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Abstract  
The design of multiprocessor system-on-chip has 

performance constraints which must be satisfied by the 
communication architecture. Multistage interconnection 
networks have been frequently proposed as connection 
means in classical multiprocessor systems. They are 
generally accepted concepts in the semiconductor 
industry for solving the problems related to on-chip 
communications. This paper proposes a methodology for 
the extension of a generic model (GeNoC) describing on-
chip communications. At the generic level, the topology 
component and an extended routing function are defined 
and implemented in the ACL2 theorem proving 
environment. We achieve the validation of the extended 
model on a Delta multistage interconnection networks 
case study. We thus show the utility of the approach to 
give a more realistic model describing the 
communication architectures. 
 
1. Introduction 

 
The future generation of platforms on multiprocessor 

systems-on-chip (MPSOCs) must satisfy many critical 
requirements: they have to be energy efficient, cheap, 
reliable, and must offer sufficient computing power for 
advanced and complex applications. To satisfy all these 
constraints simultaneously, future MPSOCs must 
integrate several types of processors and data memory 
units, adding more flexibility and programmability to 
these devices [1]. Therefore, researches were focused 
mainly in squeezing computing and controlling power on 
a system on chip (SoC). As a result, many MPSOC 
platforms have emerged [2].  

A key step in the design of such systems is the choice 
of the communication architecture. Indeed, this 
communication architecture must support the entire 
inter-component data traffic and has a significant impact 
on the overall system performance [3]. As a promising 
alternative, Networks on Chip (NoCs) have been 
proposed by academia and industry to handle 
communication needs for the future multiprocessor 

systems-on-chip [4]. In comparison with previous 
communication platforms (e.g., a single shared bus, a 
hierarchy of buses, dedicated point-to-point wires), 
NoCs provide enhanced performance and scalability. All 
NoCs advantages are achieved thanks to efficient sharing 
of wires and a high level of parallelism [5]. 

Multistage Interconnection Networks (MINs) have 
been used in classical multiprocessor systems. As an 
example, MINs are frequently used to connect the nodes 
of IBMSP [6] and CRAY Y-MP series [7]. Further on, 
MINs are applied for networks on chip to connect 
processors to memory modules in MPSOCs [8]. These 
architectures provide a maximum bandwidth to 
components (processors, DSP, IP...), and minimum delay 
access to memory modules. A MIN is defined by, its 
topology, switching strategy, routing algorithm, 
scheduling mechanism, fault tolerance [9], and dynamic 
reconfigurability [10]. 

Another basic step in the design of an MPSoC is the 
verification of the whole system, and especially of the 
selected communication architecture. Traditionally, this 
verification is synonym with simulation [11] which 
consists on the performance evaluation of the system 
[12]. However, such technique provides partial 
verification, so it cannot cover all design errors or detect 
undesirable situations (deadlock, starvation). The new 
trend is then to adopt formal verification, which is based 
on using methods of mathematical proof to ensure the 
quality of the design, improve the robustness of the 
system, and speed up the development [13].   

In general, two methods are applied in formal 
verification: model checking, and theorem proving. The 
first one consists in an exploration of the all system 
states to check the availability of a specified property. 
The second performs the proofs of theorems about a 
given model of the system. Although model checking is 
automatic and fast, it has many drawbacks like the 
problem of states explosion due to the use of finite state 
machines. Therefore, theorem proving being 
independent of the system size, is much more efficient in 
particular when applied at a high level abstraction. 



 
 

A Formal specification and verification of Delta 
MINs for MPSOC in the ACL2 logic is investigated in 
this paper. Section 2 discusses related work. In section 3, 
the multistage interconnection networks architecture is 
introduced. Next, a formal approach to specify on-chip 
communications is detailed. Finally, we describe how to 
apply this formalism in a Delta multistage 
interconnection networks case study.   
2. Related work 

 
Various works have been recently done to formally 

verify on-chip communication architectures. They can be 
classified into two categories: specific and generic. 

 
2.1. Specific formalization  
 

Roychoudhury and al. verify the protocol AMBA 
AHB [14]. The main contribution of this work is to have 
formally validated a protocol involving pipeline in 
operations. By using the SMV model checker, a scenario 
of starvation was detected. The same bus has been also 
verified by Amjad [15]. A simplified model of the 
AMBA bus has been implemented and validated by 
using model checking and theorem proving. 
Gebremichael and al. [16] verify the absence of deadlock 
in the Æthereal protocol of Philips by developing a 
formal abstract model via the PVS model checker.  

All the works described above develop a dedicated 
formal model of the system. In addition, the model is 
generally described at the RTL level which is a low 
abstraction level. Therefore, given the increasing 
complexity of future communication architectures for 
MPSOC, it becomes complicated to achieve such formal 
verification especially through model checking.  

 
2.2. Generic formalization  

 
The generic formalization is based on a Generic 

Networks on Chip model denoted GeNoC [17]. GeNoC 
takes into account the common components of any on-
chip interconnection architecture, and models them in a 
functional style through four functions: "Send", "Recv", 
"Routing" and "Scheduling". The two first functions 
describe the interfaces of any network, while "Routing" 
and "Scheduling" embody respectively the routing 
algorithm and the switching technique. Each of these 
functions doesn’t have an explicit definition but is 
constrained by properties modelled by theorems, called 
also proofs obligation.  

The main GeNoC function is illustrated in figure 1. It 
takes as arguments the list of requested communications 
(messages to send) and the characteristics of the 
network, and produces as result two lists: successful 
communications and aborted ones. The correctness of 

this function is guarantee through a key theorem 
expressing that a sent message is always received by its 
right destination without any modification of its content. 
Verifying any instance of a given NoC is possible 
through the GeNoC approach, provided that the NoC 
components meet the generic constraints.  

The GeNoC model has been implemented in the 
ACL2 theorem proving environment. ACL2 (A 
Computational Logic for Applicative Common LISP) is 
a tool involving a mathematical logic of the first order 
and a theorem prover [18]. To prove one theorem, ACL2 
uses various techniques like rewritten, simplification by 
the repeated substitution of equals for equals, the 
decision-making procedures, and mathematic induction. 

By applying the GeNoC approach, several NOCs 
(Octagon, Mesh 2D) were specified and validated [17]. 
The GeNoC model also, has been extended to verify the 
Hermes NoC [19].   

 

Figure 1. GeNoC: a generic network on chip model 
 
2.3. Discussion 
 

Compared to previous formal works in the context of 
on-chip communications, GeNoC is innovative. Indeed, 
it has the specificity to be generic and it doesn’t make 
any assumption on topology, routing algorithm and 
scheduling policy of the NoC.  

In order to deal with our work in a generic approach, 
we choose to apply the GeNoC methodology to specify 
on-chip communications based on Delta-MIN. As 
defined in GeNoC, the routing function takes as input 
only the set of nodes (NodeSet). This function supposes 
the existence of connections between two successive 
nodes of a computed route. In this case study, routing is 
done by applying the self routing. Such routing 
algorithm depends on the destination address. It gives in 
each stage the port through which the message must be 
switched. However, it doesn’t give any indication about 
the position of the next switch. Therefore, applying the 



 
 
actual GeNoC model to validate the Delta MINs is 
impossible without considering their topology.  

The main idea here is to extend the GeNoC model by 
involving the connection component, so that we describe 
a more realistic model of on-chip communications. The 
extension is possible by defining formally and at a 
generic level, abstract interconnection functions. After 
that, the networks case study can be validated by 
applying the GeNoC model extended.  
3. MIN Architecture  
 

In this section, we present an overview of the 
networks used for the specification.   

 
3.1. MIN Components  
 

The common multistage interconnection networks 
(MINs) used, have N inputs and N outputs nodes and are 
built using r×r  switches. Such MINs have N/r switches 
at each stage, and logrN stages of switches denoted d. 
The interconnection stages Ci (0  i d) are associated 
by links generated by applying permutation functions. 
Figure 2 represents a generic model of MINs of size 
N×N using crossbars with r equals 2.  

In a MIN, a path between a source and a target is 
obtained by operating a switch at stage Stgi through the 
upper output if the ith bit of the destination address is 
equal to 0, otherwise through the lower output.  

 
 

 
Figure 2. A generic model of MINs 

 
3.1. MINs with Banyan property  
 

We propose in figure 3 a topological classification of 
MINs. A banyan MIN is a multistage interconnection 
network characterized by one and only one path between 
each source and destination. A banyan MIN of size N×N 
consists of r×r crossbars.  

An interesting subclass of Banyan MINs is composed 
of Delta networks. Let denote by: oi the i th output of a 

crossbar in a MIN, and by Cj, a crossbar belonging to the 
stage j. So, the Delta property can be defined as follows: 
if an input of Cj is connected to the output oi of Cj-1, then 
all other inputs of Cj must be connected to the stage (j-1) 
on outputs with the same index i. 
 

 
Figure 3. Classification of MINs 

 
3.2. Delta networks 
 

The difference between each of the existing MINs is 
the topology of interconnection links between the 
crossbar stages. A study of equivalence of a variety of 
Delta MINs has been detailed in [20].  

We show in table 1 the permutation links of the most 
popular Delta MIN: omega, baseline and butterfly. In a 
multistage interconnection network using 2x2 crossbar 
elements, the common permutation links used are:  
- The perfect shuffle denoted σ is a bit-shuffling 

permutation where: σ 
k
( xn-1  xn-2…x1 x0  )= xn-2 ...x1 x0 xn-1. 

- The butterfly permutation denoted β is a bit-shuffling 
permutation where:   

ßi

k
( xn-1…xi+1  xi  xi -1… x1 x0  ) =  xn-1... xi+1  x0   xi -1… x1 xi. 

- The baseline permutation denoted δ is a bit-shuffling 
permutation where:  

δi

k
( xn-1…xi+1  xi  xi -1…  x1 x0  ) =  xn-1 …xi+1  x0  xi  xi -1 …   x1 

- The identity permutation denoted I is a bit-shuffling 
permutation where: I (xn-1  xn-2 …x1 x0  ) = xn-1  xn-2...x1 x0 .  
 

Table 1. Permutation links in Delta MINs 
 

Links permutation stage (d+1) stage k ∈ [1..d] stage 0 
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4. A generic formalization of communication 
architecture   
 

We describe below the methodology adopted to 
specify in formal notations the interconnection networks. 
We detail a generic topology and extended routing 
components as extension of the generic model GeNoC. 

 
4.1. The topology component 
 

Taking into account the common components of all 
networks topologies, we detail in this subsection the 
formalization of a generic network topology composed 
of nodes set and connections. As the nodes set was 
already defined in GeNoC, we focalize on the 
generalization of connections. We keep the same GeNoC 
notation of functions and predicates defined for the 
nodes.  

The arrangement of the elements (nodes and links) of 
a network, especially the physical (real) and logical 
(virtual) interconnections between nodes, defines its 
topology. In general, the study of the network physical 
topology is assimilated to the study of a graph, which 
vertices are the nodes of the network and its edges are 
the links connecting pairs of vertices. Traditionally, a 
graph has been always defined statically by its collection 
of vertices (V) and its collection of edges (E) [21]. In 
contrast, the approach is based on adopting a direct 
graph for the topology, and identifying the 
interconnection functions list. 

In a direct graph, the edges are oriented from one 
vertex to another. A vertex x of the graph can be 
connected to one or more other vertices. In general, to 
generate one edge or link from the vertex x, we have to 
apply a mathematical function designated by fp. Such 
function expresses the relation between the vertex x and 
one of its outgoing edge. All outgoing edges from x are 
the result of the application of a list of functions denoted 
lfpx. For the validity of the generic topology model, we 
suppose that for each vertex, such mathematical function 
list exists. The main constraint to check on this graph 
topology is that a vertex v produced by a given function 
connection fp, is really in the nodes set (NodeSet). Figure 
4 shows a simple topology graph in which nodes are 
naturals (NodeSet = (1,2,3)) and its connections are 
described by an incremental function fp = '+1'. 

In the ACL2 logic, we define the function denoted 
Gen-Cnx which generates all the edges of a given vertex 

x. It takes as arguments the vertex and the corresponding 
function list lfpx. The predicate Validlfp recognizes a 
valid list lfpx. The first constraint on topology (theorem 
1) expresses the correction of the function lfpx. Such a 
function is valid if, for every connection cnx generated 
from a node x (in NodeSet) and its corresponding list 
lfpx, the second extremity of cnx belongs to the NodeSet. 
The access to the second extremity of any connection 
cnx is possible through the function ext2.  

 

 
Figure 4. A topology graph  

 
Finally, we define in ACL2 the function nominated 

Gen-Top which generates all the graph edges or links. It 
takes as parameters the set of vertices (NodeSet), the list 
of connections functions (Listfp) and parameters pms-
top. The correction of Gen-Top is defined by the second 
theorem (theorem 2). It says that, for all valid parameters 
pms-top (recognized by ValidParams-top) and all valid 
listfp (recognized by ValidListfp); every connection 
produced by the function Gen-Top is valid, i.e 
recognized by the predicate ValidTop. ValidCnxp is the 
predicate associated to the validity of a connection cnx. 
The definition 1 describes the function Gen-Top. List is 
an ACL2 function used to build a list of elements. 

 
Definition 1.  
Gen-Top (NodeSet,listfp, pms-top)=                              
      ∧ (List (Gen-Cnx (x, lfpx))) 
   x ∈ NodeSet 
  lfpx ∈ Listfp 
 

The translation of the generic definitions in ACL2 is 
possible through the encapsulation principle [22]. This 
principle introduces under certain constraints, functions 
symbols without any explicit definitions. The constraints 
are theorems.  

 
(encapsulate (((f x1...xn) => *)) 
    (local (defun f (x1 ...xn)    β)) 
    (defthm thm-1 φ)) 
 

When the encapsulated event is admitted, the ACL2 
theory is extended by the axiom: f is constrained with φ. 
The function f doesn’t have an explicit definition but we 



 
 
know that it has the property φ. So, a definition of a 
given function g is an instance of the encapsulated 
function f, only and only if,  g can satisfy the same 
constraints of f. Otherwise, all theorems expressed at the 
generic level for f, have to be proved for g. 

 
Theorem 1. Definition of connection functions  
∀ x ∈ NodeSet, ∀ lfpx, Validlfp (lfpx) 
⇒ ∀ cnx  ∈  Gen-Cnx (x, lfpx), ext2 (cnx) ∈ NodeSet 
 
In the ACL2 logic: 
(defthm ext2-lfpx-in-nodeset 
 (let* ((nodeset (NodeSetGenerator pms)) 
        (cnx (Gen-Cnx x lfpx)) 
        (ext2 (ext2 cnx)))  
        (implies (and (ValidParamsp pms) 
                      (member-equal x nodes)  
                      (Validlfp lfpx)) 
                 (member-equal ext2 nodeset)))) 
 

Theorem 2. Definition of connections 
∀ x ∈ NodeSet, ∀ lfpx, Validlfp (lfpx) 
⇒ ∀ cnx  ∈  Gen-Cnx (x, lfpx),  ValidCnxp  (cnx) 
 
In the ACL2 logic: 
(defthm gen-top-generates-valid-top  
 (let ((nodeset (NodesetGenerator pms)) 
       (top (Gen-Top nodeset Listfp pms-top))) 
       (implies (and(ValidParamsp pms) 
                    (ValidListfp Listfp) 
                    (ValidParamsp-top pms-top)) 
                (ValidTop top)))) 

 
4.2. Extended Routing function 
 

As we said earlier, the generic routing function 
depends only on the set of nodes (NodeSet). For each 
missive (message) denoted m from the set of missives M, 
“Routing”  applies a function ρ that computes all 
possible routes between the origin of the missive (OrgM) 
and its destination (DestM). We have redefined the 
routing function; so that it takes into account the whole 
topology (denoted Top) which is composed of nodes and 
connections. In particular, the function ρ  must takes into 
account the Top. The new routing function is designated 
by Ext-Routing (definition 2). In this definition, we use 
IdM, FrmM, OrgM, DestM which are GeNoC functions 
giving access to the elements of a missive. A missive is a 
data type defined also in GeNoC. It represents a message 
having the form: "id org frm dest", where id is used to 
identify the message, org is its origin, dest denotes its 
destination and frm is the content of the message. 

 
Definition 2. 
Ext-Routing (Top,M)=  
 ∧  (List (IdM(m),FrmM(m),ρ(OrgM (m), DestM (m), Top))  
m ∈ M  

 
GeNoC defines three constraints on the “Routing” 

function. The first constraint is related to the validity of 
computed routes which is expressed by the predicate 
ValidRoutep. It said that any route r produced by the 
function ρ must be valid. So, r is valid only if it starts at 
the source node (OrgM (m)), terminates at the destination 
node (DestM (m)), all the nodes of the route r are 
included in NodeSet, and r includes at least two nodes. 
We also redefined ValidRoutep in order to involve the 
topology component. The new computed route r is no 
longer just composed of nodes but of connections. We 
denote the i th element of r by r[i] , and by l the length of 
r. Thus, the new predicate Ext-ValidRoutep requires that 
the first of element of r (function first) is equal to the 
origin of the missive (OrgM (m)), the last of r (function 
last) is equal to the destination of the missive (DestM 
(m)), that r[i]  is a connection cnx included in Top, and 
that r has a length l greater or equal than 1. l is equal to 1 
if the origin and the destination are directly connected. 
 
Definition 3. Definition of the route validity 
Ext-ValidRoutep (r, m, Top) = 
∧     (First (r[0]) = OrgM (m)  
       (Last (r[l-1]) = DestM (m) 
       r ⊆  Top  ∧  (len(r) ≥ 1) 
  

The constraint concerning the validity of routes is 
redefined in theorem 3. The GeNoC predicate denoted 
Mlstp recognizes a valid list of missives. We have 
redefined it to include the topology Top. 

 
Theorem 3. Validity of routes produced by ρ 
∀ M, Mlstp (M, Top) 
⇒ ∀ m ∈  M, ∀ r ∈  ρ (OrgM (m), DestM (m)),  
    Ext-ValidRoutep (r, m, Top)  
 

The two other constraints defined on the GeNoC 
routing function remain almost valid and won’t be the 
subject to modifications. 

 
5. Specification and verification of a Delta-
MIN based architecture 
 

In this section, we apply the extended GeNoC model 
to validate the Delta multistage interconnection 
networks. We insist on the applying of the generic 
topology to a Delta MIN case study. 

 
5.1. The Delta MIN  topology component 
  

The generic approach requires beginning by 
identifying the connection functions to apply to generate 



 
 
all the network connections. Once this list identified, we 
have to check the three main constraints expressed at the 
generic level: one constraint defined in GeNoC for the 
validity of the nodes set; and the two constraints that we 
have defined for the connections (theorem 1 and 2). The 
Delta MIN topology as described above (figure 3) is 
composed of nodes and connections.  
-The set of nodes: a pair of coordinates (x y) is used to 
represent a node in a Delta MIN. The coordinate x is 
decimal. It represents the stage of nodes to which 
belongs the node. The Y coordinate is binary and it 
describes the position of the node within the same stage. 
The function gen-nodes-dmin generates all nodes of the 
network. It takes as parameters N, the size of the 
network, and r (r=2), the degree of switches. The validity 
of these parameters is recognized by the predicate 
ValidParamsp-dmin. We define also another predicate 
called dmin-nodesetp for the whole nodes validity. The 
nodes set generation is constrained by the theorem 4. 
 
Theorem 4. Nodes set generation 
(defthm gen-nodes-dmin-correct 
 (implies (ValideParams-dmin pms) 
          (dmin-nodesetp(gen-nodes-dmin pms)))) 
 

-Connections: we represent a connection cnx in a Delta 
MIN by a list ((x px) (y py)), where x is the origin of cnx, 
px is the port involved in cnx, y is the second extremity 
and py is the port of y. For example, the connection (((3) 
(0 1)) L0) (((2) (1 0)) R0) denotes that the port L0 of the 
switch ((3) (0 1)) is connected to the port R0 of ((2) (1 
0)). In the case of Delta MIN, the connection functions 
are always a list of three permutations to apply 
respectively on the first stage of connection, the middle 
stages and finally, on the last stage. 

In the ACL2 logic, we define the function gen-cnx-
node that generates all connections of one node n. It 
takes as arguments the node n origin of connections, the 
list of permutation functions, the parameter d denoting 
the stages number of the network, and r the degree of the 
switches. The theorem 5 is an instance of the theorem 1 
expressed at the generic level. It checks that every node 
ext2 produced by the permutation function σn-1 (modelled 
by sigmak) belongs to the set of nodes (nodes). The same 
constraint must be also verified for the other two 
permutation functions. We define below the function 
gen-top-dmin (definition 4). It generates all the 
connections of a Delta MIN by taking as inputs N and r 
previously defined, and the type of the Delta MIN. The 
last parameter is used by gen-topology to select the types 
of permutations corresponding to this network.  

 
Definition 4. Generation of Delta MIN topology 
(defun gen-top-dmin (nodes lfp d r) 
 (if (endp nodes)  
      nil 

     (let ((n (car nodes)))  
(cond 
 
;; connection source-switch 
 ((s-node n d)  
  (append (list (gen-one-cnx n 'nil (car lfp)))           
  (gen-top-dmin (cdr nodes) lfp d r)))  
 
;; connection switch-switch 
 ((and (sw-node n d) (> (caar n) 1))  
  (append (rev (gen-cnx-node n r (cadr lfp)))     
  (gen-top-dmin (cdr nodes) lfp d r))) 
 
;;connection switch-destination 
 ((and (sw-node n d) (equal (caar n) 1))  
  (append (rev (gen-cnx-node n r (caddr lfp)))      
  (gen-top-dmin  (cdr nodes) lfp d r))))))) 

 
Theorem 5.  
(defthm dest-cnx-in-dmin-nodeset 
 (let* ((nodes (gen-nodes-dmin pms)) 
        (cnx (gen-one-cnx ext1 i 'sigmak)) 
        (ext2 (ext2-cnx cnx)))  
 (implies (and  (ValidParamspD pms)   
                (member-equal ext1 NodeSet)  
                (true-listp i) 
                (valid-fp fp))  
           (member-equal ext2 nodes)))) 

 
Finally, we prove the third constraint that expresses the 
validity of connections (theorem 2 at the generic level), 
and check the compliance of the definitions with the 
generic topology component extended. 
 
5.2. The Delta MIN routing component  
 

The routing algorithm used in Delta MINs is the self 
routing. It depends only on the destination address, 
called also control sequence. If the corresponding digit 
of the control sequence is equal to i, the message to 
deliver will be switched to the output i of the current 
crossbar. Here, the routing algorithm must take into 
account connections. Indeed, the only information of the 
port through which the message must be switched is not 
enough. Thus, we must look in the topology for the 
connection with the current switch as origin.  

As defined in ACL2, the routing function routing-
dmin takes as arguments the list of missives to be routed 
through the Delta MIN, and the parameters to generate 
the whole topology. For each missive, routing-dmin calls 
the following function compute-rte (definition 5) to 
compute the route between the origin (from) and the 
destination (to).  

 
Definition 5. Function compute-rte.  
(defun compute-routes-dmin (from to cdrto top) 
(if (endp cdrto) 
     nil  
(let*((bit_rtg (car cdrto)) 
      (from-a (adapt-node from bit_rtg))        
      (next-node (ext2 (rech-top from-a top))))       



 
 
(cond  
 
;; destination bit equals 0 
((equal bit '0)  
 (list* (list from-a next-node) 
 (compute-routes-dmin next-node to (cdr cdrto) 
top))) 
 
;; destination bit equals 1 
((equal bit '1) 
 (list* (list from-a next-node)  
 (compute-routes-dmin next-node to (cdr cdrto) 
top)))))) 

 
The ACL2 theorem proving environment provides 

also an execution engine. Thus, we can simulate the 
execution of the definitions. We present below a 
simulation of the function routing-dmin showing the 
progression of the list of missives (table 2) through an 
omega network 8x8, using 2x2 crossbars.  
 

Table 2.  The list of missives  
id origin content destination 
1 ((4) (0 0 1)) frm1 ((0) (1 0 0)) 
2 ((4) (1 0 1)) frm2 ((0) (0 0 1)) 

 
The simulation result of this list of missives is shown 

below. We can notice that the routing algorithm make 
use of connections like ((((3) (0 1)) R1) (((2) (1 

1)) L0)) , to compute a route. 
 
((1 FRM1 
  (((((4) (0 0 1)) L) (((3) (0 1)) L0)) 
    ((((3) (0 1)) R1) (((2) (1 1)) L0)) 
    ((((2) (1 1)) R0) (((1) (1 0)) L1)) 
    ((((1) (1 0)) R0) (((0) ((1 0) (0))) L)))) 
 
(2 FRM2 
  (((((4) (1 0 1)) L) (((3) (0 1)) L1)) 
    ((((3) (0 1)) R0) (((2) (1 0)) L0)) 
    ((((2) (1 0)) R0) (((1) (0 0)) L1)) 
    ((((1) (0 0)) R1) (((0) ((0 
 0) (1))) L))))) 

 
6. Conclusion 
 

In this paper we have described a methodology for 
the integration of formal methods in the verification of 
on-chip communication architectures. We have also 
shown that it is possible to take advantage of the graph 
theory basics to build formally connections of any 
network topology. We believe that we can apply the 
extended generic model to give a formal specification of 
any communication architectures.  

A generic topology and extended routing components 
are designed to be included in the generic model GeNoC. 
We have developed the generic topology by identifying 
inherent properties of all topologies. These properties, 
which are called also constraints, have been validated 

using the ACL2 theorem proving environment. To 
achieve the routing extension, we have formalized the 
general common relation between topology and routing. 
In the case study, we specify and verify Delta multistage 
interconnection networks, as an instance of the extended 
generic model.  

The framework presented in this paper opens 
promising trend for further development as complement 
to traditional verification techniques. We are currently 
investigated in the checking of the corresponding routing 
constraints and the integration of a pre-validated 
scheduling mechanism in order to validate the main 
GeNoC function. 
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