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ABSTRACT 

One key point of Real-Time Embedded Systems development is 

to ensure that functional and non-functional properties (NFPs) are 

satisfied by the implementation. For early detection of errors, the 

verification of NFPs is realized at the design level. Then the 

design model is implemented on a Real-Time Operating System 

(RTOS). However, the design model could be not implementable 

on the target RTOS. In this paper, we propose to integrate 

between the design and the implementation phases, a feasibility 

tests step to verify whether the design model is implementable on 

the target RTOS and a mapping step to generate the appropriate 

RTOS-specific model. This two-steps approach is based on an 

explicit description of the platform used for verification and the 

RTOS which is the implementation platform. Moreover an 

additional verification step is needed to ensure the conformity of 

the implementation model to the design model with regard to 

NFPs.   
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1. INTRODUCTION 
In order to overcome the increasing complexity of Real-Time 

Embedded Systems (RTES), Model-Driven-Development (MDD) 

[1] promotes a rise in level of abstraction by introducing 

intermediate models from specification to implementation, while 

passing through design, and enabling validation at each level.  

At the design level, scheduling analysis [2] may be applied to 

validate design choices in terms of timing requirements. Several 

tools are available to carry out such validation, one can cite as 

example Qompass-Architect [3], Cheddar [4], and MAST [5]. 

However, to achieve that, each of these tools considers some 

implementation assumptions (e.g. scheduling policy, 

communication mechanisms) which are related to a validation 

platform.  On the other hand, there is an important number of 

Real-Time-Operating-System (RTOS) in the market. Some are 

compliant to a specific standard such as POSIX [6], OSEK-VDX 

[7] and  ITRON [8], some are commercial and others are free and 

may be not compliant to any standard. These RTOS or standards 

share common concepts but with specific features [9]. The choice 

of the target RTOS depends on the considered community and the 

intended use [10].  

From these considerations, the refinement of the design model, 

making some implementation assumptions to be validated, to an 

RTOS-specific model is error-prone. 

In fact, the selected RTOS may be too restrictive with regard to 

the validation platform or incoherent correspondence between 

properties of the validation platform resources and the RTOS ones 

may occur. In that case, the designer iterates on the design model, 

modifying and re-validating it, looking for an implementable 

solution. These modifications are usually based on the designer 

experience and reduce portability of design model: the design 

model becomes specific to an RTOS. 

Several works are interested in the deployment of an application 

on a real platform. In [11], the authors propose a generative 

process to transform an application deployed on one RTOS to 

another based on an explicit description of the latter using the 

Software Resource Modeling (SRM) UML profile, which is part 

of the UML profile for MARTE [12] . This work makes the 

assumption that the deployment is always possible and did not 

paid any attention to the incoherence between the characteristics 

of the different platform resources and its influence on the validity 

of the obtained model. The author in [13] proposes a deployment 

process of an application on a RTOS. This process considers also 

an explicit description of the latter but using a Domain Specific 

Language (DSL) called RTEPML and focuses on defining generic 

transformations to automate the process. Compared to [11], this 

approach claims the necessity to verify the availability of a 

concept on the target RTOS before the deployment.  

In previous work [14], we proposed a two-steps approach that 

ensures the generation of valid implementation model from design 

model fulfilling timing properties. This approach is based on an 

explicit description of the validation platform and the target 

RTOS using SRM [12]. The first step, which is a set of feasibility 

tests,  aims at verifying whether the implementation assumptions 

made at the design level are implementable on the target RTOS. 

The second one is a mapping step that performs the mapping 

between the validation platform resources and the RTOS 

resources to obtain a RTOS–specific model. In [14], we have 

focused on concurrency aspects, scheduling policies, tasks and we 

have especially treated the tasks’ priority problem. In this paper, 

we extend the proposed approach by treating the shared resources 

aspect. Thus, we consider that tasks in the design model may be 

dependent by sharing resources and we describe the required 



resources in the validation and RTOS platforms. We discuss also 

the additional feasibility tests and mapping necessary from this 

perspective. On the other hand, one important issue is to verify 

whether the generated RTOS-specific model is valid with respect 

to the design model. So, in this paper, we focus also on 

identifying the required verification to confirm the correctness of 

such model.   

The paper is organized as follows. Section 2 presents the 

assumptions of the paper.  In section 3, we give an overview of 

the two-steps approach to generate valid implementation models 

and we add the necessary treatments for the shared resources 

aspect.  In section 4, we explain how to verify the validity of the 

RTOS-specific model with respect to the design model.  Section 5 

illustrates on an example the approach and the verification phase. 

Finally, section 6 concludes the paper.  

2. ASSUMPTIONS 
We assume that timing validation is performed at the design level 

using Optimum methodology [3] supported by the Qompass-

Architect tool. This methodology introduces timing validation 

from the specification level in order to guide the design of the 

concurrency model that satisfies the timing constraints.   

In this paper, we assume that the design model, generated by 

Optimum consists of a set of tasks       ,  ,…   }  

executing the different functions of the system. All tasks in the 

model are scheduled according to their priority. So each task    is 

characterized by its priority    and runs at a base period   .  

Besides, we assume that two tasks in the model may be dependent 

by sharing resources. Consequently, the design model consists 

also of a set of resources      ,   ,…,  } such as each       

is shared between two tasks or more. 

Finally, we suppose that the hardware architecture corresponds to 

a single execution node (mono-processor architecture). 

From this correct model (design model), one objective of this 

work is to ensure a correct transition to the implementation model 

while respecting the timing properties. More precisely, we focus 

on platform aspect because validation is based on a validation 

platform, here the platform used by Qompass-Architect, while 

implementation is based on the RTOS.    

3. MODEL-DRIVEN APPROACH  
In this section we give an overview of the two-steps model-driven 

approach which has been explained in details in previous work 

[14]. Then, we extend this approach by considering shared 

resources aspect.  

3.1 Overview  
One key point of our approach is to ensure a correct deployment 

of a design model satisfying non–functional requirements on an 

RTOS. The obtained RTOS-specific model (implementation 

model) must conserve the properties that have been validated at 

the design level. 

The design model translates the system specification and fulfills 

its timing constraints under the assumptions made by the 

validation platform related to the validation tool (c.f. Figure 1). In 

our case, the validation platform is the Optimum platform as we 

assume that timing validation is performed at the design level 

using Qompass-Architect [3]. In fact, the validation platform 

includes all concepts provided by RTOSs and that are necessary to 

perform timing validation. This makes this platform independent 

from a particular RTOS and provides a flexible framework to the 

designer to make different design choices.  

In our approach, we choose an explicit description of the 

validation platform and the RTOS using SRM. Indeed, SRM 

allows capturing the semantics of the different concepts defined in 

both platform models and serves as a pivot language to automate 

the refinement of the design model to an implementation model. 

As shown in Figure 1, the approach introduces two steps between 

the design and the implementation levels: 

 Feasibility tests step: this step generates an error when 

the design model is not implementable on the target 

RTOS and provides a feedbacks to the designer to 

inform him about the source of the problem.  It 

generates a warning when the design model is 

implementable but the RTOS provides an 

implementation that is probably more optimized than 

the one chosen at the design level. Otherwise, this step 

mentions that there is no problem and that the mapping 

step can be performed.  

 
 

Figure 1.Model-Driven approach  

 Mapping step: this step generates the RTOS-specific 

model by performing the mapping of concepts and the 

mapping of properties of these concepts. This mapping 

is based on the notion of matching between the 

resources of the validation platform and the RTOS one.    

This matching is ensured, in our case, by the use of 

SRM to describe both platforms (c.f. Figure 2).   

 

 
Figure 2.Matching using SRM  

In [14], we were interested in concurrency aspects such as 

scheduling policies, tasks and their properties that describe the 

application behavior in a design model with independent tasks. 

The greater emphasis was on the priority problem. Briefly, we 

describe the tests invoked by the feasibility tests step which are 

related to the priority aspect.  

 Test of scheduler: this test verifies the scheduling 

policies adequacy between the validation platform and 

the RTOS.  For instance, if the scheduling policy used at 

the design level is priority-based and the RTOS does not 

offers a priority-based policy. So in that case, this test 

generates an error to mention that the input design 

model is not implementable on the target RTOS  

 Test of number of priority levels: this test computes the 

number of priority levels used in the design model and 



verifies whether the platform supports that number. If 

the number of priority levels allowed by the RTOS is 

lower than the number used at the design level, this test 

generates an error to indicate that the design model is 

not implementable on the target RTOS.   

 Test of equal priority levels: this test verifies if, at the 

design level, there are tasks that share the same priority 

levels. In that case, if the target RTOS does not support 

such situation, this test generates an error to inform the 

designer that his design model is not implementable. 

In order to generate the RTOS-specific model, the mapping step 

provides also different mapping strategies of the priority values to 

give a flexible framework to the designer. We give also a brief 

description of these mapping strategies: 

 Direct mapping keeps at the implementation the same 

priority values used in the design model. This type of 

mapping does not ensure always valid implementation 

models. 

 Linear mapping generates consecutive values from the 

available minimum priority level of the used RTOS. If 

feasible, it ensures always valid implementation models. 

However, the generated priority is less convenient to 

insert new task at run-time. 

 Mapping by step is similar to the previous one, but 

adding a step between two consecutive levels of 

priority. The validity of the obtained implementation 

model depends on the step size. Like for direct 

mapping, it is necessary to add a supplementary test to 

verify whether this mapping is possible. 

 Proportional mapping distributes applicative priority 

values over the maximal range offered by the RTOS. It 

guarantees valid implementation models. Nevertheless, 

this type of mapping is not possible if the RTOS does 

not provide an upper bound of priority levels. 

3.2 Consideration of shared resources  
We suppose that tasks in the design model may be dependent by 

sharing resources (c.f. section 2). The sharing of a data resource, 

when the use of the data must be atomic, necessitates choosing 

three architectural parameters: the synchronization protocol, the 

allocation policy and the access protocol.  The synchronization 

primitive (e.g. Semaphore, Mutex) is needed to ensure that one 

and only one task can use the resource at a time. The allocation 

policy or the waiting queue policy (e.g. FIFO, priority-based) 

determines what happens when a request is made for the resource 

when the resource is busy. Finally, the access protocol (e.g. PCP, 

PIP) is used to avoid priority inversion situations or deadlock by 

modifying the priority of the task during the execution. The 

combined choice of synchronization protocol, allocation policy 

and access protocol corresponds to a possible implementation of 

the shared resource (critical section). In next subsections, 

validation and RTOS platform models are enriched to support the 

creation of design and implementation models with shared 

resources. Then, we discuss the feasibility test and mapping steps 

from this perspective.  

3.2.1 Validation platform model for Optimum  

In order to perform timing validation, the designer has to make 

implementation assumptions on how to implement the critical 

section. As already discussed in section 3.1, the validation 

platform is an “ideal” platform that offers unlimited design 

choices for the designer and is independent from a particular 

RTOS. Consequently, this platform covers all the ways for 

implementing a shared resource. To this end, we add a 

Shared_Resource concept to the Optimum platform (c.f. Figure 3) 

and we annotate the latter with “swMutualExclusionResource” 

stereotype from SRM. The choice related on how to implement 

this shared resource corresponds to setting the values of the 

mechanism, waitingQueuePolicy and concurrentAccessProtocol 

properties of the “swMutualExclusionResource” stereotype which 

correspond respectively to the synchronization protocol, 

allocation policy and access protocol parameters already 

mentioned. In Figure 3, we choose a default implementation of the 

shared resource (PCP_Semaphore). However, the designer can 

change this implementation by modifying the values of these 

properties. Depending on the designer choices, the validation tool 

involves the corresponding analysis test. 

 

Figure 3.Excerpt of the Optimum platform model  

Some combined choices of these three parameters do not 

correspond to real implementations. An example of non-

meaningful implementation is; we choose a semaphore 

mechanism with a FIFO waiting queue and a PCP protocol. In 

order to avoid such situation, we propose to add an OCL 

constraint [15] for each non-meaningful implementation. The 

current implementation of SRM imposes to express these choices 

at the profile level (i.e. set the properties values of the 

“swMutualExclusionResource” stereotype). Consequently, the 

OCL constraints that prevent insignificant implementations of the 

critical section are also defined at the profile level. For instance, 

the previous unsound situation corresponds to a constraint 

associated to “swMutualExclusionResource” stereotype from 

SRM and is given just below:  

 

 

 

3.2.2 RTOS Model  

To tackle the issue of shared resources, the RTOS model should 

describe the possible implementations of critical section provided 

by the considered RTOS. We choose, in this paper, RTEMS [16] 

as a target RTOS and we give in Figure 4 an excerpt (a view for 

the shared resources) of the RTEMS platform model.  

RTEMS provides three possible implementations of a shared 

resource. Each of these implementations corresponds to a class in 

the RTEMS model annotated “swMutualExclusionResource”. For 

each class, we give default values to the mechanism, 

waitingQueuePolicy and concurrentAccessProtocol properties of 

the “swMutualExclusionResource” stereotype which define the 

considered implementation. 

For example, The FIFO_Semaphore_Resource concept 

corresponds to a shared resource implementation using a Boolean 

semaphore as a synchronization protocol and FIFO as an 

context swMutualExclusionResource  

inv:  

(Self.mechanism = BooleanSemaphore) and 

(Self.waitingQueuePolicy = FIFO) implies (not 

(Self.concurrentAccessProtocol = PCP)  

 



allocation policy. This implementation should not define an 

access protocol this is why it does not appear in Figure 4.   

 

Figure 4.Excerpt of the RTEMS model 

3.2.3 Feasibility tests and mapping steps 

The extension of our approach to support tasks dependencies by 

sharing resources requires additional feasibility test to verify 

whether the target RTOS provides the critical section 

implementation chosen at the design level. If it is not the case, the 

feasibility tests step generates an error to inform the designer that 

the corresponding design model is not implementable on this 

RTOS.  

In some cases, the implementation choices made by the designer 

to implement the critical section are implementable; however the 

RTOS provides another implementation that offers better real-

time performance. In that case, the feasibility tests step generates 

a warning in order to propose to the designer to change the 

implementation. An example of such situation is; when the 

designer chooses a FIFO semaphore at the design level and the 

target RTOS provides a PIP semaphore. So the feasibility tests 

step highlights a warning to inform the designer that the target 

RTOS provides a PIP semaphore which is more adapted for real-

time application [17]. The designer at this point can choose to 

keep his design model and to perform the mapping or to modify 

the implementation choices for the critical section taking into 

consideration the generated warning.  

The mapping step for the shared resources is straightforward. If 

the design model is implementable, this step creates an instance at 

the implementation level of the resource that defines the same 

critical section implementation choices made at the design level.  

4.RTOS-SPECIFIC MODELVERIFICATION  
One key point of the proposed approach is to generate correct 

RTOS-specific models from valid real-time design models. In 

order to confirm that the obtained model is correct (i.e. preserves 

design model timing properties); some properties must be verified 

at the implementation level. In our case, we identify three 

properties:   

 P1: the priority values of the different tasks must be 

always within the range of priority values allowed by 

the RTOS  

 P2: the execution order of the different tasks defined at 

the design level must be preserved at the 

implementation level.  

 P3: the access order to shared resources must be 

preserved 

To address the first property (P1), we propose to add an OCL 

constraint to the RTOS model. The role of this constraint is to 

verify that the priority values of the different tasks in RTOS-

specific model are meaningful to the considered RTOS. As an 

example, we give just below the constraint that we add to the 

RTEMS model and which corresponds to (P1). 

Depending on the priority order (increasing or decreasing) which 

is determined by the minPriorityLevel and maxPriorityLevel 

attributes of the RTEMS_Task (c.f. Figure 4), this constraint 

verifies whether the priority values of the different tasks instances 

of the RTEMS-task are between the minimum and the maximum 

priority levels (given by minPriorityLevel and maxPriorityLevel 

and correspond respectively to 255 and 1 in RTEMS).  

 

 

 

 

 

 

 

For the second property (P2), we don’t focus on the priority 

values (which is already verified by the first property) but on the 

execution order of the different tasks which must be equivalent at 

the design and implementation level. In order to verify this 

property, we propose the meta-model given in Figure 4.  

 

Figure 5.Verfication-oriented meta-model  

This meta-model considers an application as a relation of 

precedence among priority levels. As we may have tasks that 

share same priority level, we consider in the meta-model that at 

each priority level one or more tasks may also have a relation of 

precedence. So this meta-model considers that the most important 

is not the values of priority but the relation of precedence between 

them. In order to verify the second property, we transform the 

design and the RTOS-specific models to models that conform to 

this meta-model and we verify if they are equivalent.  

The access order to the shared resource in the model is preserved 

at the implementation level, if and only if, the execution order of 

tasks that share this resource is also preserved. Consequently, the 

third property (P3) is verified, if and only if, the second property 

(P2) is verified.  

As a conclusion, the generated RTOS-specific model is correct 

with respect to the design model, if and only if, these three 

properties (P1), (P2) and (P3) are verified.   

5. CASE STUDY 
In this section we illustrate our approach with the example 

presented in [3]. This example corresponds to a classical 

case study in the automotive domain, i.e. the antilock 

control sub system. 

This subsystem is a classic sensor-controller-actuator system. 

Figure 5 gives a structural view of the main functions inside the 

controller: a data processing function for data coming from the 

sensor, the anti-locking brake function calculating the command 

context RTEMS_Task  

inv:  

if(Self.minPriorityLevel< Self.maxPriorityLevel) then  

Self.minPriorityLevel < Self.PriorityValue < 

Self.maxPriorityLevel 

else 

Self.maxPriorityLevel< Self.PriorityValue < 

Self.minPriorityLevel 

endif 

 



to send to the actuator, and a diagnosis function that disables the 

anti-locking function in case a fault in the subsystem is detected. 

Each function above has an associated behavior modeled here as 

an activity. Figure 6 below complements the structural functional 

model with the description of the system end-to-end scenarios. 

Two events (acquisitionForAbs and acquisitionForDiagnosis) are 

triggering the sequences of functions behavior execution. 

ElectronicBrakeControl

absFaultType:Fault

alc: AntilockControl
dp: DataProcessing

computedData:Data
inputData:Data

sd:SelfDiagnosis

absEnabled:Boolean

faultType:Fault

isActive:Boolean

outputCommand:Command

absCommand:Command

acquiredData:SensorData

 

Figure 6. System functional model 

 ElectronicBrakeControlScenarios

acquisitionForAbs preProcessingBehavior

antiLockControlBehavior

acquisitionForDiagnosis diagnosisBehavior

 

Figure 7 .System-level behaviors  

From this behavioral description, Qompass-Architect generates 

the design model given in the next subsection.  This generation 

relies also on some additional parameters defined in the system 

specification such as the activation periods of events and time 

budget of actions.  

5.1 Design model  
Figure 7 gives a schematic view of the design model of the 

antilock control subsystem generated by Qompass-Architect.  

 

Figure 8.Design model  

This model consists of two periodic tasks taks1 and task2 which 

are instances of the PeriodicOptimum_Task concept of the 

Optimum platform. The first task, task1, is triggered by the event 

acquisitionForAbs; consequently its period corresponds to the 

period of this event (60 ms). Besides, this task executes 

preProcessingBehavior and antiLockControlBehavior actions and 

then its execution time (timebudget) is the sum of the execution 

times of these two actions. Similarly, task2 is triggered by the 

acquisitionForDiagnosis event and executes the 

diagnosisBehavior and antiLockControlBehavior actions. 

Qompass-Architect gives to task1 a priority value equals to 20 and 

to task2 a priority value equals to 10. The priority order in the 

Optimum platform is increasing as specified in Figure 3 (given by 

minPriorityLevel and maxPriorityLevel attributes of the 

Optimum_Task). Accordingly, task1 has a higher priority than 

task2. These two tasks are dependent by sharing the AntiLock 

resource which corresponds to the antiLockControlBehavior 

action. Qompass-Architect chooses to implement this critical 

section with a PCP_Semaphore (i.e.  Boolean semaphore as a 

mechanism, a priority-based as a waiting queue and PCP as an 

access protocol).  

Based on these different implementations choices (priority 

assignment, critical section implementation, tasks number…), 

Timing validation is performed to verify whether this design 

model meets its timing requirements. Indeed, Qompass-Architect 

computes the blocking time depending on the implementation 

choices of the critical section and then computes the response time 

of the different tasks. The result of this validation is also given in 

Figure 7. From this figure, we can conclude that this model is 

valid from a real-time perspective since the response times of 

task1 and task2 are lower than their deadlines.    

We aim at generating a correct RTEMS-specific model from this 

valid design model. This implementation model must conserve the 

timing properties while considering the characteristics of the 

RTEMS platform. In the following subsection, we give this 

RTEMS-specific model.   

5.2 RTEMS-specific model   

The generation of the RTEMS-specific model following our 

approach requires passing through two steps; feasibility tests and 

mapping.  

For this design model, the feasibility tests step involves the 

different feasibility tests related to the priority aspect (c.f. section 

3.1) and the shared resources aspect (c.f. section 3.2.3). For this 

design model, this step does not raise any feasibility concern: the 

design model is implementable on RTEMS. Consequently, we 

process the mapping step to generate the RTEMS-specific model. 

Figure 8 gives a schematic view of the RTEMS-specific model.  

 

Figure 9.RTEMS-specific model 

This step performs the mapping between Optimum platform 

resources and RTEMS resources; and the properties of these 

resources. Consequently, RTEMS-specific model consists of two 

tasks instances of RTEMS_PeriodicTask concept which 

corresponds to the appropriate type that matches the 

PeriodicOptimum_Task resource in Optimum platform. It consists 

also of an AntiLock resource instance of the 

PCP_Semaphore_Resource which defines the same 

implementation of critical section chosen in the design model.   

For the properties, the mapping step detects that the only three 

properties that require mapping are the priorityValue, the period 

and resources (the other properties have a default value or they 

are not referenced in both platform models). This step proposes 

different strategies to perform the mapping of priority values (c.f. 

section 3.1). In Figure 8, we choose the proportional mapping of 

the priority values. The period values are expressed in ticks in 

RTEMS and the duration of a tick is configurable. We suppose 

here that the 1 tick is equal to 1 ms. This is why; the values of the 

period are kept the same at the implementation model. Finally, for 

the resource property we perform a direct mapping to keep the 

information that this resource (AntiLock) is shared between task1 

and task2.  



 

 

5.3 RTEMS-specific model verification    

In order to verify the correctness of the generated RTEMS-

specific model, three properties already explained in section 4 

should be fulfilled.   

The first property (P1) is that the priority values of the different 

tasks in the implementation model are between the minimum and 

maximum priority levels allowed by the RTOS which correspond 

respectively to 1 and 255 for RTEMS. We can conclude from 

Figure 8 that this property is verified as the priority values of 

task1 and task2 are within this interval.  

The second property (P2) is that the execution order of the 

different tasks is equivalent at the design and the implementation 

level. To this end, we transform the design model to a model 

instance of the verification-oriented meta-model given in Figure 

4. This model (c.f. Figure 9) considers that our application is a 

relation of precedence among two priority levels LD1 and LD2. 

Each priority level references one or several tasks from the design 

level. In our case, we have just one task for each level since the 

design model does not define tasks with equal priority levels. 

From this model, the most important information is that, at the 

design level, task1 is executed before task2.  

 
Figure 10.Design model as an instance of the verification-

oriented meta-model  

In the same way, we transform the RTEMS-specific model to a 

model conforming to the verification-oriented meta-model given 

in Figure 4. This model is given in Figure 10 and defines also a 

relation of precedence among two priority levels LI1 and LI2. 

Each level references also one task from the implementation 

model.  

 

Figure 11.RTEMS-specific model as an instance of the 

verification-oriented meta-model  

From Figure 9 and Figure 10, we conclude that the second 

property is also fulfilled. In fact, even the priority values at the 

design and the implementation levels are different; the execution 

order of the two tasks is conserved.  

The third property (P3) is verified since the second property is 

fulfilled.  

All the properties are verified and thus the generated RTEMS-

specific model is correct.  

5. CONCLUSION  
In this paper, we propose an approach to ensure an automatic 

correct transition from a valid design model to an RTOS-specific 

model that conserves timing properties. This approach is based on 

two steps; the first step verifies whether the design choices are 

implementable on the target RTOS and the second step perform 

an appropriate mapping to generate the RTOS-specific model. In 

order to assess that the obtained RTOS-specific model is correct 

with respect to the design model, we identify the properties that 

should be verified and we propose a way to check them at the 

implementation level.  

As future work, we aim at considering other aspects such as 

activation patterns, communications in a distributed platform. For 

each aspect, we define the additional feasibility tests and mapping 

strategies. Another perspective consists in refactoring the design 

model, when the latter is not implementable, based on the 

feasibility tests step feedbacks.  
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