

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

ACES-MB'12, September 30 2012, Innsbruck, Austria Copyright 2012
ACM 978-1-4503-1800-6/12/09…$15.00.

Real–Time Design Models to RTOS-Specific Models
Refinement Verification

Rania Mzid, Chokri Mraidha
CEA List, Laboratory of model driven
engineering for embedded systems
Point Courrier 174, Gif-sur-Yvette,

91191, France

rania.mzid@cea.fr
chokri.mraidha@cea.fr

Jean-Philippe Babau
Lab-STICC, UBO, UEB

Brest, France

 Jean-Philippe.Babau@univ-
brest.fr

Mohamed Abid

CES Laboratory
National school of engineers of Sfax

Sfax, Tunisia

Mohamed.Abid@enis.rnu.tn

ABSTRACT

One key point of Real-Time Embedded Systems development is

to ensure that functional and non-functional properties (NFPs) are

satisfied by the implementation. For early detection of errors, the

verification of NFPs is realized at the design level. Then the

design model is implemented on a Real-Time Operating System

(RTOS). However, the design model could be not implementable

on the target RTOS. In this paper, we propose to integrate

between the design and the implementation phases, a feasibility

tests step to verify whether the design model is implementable on

the target RTOS and a mapping step to generate the appropriate

RTOS-specific model. This two-steps approach is based on an

explicit description of the platform used for verification and the

RTOS which is the implementation platform. Moreover an

additional verification step is needed to ensure the conformity of

the implementation model to the design model with regard to

NFPs.

Keywords

MDD, Design Model, RTOS-specific Model, Real-Time

Validation;

1. INTRODUCTION
In order to overcome the increasing complexity of Real-Time

Embedded Systems (RTES), Model-Driven-Development (MDD)

[1] promotes a rise in level of abstraction by introducing

intermediate models from specification to implementation, while

passing through design, and enabling validation at each level.

At the design level, scheduling analysis [2] may be applied to

validate design choices in terms of timing requirements. Several

tools are available to carry out such validation, one can cite as

example Qompass-Architect [3], Cheddar [4], and MAST [5].

However, to achieve that, each of these tools considers some

implementation assumptions (e.g. scheduling policy,

communication mechanisms) which are related to a validation

platform. On the other hand, there is an important number of

Real-Time-Operating-System (RTOS) in the market. Some are

compliant to a specific standard such as POSIX [6], OSEK-VDX

[7] and ITRON [8], some are commercial and others are free and

may be not compliant to any standard. These RTOS or standards

share common concepts but with specific features [9]. The choice

of the target RTOS depends on the considered community and the

intended use [10].

From these considerations, the refinement of the design model,

making some implementation assumptions to be validated, to an

RTOS-specific model is error-prone.

In fact, the selected RTOS may be too restrictive with regard to

the validation platform or incoherent correspondence between

properties of the validation platform resources and the RTOS ones

may occur. In that case, the designer iterates on the design model,

modifying and re-validating it, looking for an implementable

solution. These modifications are usually based on the designer

experience and reduce portability of design model: the design

model becomes specific to an RTOS.

Several works are interested in the deployment of an application

on a real platform. In [11], the authors propose a generative

process to transform an application deployed on one RTOS to

another based on an explicit description of the latter using the

Software Resource Modeling (SRM) UML profile, which is part

of the UML profile for MARTE [12] . This work makes the

assumption that the deployment is always possible and did not

paid any attention to the incoherence between the characteristics

of the different platform resources and its influence on the validity

of the obtained model. The author in [13] proposes a deployment

process of an application on a RTOS. This process considers also

an explicit description of the latter but using a Domain Specific

Language (DSL) called RTEPML and focuses on defining generic

transformations to automate the process. Compared to [11], this

approach claims the necessity to verify the availability of a

concept on the target RTOS before the deployment.

In previous work [14], we proposed a two-steps approach that

ensures the generation of valid implementation model from design

model fulfilling timing properties. This approach is based on an

explicit description of the validation platform and the target

RTOS using SRM [12]. The first step, which is a set of feasibility

tests, aims at verifying whether the implementation assumptions

made at the design level are implementable on the target RTOS.

The second one is a mapping step that performs the mapping

between the validation platform resources and the RTOS

resources to obtain a RTOS–specific model. In [14], we have

focused on concurrency aspects, scheduling policies, tasks and we

have especially treated the tasks’ priority problem. In this paper,

we extend the proposed approach by treating the shared resources

aspect. Thus, we consider that tasks in the design model may be

dependent by sharing resources and we describe the required

resources in the validation and RTOS platforms. We discuss also

the additional feasibility tests and mapping necessary from this

perspective. On the other hand, one important issue is to verify

whether the generated RTOS-specific model is valid with respect

to the design model. So, in this paper, we focus also on

identifying the required verification to confirm the correctness of

such model.

The paper is organized as follows. Section 2 presents the

assumptions of the paper. In section 3, we give an overview of

the two-steps approach to generate valid implementation models

and we add the necessary treatments for the shared resources

aspect. In section 4, we explain how to verify the validity of the

RTOS-specific model with respect to the design model. Section 5

illustrates on an example the approach and the verification phase.

Finally, section 6 concludes the paper.

2. ASSUMPTIONS
We assume that timing validation is performed at the design level

using Optimum methodology [3] supported by the Qompass-

Architect tool. This methodology introduces timing validation

from the specification level in order to guide the design of the

concurrency model that satisfies the timing constraints.

In this paper, we assume that the design model, generated by

Optimum consists of a set of tasks , ,… }

executing the different functions of the system. All tasks in the

model are scheduled according to their priority. So each task is

characterized by its priority and runs at a base period .

Besides, we assume that two tasks in the model may be dependent

by sharing resources. Consequently, the design model consists

also of a set of resources , ,…, } such as each

is shared between two tasks or more.

Finally, we suppose that the hardware architecture corresponds to

a single execution node (mono-processor architecture).

From this correct model (design model), one objective of this

work is to ensure a correct transition to the implementation model

while respecting the timing properties. More precisely, we focus

on platform aspect because validation is based on a validation

platform, here the platform used by Qompass-Architect, while

implementation is based on the RTOS.

3. MODEL-DRIVEN APPROACH
In this section we give an overview of the two-steps model-driven

approach which has been explained in details in previous work

[14]. Then, we extend this approach by considering shared

resources aspect.

3.1 Overview
One key point of our approach is to ensure a correct deployment

of a design model satisfying non–functional requirements on an

RTOS. The obtained RTOS-specific model (implementation

model) must conserve the properties that have been validated at

the design level.

The design model translates the system specification and fulfills

its timing constraints under the assumptions made by the

validation platform related to the validation tool (c.f. Figure 1). In

our case, the validation platform is the Optimum platform as we

assume that timing validation is performed at the design level

using Qompass-Architect [3]. In fact, the validation platform

includes all concepts provided by RTOSs and that are necessary to

perform timing validation. This makes this platform independent

from a particular RTOS and provides a flexible framework to the

designer to make different design choices.

In our approach, we choose an explicit description of the

validation platform and the RTOS using SRM. Indeed, SRM

allows capturing the semantics of the different concepts defined in

both platform models and serves as a pivot language to automate

the refinement of the design model to an implementation model.

As shown in Figure 1, the approach introduces two steps between

the design and the implementation levels:

 Feasibility tests step: this step generates an error when

the design model is not implementable on the target

RTOS and provides a feedbacks to the designer to

inform him about the source of the problem. It

generates a warning when the design model is

implementable but the RTOS provides an

implementation that is probably more optimized than

the one chosen at the design level. Otherwise, this step

mentions that there is no problem and that the mapping

step can be performed.

Figure 1.Model-Driven approach

 Mapping step: this step generates the RTOS-specific

model by performing the mapping of concepts and the

mapping of properties of these concepts. This mapping

is based on the notion of matching between the

resources of the validation platform and the RTOS one.

This matching is ensured, in our case, by the use of

SRM to describe both platforms (c.f. Figure 2).

Figure 2.Matching using SRM

In [14], we were interested in concurrency aspects such as

scheduling policies, tasks and their properties that describe the

application behavior in a design model with independent tasks.

The greater emphasis was on the priority problem. Briefly, we

describe the tests invoked by the feasibility tests step which are

related to the priority aspect.

 Test of scheduler: this test verifies the scheduling

policies adequacy between the validation platform and

the RTOS. For instance, if the scheduling policy used at

the design level is priority-based and the RTOS does not

offers a priority-based policy. So in that case, this test

generates an error to mention that the input design

model is not implementable on the target RTOS

 Test of number of priority levels: this test computes the

number of priority levels used in the design model and

verifies whether the platform supports that number. If

the number of priority levels allowed by the RTOS is

lower than the number used at the design level, this test

generates an error to indicate that the design model is

not implementable on the target RTOS.

 Test of equal priority levels: this test verifies if, at the

design level, there are tasks that share the same priority

levels. In that case, if the target RTOS does not support

such situation, this test generates an error to inform the

designer that his design model is not implementable.

In order to generate the RTOS-specific model, the mapping step

provides also different mapping strategies of the priority values to

give a flexible framework to the designer. We give also a brief

description of these mapping strategies:

 Direct mapping keeps at the implementation the same

priority values used in the design model. This type of

mapping does not ensure always valid implementation

models.

 Linear mapping generates consecutive values from the

available minimum priority level of the used RTOS. If

feasible, it ensures always valid implementation models.

However, the generated priority is less convenient to

insert new task at run-time.

 Mapping by step is similar to the previous one, but

adding a step between two consecutive levels of

priority. The validity of the obtained implementation

model depends on the step size. Like for direct

mapping, it is necessary to add a supplementary test to

verify whether this mapping is possible.

 Proportional mapping distributes applicative priority

values over the maximal range offered by the RTOS. It

guarantees valid implementation models. Nevertheless,

this type of mapping is not possible if the RTOS does

not provide an upper bound of priority levels.

3.2 Consideration of shared resources
We suppose that tasks in the design model may be dependent by

sharing resources (c.f. section 2). The sharing of a data resource,

when the use of the data must be atomic, necessitates choosing

three architectural parameters: the synchronization protocol, the

allocation policy and the access protocol. The synchronization

primitive (e.g. Semaphore, Mutex) is needed to ensure that one

and only one task can use the resource at a time. The allocation

policy or the waiting queue policy (e.g. FIFO, priority-based)

determines what happens when a request is made for the resource

when the resource is busy. Finally, the access protocol (e.g. PCP,

PIP) is used to avoid priority inversion situations or deadlock by

modifying the priority of the task during the execution. The

combined choice of synchronization protocol, allocation policy

and access protocol corresponds to a possible implementation of

the shared resource (critical section). In next subsections,

validation and RTOS platform models are enriched to support the

creation of design and implementation models with shared

resources. Then, we discuss the feasibility test and mapping steps

from this perspective.

3.2.1 Validation platform model for Optimum

In order to perform timing validation, the designer has to make

implementation assumptions on how to implement the critical

section. As already discussed in section 3.1, the validation

platform is an “ideal” platform that offers unlimited design

choices for the designer and is independent from a particular

RTOS. Consequently, this platform covers all the ways for

implementing a shared resource. To this end, we add a

Shared_Resource concept to the Optimum platform (c.f. Figure 3)

and we annotate the latter with “swMutualExclusionResource”

stereotype from SRM. The choice related on how to implement

this shared resource corresponds to setting the values of the

mechanism, waitingQueuePolicy and concurrentAccessProtocol

properties of the “swMutualExclusionResource” stereotype which

correspond respectively to the synchronization protocol,

allocation policy and access protocol parameters already

mentioned. In Figure 3, we choose a default implementation of the

shared resource (PCP_Semaphore). However, the designer can

change this implementation by modifying the values of these

properties. Depending on the designer choices, the validation tool

involves the corresponding analysis test.

Figure 3.Excerpt of the Optimum platform model

Some combined choices of these three parameters do not

correspond to real implementations. An example of non-

meaningful implementation is; we choose a semaphore

mechanism with a FIFO waiting queue and a PCP protocol. In

order to avoid such situation, we propose to add an OCL

constraint [15] for each non-meaningful implementation. The

current implementation of SRM imposes to express these choices

at the profile level (i.e. set the properties values of the

“swMutualExclusionResource” stereotype). Consequently, the

OCL constraints that prevent insignificant implementations of the

critical section are also defined at the profile level. For instance,

the previous unsound situation corresponds to a constraint

associated to “swMutualExclusionResource” stereotype from

SRM and is given just below:

3.2.2 RTOS Model

To tackle the issue of shared resources, the RTOS model should

describe the possible implementations of critical section provided

by the considered RTOS. We choose, in this paper, RTEMS [16]

as a target RTOS and we give in Figure 4 an excerpt (a view for

the shared resources) of the RTEMS platform model.

RTEMS provides three possible implementations of a shared

resource. Each of these implementations corresponds to a class in

the RTEMS model annotated “swMutualExclusionResource”. For

each class, we give default values to the mechanism,

waitingQueuePolicy and concurrentAccessProtocol properties of

the “swMutualExclusionResource” stereotype which define the

considered implementation.

For example, The FIFO_Semaphore_Resource concept

corresponds to a shared resource implementation using a Boolean

semaphore as a synchronization protocol and FIFO as an

context swMutualExclusionResource

inv:

(Self.mechanism = BooleanSemaphore) and

(Self.waitingQueuePolicy = FIFO) implies (not

(Self.concurrentAccessProtocol = PCP)

allocation policy. This implementation should not define an

access protocol this is why it does not appear in Figure 4.

Figure 4.Excerpt of the RTEMS model

3.2.3 Feasibility tests and mapping steps

The extension of our approach to support tasks dependencies by

sharing resources requires additional feasibility test to verify

whether the target RTOS provides the critical section

implementation chosen at the design level. If it is not the case, the

feasibility tests step generates an error to inform the designer that

the corresponding design model is not implementable on this

RTOS.

In some cases, the implementation choices made by the designer

to implement the critical section are implementable; however the

RTOS provides another implementation that offers better real-

time performance. In that case, the feasibility tests step generates

a warning in order to propose to the designer to change the

implementation. An example of such situation is; when the

designer chooses a FIFO semaphore at the design level and the

target RTOS provides a PIP semaphore. So the feasibility tests

step highlights a warning to inform the designer that the target

RTOS provides a PIP semaphore which is more adapted for real-

time application [17]. The designer at this point can choose to

keep his design model and to perform the mapping or to modify

the implementation choices for the critical section taking into

consideration the generated warning.

The mapping step for the shared resources is straightforward. If

the design model is implementable, this step creates an instance at

the implementation level of the resource that defines the same

critical section implementation choices made at the design level.

4.RTOS-SPECIFIC MODELVERIFICATION
One key point of the proposed approach is to generate correct

RTOS-specific models from valid real-time design models. In

order to confirm that the obtained model is correct (i.e. preserves

design model timing properties); some properties must be verified

at the implementation level. In our case, we identify three

properties:

 P1: the priority values of the different tasks must be

always within the range of priority values allowed by

the RTOS

 P2: the execution order of the different tasks defined at

the design level must be preserved at the

implementation level.

 P3: the access order to shared resources must be

preserved

To address the first property (P1), we propose to add an OCL

constraint to the RTOS model. The role of this constraint is to

verify that the priority values of the different tasks in RTOS-

specific model are meaningful to the considered RTOS. As an

example, we give just below the constraint that we add to the

RTEMS model and which corresponds to (P1).

Depending on the priority order (increasing or decreasing) which

is determined by the minPriorityLevel and maxPriorityLevel

attributes of the RTEMS_Task (c.f. Figure 4), this constraint

verifies whether the priority values of the different tasks instances

of the RTEMS-task are between the minimum and the maximum

priority levels (given by minPriorityLevel and maxPriorityLevel

and correspond respectively to 255 and 1 in RTEMS).

For the second property (P2), we don’t focus on the priority

values (which is already verified by the first property) but on the

execution order of the different tasks which must be equivalent at

the design and implementation level. In order to verify this

property, we propose the meta-model given in Figure 4.

Figure 5.Verfication-oriented meta-model

This meta-model considers an application as a relation of

precedence among priority levels. As we may have tasks that

share same priority level, we consider in the meta-model that at

each priority level one or more tasks may also have a relation of

precedence. So this meta-model considers that the most important

is not the values of priority but the relation of precedence between

them. In order to verify the second property, we transform the

design and the RTOS-specific models to models that conform to

this meta-model and we verify if they are equivalent.

The access order to the shared resource in the model is preserved

at the implementation level, if and only if, the execution order of

tasks that share this resource is also preserved. Consequently, the

third property (P3) is verified, if and only if, the second property

(P2) is verified.

As a conclusion, the generated RTOS-specific model is correct

with respect to the design model, if and only if, these three

properties (P1), (P2) and (P3) are verified.

5. CASE STUDY
In this section we illustrate our approach with the example

presented in [3]. This example corresponds to a classical

case study in the automotive domain, i.e. the antilock

control sub system.

This subsystem is a classic sensor-controller-actuator system.

Figure 5 gives a structural view of the main functions inside the

controller: a data processing function for data coming from the

sensor, the anti-locking brake function calculating the command

context RTEMS_Task

inv:

if(Self.minPriorityLevel< Self.maxPriorityLevel) then

Self.minPriorityLevel < Self.PriorityValue <

Self.maxPriorityLevel

else

Self.maxPriorityLevel< Self.PriorityValue <

Self.minPriorityLevel

endif

to send to the actuator, and a diagnosis function that disables the

anti-locking function in case a fault in the subsystem is detected.

Each function above has an associated behavior modeled here as

an activity. Figure 6 below complements the structural functional

model with the description of the system end-to-end scenarios.

Two events (acquisitionForAbs and acquisitionForDiagnosis) are

triggering the sequences of functions behavior execution.

ElectronicBrakeControl

absFaultType:Fault

alc: AntilockControl
dp: DataProcessing

computedData:Data
inputData:Data

sd:SelfDiagnosis

absEnabled:Boolean

faultType:Fault

isActive:Boolean

outputCommand:Command

absCommand:Command

acquiredData:SensorData

Figure 6. System functional model

 ElectronicBrakeControlScenarios

acquisitionForAbs preProcessingBehavior

antiLockControlBehavior

acquisitionForDiagnosis diagnosisBehavior

Figure 7 .System-level behaviors

From this behavioral description, Qompass-Architect generates

the design model given in the next subsection. This generation

relies also on some additional parameters defined in the system

specification such as the activation periods of events and time

budget of actions.

5.1 Design model
Figure 7 gives a schematic view of the design model of the

antilock control subsystem generated by Qompass-Architect.

Figure 8.Design model

This model consists of two periodic tasks taks1 and task2 which

are instances of the PeriodicOptimum_Task concept of the

Optimum platform. The first task, task1, is triggered by the event

acquisitionForAbs; consequently its period corresponds to the

period of this event (60 ms). Besides, this task executes

preProcessingBehavior and antiLockControlBehavior actions and

then its execution time (timebudget) is the sum of the execution

times of these two actions. Similarly, task2 is triggered by the

acquisitionForDiagnosis event and executes the

diagnosisBehavior and antiLockControlBehavior actions.

Qompass-Architect gives to task1 a priority value equals to 20 and

to task2 a priority value equals to 10. The priority order in the

Optimum platform is increasing as specified in Figure 3 (given by

minPriorityLevel and maxPriorityLevel attributes of the

Optimum_Task). Accordingly, task1 has a higher priority than

task2. These two tasks are dependent by sharing the AntiLock

resource which corresponds to the antiLockControlBehavior

action. Qompass-Architect chooses to implement this critical

section with a PCP_Semaphore (i.e. Boolean semaphore as a

mechanism, a priority-based as a waiting queue and PCP as an

access protocol).

Based on these different implementations choices (priority

assignment, critical section implementation, tasks number…),

Timing validation is performed to verify whether this design

model meets its timing requirements. Indeed, Qompass-Architect

computes the blocking time depending on the implementation

choices of the critical section and then computes the response time

of the different tasks. The result of this validation is also given in

Figure 7. From this figure, we can conclude that this model is

valid from a real-time perspective since the response times of

task1 and task2 are lower than their deadlines.

We aim at generating a correct RTEMS-specific model from this

valid design model. This implementation model must conserve the

timing properties while considering the characteristics of the

RTEMS platform. In the following subsection, we give this

RTEMS-specific model.

5.2 RTEMS-specific model

The generation of the RTEMS-specific model following our

approach requires passing through two steps; feasibility tests and

mapping.

For this design model, the feasibility tests step involves the

different feasibility tests related to the priority aspect (c.f. section

3.1) and the shared resources aspect (c.f. section 3.2.3). For this

design model, this step does not raise any feasibility concern: the

design model is implementable on RTEMS. Consequently, we

process the mapping step to generate the RTEMS-specific model.

Figure 8 gives a schematic view of the RTEMS-specific model.

Figure 9.RTEMS-specific model

This step performs the mapping between Optimum platform

resources and RTEMS resources; and the properties of these

resources. Consequently, RTEMS-specific model consists of two

tasks instances of RTEMS_PeriodicTask concept which

corresponds to the appropriate type that matches the

PeriodicOptimum_Task resource in Optimum platform. It consists

also of an AntiLock resource instance of the

PCP_Semaphore_Resource which defines the same

implementation of critical section chosen in the design model.

For the properties, the mapping step detects that the only three

properties that require mapping are the priorityValue, the period

and resources (the other properties have a default value or they

are not referenced in both platform models). This step proposes

different strategies to perform the mapping of priority values (c.f.

section 3.1). In Figure 8, we choose the proportional mapping of

the priority values. The period values are expressed in ticks in

RTEMS and the duration of a tick is configurable. We suppose

here that the 1 tick is equal to 1 ms. This is why; the values of the

period are kept the same at the implementation model. Finally, for

the resource property we perform a direct mapping to keep the

information that this resource (AntiLock) is shared between task1

and task2.

5.3 RTEMS-specific model verification

In order to verify the correctness of the generated RTEMS-

specific model, three properties already explained in section 4

should be fulfilled.

The first property (P1) is that the priority values of the different

tasks in the implementation model are between the minimum and

maximum priority levels allowed by the RTOS which correspond

respectively to 1 and 255 for RTEMS. We can conclude from

Figure 8 that this property is verified as the priority values of

task1 and task2 are within this interval.

The second property (P2) is that the execution order of the

different tasks is equivalent at the design and the implementation

level. To this end, we transform the design model to a model

instance of the verification-oriented meta-model given in Figure

4. This model (c.f. Figure 9) considers that our application is a

relation of precedence among two priority levels LD1 and LD2.

Each priority level references one or several tasks from the design

level. In our case, we have just one task for each level since the

design model does not define tasks with equal priority levels.

From this model, the most important information is that, at the

design level, task1 is executed before task2.

Figure 10.Design model as an instance of the verification-

oriented meta-model

In the same way, we transform the RTEMS-specific model to a

model conforming to the verification-oriented meta-model given

in Figure 4. This model is given in Figure 10 and defines also a

relation of precedence among two priority levels LI1 and LI2.

Each level references also one task from the implementation

model.

Figure 11.RTEMS-specific model as an instance of the

verification-oriented meta-model

From Figure 9 and Figure 10, we conclude that the second

property is also fulfilled. In fact, even the priority values at the

design and the implementation levels are different; the execution

order of the two tasks is conserved.

The third property (P3) is verified since the second property is

fulfilled.

All the properties are verified and thus the generated RTEMS-

specific model is correct.

5. CONCLUSION
In this paper, we propose an approach to ensure an automatic

correct transition from a valid design model to an RTOS-specific

model that conserves timing properties. This approach is based on

two steps; the first step verifies whether the design choices are

implementable on the target RTOS and the second step perform

an appropriate mapping to generate the RTOS-specific model. In

order to assess that the obtained RTOS-specific model is correct

with respect to the design model, we identify the properties that

should be verified and we propose a way to check them at the

implementation level.

As future work, we aim at considering other aspects such as

activation patterns, communications in a distributed platform. For

each aspect, we define the additional feasibility tests and mapping

strategies. Another perspective consists in refactoring the design

model, when the latter is not implementable, based on the

feasibility tests step feedbacks.

REFERENCES
[1] B. Schtz, A. Pretschner, F. Huber, J. Philipps. Model based development of

embedded systems, Lecture Notes in Computer Science, vol 2426, 2002,

Springer, 2002, pp.331-336.

[2] L. Sha, T. Abdelzaher, , K. E. Arzen., A. Cervin, T. P. Baker, A. Burns , G.

Buttazzo, M. Caccamo, J. Lehoczky, and A. K. Mok. Real time scheduling

theory: A historical perspective. Real-Time Systems 28(2/3): 101155. 2004.

[3] C. Mraidha, S. Tucci Piergiovanni and S. Gerard: Optimum: a MARTE-based

methodology for schedulability analysis at early design stages. ACM

SIGSOFT Software Engineering Notes 36(1): 1-8 (2011)

[4] F. Singhoff, J. Legrand, L. Nana, and L. Marcé. Cheddar: a Flexible Real Time

Scheduling Framework. International ACM SIGADA Conference, Atlanta,

November 2004.

[5] M. GonzAlez Harbour, J.J. GutiCrrez Garcia, J.C. Palencia GutiCrrez, and

J.M. Drake Moyano. MAST: Modeling and Analysis Suite for Real Time

Applications. Real-Time Systems, 13th International Euromicro Conference.

Delft, June 2001.

[6] The Open Group Base Specifications, Portable Operating System Interface

(POSIX), ANSI/IEEE Std 1003.1, 2004.

[7] OSEK Group. OSEK/VDX Operating System Specification. http://www.osek-

vdx.org.

[8] T-Engine Forum. μITRON 4.0 Specification, July 2010. http://www.t-

engine.org

[9] R. Yemhalli. Real-time operating systems: An ongoing review. In Work-ln-

Progress Sessions. The 2lrl IEEE Real-lime System Symposium

(RTSSWIPOO), Orlando, Florida, November 2000.

[10] H. Takada, Y. Nakamoto, and K. Tamaru, “The ITRON Project: Overview and

Recent Results”, 5th International Conference on Real-Time Computing

Systems and Applications (RTCSA), pp.3-10, Oct. 1998.

[11] F. Thomas, J. Delatour, F. Terrier, and S. Gerard. Toward a framework for

explicit platform-based transformations. In Proceeding of the 11th IEEE

Symposium on Object Oriented Real-Time Distributed Computing (ISORC).

Orlondo, Florida, USA, May 2008.

[12] Object Management Group, UML Profile for MARTE: Modeling and Analysis

of Real-Time Embedded Systems, Object Management Group, Inc., September

2010, OMG document number: ptc/2010-08-32

[13] M. Brun. Contribution à la considération explicite des plates-formes

d’exécution logicielles lors d’un processus de déploiement d’application. PhD

Thesis university of Nantes. October 2010.

[14] R. Mzid, Ch. Mraidha, J-P. Babau, M. Abid. A MDD Approach for RTOS

Integration on Valid Real-Time Design Model. The 38th Euromicro

Conference On software Engineering and Advanced Applications (SEAA’12),

Cesme, Izmir, Turkey, September 2012.

[15] Object Management Group, Object Constraint Language (OCL). Object

Management Group, Inc., May 2006, OMG document number: formal/06-05-

01

[16] RTEMS C Users Guide. Edition 4.6.5, for RTEMS 4.6.5. August 2003.

[17] Mark H. Klein, Th. Ralya, B.Pollak, R. Obenza and M.Gonzalez Harbour. A

Practitioner’s Handbook for real-Time Analysis. Guide to Rate Monotonic

Analysis for Real-Time Systems. Kluwer Academic Publisher. ISBN 0-7923-

9361-9. p. 5-30.

http://www.osek-vdx.org/
http://www.osek-vdx.org/
http://www.t-engine.org/
http://www.t-engine.org/

