)|= Ψ;
6)(I,W)|= Φ→ Ψ iff (I,W)|= Φ⇒ (I,W)|= Ψ;
7)(I,W)|= < π > Φ ∃w’∈ W|((w,w’)∈ πI and (I,w’)|= Φ);
8)(I,W)|= [π]Φ iff ∀v∈W (w→πv ⇒ v|= Φ.

Table II: The Satisfaction of formula F in (I,W)

An action is executable in a possible world w satisfying
its preconditions stated in Pre, and its execution reaches a
possible world ẃ satisfying the effects stated in Eff , with
a minimal change w.r.t the previous world.



TBox {OnlineShopping≡GoodsToPublishOnline∩Payment∩ Shipping,OnlineShopping∪GoodsToPublishOnline∪
Payment∪Shipping⊆Service, OnlineShopping⊆Shopping, ShippingDate⊆Date,Established∪Pay⊆PaymentState,
customer-name∪goods-name⊆name, OrdReq∪PaymentMsg⊆Msg, PC∪SmartPhone⊆Aplliance,
CreditCardInf⊆PrivateData, ConnectionState∪GoodsState∪ PaymentState⊆State, customer∪seller⊆Person}

ABox {Web-user (customer), Msg(OrdReq),Person(seller), SendTo(Msg,Person), Site(WebSite),name(customer-
name), name(goods-name),address (customer-address),PostCode(customer-PostCode),CreditCard(credit-
card),ConnectionState(established), Msg(PaymentMsg), Dtae(ShippingDate)}

ActBox {CheckGoodsStock (S1), PaymentByCreditCard (S2), PaymentByPayPal (S3), Shipping (S4), Delivery (S5)}.

Table I: ABox, TBox, and ActBox of an online shopping process

B. Specification and Rewriting of User Queries

In our approach, a user query Q is modeled as a four-uplet
< I,O,A,QoS >, where :
• I is a finite set of inputs of the query;
• O is a finite set of outputs of the query;
• A is a finite set of desired actions. Each action consists

of a finite set of pre-conditions P and effects or post-
conditions E.

• QoS is a set of quality of service constraints such that
QoS = {(q1, v1, w1), (q2, v2, w2), ..., (qk, vk, wk)},
where qi(i = 1, 2, ..., k) is a quality criterion, vi is
the required value for criterion qi, wi is the weight
assigned to this criterion such that

∑k
i=1 wi = 1, and

k the number of quality criteria involved in the query.
Given a query Q and a set of Web services, if the query

Q is complex and there is no Web service that answers Q,
we try to find a decomposition of Q into a set Q′ of atomic
sub-queries that can be answered by the existing services.
The atomic services that respond to the sub-queries will be
then collected and composed to provide a final answer for
the user goal (original query).

Formally, given a query Q a rewriting of Q is Q′ such that
Q = Q′. So that, each element in Q′ refers to one or more
service implementations. The rewriting process is completed
if each sub-query in Q′ refers to an atomic service.

Two relationships can be identified for the rewriting
process:
• Query containment: A query Q′ is contained in another

query Q, denoted as Q′ ⊆ Q, if each instance of Q′ is
a subset or equivalent to that of Q.

• Query equivalence: Two queries Q and Q′ are equiva-
lent (denoted as Q = Q′) if Q ⊆ Q′ and Q ⊇ Q′.

Using the DDL formalism, the set of query-inputs is
considered as the initial state of the world, from which a
service sequence is selected and a new state will be added
to the world. If a sequence occurs and the target state set of
the world that includes user requirements is achieved, this
sequence in considered as the composed service that meets
the user needs.

If we consider two states u, v ∈W , where u designs the
initial state formed over query inputs and v describes the
final state after the query-rewriting process, each interpreta-
tion I of the query Q started from the state u, should reach

the user goal in the state v through Q′ using formula (1).
QI,u = {(Q′ ∪ SQi)

I,v, 1 ≤ i ≤ n} (1)
Where: SQI,u

i = (Pi, Ei)
I,u = {(u, v)|∀Φi ∈ Pi(I, u) |=

Φi, and (I, v) = (I, u) ∪ {Ψi}∀Ψi ∈ Ei};
This mechanism will be repeated until reaching the de-

sired outputs and QoS: (I, v) |= O ∩ E ∩QoS.
Table III shows a query Q for an online shopping transac-

tion. This query Q is complex and no existing service in the
ActionBox can achieve the desired goal. Thus, Q can be
rewritten as a conjunction set Q′ of atomic sub-queries such
as Q′ = CheckGoodsStockOnline∩Payment∩Delivery
for example.

C. Service Specification

An atomic service is a tuple S =< I,O, P,E, qos >,
where I , O are the input and output of the service S,
respectively; P is a finite set of formulas in DALCO speci-
fying the preconditions for the execution of S; E is a finite
set of assertions or their negation in DALCO, which is the
facts holding in the newly-reached world by the services
execution, and qos is a set of provided quality criteria.
The formulas in both P and E are conferred with well-
defined semantics encoded in some TBox, which specifies
the domain constraints in consideration. Table III gives an
overview of the set of services that may be involved in the
online shopping transaction.

Composite services are constructed from atomic services
with the help of classic constructors in dynamic logics.
Both atomic and composite services are services. Complex
services are built up with formula (2).
π, π′ → α|Φ?|π ∪ π′|π;π′|π∗|((Φ;π) ∪

((¬Φ)?;π′))|(Φ?;π)∗; (¬Φ?) (2)
where α, π, π′ are atomic services, and Φ is a formula.

Based on formulas and atomic services, complex services
can be constructed with the help of four standard atomic
services operators: the test (Φ?) , sequence (π;π′), choice
(π ∪ π’), iteration operators (π∗), if formula Φ is verified
then π is invoked, else invoking π′ is an abbreviation of
(((Φ;π)∪ ((¬Φ)?;π′)), and if Φ do π is an abbreviation of
(Φ?;π)∗; (¬Φ?).

IV. WEB SERVICES COMPOSITION

In our approach, We distinguish between Web service
types and services instances. A Web Service Type is a set



Service-name Inputs Outputs Action QoSPreconditions Effects
Q customer-name,

customer-address,
customer-PostCode,
CreditCardInf

PaymentState(Pay),
ShippingDate≤3

Electronic, OrdReq,
SendTo (OrdReq,
seller)

credit-card payment,
shipping-date, goods
costs

(data-privacy,”true”,
0.4),(ShippingDate,≤3
days,0.2),(goods-
cost,acceptable,0.3), (Pay-
mentCost,minimal,0.1).

S1 goods name, goods
characteristics, goods
cost

CheckStock(Goods) appliance,
ConnectionState
(established),
GoodsList

GoodsAvailableInStock (goods-cost,”acceptable”)

S2 OrdReq,
CreditCardInf

PaymentMsg CreditCardState(valid),
CreditCardSold≥
GoodsCost

PaymentState (Estab-
lishedByCreditCard)

(privacy,
”False”),(PaymentCost,
10$ )

S3 OrdReq PaymentMsg Sold≥ GoodsCost PaymentState (Estab-
lishedByPayPal)

(privacy, ”True”) ,(Pay-
mentCost, 5$ )

S4 OrdReq, address,
PostCode

ShippingDate PaymentMsg (Ok) GoodsState(delivered) (DeliveryDate≤2 days),
(ShippingCost=free)

S5 OrdReq, address DeliveryDate PaymentMsg (Ok) GoodsState(delivered) (DeliveryDate≥4 days),
(DeliveryCost=4$)

Table III: Sample set of DDL-based re-written services

of Web Service instances with similar functionality. A Web
service type is semantically described by the inputs, out-
puts, preconditions and effects that capture the functionality
offered by this type of services.

A Web Service Instance consists of its functionality,
service type and its QoS properties. Web services instances
are the actual services that can be invoked. A Web service
instance is semantically described by the inputs, outputs,
preconditions, effects, and the non-functional (QoS) at-
tributes associated with this instance.

This separation between service types and instances have
an important impact on the reduction of the search space
when discovering candidate services for composition. Then,
given a set of Web service types and the set of instances for
each type, along with the specifications of a new service,
a Web services composition is the process of creating an
executable plan that stitches together the desired function-
ality from the existing services, while satisfying the QoS
requirements. To enable this, we consider two composition
stages, which are Abstract and Concrete compositions. The
composition first proceeds to generate an abstract plan
based on Web service types (Abstrat composition). This
abstract plan is then concretized into an executable plan by
selecting the appropriate Web service instances based on
non-functional requirements (Concrete composition).

A. Abstract composition

The main reasoning tasks in DDL can be reduced to
satisfiability checking of formulas. A formula ψ is satisfiable
w.r.t a TBox T , if there is a dynamic interpretation that
satisfies T and ψ. More precisely , an atomic action can be
invoked only if formula (3) is satisfied.
I ∧ P → O ∧ E ∧QoS (3)
Suppose that each user query and available service are

designed by WSR and WSS respectively. The matching is

given by the fact that the WSR inputs, outputs, actions and
QoS should be equivalent (e.g. they correspond to the same
concept defined in the ontology and the near values of the
QoS) or subsumed by that of the WSS’s concepts/values.
So that, this matching process is satisfiable if and only in the
cases where WSR ≡WSS or WSR ⊆WSS . To deal with
an optimal matching between the query and the atomic Web
service concepts, the matching mechanism can be simply
reduced to checking the unstasifiability of formula (4).
WSR ∩ ¬WSS . (4)
An abstract composite service plan P is composed of a

set of service types and defined by P = {π1, .., πi}, where
1 ≤ i ≤ n and πi = ASi.

The determination of P consists in checking the satisfia-
bility of the abstract model as indicated formula (5).

[(P1 ∪ ... ∪ Pk)∗]Π ∧ S →< Q > True (5)
Where Π denotes the conjunction of the formula set of

preconditions (Pi) of all service types STij in the plan Pj ,
with i ∈ N and 1 ≤ j ≤ k and Π = ∧ni=1Conj(pi) →<
ASij > True. S is a formula set that consists of a
conjunction of member formulas Si according to the ABox
that describes the initial state of the world: S = Conj(Si) |
1 ≤ i ≤ n.

The validity of formula (6) requires the unsatisfiability of
its negation.
F1 : (P1 ∪ ... ∪ Pk)∗]Π ∧ Conj(s) ∧ ¬ < Q > True (6)
The dependency relationships between each two con-

secutive service types AS1 and AS2 in the plan can be
simply checked by the unsatisfiability of formula (7), which
means that invoking AS2 sequentially after executing AS1

requires that the inputs and preconditions of AS2 have to be
equivalent.
F : I2 ∧ P2 ∧ ¬(O1 ∧ E1) (7)
Then, formula (8) is satisfiable only if whenever this

sequence of services is executed; the formula F must be



unsatisfiable.
F2 : [AS1;AS2]¬F (8)
Finally, the abstract plan is given by algorithm 1:

Algorithm 1: Abstract Plan Modeling Algorithm
Input: User-query Q; set of service types ASi ∈ AS
Output: Abstract service composition plan meeting

user requirements or nil as failure;
begin

Q’=QueryRewriting (Q); Plan=∅;
for each sub-query (SQi)∈Q’ do

for each ASi, ASi−1 ∈ AS do
if SQi ⊆ASi and ASi 6= ASi−1 and F is
unsatisfiable then

P= {P∪ASi}

Initialize queue QueOfPlans with P;
while QueOfPlans is non-empty do

for each Pk= headOf QueOfPlans do
if F1 is unsatisfiable then

if for each ASi, ASi+1 ∈ Pk do
F2 is satisfiable

then
return Pk as a successful plan;
headOf QueOfPlans= Pk+1;

remove Pk from QueOfPlans;
headOf QueOfPlans= Pk+1;

return nil
End

B. Concrete Composition

In the concrete composition, the plan generated by the
abstract composition stage is considered as a template for the
composite service, which in conjunction with the QoS pa-
rameters specifications, drives the process of matching each
service type to a corresponding service instance. Usually,
for each service type in the plan, a set of alternative Web
services instances with similar functionality is available,
and that these Web services instances have different QoS
parameters. This leads to the general optimization problem
of how to select services instances for each type so that the
overall QoS requirements of the composition are satisfied
and optimal.

We consider four QoS properties of Web service. These
propeties are:

1) Price (qpr(s)) of a service s is the fee that its re-
questers have to pay for invoking it.

2) Duration (qdu(s)) of a service s measures the expected
delay between the moment when a query is sent and
the moment when the result is received.

3) Availability (qav(s)) of a service s is the probability
that it is accessible.

4) Reputation (qrep(s)) of a service s is a measure of
its trustworthiness. It is calculated by the average
of different end users ranged ranking ([0, 1]) on the
service;

To generate the composition plan that fulfills a end user
QoS requirement, we adopt the Simple Additive Weight-
ing (SAW) approach in Multiple Criteria Decision Making
(MCDM)[28]. This approach consists in two phases which
are:
• Scaling phase: A QoS criteria could be either positive or

negative. As shown in Table IV, some QoS values such
as availability and reputation need to be maximized,
whereas other values such as the execution time and
costs have to be minimized. To cope with such issue, a
scaling phase based on normalizing the value of each
QoS criterion is introduced.

• Weighting phase: In this phase, a new parameter wk ∈
[0, 1] is associated to each normalized value of the QoS
criterion. This parameter presents the user preference.

QoS criteria Local constraints
qpr(s) min {qpr(CSi)i∈{1,..,n}}
qdu(s) min {qdu(CSi)i∈{1,..,n}}
qrep(s) max {qrep(CSi)i∈{1,..,n}}
qav(s) max {qav(CSi)i∈{1,..,n}}

Table IV: Local constraints formulas for QoS criteria

Each instance score is calculated using the formula:

Score(CSi) =
r∑

k=1
(q′i,k ∗ wk). Where q′i,k are normalized

values of a decision matrix elements calculated as follows:

q’i,k=


vi,k

V max
k

, if(V max
k − V min

k ) 6= 0(a)
V min
k

vi,k
, if(V max

k − V min
k ) 6= 0(b)

1, if(V max
k − V min

k ) = 0.
Where each Score(CSi) denotes the normalized value of

r QoS criteria (qk) associated with candidate instance CSi,
vi,k is the current value while V max

k and V min
k denote

respectively the maximum and minimum values of QoS
criteria qk among all the candidate instances. A matrix M
is built, in which each row Mi corresponds to an instance
CSi while each column corresponds to a quality criteria qk.

Once the matrix M was calculated, for each service type
included in the abstract plan, the instance with high score
is selected. Then, the selected instances are aggregated to
determine the overall QoS of the composite service with
the aggregation formulas presented in table V. We assume
that QoS measures considered here are quantitative, the QoS
values are static, e.g., the mean value of each QoS measure.
Dynamic QoS is beyond the scope of this paper.

If there is no matching with the global constraints, we
can select other instances near to the optimal instances. If
no alternative instance is available, we automatically replace
the plan Pi with a plan Pi+1 such that:



Criterion Function
Reputation Arep = 1/n

∑n
i=1

qrep(si)

Price Apr = 1/n
∑n

i=1
qpr(si)

Duration Adu = 1/n
∑n

i=1
qdu(si)

Availability Aav =
∏n
i=1

qav(si)

Table V: Aggregation functions for computing composition
QoS

((Ψ;Pi) ∪ ((¬Ψ)?;Pi+1)), 1 ≤ i ≤ K
Let us now come back to our online shopping scenario to

illustrate the selection process. We consider three services
types and their corresponding instances as shown in table
VI.

Service
Type
(AS)

Service
Instance
(CS)

qpr qdu qrep qav

AS1 S1 12 120 0.98 0.95
S2 15 70 0.5 0.4
S3 16 80 0.9 0.6

AS2
S4 10 100 0.88 0.91
S5 13 88 0.5 0.4
S6 15 110 0.9 0.6

AS3
S7 17 90 0.78 0.67
S8 16 50 0.7 0.6
S9 35 110 0.4 0.3

Table VI: QoS values for the online shopping scenario

We suppose also a query that contains the following inputs
and user preferences:

• Inputs: OrdReq: iPad - 4G Frequencies 2100mhz;
customer-name: Daniela John; customer-address:
Roma, Italy; customer-PostCode:00198; CreditCardNb:
876545678; CreditCardPWD: 2344321.

• Preferences:(qpr,40,0.4), (qdu,300, 0.3), (qrep,0.6,0.1),
(qav ,0.5, 0.2).

According to formula (7), the abstract plan of the goal
service can be described as

P =< CheckGoodsAvailability, Payment,Delivery >

Service types CheckGoodsAvailability,Payment, and
Delivery are denoted by AS1, AS2, and AS3 respectively.
The results of the SAW selection technique are presented in
table VII.

The instance with the highest score is taken among
the set of instances of each service type. As shown in
table VII, for the first service type S1 ≺ S3 ≺ S1, for
the second type S6 ≺ S5 ≺ S4 and for the third type
S9 ≺ S7 ≺ S8. Thus, P =< S1, S4, S8 > is seleted as
the optimal execution plan. Then, to verify the global score
of the composite service resulting from P , we apply the
aggregation functions described above and obtain Apr = 38;
Adu = 270; Arep = 0.6; Aav = (−0.738).

AS CS q′pr q′du q′rep q′av Score
AS1 S1 1 0.58 1 1 0.97

S2 0.8 1 0.51 0.42 0.75
S3 0.75 0.87 0.91 0.63 0.77

AS2
S4 1 0.88 0.97 1 0.95
S5 0.76 1 0.55 0.43 0.74
S6 0.66 0.8 1 0.65 0.73

AS3
S7 0.94 0.55 1 1 0.83
S8 1 1 0.89 0.89 0.96
S9 0.45 0.45 0.51 0.44 0.44

Table VII: Instance Score Calculation

V. CONCLUSION

In this paper, we have presented a semantic user re-
quirements oriented framework to compose Web services.
This framework distinguishes between abstract and concrete
compositions. Composition at the abstract level is reduced to
formulas satisfiability checking in DDL language to generate
an abstract plan based on Web service types. This abstract
plan is then concretized into an executable plan by select-
ing the appropriate Web service instances based on QoS
constraints using the SAW approach in MCDM. Currently,
we are working on the implementation of a composition
planning architecture that contains the different components
of the framework (planner, Selection engine...). Then, we
plan to consider a real dataset such as the one presented in
[29] and compare our approach with the RFC [29], and the
two-phase [30] approaches.
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