

Formal Specification and Verification
of a Delta-MIN Based Interconnection Architecture for MPSoC

Author(s) Name(s)
Maïssa Elleuch, Yassine Aydi, Mohamed Abid

CES-National Engineering School of Sfax, Tunisia
maissa.elleuch@gmail.com, yassine.aydi@oous.rnu.tn, mohamed.abid@enis.rnu.tn

 Affiliation(s)
E-mail

Abstract
The design of multiprocessor system-on-chip has

performance constraints which must be satisfied by the
communication architecture. Multistage interconnection
networks have been frequently proposed as connection
means in classical multiprocessor systems. They are
generally accepted concepts in the semiconductor
industry for solving the problems related to on-chip
communications. This paper proposes a methodology for
the extension of a generic model (GeNoC) describing on-
chip communications. At the generic level, the topology
component and an extended routing function are defined
and implemented in the ACL2 theorem proving
environment. We achieve the validation of the extended
model on a Delta multistage interconnection networks
case study. We thus show the utility of the approach to
give a more realistic model describing the
communication architectures.

1. Introduction

The future generation of platforms on multiprocessor

systems-on-chip (MPSOCs) must satisfy many critical
requirements: they have to be energy efficient, cheap,
reliable, and must offer sufficient computing power for
advanced and complex applications. To satisfy all these
constraints simultaneously, future MPSOCs must
integrate several types of processors and data memory
units, adding more flexibility and programmability to
these devices [1]. Therefore, researches were focused
mainly in squeezing computing and controlling power on
a system on chip (SoC). As a result, many MPSOC
platforms have emerged [2].

A key step in the design of such systems is the choice
of the communication architecture. Indeed, this
communication architecture must support the entire
inter-component data traffic and has a significant impact
on the overall system performance [3]. As a promising
alternative, Networks on Chip (NoCs) have been
proposed by academia and industry to handle
communication needs for the future multiprocessor

systems-on-chip [4]. In comparison with previous
communication platforms (e.g., a single shared bus, a
hierarchy of buses, dedicated point-to-point wires),
NoCs provide enhanced performance and scalability. All
NoCs advantages are achieved thanks to efficient sharing
of wires and a high level of parallelism [5].

Multistage Interconnection Networks (MINs) have
been used in classical multiprocessor systems. As an
example, MINs are frequently used to connect the nodes
of IBMSP [6] and CRAY Y-MP series [7]. Further on,
MINs are applied for networks on chip to connect
processors to memory modules in MPSOCs [8]. These
architectures provide a maximum bandwidth to
components (processors, DSP, IP...), and minimum delay
access to memory modules. A MIN is defined by, its
topology, switching strategy, routing algorithm,
scheduling mechanism, fault tolerance [9], and dynamic
reconfigurability [10].

Another basic step in the design of an MPSoC is the
verification of the whole system, and especially of the
selected communication architecture. Traditionally, this
verification is synonym with simulation [11] which
consists on the performance evaluation of the system
[12]. However, such technique provides partial
verification, so it cannot cover all design errors or detect
undesirable situations (deadlock, starvation). The new
trend is then to adopt formal verification, which is based
on using methods of mathematical proof to ensure the
quality of the design, improve the robustness of the
system, and speed up the development [13].

In general, two methods are applied in formal
verification: model checking, and theorem proving. The
first one consists in an exploration of the all system
states to check the availability of a specified property.
The second performs the proofs of theorems about a
given model of the system. Although model checking is
automatic and fast, it has many drawbacks like the
problem of states explosion due to the use of finite state
machines. Therefore, theorem proving being
independent of the system size, is much more efficient in
particular when applied at a high level abstraction.

A Formal specification and verification of Delta
MINs for MPSOC in the ACL2 logic is investigated in
this paper. Section 2 discusses related work. In section 3,
the multistage interconnection networks architecture is
introduced. Next, a formal approach to specify on-chip
communications is detailed. Finally, we describe how to
apply this formalism in a Delta multistage
interconnection networks case study.
2. Related work

Various works have been recently done to formally

verify on-chip communication architectures. They can be
classified into two categories: specific and generic.

2.1. Specific formalization

Roychoudhury and al. verify the protocol AMBA
AHB [14]. The main contribution of this work is to have
formally validated a protocol involving pipeline in
operations. By using the SMV model checker, a scenario
of starvation was detected. The same bus has been also
verified by Amjad [15]. A simplified model of the
AMBA bus has been implemented and validated by
using model checking and theorem proving.
Gebremichael and al. [16] verify the absence of deadlock
in the Æthereal protocol of Philips by developing a
formal abstract model via the PVS model checker.

All the works described above develop a dedicated
formal model of the system. In addition, the model is
generally described at the RTL level which is a low
abstraction level. Therefore, given the increasing
complexity of future communication architectures for
MPSOC, it becomes complicated to achieve such formal
verification especially through model checking.

2.2. Generic formalization

The generic formalization is based on a Generic

Networks on Chip model denoted GeNoC [17]. GeNoC
takes into account the common components of any on-
chip interconnection architecture, and models them in a
functional style through four functions: "Send", "Recv",
"Routing" and "Scheduling". The two first functions
describe the interfaces of any network, while "Routing"
and "Scheduling" embody respectively the routing
algorithm and the switching technique. Each of these
functions doesn’t have an explicit definition but is
constrained by properties modelled by theorems, called
also proofs obligation.

The main GeNoC function is illustrated in figure 1. It
takes as arguments the list of requested communications
(messages to send) and the characteristics of the
network, and produces as result two lists: successful
communications and aborted ones. The correctness of

this function is guarantee through a key theorem
expressing that a sent message is always received by its
right destination without any modification of its content.
Verifying any instance of a given NoC is possible
through the GeNoC approach, provided that the NoC
components meet the generic constraints.

The GeNoC model has been implemented in the
ACL2 theorem proving environment. ACL2 (A
Computational Logic for Applicative Common LISP) is
a tool involving a mathematical logic of the first order
and a theorem prover [18]. To prove one theorem, ACL2
uses various techniques like rewritten, simplification by
the repeated substitution of equals for equals, the
decision-making procedures, and mathematic induction.

By applying the GeNoC approach, several NOCs
(Octagon, Mesh 2D) were specified and validated [17].
The GeNoC model also, has been extended to verify the
Hermes NoC [19].

Figure 1. GeNoC: a generic network on chip model

2.3. Discussion

Compared to previous formal works in the context of
on-chip communications, GeNoC is innovative. Indeed,
it has the specificity to be generic and it doesn’t make
any assumption on topology, routing algorithm and
scheduling policy of the NoC.

In order to deal with our work in a generic approach,
we choose to apply the GeNoC methodology to specify
on-chip communications based on Delta-MIN. As
defined in GeNoC, the routing function takes as input
only the set of nodes (NodeSet). This function supposes
the existence of connections between two successive
nodes of a computed route. In this case study, routing is
done by applying the self routing. Such routing
algorithm depends on the destination address. It gives in
each stage the port through which the message must be
switched. However, it doesn’t give any indication about
the position of the next switch. Therefore, applying the

actual GeNoC model to validate the Delta MINs is
impossible without considering their topology.

The main idea here is to extend the GeNoC model by
involving the connection component, so that we describe
a more realistic model of on-chip communications. The
extension is possible by defining formally and at a
generic level, abstract interconnection functions. After
that, the networks case study can be validated by
applying the GeNoC model extended.
3. MIN Architecture

In this section, we present an overview of the
networks used for the specification.

3.1. MIN Components

The common multistage interconnection networks
(MINs) used, have N inputs and N outputs nodes and are
built using r×r switches. Such MINs have N/r switches
at each stage, and logrN stages of switches denoted d.
The interconnection stages Ci (0 i d) are associated
by links generated by applying permutation functions.
Figure 2 represents a generic model of MINs of size
N×N using crossbars with r equals 2.

In a MIN, a path between a source and a target is
obtained by operating a switch at stage Stgi through the
upper output if the ith bit of the destination address is
equal to 0, otherwise through the lower output.

Figure 2. A generic model of MINs

3.1. MINs with Banyan property

We propose in figure 3 a topological classification of
MINs. A banyan MIN is a multistage interconnection
network characterized by one and only one path between
each source and destination. A banyan MIN of size N×N
consists of r×r crossbars.

An interesting subclass of Banyan MINs is composed
of Delta networks. Let denote by: oi the i th output of a

crossbar in a MIN, and by Cj, a crossbar belonging to the
stage j. So, the Delta property can be defined as follows:
if an input of Cj is connected to the output oi of Cj-1, then
all other inputs of Cj must be connected to the stage (j-1)
on outputs with the same index i.

Figure 3. Classification of MINs

3.2. Delta networks

The difference between each of the existing MINs is
the topology of interconnection links between the
crossbar stages. A study of equivalence of a variety of
Delta MINs has been detailed in [20].

We show in table 1 the permutation links of the most
popular Delta MIN: omega, baseline and butterfly. In a
multistage interconnection network using 2x2 crossbar
elements, the common permutation links used are:
- The perfect shuffle denoted σ is a bit-shuffling

permutation where: σ
k
(xn-1 xn-2…x1 x0)= xn-2 ...x1 x0 xn-1.

- The butterfly permutation denoted β is a bit-shuffling
permutation where:

ßi

k
(xn-1…xi+1 xi xi -1… x1 x0) = xn-1... xi+1 x0 xi -1… x1 xi.

- The baseline permutation denoted δ is a bit-shuffling
permutation where:

δi

k
(xn-1…xi+1 xi xi -1… x1 x0) = xn-1 …xi+1 x0 xi xi -1 … x1

- The identity permutation denoted I is a bit-shuffling
permutation where: I (xn-1 xn-2 …x1 x0) = xn-1 xn-2...x1 x0 .

Table 1. Permutation links in Delta MINs

Links permutation stage (d+1) stage k ∈ [1..d] stage 0
Omega σ

k
 σ

k
 I

Baseline I δi

k
 I

Butterfly σ
k
 ßi

 k I

4. A generic formalization of communication
architecture

We describe below the methodology adopted to
specify in formal notations the interconnection networks.
We detail a generic topology and extended routing
components as extension of the generic model GeNoC.

4.1. The topology component

Taking into account the common components of all
networks topologies, we detail in this subsection the
formalization of a generic network topology composed
of nodes set and connections. As the nodes set was
already defined in GeNoC, we focalize on the
generalization of connections. We keep the same GeNoC
notation of functions and predicates defined for the
nodes.

The arrangement of the elements (nodes and links) of
a network, especially the physical (real) and logical
(virtual) interconnections between nodes, defines its
topology. In general, the study of the network physical
topology is assimilated to the study of a graph, which
vertices are the nodes of the network and its edges are
the links connecting pairs of vertices. Traditionally, a
graph has been always defined statically by its collection
of vertices (V) and its collection of edges (E) [21]. In
contrast, the approach is based on adopting a direct
graph for the topology, and identifying the
interconnection functions list.

In a direct graph, the edges are oriented from one
vertex to another. A vertex x of the graph can be
connected to one or more other vertices. In general, to
generate one edge or link from the vertex x, we have to
apply a mathematical function designated by fp. Such
function expresses the relation between the vertex x and
one of its outgoing edge. All outgoing edges from x are
the result of the application of a list of functions denoted
lfpx. For the validity of the generic topology model, we
suppose that for each vertex, such mathematical function
list exists. The main constraint to check on this graph
topology is that a vertex v produced by a given function
connection fp, is really in the nodes set (NodeSet). Figure
4 shows a simple topology graph in which nodes are
naturals (NodeSet = (1,2,3)) and its connections are
described by an incremental function fp = '+1'.

In the ACL2 logic, we define the function denoted
Gen-Cnx which generates all the edges of a given vertex

x. It takes as arguments the vertex and the corresponding
function list lfpx. The predicate Validlfp recognizes a
valid list lfpx. The first constraint on topology (theorem
1) expresses the correction of the function lfpx. Such a
function is valid if, for every connection cnx generated
from a node x (in NodeSet) and its corresponding list
lfpx, the second extremity of cnx belongs to the NodeSet.
The access to the second extremity of any connection
cnx is possible through the function ext2.

Figure 4. A topology graph

Finally, we define in ACL2 the function nominated

Gen-Top which generates all the graph edges or links. It
takes as parameters the set of vertices (NodeSet), the list
of connections functions (Listfp) and parameters pms-
top. The correction of Gen-Top is defined by the second
theorem (theorem 2). It says that, for all valid parameters
pms-top (recognized by ValidParams-top) and all valid
listfp (recognized by ValidListfp); every connection
produced by the function Gen-Top is valid, i.e
recognized by the predicate ValidTop. ValidCnxp is the
predicate associated to the validity of a connection cnx.
The definition 1 describes the function Gen-Top. List is
an ACL2 function used to build a list of elements.

Definition 1.
Gen-Top (NodeSet,listfp, pms-top)=
 ∧ (List (Gen-Cnx (x, lfpx)))
 x ∈ NodeSet
 lfpx ∈ Listfp

The translation of the generic definitions in ACL2 is
possible through the encapsulation principle [22]. This
principle introduces under certain constraints, functions
symbols without any explicit definitions. The constraints
are theorems.

(encapsulate (((f x1...xn) => *))
 (local (defun f (x1 ...xn) β))
 (defthm thm-1 φ))

When the encapsulated event is admitted, the ACL2
theory is extended by the axiom: f is constrained with φ.
The function f doesn’t have an explicit definition but we

know that it has the property φ. So, a definition of a
given function g is an instance of the encapsulated
function f, only and only if, g can satisfy the same
constraints of f. Otherwise, all theorems expressed at the
generic level for f, have to be proved for g.

Theorem 1. Definition of connection functions
∀ x ∈ NodeSet, ∀ lfpx, Validlfp (lfpx)
⇒ ∀ cnx ∈ Gen-Cnx (x, lfpx), ext2 (cnx) ∈ NodeSet

In the ACL2 logic:
(defthm ext2-lfpx-in-nodeset
 (let* ((nodeset (NodeSetGenerator pms))
 (cnx (Gen-Cnx x lfpx))
 (ext2 (ext2 cnx)))
 (implies (and (ValidParamsp pms)
 (member-equal x nodes)
 (Validlfp lfpx))
 (member-equal ext2 nodeset))))

Theorem 2. Definition of connections
∀ x ∈ NodeSet, ∀ lfpx, Validlfp (lfpx)
⇒ ∀ cnx ∈ Gen-Cnx (x, lfpx), ValidCnxp (cnx)

In the ACL2 logic:
(defthm gen-top-generates-valid-top
 (let ((nodeset (NodesetGenerator pms))
 (top (Gen-Top nodeset Listfp pms-top)))
 (implies (and(ValidParamsp pms)
 (ValidListfp Listfp)
 (ValidParamsp-top pms-top))
 (ValidTop top))))

4.2. Extended Routing function

As we said earlier, the generic routing function
depends only on the set of nodes (NodeSet). For each
missive (message) denoted m from the set of missives M,
“Routing” applies a function ρ that computes all
possible routes between the origin of the missive (OrgM)
and its destination (DestM). We have redefined the
routing function; so that it takes into account the whole
topology (denoted Top) which is composed of nodes and
connections. In particular, the function ρ must takes into
account the Top. The new routing function is designated
by Ext-Routing (definition 2). In this definition, we use
IdM, FrmM, OrgM, DestM which are GeNoC functions
giving access to the elements of a missive. A missive is a
data type defined also in GeNoC. It represents a message
having the form: "id org frm dest", where id is used to
identify the message, org is its origin, dest denotes its
destination and frm is the content of the message.

Definition 2.
Ext-Routing (Top,M)=
 ∧ (List (IdM(m),FrmM(m),ρ(OrgM (m), DestM (m), Top))
m ∈ M

GeNoC defines three constraints on the “Routing”

function. The first constraint is related to the validity of
computed routes which is expressed by the predicate
ValidRoutep. It said that any route r produced by the
function ρ must be valid. So, r is valid only if it starts at
the source node (OrgM (m)), terminates at the destination
node (DestM (m)), all the nodes of the route r are
included in NodeSet, and r includes at least two nodes.
We also redefined ValidRoutep in order to involve the
topology component. The new computed route r is no
longer just composed of nodes but of connections. We
denote the i th element of r by r[i] , and by l the length of
r. Thus, the new predicate Ext-ValidRoutep requires that
the first of element of r (function first) is equal to the
origin of the missive (OrgM (m)), the last of r (function
last) is equal to the destination of the missive (DestM
(m)), that r[i] is a connection cnx included in Top, and
that r has a length l greater or equal than 1. l is equal to 1
if the origin and the destination are directly connected.

Definition 3. Definition of the route validity
Ext-ValidRoutep (r, m, Top) =
∧ (First (r[0]) = OrgM (m)
 (Last (r[l-1]) = DestM (m)
 r ⊆ Top ∧ (len(r) ≥ 1)

The constraint concerning the validity of routes is
redefined in theorem 3. The GeNoC predicate denoted
Mlstp recognizes a valid list of missives. We have
redefined it to include the topology Top.

Theorem 3. Validity of routes produced by ρ
∀ M, Mlstp (M, Top)
⇒ ∀ m ∈ M, ∀ r ∈ ρ (OrgM (m), DestM (m)),
 Ext-ValidRoutep (r, m, Top)

The two other constraints defined on the GeNoC
routing function remain almost valid and won’t be the
subject to modifications.

5. Specification and verification of a Delta-
MIN based architecture

In this section, we apply the extended GeNoC model
to validate the Delta multistage interconnection
networks. We insist on the applying of the generic
topology to a Delta MIN case study.

5.1. The Delta MIN topology component

The generic approach requires beginning by
identifying the connection functions to apply to generate

all the network connections. Once this list identified, we
have to check the three main constraints expressed at the
generic level: one constraint defined in GeNoC for the
validity of the nodes set; and the two constraints that we
have defined for the connections (theorem 1 and 2). The
Delta MIN topology as described above (figure 3) is
composed of nodes and connections.
-The set of nodes: a pair of coordinates (x y) is used to
represent a node in a Delta MIN. The coordinate x is
decimal. It represents the stage of nodes to which
belongs the node. The Y coordinate is binary and it
describes the position of the node within the same stage.
The function gen-nodes-dmin generates all nodes of the
network. It takes as parameters N, the size of the
network, and r (r=2), the degree of switches. The validity
of these parameters is recognized by the predicate
ValidParamsp-dmin. We define also another predicate
called dmin-nodesetp for the whole nodes validity. The
nodes set generation is constrained by the theorem 4.

Theorem 4. Nodes set generation
(defthm gen-nodes-dmin-correct
 (implies (ValideParams-dmin pms)
 (dmin-nodesetp(gen-nodes-dmin pms))))

-Connections: we represent a connection cnx in a Delta
MIN by a list ((x px) (y py)), where x is the origin of cnx,
px is the port involved in cnx, y is the second extremity
and py is the port of y. For example, the connection (((3)
(0 1)) L0) (((2) (1 0)) R0) denotes that the port L0 of the
switch ((3) (0 1)) is connected to the port R0 of ((2) (1
0)). In the case of Delta MIN, the connection functions
are always a list of three permutations to apply
respectively on the first stage of connection, the middle
stages and finally, on the last stage.

In the ACL2 logic, we define the function gen-cnx-
node that generates all connections of one node n. It
takes as arguments the node n origin of connections, the
list of permutation functions, the parameter d denoting
the stages number of the network, and r the degree of the
switches. The theorem 5 is an instance of the theorem 1
expressed at the generic level. It checks that every node
ext2 produced by the permutation function σn-1 (modelled
by sigmak) belongs to the set of nodes (nodes). The same
constraint must be also verified for the other two
permutation functions. We define below the function
gen-top-dmin (definition 4). It generates all the
connections of a Delta MIN by taking as inputs N and r
previously defined, and the type of the Delta MIN. The
last parameter is used by gen-topology to select the types
of permutations corresponding to this network.

Definition 4. Generation of Delta MIN topology
(defun gen-top-dmin (nodes lfp d r)
 (if (endp nodes)
 nil

 (let ((n (car nodes)))
(cond

;; connection source-switch
 ((s-node n d)
 (append (list (gen-one-cnx n 'nil (car lfp)))
 (gen-top-dmin (cdr nodes) lfp d r)))

;; connection switch-switch
 ((and (sw-node n d) (> (caar n) 1))
 (append (rev (gen-cnx-node n r (cadr lfp)))
 (gen-top-dmin (cdr nodes) lfp d r)))

;;connection switch-destination
 ((and (sw-node n d) (equal (caar n) 1))
 (append (rev (gen-cnx-node n r (caddr lfp)))
 (gen-top-dmin (cdr nodes) lfp d r)))))))

Theorem 5.
(defthm dest-cnx-in-dmin-nodeset
 (let* ((nodes (gen-nodes-dmin pms))
 (cnx (gen-one-cnx ext1 i 'sigmak))
 (ext2 (ext2-cnx cnx)))
 (implies (and (ValidParamspD pms)
 (member-equal ext1 NodeSet)
 (true-listp i)
 (valid-fp fp))
 (member-equal ext2 nodes))))

Finally, we prove the third constraint that expresses the
validity of connections (theorem 2 at the generic level),
and check the compliance of the definitions with the
generic topology component extended.

5.2. The Delta MIN routing component

The routing algorithm used in Delta MINs is the self
routing. It depends only on the destination address,
called also control sequence. If the corresponding digit
of the control sequence is equal to i, the message to
deliver will be switched to the output i of the current
crossbar. Here, the routing algorithm must take into
account connections. Indeed, the only information of the
port through which the message must be switched is not
enough. Thus, we must look in the topology for the
connection with the current switch as origin.

As defined in ACL2, the routing function routing-
dmin takes as arguments the list of missives to be routed
through the Delta MIN, and the parameters to generate
the whole topology. For each missive, routing-dmin calls
the following function compute-rte (definition 5) to
compute the route between the origin (from) and the
destination (to).

Definition 5. Function compute-rte.
(defun compute-routes-dmin (from to cdrto top)
(if (endp cdrto)
 nil
(let*((bit_rtg (car cdrto))
 (from-a (adapt-node from bit_rtg))
 (next-node (ext2 (rech-top from-a top))))

(cond

;; destination bit equals 0
((equal bit '0)
 (list* (list from-a next-node)
 (compute-routes-dmin next-node to (cdr cdrto)
top)))

;; destination bit equals 1
((equal bit '1)
 (list* (list from-a next-node)
 (compute-routes-dmin next-node to (cdr cdrto)
top))))))

The ACL2 theorem proving environment provides

also an execution engine. Thus, we can simulate the
execution of the definitions. We present below a
simulation of the function routing-dmin showing the
progression of the list of missives (table 2) through an
omega network 8x8, using 2x2 crossbars.

Table 2. The list of missives
id origin content destination
1 ((4) (0 0 1)) frm1 ((0) (1 0 0))
2 ((4) (1 0 1)) frm2 ((0) (0 0 1))

The simulation result of this list of missives is shown

below. We can notice that the routing algorithm make
use of connections like ((((3) (0 1)) R1) (((2) (1

1)) L0)) , to compute a route.

((1 FRM1
 (((((4) (0 0 1)) L) (((3) (0 1)) L0))
 ((((3) (0 1)) R1) (((2) (1 1)) L0))
 ((((2) (1 1)) R0) (((1) (1 0)) L1))
 ((((1) (1 0)) R0) (((0) ((1 0) (0))) L))))

(2 FRM2
 (((((4) (1 0 1)) L) (((3) (0 1)) L1))
 ((((3) (0 1)) R0) (((2) (1 0)) L0))
 ((((2) (1 0)) R0) (((1) (0 0)) L1))
 ((((1) (0 0)) R1) (((0) ((0
 0) (1))) L)))))

6. Conclusion

In this paper we have described a methodology for
the integration of formal methods in the verification of
on-chip communication architectures. We have also
shown that it is possible to take advantage of the graph
theory basics to build formally connections of any
network topology. We believe that we can apply the
extended generic model to give a formal specification of
any communication architectures.

A generic topology and extended routing components
are designed to be included in the generic model GeNoC.
We have developed the generic topology by identifying
inherent properties of all topologies. These properties,
which are called also constraints, have been validated

using the ACL2 theorem proving environment. To
achieve the routing extension, we have formalized the
general common relation between topology and routing.
In the case study, we specify and verify Delta multistage
interconnection networks, as an instance of the extended
generic model.

The framework presented in this paper opens
promising trend for further development as complement
to traditional verification techniques. We are currently
investigated in the checking of the corresponding routing
constraints and the integration of a pre-validated
scheduling mechanism in order to validate the main
GeNoC function.

7. References

[1] A. Jerraya, and W. Wolf, Multiprocessor Systems-on-

Chips, Morgan Kaufmann Publishers, San Francisco,
2004.

[2] W. Wolf, ”The future of multiprocessor systems-on-
chips”, Proc. of the 41st annual conference on Design
automation, ACM Press, New York, 2004, pp. 681–685.

[3] S. Pasricha, N. Dutt, E. Bozorgzadeh, and M. Ben-
Romdhane, “Floorplan-aware automated synthesis of bus-
based communication architectures”, Proc. of the 42nd
annual conference on Design automation, ACM Press,
New York, 2005, pp. 565–570.

[4] L. Benini, and G. D. Micheli, “Networks on chips: A new
SoC paradigm”, Computer, Vol. 35, N° 1, IEEE Computer
Society Press, Los Alamitos, California, 2002, pp. 70–78.

[5] W. J. Dally, and B. Towles, “Route packets, not wires: on-
chip interconnection networks”, Proc. of the 38th
conference on Design automation, ACM Press, New
York, USA, 2001, pp. 684–689.

[6] C. B. Stunkel, D. G. Shea, B. Aball, M. G. Atkins, C. A.
Bender, D. G. Grice, P. Hochschild, D. J. Joseph, B. J.
Nathanson, R. A. Swetz, R. F. Stucke, M. Tsao, and P. R.
Varker, “The SP2 High-Performance Switch”, IBM
Systems Journal, Vol. 34, N° 2, IBM Corp., Riverton,
USA, 1995, pp. 185–204.

[7] T. Cheung, and J. E. Smith, “A simulation study of the
CRAY X-MP memory system”, IEEE Transactions on
Computers, Vol. 35, N° 7, IEEE Computer Society,
Washington, 1986, pp. 613–622.

[8] S. Duquennoy, S. Le Beux, P. Marquet, S. Meftali, and J-
L. Dekeyser, “MpNOC Design: modeling and
simulation”, In 15th IP based SOC Design Conference (IP-
-SoC 2006), 2006.

[9] C.P. Kruskal, and M. Snir, “The performance of
multistage interconnection networks for multiprocessors”,
IEEE Transactions on Computers, Vol.32 , N° 12, IEEE
Computer Society, Washington, 1983, pp. 1091–1098.

[10] Y. Aydi, S. Meftali, M. Abid, and J-L. Dekeyser, “Design
and Performance Evaluation of a Reconfigurable Delta
MIN for MPSOC”, In 19th International Conference on
Microelectronics (ICM ’07), 2007.

[11] T. Kropf, Formal Hardware Verification - Methods and
Systems in Comparison, Springer-Verlag, London, 1997.

[12] Y. Aydi, S. Meftali, M. Abid, and J-L. Dekeyser,

“Dynamicity Analysis of Delta MINs for MPSOC
Architectures”, STA'07, 2007.

[13] T. Kropf, Introduction to Formal Hardware Verification,
Springer Verlag, London, 1999.

[14] A. Roychoudhury, T. Mitra, and S.R. Karri, ”Using
Formal Techniques to Debug the AMBA System-On-Chip
Protocol”, Proc. of the conference on Design, Automation
and Test in Europe, Vol.1, IEEE Computer Society,
Washington, 2003, pp. 828-833.

[15] H. Amjad, “Verification of AMBA Using a Combination
of Model Checking and Theorem Proving”, Electronic
Notes in Theoretical Computer Science, Vol.145, 2006,
pp. 45-61.

[16] B. Gebremichael, F. Vaandrager, M. Zhang, K. Goossens,
E. Rijpkema, and A. Radulescu, “Deadlock Prevention in
the Aethereal Protocol“, In D. Borrione and W. Paul,
editors, Springer-Verlag, Germany, 2005, pp. 345-348.

[17] J. Schmaltz, and D. Borrione, “Towards a Formal Theory
of Communication Architecture in the ACL2 Logic”,
Proc. of 6th international workshop on the ACL2 theorem
prover and its applications, ACM Press, New York, 2006,
pp. 47- 56.

[18] M. Kaufmann, and J S. Moore, “ACL2: An industrial
strength version of nqthm”, IEEE Transactions on
Software Engineering, Vol. 23, N°4, IEEE Press, New
York, 1996, pp. 23-34.

[19] D. Borrione, A. Helmy, and L. Pierre, “ACL2-based
Verification of the Communications in the Hermes
Network on Chip”, Proc. International Workshop on
Symbolic Methods and Applications to Circuit Design
(SMACD'06), 2006.

[20] C. Kruskal, “A unified theory of interconnection
network”, Theoretical Computer Science, Vol.48, N°1,
Elsevier Science Publishers Ltd., essex, 1986, pp. 75-94.

[21] D. Groth, and T. Skandier, Network + Study Guide,
Sybex, San Francisco, 2005.

[22] M. Kaufmann, and J S. Moore, “Structured Theory
Development for a Mechanized Logic”, J. Autom.
Reasoning, Kluwer Academic Publishers, USA, 2001, pp.
161-203.

