Real-Time Design Models to RTOS-Specific Models
Refinement Verification

Rania Mzid, Chokri Mraidha

CEA List, Laboratory of model driven
engineering for embedded systems
Point Courrier 174, Gif-sur-Yvette,

91191, France

rania.mzid@cea.fr
chokri.mraidha@cea.fr

ABSTRACT

One key point of Real-Time Embedded Systems development is
to ensure that functional and non-functional properties (NFPs) are
satisfied by the implementation. For early detection of errors, the
verification of NFPs is realized at the design level. Then the
design model is implemented on a Real-Time Operating System
(RTOS). However, the design model could be not implementable
on the target RTOS. In this paper, we propose to integrate
between the design and the implementation phases, a feasibility
tests step to verify whether the design model is implementable on
the target RTOS and a mapping step to generate the appropriate
RTOS-specific model. This two-steps approach is based on an
explicit description of the platform used for verification and the
RTOS which is the implementation platform. Moreover an
additional verification step is needed to ensure the conformity of
the implementation model to the design model with regard to
NEPs.

Keywords
MDD, Design Model, RTOS-specific Model, Real-Time
Validation;

1. INTRODUCTION

In order to overcome the increasing complexity of Real-Time
Embedded Systems (RTES), Model-Driven-Development (MDD)
[1] promotes a rise in level of abstraction by introducing
intermediate models from specification to implementation, while
passing through design, and enabling validation at each level.

At the design level, scheduling analysis [2] may be applied to
validate design choices in terms of timing requirements. Several
tools are available to carry out such validation, one can cite as
example Qompass-Architect [3], Cheddar [4], and MAST [5].
However, to achieve that, each of these tools considers some
implementation  assumptions  (e.g.  scheduling  policy,
communication mechanisms) which are related to a validation
platform. On the other hand, there is an important number of
Real-Time-Operating-System (R70OS) in the market. Some are
compliant to a specific standard such as POSIX [6], OSEK-VDX
[7] and uITRON [8], some are commercial and others are free and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

ACES-MB'12, September 30 2012, Innsbruck, Austria Copyright 2012
ACM 978-1-4503-1800-6/12/09...$15.00.

Jean-Philippe Babau
Lab-STICC, UBO, UEB
Brest, France

Jean-Philippe.Babau@univ-
brest.fr

Mohamed Abid

CES Laboratory
National school of engineers of Sfax
Sfax, Tunisia

Mohamed.Abid@enis.rnu.tn

may be not compliant to any standard. These RTOS or standards
share common concepts but with specific features [9]. The choice
of the target RTOS depends on the considered community and the
intended use [10].

From these considerations, the refinement of the design model,
making some implementation assumptions to be validated, to an
RTOS-specific model is error-prone.

In fact, the selected RTOS may be too restrictive with regard to
the validation platform or incoherent correspondence between
properties of the validation platform resources and the RTOS ones
may occur. In that case, the designer iterates on the design model,
modifying and re-validating it, looking for an implementable
solution. These modifications are usually based on the designer
experience and reduce portability of design model: the design
model becomes specific to an RTOS.

Several works are interested in the deployment of an application
on a real platform. In [11], the authors propose a generative
process to transform an application deployed on one RTOS to
another based on an explicit description of the latter using the
Software Resource Modeling (SRM) UML profile, which is part
of the UML profile for MARTE [12] . This work makes the
assumption that the deployment is always possible and did not
paid any attention to the incoherence between the characteristics
of the different platform resources and its influence on the validity
of the obtained model. The author in [13] proposes a deployment
process of an application on a RTOS. This process considers also
an explicit description of the latter but using a Domain Specific
Language (DSL) called RTEPML and focuses on defining generic
transformations to automate the process. Compared to [11], this
approach claims the necessity to verify the availability of a
concept on the target RTOS before the deployment.

In previous work [14], we proposed a two-steps approach that
ensures the generation of valid implementation model from design
model fulfilling timing properties. This approach is based on an
explicit description of the validation platform and the target
RTOS using SRM [12]. The first step, which is a set of feasibility
tests, aims at verifying whether the implementation assumptions
made at the design level are implementable on the target RTOS.
The second one is a mapping step that performs the mapping
between the validation platform resources and the RTOS
resources to obtain a RTOS—specific model. In [14], we have
focused on concurrency aspects, scheduling policies, tasks and we
have especially treated the tasks’ priority problem. In this paper,
we extend the proposed approach by treating the shared resources
aspect. Thus, we consider that tasks in the design model may be
dependent by sharing resources and we describe the required



resources in the validation and RTOS platforms. We discuss also
the additional feasibility tests and mapping necessary from this
perspective. On the other hand, one important issue is to verify
whether the generated RTOS-specific model is valid with respect
to the design model. So, in this paper, we focus also on
identifying the required verification to confirm the correctness of
such model.

The paper is organized as follows. Section 2 presents the
assumptions of the paper. In section 3, we give an overview of
the two-steps approach to generate valid implementation models
and we add the necessary treatments for the shared resources
aspect. In section 4, we explain how to verify the validity of the
RTOS-specific model with respect to the design model. Section 5
illustrates on an example the approach and the verification phase.
Finally, section 6 concludes the paper.

2. ASSUMPTIONS

We assume that timing validation is performed at the design level
using Optimum methodology [3] supported by the Qompass-
Architect tool. This methodology introduces timing validation
from the specification level in order to guide the design of the
concurrency model that satisfies the timing constraints.

In this paper, we assume that the design model, generated by
Optimum consists of a set of tasks 7= {ty,75,... T}
executing the different functions of the system. All tasks in the
model are scheduled according to their priority. So each task t; is
characterized by its priority P;and runs at a base period T;.
Besides, we assume that two tasks in the model may be dependent
by sharing resources. Consequently, the design model consists
also of a set of resources R = {ry, 15,...,1;,} such as each 1; €ER
is shared between two tasks or more.

Finally, we suppose that the hardware architecture corresponds to
a single execution node (mono-processor architecture).

From this correct model (design model), one objective of this
work is to ensure a correct transition to the implementation model
while respecting the timing properties. More precisely, we focus
on platform aspect because validation is based on a validation
platform, here the platform used by Qompass-Architect, while
implementation is based on the RTOS.

3. MODEL-DRIVEN APPROACH

In this section we give an overview of the two-steps model-driven
approach which has been explained in details in previous work
[14]. Then, we extend this approach by considering shared
resources aspect.

3.1 Overview

One key point of our approach is to ensure a correct deployment
of a design model satisfying non—functional requirements on an
RTOS. The obtained RTOS-specific model (implementation
model) must conserve the properties that have been validated at
the design level.

The design model translates the system specification and fulfills
its timing constraints under the assumptions made by the
validation platform related to the validation tool (c.f. Figure 1). In
our case, the validation platform is the Optimum platform as we
assume that timing validation is performed at the design level
using Qompass-Architect [3]. In fact, the validation platform
includes all concepts provided by RTOSs and that are necessary to
perform timing validation. This makes this platform independent
from a particular RTOS and provides a flexible framework to the
designer to make different design choices.

In our approach, we choose an explicit description of the
validation platform and the RTOS using SRM. Indeed, SRM
allows capturing the semantics of the different concepts defined in
both platform models and serves as a pivot language to automate
the refinement of the design model to an implementation model.
As shown in Figure 1, the approach introduces two steps between
the design and the implementation levels:
o Feasibility tests step: this step generates an error when
the design model is not implementable on the target
RTOS and provides a feedbacks to the designer to
inform him about the source of the problem. It
generates a warning when the design model is
implementable but the RTOS provides an
implementation that is probably more optimized than
the one chosen at the design level. Otherwise, this step
mentions that there is no problem and that the mapping
step can be performed.

Optimum Platform

Design Model ~ —s wses o G

Feasibility Tests Step

|

Mapping Step

RTOS Platform

Implementation Model — uses = Model

Figure 1.Model-Driven approach

e Mapping step: this step generates the RTOS-specific
model by performing the mapping of concepts and the
mapping of properties of these concepts. This mapping
is based on the notion of matching between the
resources of the validation platform and the RTOS one.
This matching is ensured, in our case, by the use of
SRM to describe both platforms (c.f. Figure 2).

)

T bpricrityElements= (priorityVakee,

,rwummuq isUnique|
L

priorkyValue: bteger [1.%

P ot Lo et mixpriontyLevet bteger = 0
HIEMS, st minProriytevet Beeger s nfnty

priorityVakie: nteger 1.4 inPriorityvary. Bookean = true

madrioritdevel bteger = 1 IsUnique: Bookean = false

minPriorty evel teger = 255 deadhne ; bteger

tmabudget NP Duraton
timeblod NF? Darabon
Jiter: NFP Deration
responseTime: N7 Duration

isPrioityVary. Bookean = e
isUnique: Boolean = false

Figure 2.Matching using SRM

In [14], we were interested in concurrency aspects such as
scheduling policies, tasks and their properties that describe the
application behavior in a design model with independent tasks.
The greater emphasis was on the priority problem. Briefly, we
describe the tests invoked by the feasibility tests step which are
related to the priority aspect.

o Test of scheduler: this test verifies the scheduling
policies adequacy between the validation platform and
the RTOS. For instance, if the scheduling policy used at
the design level is priority-based and the RTOS does not
offers a priority-based policy. So in that case, this test
generates an error to mention that the input design
model is not implementable on the target RTOS

o Test of number of priority levels: this test computes the
number of priority levels used in the design model and



verifies whether the platform supports that number. If
the number of priority levels allowed by the RTOS is
lower than the number used at the design level, this test
generates an error to indicate that the design model is
not implementable on the target RTOS.

o Test of equal priority levels: this test verifies if, at the
design level, there are tasks that share the same priority
levels. In that case, if the target RTOS does not support
such situation, this test generates an error to inform the
designer that his design model is not implementable.

In order to generate the RTOS-specific model, the mapping step
provides also different mapping strategies of the priority values to
give a flexible framework to the designer. We give also a brief
description of these mapping strategies:

e Direct mapping keeps at the implementation the same
priority values used in the design model. This type of
mapping does not ensure always valid implementation
models.

e Linear mapping generates consecutive values from the
available minimum priority level of the used RTOS. If
feasible, it ensures always valid implementation models.
However, the generated priority is less convenient to
insert new task at run-time.

e  Mapping by step is similar to the previous one, but
adding a step between two consecutive levels of
priority. The validity of the obtained implementation
model depends on the step size. Like for direct
mapping, it is necessary to add a supplementary test to
verify whether this mapping is possible.

e Proportional mapping distributes applicative priority
values over the maximal range offered by the RTOS. It
guarantees valid implementation models. Nevertheless,
this type of mapping is not possible if the RTOS does
not provide an upper bound of priority levels.

3.2 Consideration of shared resources

We suppose that tasks in the design model may be dependent by
sharing resources (c.f. section 2). The sharing of a data resource,
when the use of the data must be atomic, necessitates choosing
three architectural parameters: the synchronization protocol, the
allocation policy and the access protocol. The synchronization
primitive (e.g. Semaphore, Mutex) is needed to ensure that one
and only one task can use the resource at a time. The allocation
policy or the waiting queue policy (e.g. FIFO, priority-based)
determines what happens when a request is made for the resource
when the resource is busy. Finally, the access protocol (e.g. PCP,
PIP) is used to avoid priority inversion situations or deadlock by
modifying the priority of the task during the execution. The
combined choice of synchronization protocol, allocation policy
and access protocol corresponds to a possible implementation of
the shared resource (critical section). In next subsections,
validation and RTOS platform models are enriched to support the
creation of design and implementation models with shared
resources. Then, we discuss the feasibility test and mapping steps
from this perspective.

3.2.1 Validation platform model for Optimum

In order to perform timing validation, the designer has to make
implementation assumptions on how to implement the critical
section. As already discussed in section 3.1, the validation
platform is an “ideal” platform that offers unlimited design
choices for the designer and is independent from a particular
RTOS. Consequently, this platform covers all the ways for

implementing a shared resource. To this end, we add a
Shared_Resource concept to the Optimum platform (c.f. Figure 3)
and we annotate the latter with “swMutualExclusionResource”
stereotype from SRM. The choice related on how to implement
this shared resource corresponds to setting the values of the
mechanism, waitingQueuePolicy and concurrentAccessProtocol
properties of the “swMutualExclusionResource” stereotype which
correspond respectively to the synchromization protocol,
allocation policy and access protocol parameters already
mentioned. In Figure 3, we choose a default implementation of the
shared resource (PCP_Semaphore). However, the designer can
change this implementation by modifying the values of these
properties. Depending on the designer choices, the validation tool
involves the corresponding analysis test.

Optimum Tack <swMutualExclusionResources
priosityValue: Integer Shared. Resource:
maxPrioritylevel: lnteger = infinity
minPriofityLevel: Integer = 0 =
TsUnique: Boolean = false oty
deadline:Integer
timebudget NFP_ Duration
blockingTime: NFP_Duration
jitter: NFP_Duration
responseTime: NFP_Duration

<cswMutualExclusionResource>>
\ hanism: .
waitingQs icy: = Priority
<<swSchedulableResource>» He =PCP

prioritytlements: TypedElements(0.] = T

+ resounces

[

Figure 3.Excerpt of the Optimum platform model

Some combined choices of these three parameters do not
correspond to real implementations. An example of non-
meaningful implementation is; we choose a semaphore
mechanism with a FIFO waiting queue and a PCP protocol. In
order to avoid such situation, we propose to add an OCL
constraint [15] for each non-meaningful implementation. The
current implementation of SRM imposes to express these choices
at the profile level (i.e. set the properties values of the
“swMutualExclusionResource” stereotype). Consequently, the
OCL constraints that prevent insignificant implementations of the
critical section are also defined at the profile level. For instance,
the previous unsound situation corresponds to a constraint
associated to “swMutualExclusionResource” stereotype from
SRM and is given just below:

context swMutualExclusionResource
inv:
(Self.mechanism = BooleanSemaphore) and
(Self.waitingQueuePolicy = FIFO) implies (not
(Self.concurrentAccessProtocol = PCP)

3.2.2 RTOS Model

To tackle the issue of shared resources, the RTOS model should
describe the possible implementations of critical section provided
by the considered RTOS. We choose, in this paper, RTEMS [16]
as a target RTOS and we give in Figure 4 an excerpt (a view for
the shared resources) of the RTEMS platform model.

RTEMS provides three possible implementations of a shared
resource. Each of these implementations corresponds to a class in
the RTEMS model annotated “swMutualExclusionResource”. For
each class, we give default values to the mechanism,
waitingQueuePolicy and concurrentAccessProtocol properties of
the “swMutualExclusionResource” stereotype which define the
considered implementation.

For example, The FIFO_Semaphore_Resource  concept
corresponds to a shared resource implementation using a Boolean
semaphore as a synchronization protocol and FIFO as an



allocation policy. This implementation should not define an
access protocol this is why it does not appear in Figure 4.

i

<<pfichediableResourress
Ty 10.4) = [erianinVaiue, | mirPr e tyLevel,
islnicue]
Km&h;::l:g ;twu e | o s

ik w_éﬂ RIEMS Shared Resouce

ozt gl Ml estyeExdworResouses >
minicriyt et Integer = 355 | 111 mecharism  MutudlExdusiorResoureeind =
sliqueBoolean = Fase Bovleangemaphore

/ \\Mﬂtmﬂm!m oy - QuevePolicyiind = FIFQ
J
¢
{
/
{
/
/

s i
FIFD Semaghere Resource

PP Semaghere Resouree PCP Sernaphote Resurce

wininglueveloliy  Queuebaliing = oy waininguealcy  Queuebaliyin = iy

swMutud Exdusiondesources» aswluuaErdusionResources »
Ll

Figure 4.Excerpt of the RTEMS model
3.2.3 Feasibility tests and mapping steps

The extension of our approach to support tasks dependencies by
sharing resources requires additional feasibility test to verify
whether the target RTOS provides the critical section
implementation chosen at the design level. If it is not the case, the
feasibility tests step generates an error to inform the designer that
the corresponding design model is not implementable on this
RTOS.

In some cases, the implementation choices made by the designer
to implement the critical section are implementable; however the
RTOS provides another implementation that offers better real-
time performance. In that case, the feasibility tests step generates
a warning in order to propose to the designer to change the
implementation. An example of such situation is; when the
designer chooses a FIFO semaphore at the design level and the
target RTOS provides a PIP semaphore. So the feasibility tests
step highlights a warning to inform the designer that the target
RTOS provides a PIP semaphore which is more adapted for real-
time application [17]. The designer at this point can choose to
keep his design model and to perform the mapping or to modify
the implementation choices for the critical section taking into
consideration the generated warning.

The mapping step for the shared resources is straightforward. If
the design model is implementable, this step creates an instance at
the implementation level of the resource that defines the same
critical section implementation choices made at the design level.

4.RTOS-SPECIFIC MODELVERIFICATION

One key point of the proposed approach is to generate correct
RTOS-specific models from valid real-time design models. In
order to confirm that the obtained model is correct (i.e. preserves
design model timing properties); some properties must be verified
at the implementation level. In our case, we identify three
properties:

e  P1: the priority values of the different tasks must be
always within the range of priority values allowed by
the RTOS

e  P2: the execution order of the different tasks defined at
the design level must be preserved at the
implementation level.

e P3: the access order to shared resources must be
preserved

To address the first property (P1), we propose to add an OCL
constraint to the RTOS model. The role of this constraint is to

verify that the priority values of the different tasks in RTOS-
specific model are meaningful to the considered RTOS. As an
example, we give just below the constraint that we add to the
RTEMS model and which corresponds to (P1).

Depending on the priority order (increasing or decreasing) which
is determined by the minPriorityLevel and maxPriorityLevel
attributes of the RTEMS Task (c.f. Figure 4), this constraint
verifies whether the priority values of the different tasks instances
of the RTEMS-task are between the minimum and the maximum
priority levels (given by minPriorityLevel and maxPriorityLevel
and correspond respectively to 255 and 1 in RTEMS).

context RTEMS Task
inv:

if (Self.minPriorityLevel< Self.maxPriorityLevel) then

Self.minPriorityLevel < Self.PriorityValue <
Self.maxPriorityLevel

else

Self.maxPriorityLevel< Self.PriorityValue <
Self.minPriorityLevel

endif

For the second property (P2), we don’t focus on the priority
values (which is already verified by the first property) but on the
execution order of the different tasks which must be equivalent at
the design and implementation level. In order to verify this
property, we propose the meta-model given in Figure 4.

Application L. PriorityLevel [L.#] Task

+ tasks

"
'l Before Eefore

Figure 5.Verfication-oriented meta-model

This meta-model considers an application as a relation of
precedence among priority levels. As we may have tasks that
share same priority level, we consider in the meta-model that at
each priority level one or more tasks may also have a relation of
precedence. So this meta-model considers that the most important
is not the values of priority but the relation of precedence between
them. In order to verify the second property, we transform the
design and the RTOS-specific models to models that conform to
this meta-model and we verify if they are equivalent.

The access order to the shared resource in the model is preserved
at the implementation level, if and only if, the execution order of
tasks that share this resource is also preserved. Consequently, the
third property (P3) is verified, if and only if, the second property
(P2) is verified.

As a conclusion, the generated RTOS-specific model is correct
with respect to the design model, if and only if, these three
properties (P1), (P2) and (P3) are verified.

5. CASE STUDY

In this section we illustrate our approach with the example
presented in [3]. This example corresponds to a classical
case study in the automotive domain, i.e. the antilock
control sub system.

This subsystem is a classic sensor-controller-actuator system.
Figure 5 gives a structural view of the main functions inside the
controller: a data processing function for data coming from the
sensor, the anti-locking brake function calculating the command



to send to the actuator, and a diagnosis function that disables the
anti-locking function in case a fault in the subsystem is detected.

Each function above has an associated behavior modeled here as
an activity. Figure 6 below complements the structural functional
model with the description of the system end-to-end scenarios.
Two events (acquisitionForAbs and acquisitionForDiagnosis) are
triggering the sequences of functions behavior execution.

ElectronicBrakeControl

alc: AntlockControl

[ jimputData:Data

outputCommand:Command
acquiredDataSensorbata

absFaultType:Fault

antiLockControlBehavior

Figure 7 .System-level behaviors

From this behavioral description, Qompass-Architect generates
the design model given in the next subsection. This generation
relies also on some additional parameters defined in the system
specification such as the activation periods of events and time
budget of actions.

5.1 Design model
Figure 7 gives a schematic view of the design model of the
antilock control subsystem generated by Qompass-Architect.

ntrol model

2sk1: PeriodicOpfimum Ta ask2: PeriodicOptimum Tas
priorityValue: 20 priorityValue: 10
period: 60 period: 100
deacline : 60 Antilock Shared Resource | | deadiine : 100
timebudget: 25 | |[timebudget:25
jitter: 0 jitter:0
blockingTime: 15 blockingTime: 0
responseTime: 40 responseTime: 50
resources: AntiLock 1 resources: AntiLock
i

<<swMutualExclusionResources> 1

*MutualExcl =
waitingQuéuePolicy : QueuePolicyKind = Priority
concurrentAccessProtocol : ConcurrentAccessProtocolKind = PCP

Figure 8.Design model

This model consists of two periodic tasks faks! and task2 which
are instances of the PeriodicOptimum_Task concept of the
Optimum platform. The first task, faskl, is triggered by the event
acquisitionForAbs; consequently its period corresponds to the
period of this event (60 ms). Besides, this task executes
preProcessingBehavior and antiLockControlBehavior actions and
then its execution time (timebudget) is the sum of the execution
times of these two actions. Similarly, fask2 is triggered by the
acquisitionForDiagnosis event and executes the
diagnosisBehavior — and  antiLockControlBehavior  actions.
Qompass-Architect gives to task! a priority value equals to 20 and
to task2 a priority value equals to 10. The priority order in the
Optimum platform is increasing as specified in Figure 3 (given by
minPriorityLevel and maxPriorityLevel attributes of the
Optimum_Task). Accordingly, taskl has a higher priority than

task2. These two tasks are dependent by sharing the AntiLock
resource which corresponds to the antiLockControlBehavior
action. Qompass-Architect chooses to implement this critical
section with a PCP_Semaphore (i.e. Boolean semaphore as a
mechanism, a priority-based as a waiting queue and PCP as an
access protocol).

Based on these different implementations choices (priority
assignment, critical section implementation, tasks number...),
Timing validation is performed to verify whether this design
model meets its timing requirements. Indeed, Qompass-Architect
computes the blocking time depending on the implementation
choices of the critical section and then computes the response time
of the different tasks. The result of this validation is also given in
Figure 7. From this figure, we can conclude that this model is
valid from a real-time perspective since the response times of
taskl and task2 are lower than their deadlines.

We aim at generating a correct RTEMS-specific model from this
valid design model. This implementation model must conserve the
timing properties while considering the characteristics of the
RTEMS platform. In the following subsection, we give this
RTEMS-specific model.

5.2 RTEMS-specific model

The generation of the RTEMS-specific model following our
approach requires passing through two steps; feasibility tests and
mapping.

For this design model, the feasibility tests step involves the
different feasibility tests related to the priority aspect (c.f. section
3.1) and the shared resources aspect (c.f. section 3.2.3). For this
design model, this step does not raise any feasibility concern: the
design model is implementable on RTEMS. Consequently, we
process the mapping step to generate the RTEMS-specific model.
Figure 8 gives a schematic view of the RTEMS-specific model.

RTEMS _speafic model

taskl RTEMS PeriodicTask task2: RTEMS PeriodicTask
priorityValue: 1 priontyValue: 255
period: 60 period: 100
resources: AntiLock resources: AntiLock

Antilock: PCP_Semaphore_Resource

Figure 9.RTEMS-specific model

This step performs the mapping between Optimum platform
resources and RTEMS resources; and the properties of these
resources. Consequently, RTEMS-specific model consists of two
tasks instances of RTEMS PeriodicTask concept which
corresponds to the appropriate type that matches the
PeriodicOptimum_Task resource in Optimum platform. It consists
also of an  AntiLlock  resource instance of the
PCP_Semaphore_Resource ~ which  defines  the  same
implementation of critical section chosen in the design model.

For the properties, the mapping step detects that the only three
properties that require mapping are the priorityValue, the period
and resources (the other properties have a default value or they
are not referenced in both platform models). This step proposes
different strategies to perform the mapping of priority values (c.f.
section 3.1). In Figure 8, we choose the proportional mapping of
the priority values. The period values are expressed in ficks in
RTEMS and the duration of a tick is configurable. We suppose
here that the / tick is equal to / ms. This is why; the values of the
period are kept the same at the implementation model. Finally, for
the resource property we perform a direct mapping to keep the
information that this resource (4ntiLock) is shared between taskl
and task2.



5.3 RTEMS-specific model verification

In order to verify the correctness of the generated RTEMS-
specific model, three properties already explained in section 4
should be fulfilled.

The first property (P1) is that the priority values of the different
tasks in the implementation model are between the minimum and
maximum priority levels allowed by the RTOS which correspond
respectively to 1 and 255 for RTEMS. We can conclude from
Figure 8 that this property is verified as the priority values of
taskl and task2 are within this interval.

The second property (P2) is that the execution order of the
different tasks is equivalent at the design and the implementation
level. To this end, we transform the design model to a model
instance of the verification-oriented meta-model given in Figure
4. This model (c.f. Figure 9) considers that our application is a
relation of precedence among two priority levels LD1 and LD2.
Each priority level references one or several tasks from the design
level. In our case, we have just one task for each level since the
design model does not define tasks with equal priority levels.
From this model, the most important information is that, at the
design level, taskl is executed before fask2.

4 @ platform:/resource/Valid/design_modelvalid
4 <+ Application ElectronicBrakeControl design-model
4 [% Priority Level LD1 |
4 Task taskl
4 < Priority Level LD2
<+ Task task2

Selection | Parent [ List| Tree [ Table| Tree with Columns

=l Properties EZ

Property Value
Before < Priority Level LD2
Name L= D1

Figure 10.Design model as an instance of the verification-
oriented meta-model

In the same way, we transform the RTEMS-specific model to a
model conforming to the verification-oriented meta-model given
in Figure 4. This model is given in Figure 10 and defines also a
relation of precedence among two priority levels LI1 and LI2.
Each level references also one task from the implementation
model.

4 [ platform:/resource/Valid/RTEMS_specific.valid
4 < Application ElectronicBrakeControl RTEMS-specific model
4 [<>_Priority Level 11|
4+ Task taskl
4 <+ Priority Level LI2
< Task task2

Selection | Parent | List| Tree | Table| Tree with Columns

E Properties 23

Property Value
Before <4 Priority Level L12
MName =

Figure 11.RTEMS-specific model as an instance of the
verification-oriented meta-model

From Figure 9 and Figure 10, we conclude that the second
property is also fulfilled. In fact, even the priority values at the
design and the implementation levels are different; the execution
order of the two tasks is conserved.

The third property (P3) is verified since the second property is
fulfilled.

All the properties are verified and thus the generated RTEMS-
specific model is correct.

5. CONCLUSION

In this paper, we propose an approach to ensure an automatic
correct transition from a valid design model to an RTOS-specific

model that conserves timing properties. This approach is based on
two steps; the first step verifies whether the design choices are
implementable on the target RTOS and the second step perform
an appropriate mapping to generate the RTOS-specific model. In
order to assess that the obtained RTOS-specific model is correct
with respect to the design model, we identify the properties that
should be verified and we propose a way to check them at the
implementation level.

As future work, we aim at considering other aspects such as
activation patterns, communications in a distributed platform. For
each aspect, we define the additional feasibility tests and mapping
strategies. Another perspective consists in refactoring the design
model, when the latter is not implementable, based on the
feasibility tests step feedbacks.

REFERENCES

[1] B. Schtz, A. Pretschner, F. Huber, J. Philipps. Model based development of
embedded systems, Lecture Notes in Computer Science, vol 2426, 2002,
Springer, 2002, pp.331-336.

[2] L. Sha, T. Abdelzaher, , K. E. Arzen., A. Cervin, T. P. Baker, A. Burns , G.
Buttazzo, M. Caccamo, J. Lehoczky, and A. K. Mok. Real time scheduling
theory: A historical perspective. Real-Time Systems 28(2/3): 101155. 2004.

[3] C. Mraidha, S. Tucci Piergiovanni and S. Gerard: Optimum: a MARTE-based
methodology for schedulability analysis at early design stages. ACM
SIGSOFT Software Engineering Notes 36(1): 1-8 (2011)

[4] F. Singhoff, J. Legrand, L. Nana, and L. Marcé. Cheddar: a Flexible Real Time
Scheduling Framework. International ACM SIGADA Conference, Atlanta,
November 2004.

[5] M. GonzAlez Harbour, J.J. GutiCrrez Garcia, J.C. Palencia GutiCrrez, and
J.M. Drake Moyano. MAST: Modeling and Analysis Suite for Real Time
Applications. Real-Time Systems, 13™ International Euromicro Conference.
Delft, June 2001.

[6] The Open Group Base Specifications, Portable Operating System Interface
(POSIX), ANSI/IEEE Std 1003.1, 2004.

[7] OSEK Group. OSEK/VDX Operating System Specification. http://www.osek-

vdx.org.
[8] T-Engine Forum. pITRON 4.0 Specification, July 2010. http:/www.t-
engine.org

[9] R. Yemhalli. Real-time operating systems: An ongoing review. In Work-In-
Progress Sessions. The 2Irl IEEE Real-lime System Symposium
(RTSSWIPOO), Orlando, Florida, November 2000.

[10] H. Takada, Y. Nakamoto, and K. Tamaru, “The ITRON Project: Overview and
Recent Results”, 5th International Conference on Real-Time Computing
Systems and Applications (RTCSA), pp.3-10, Oct. 1998.

[11] F. Thomas, J. Delatour, F. Terrier, and S. Gerard. Toward a framework for
explicit platform-based transformations. In Proceeding of the 11th IEEE
Symposium on Object Oriented Real-Time Distributed Computing (ISORC).
Orlondo, Florida, USA, May 2008.

[12] Object Management Group, UML Profile for MARTE: Modeling and Analysis
of Real-Time Embedded Systems, Object Management Group, Inc., September
2010, OMG document number: ptc/2010-08-32

[13] M. Brun. Contribution a la considération explicite des plates-formes
d’exécution logicielles lors d’un processus de déploiement d’application. PhD
Thesis university of Nantes. October 2010.

[14] R. Mzid, Ch. Mraidha, J-P. Babau, M. Abid. A MDD Approach for RTOS
Integration on Valid Real-Time Design Model. The 38" Euromicro
Conference On software Engineering and Advanced Applications (SEAA’12),
Cesme, Izmir, Turkey, September 2012.

[15] Object Management Group, Object Constraint Language (OCL). Object
Management Group, Inc., May 2006, OMG document number: formal/06-05-
01

[16] RTEMS C Users Guide. Edition 4.6.5, for RTEMS 4.6.5. August 2003.

[17] Mark H. Klein, Th. Ralya, B.Pollak, R. Obenza and M.Gonzalez Harbour. A
Practitioner’s Handbook for real-Time Analysis. Guide to Rate Monotonic
Analysis for Real-Time Systems. Kluwer Academic Publisher. ISBN 0-7923-
9361-9. p. 5-30.


http://www.osek-vdx.org/
http://www.osek-vdx.org/
http://www.t-engine.org/
http://www.t-engine.org/

