Estimation du temps d’exécution des systémes sur puce
temps réel

Kais Loukil™? Yassine Aoudni'? Guy Gogniat?>, Mohamed Abid* Jean Luc Philippe?

" Ecole Nationale des Ingénieurs de Sfax Laboratoire CES Sfax, Tunis
* Université de Bretagne Sud Laboratoire LESTER Lorient, France

Kais loukil@yahoo.fr

Résumé: I’article suivant présente une méthode d’estimation du temps
d’exécution d’une application temps réel dans le cadre des systemes sur puce.
La méthode proposée est basée sur une approche mixte statique/dynamique.
L’objectif est d’estimer le surco(t ajouté par le systeme d’exploitation temps
réel. Partant d’une application sans noyau temps réel, on estime le temps
d’exécution de I’application compléte avec un systéme d’exploitation temps
réel. Notre méthode peut étre utilisée pour évaluer différentes solutions
d’implémentation pour une application temps réel. L’implémentation de
I’algorithme de la synthése d’image 3D sur différentes cibles architecturales a
été choisie pour valider la méthode proposée. Les résultats obtenus ont permis
de déduire I’apport du systeme d’exploitation temps réel et le surco(t induit afin
d’étudier son intérét lors de I’intégration d’une application temps réel.

I. Introduction

Les systémes sur puce ont subi des évolutions telles que I’intégration de plusieurs
processeurs, accélérateurs et coprocesseurs dans une seule puce qui devient de plus en
plus classique. En plus, et du fait de la complexité croissante des applications embar-
quées, de la présence de fortes contraintes temps réel, de la limitation des ressources
disponibles, tant en mémoire qu’en énergie et en puissance de calcul, et du fait éga-
lement de la pression exercée par le marché sur ces produits, I’'usage de systemes
d’exploitation temps réel (RTOS") est devenu nécessaire dans les systémes embarqués
[3].

Cependant, et bien que le systeme d’exploitation temps réel soit couramment em-
ployé dans les systemes embarqués spécifiques, celui-ci peut entrainer certains incon-
vénients en terme de colt, consommation et performances [9][14].

D’autre part, les systemes temps réel sont soumis a plusieurs contraintes temps
réel. Ce qui a donné naissance a des outils d’estimation de performance des systémes
temps réel afin de vérifier le respect des contraintes temps réel.

! Real Time Operating System

Nous nous intéressons dans ce papier a étudier un modeéle permettant de détermi-
ner le surcodt dd a I'utilisation d’un systeme d’exploitation temps réel. Cette méthode
peut étre utilisée pour calculer le temps d’exécution d’une application temps réel dans
le pire cas, ou pour évaluer différentes solutions d’implémentation d’une application
temps réel. Les résultats obtenus permettent de déduire I’apport du systéme
d’exploitation temps réel et le surcolt induit afin d’étudier son intérét lors de
I’intégration d’une application temps réel.

La section suivante rappelle les principales méthodes d’estimation. La troisieme
section présente le flot du modéle généré ainsi que les facteurs intervenant sur la va-
riation du temps d’exécution d’une application temps réel. Les résultats expérimen-
taux et I’interprétation seront résumés dans la section quatre. Nous finissons ce papier
par les conclusions et quelques perspectives.

1. Etat de I’art

Les méthodes d’estimation que I’on trouve dans la littérature peuvent étre classées
dans trois catégories : statiques, dynamiques et mixtes [1].

Meéthode statique : I’estimation de performance d’une solution est le résultat d’une
analyse statique d’une spécification, (exemple : analyse de chemins dans une spécifi-
cation de flots de contréle).

Méthode Dynamique : les mesures de performance d’une solution sont le résultat
d’une analyse dynamique d’une spécification, (exemple : simulation).

Méthode Mixte dynamique/statique : C’est I'utilisation de quelques éléments des
deux approches précédentes pour I’analyse de performance d’une solution.

Les approches statiques sont en général trés rapides, mais elles présentent une pré-
cision moyenne vu la distance qui sépare I’implémentation et la spécification [1]. Les
approches dynamiques sont plus précises mais en contre partie plus lentes vu le temps
pris pour I’obtention du modele a simuler et le temps de la simulation. Ces inconvé-
nients limitent I’utilisation de ces deux méthodes. La plupart des outils d’estimation
existant utilisent donc des méthodes mixtes pour bénéficier des avantages des deux
méthodes précédentes. Dans la suite on va présenter quelques méthodes utilisées pour
I’estimation du temps d’exécution d’une application.

La méthode décrite dans [4] se base sur des analyses statiques (calcul du temps
d’exécution basé sur le code assembleur) et dynamiques (profilage). Alors que pour
[6] [5] ils calculent des métriques séparées pour le logiciel, le matériel et la communi-
cation, puis, ils utilisent ces métriques dans des équations particuliéres. Pour la partie
logicielle, ils calculent le temps d’exécution dans le pire cas en utilisant des tech-
niques d’analyse de chemin. [13][8] procedent a des estimations de performance en
utilisant des techniques d’estimation du temps d’exécution a bas niveau pour le logi-
ciel, le matériel et la communication. Les auteurs de [12] attaquent le probléme d’un
point de vue générique. Ils analysent, au niveau systeme, I’interaction entre les diffé-
rents processus en donnant le meilleur et le pire délai pour chacun d’entre eux. En-
suite, en partant d’un graphe acyclique représentant les dépendances de données entre
les processus, ils calculent le temps d’exécution, dans le pire cas, pour le systeme

entier. Dans [2], ils décrivent une méthode d’estimation mixte statique/dynamique.
Elle est faite en deux étapes :

e Pré-estimation : Un profilage de la description du systéme est réalisé pour
obtenir des temps d’exécution pour différents niveaux (processus, bloc de
base, communication).

e Estimation en ligne : Les résultats obtenus durant la phase de pré-estimation
sont utilisés dans des expressions complexes pour le calcul de la perfor-
mance globale du systéme.

La plupart de ces outils offre une bonne estimation pour la partie logicielle ; mais,
pour la partie matérielle, on trouve toujours des valeurs estimées différentes des va-
leurs réelles : ce qui influe sur I’estimation du temps d’exécution du systeme complet
vu la distance qui sépare la spécification du systéme de I’implémentation hardware.
En plus les travaux cités sont basés sur des techniques d’estimation par analyse abs-
traite de haut niveau (analyse des chemins critique).Nous proposons dans ce papier
une méthode mixte (statique/dynamique) d’estimation du temps d’exécution d’une
application temps réel. Cette méthode se base sur un prototype du systéme pour
I’estimation des performances de la partie matérielle et une analyse statique de
I’application pour estimer le temps pris par le logiciel. Cette méthode peut étre utili-
sée pour calculer le temps d’exécution d’une application temps réel dans le pire cas
afin de vérifier si le systéme respecte les contraintes temporelles qui lui sont imposées
ou non et pour évaluer différentes solutions d’implémentation d’une application
temps réel a travers différentes routines offertes par le systéme d’exploitation temps
réel. Dans la section suivante on présentera les étapes qui ont conduit a la mise en
place de notre modeéle.

I11. Approche d’estimation du temps d’exécution d’une application
temps reel

Dans un systeme temps réel, plusieurs facteurs peuvent influer sur le temps
d’exécution. Parmi ces facteurs on cite :
e L’architecture cible (mono multiprocesseur) avec ou sans accélérateurs et
COprocesseurs
e Service du systeme d’exploitation temps réel utilisé
e Temps de communication entre les différents modules du systeme (HW/SW,
SW/SW)
Dans la suite de cette section on présente les facteurs pris en compte et les étapes
qui ont conduit a la mise en place du modeéle.

111.1. Principe de la méthode
L’exploration de I’espace de solutions est une composante primordiale dans un flot de

conception conjointe matérielle/logicielle. Le probleme a résoudre dans le flot de
conception des systémes complexes consiste a trouver la meilleure solution du sys-

téeme incluant le découpage fonctionnel du systéme, la détermination des protocoles
de communication et le placement/ ordonnancement, etc [1].

Le modele qu’on propose permet facilement aux concepteurs d’explorer différentes
solutions pour une application écrite avec les services d’un systeme d’exploitation
temps réel (différents types de communications entre taches, mécanismes de synchro-
nisations) sans avoir recours a chaque fois a réécrire I’application avec les ser-
vices voulus

Notre idée de départ se base sur la réalisation d’un prototype qui contient tous les
modules matériels. En utilisant ce prototype on peut calculer le temps pris par
I’application écrite sans utilisation des services du systeme d’exploitation temps réel.
Donc, en partant du temps d’exécution d’une application non temps réel on peut esti-
mer le temps de I’application temps réel en lui ajoutant le temps pris par chaque ser-
vice utilisé et le temps de communication entre les différentes taches de I’application
et une certaine valeur due a I’utilisation du systeme d’exploitation temps réel.

On se propose en premier lieu de définir un modele qui puisse déterminer I’effet de
I’utilisation d’un systéme d’exploitation sur le temps d’exécution de I’application. En
second lieu, on construira une base de données qui contiendra tous les services qu’on
peut utiliser d’un systéme d’exploitation temps réel, ainsi que leurs temps
d’exécution. A chaque fois qu’on emploie un service de ce systeme d’exploitation
temps réel dans notre application, on ajoute le temps approprié au temps déja calculé.
La figure 1 illustre les étapes de notre approche d’estimation du surcodt d’un systeme
d’exploitation temps réel. Partant d’une description de I’architecture de notre systéme,
on construit un prototype du systeme. Ensuite, on exécute le code de I’application sur
ce prototype et on mesure son temps d’exécution. Puis en appliquant le modele cons-
truit et en utilisant le graphe de séquences de I’application, on peut estimer le temps
de I’application si elle est écrite avec les routines d’un systeme d’exploitation temps
réel.

Dans cette section, on va présenter en premier lieu les différents facteurs influant
sur le temps d’exécution d’une application temps réel. En second lieu nous détaillons
les différentes étapes faites pour la mise en place du modele. On termine par la pré-
sentation de la plateforme utilisée ainsi que les tests réalisés pour la génération du
modéle.

Architecture

Prototype du

Application
svshéme
J Graphe de taches

Temps d'ecécution sans

RETOS

Services RTOS

Temps d'exécotion avec

ETOS5

Fig.1. Approche d’estimation
Afin de dégager un modele d’estimation du temps d’exécution d’une application
temps réel, des analyses et des mesures ont été effectuées sur une plateforme a base
de la technologie FPGA de chez ALTERA et un systeme d’exploitation temps réel
embarqué MicroC/OS-I1 [7] [10] [11].

111.2. Evaluation de I’effet du MicroC/OS-11 sur le temps d’exécution d’une
fonction

Afin de pouvoir générer un modele qui puisse déterminer I’effet de I’utilisation d’un
systeme d’exploitation temps réel sur le temps d’exécution d’une application, on a
procédé aux étapes suivantes :

- On a écrit une fonction qui fait un traitement quelconque. Cette fonction a été
exécutée sur une plateforme monoprocesseur et on a pris son temps d’exécution sans
utiliser un systéme d’exploitation temps réel.

- On a pris le méme code de la fonction et on a mesuré son temps d’exécution sur
la méme plateforme, mais dans une application temps réel. Cette derniére se compose
uniquement de la tache qui contient le code de la fonction sans utiliser des routines
offertes par notre systéme d’exploitation temps réel (dans cette étape, on ne mesure
pas le temps de création de la tiche et d’activation des services du systéme
d’exploitation temps réel mais le temps d’exécution de la portion du code qui exécute
la méme fonction déja mesurée a I’étape précédente).

Le tableau 1 illustre les résultats trouvés lors de I’exécution de différentes applica-
tions sur notre plateforme qui se compose essentiellement du processeur NIOS 11 et
du systeme d’exploitation MicroC/OS-II.

Tableaul. Mesure du temps d’exécution avec et sans systeme d’exploitation temps réel

Temps sans Temps avec JDE000C000
RTOS(tics) RTOS (tics) p—
Appl | 90294 91106 £0000C000
Appl | 440559 451645 o T
— = S0000oo0
APP3 | go7117 901089 FR—— =
APpd | 4477789 4495777 T z
AppS | 8956136 30905534 £ oo 7
0000000
APPS | 44779001 449530710 SR
APP7 | 89556865 80897197 0 T —
_lepﬁ AATTRLIETE 440454750 0 ZEHE {EHE GEHE SEHE 1EHM
13 RTCG
APPY | 895561972 595968551 M

Fig.2. Courbe d’estimation

- A partir des mesures déja effectuées dans les étapes précédentes, on a construit la
figure 2. On constate que I’ensemble des points forme une droite linaire d’équation
Y=1.0038X (X étant le temps de I’application sans RTOS, Y est le temps de la méme
application exécutée dans une seule tache). Cela est di au fait que chaque systéme
d’exploitation temps réel possede des taches systéeme qui interviennent d’une facon
périodique dans I’exécution de I’application.

Donc, en utilisant le graphe déja construit, on peut déterminer le temps d’exécution
de n’importe quelle application temps réel, tout en sachant son temps d’exécution
sans systéme d’exploitation temps réel, bien évidemment sans utiliser les services
offerts par le systéme d’exploitation temps réel.

111.3. Mesure du temps pris par les services du systeme d’exploitation temps réel

Une application écrite en utilisant les routines d’un systéme temps réel se compose
essentiellement d’un ensemble de taches. Ces taches utilisent les différents services
offerts par le systeme d’exploitation temps réel, pour gérer la communication et la
synchronisation entre elles afin de réaliser la fonction globale de I’application.

On peut classer les services d’un systeme d’exploitation temps réel en deux
groupes :

- Des services qui permettent d’une part la création des différentes taches, méca-
nismes de synchronisation et de communication, et I’initialisation du systéme
d’exploitation temps réel; et d’autre part, le démarrage de I’application temps réel.
Généralement ces services n’entrainent pas de changement de contexte.

- Des services de communication et de synchronisation. Généralement appelés
dans le code des taches a des moments bien déterminés pour réaliser la fonction glo-
bale du systéme. L’appel de ces services peut causer parfois des changements de
contexte.

Pour le premier groupe, on constate que le temps pris par n’importe quel service
est indépendant du contexte la ou il est appelé, puisqu’ils n’entrainent pas de change-
ments de contexte. Par conséquent, ce temps restera le méme peu importe le moment
d'utilisation. Alors que les services du deuxieme groupe sont plus complexes puis-
gu’ils exigent un ré-ordonnancement du systéme et peuvent entrainer des change-
ments de contexte. Donc, il faut mesurer le temps pris par ces services dans les deux
cas :

- Appel du service mais pas de changement de contexte : dans ce cas, on mesure le
temps pris par I’appel du service et I’exécution de I’instruction qui le suit.

- Appel du service avec un changement de contexte : dans ce cas, on mesure le
temps pris par I’appel du service approprié et I’exécution de la premiére instruction de
la nouvelle tache qui va étre exécutée.

Le tableau 2 présente les mesures de quelques services offerts par MicroC/OS-I1 :

Tableau2. Temps pris par les services du MicroC/OS-I1

Services du MicroC/OS-11 tics
Création d’une tdche OSTaskCreateExt 9756
Fonction OS_Start 827
Création d’un mailbox OSMboxCreate 679
Création d’un message queue OSQCreate 1565
Création d’un drapeau d’événement OSEventFlagCreate 419
OSEventFlag sans changement de contexte 876
OSEventFlag avec changement de contexte 4464
OSMboxPost sans changement de contexte 854
OSMboxPost avec changement de contexte 3418
OSQPost sans changement de contexte 912
OSQPost avec changement de contexte 3966

111.4 . Formalisation du modéle

On considere une application qui consomme « n » cycles d’horloge lors de son exécu-
tion sur la plateforme Altera sans utiliser les routines du MicroC/OS-II.

Pour pouvoir estimer le temps de cette application lorsqu’elle est exécutée en utili-
sant les services d’un systeme d’exploitation temps réel, elle sera décomposée en un
ensemble de taches pour réaliser la fonction globale du systéme. A partir du graphe de
taches construit, on doit extraire le diagramme de séquences qui décrit la succession
des différentes taches dans le pire cas ainsi que les routines du systéme d’exploitation
temps réel utilisées pour assurer la synchronisation et la communication entre elles.

111.5. Mise en équation

Pour calculer le temps global de I’application écrite avec les routines du systeme
d’exploitation temps réel, il faut :

Déterminer la nouvelle valeur du temps d’exécution de I’application en utilisant le
modéle.

En utilisant le graphe de I’application, ajouter, a chaque fois qu’on utilise un ser-
vice du systeme d’exploitation temps réel, le temps approprié, a partir du tableau déja
mesuré.

Le modéle proposé peut se récapituler dans I’équation (E1) :

i=0
Ntr = N x1.0038+ > _T; (S;) (1)

i=n

Ntr : nombre de tics de I’application temps réel.
N : nombre de tics de I’application sans systeme d’exploitation temps réel.
Ti(Si) : nombre de tics du service i déterminé a partir du tableau construit.
e n:nombre de services utilisés.
Ainsi le modéle est mis en place. La section suivante présente les différentes me-
sures effectuées pour la validation du modéle.

IV. Expérimentation

Afin de valider le modele proposé, on utilise comme application la synthése d’images
3D sur différentes cibles architecturales.

IV.1. Application de traitement d’images 3D (Pipeline 3D)

Le pipeline 3D est I'ensemble des étapes nécessaires pour la création et la visualisa-

tion d'une image 3D. Cette chaine est décomposée en un ensemble d’opérations né-
cessaires pour afficher un objet 3D observé a partir d’une position et avec une orienta-

tion donnée. Une mise en forme est présentée dans la figure 3.
ransformation’

Calculs des
lumieéres

Fig.3. pipeline graphique 3D

des textures

1V.2. Modele de tache :
Cette application a été décomposée en 11 taches qui coopérent entre elles (figure 4)

Les mécanismes de communications et de synchronisations entre les différentes
taches du systéme ont été choisis arbitrairement pour la validation du modeéle.

LoadASC
Mail bose & - Mail box 3
Ir* = I

ﬂ Mailbox 1 @ Quene (1) X
% e 1111

P4
it = Transformation
Mailbox 7 et
TTX -
Tailbox &
[P4

Dusene Ot Cateu Homual
Vidéa \\ Ma:lbx‘ﬁ/

Fig.4. Diagramme de séquences

1VV.3. Conception de I’architecture de prototypage:

Afin de mettre en place un systéme multiprocesseur, plusieurs types d’architectures
sont envisagés [1]:

> Les systémes a mémoire partagée: Ce type de mémoire présente l'avantage
de permettre un partage immédiat des données, facilitant la programmation.
Mais cette solution colte cher, ce qui limite le nombre de processeurs pou-
vant étre ajoutés sur une méme mémoire.

» Les systemes a mémoire distribuée : Dans ce cas, chaque processeur possede
sa propre mémoire. La modification par I'un des processeurs de sa propre
mémoire n'a pas d'influence directe sur celle des autres processeurs. Cela
suppose donc de mettre en place une communication explicite entre les pro-
cesseurs.

> Les systemes a mémoire distribuée, partagée : Ce type de mémoire est un
mélange des deux premiers. Dans cette architecture, il y a plusieurs groupes
de processeurs partageant de la mémoire grace a un réseau. Cela permet,
dans une certaine mesure, de tirer les avantages des deux précédentes archi-
tectures et d'en réduire les inconvénients.

Pour pouvoir choaisir I’'une des solutions proposeées il a fallu étudier les caractéris-
tiques de la plateforme de prototypage et du bus qui assure la communication entre les
différents processeurs.

1V.3.1. Bus Avalon

C’est le bus utilisé par Altera. Il peut étre vu comme un ensemble de signaux prédéfi-
nis, permettant de connecter un ou plusieurs blocks IP. En plus, il est généré automa-
tiqguement par le NIOS-II Builder. Le bus Avalon est un bus multi maitres simultanés.
Les maftres peuvent accéder simultanément a leurs esclaves et en cas de besoin les
maitres peuvent échanger des données a travers une mémoire partager. Généralement
I’acces a cette mémoire est géré par le systeme d’exploitation utilisé.

Comme solution on va utiliser un module d’un RTOS implémenté en hardware
(mutex) pour assurer la gestion des acces aux mémoires partagées entre les différents
processeurs [15].

1V.3.2.Le Mutex :

Le mutex fournit une opération « test-and-set » a base de matériel, permettant au
logiciel dans un environnement multiprocesseur de déterminer le processeur qui pos-
seéde I’acces a une ressource partagée [15].

1V.3.3.Architecture multiprocesseur proposer

Suite a I’étude des caractéristiques de I’environnement de conception nous proposons
une plateforme qui se compose d’un ensemble de sous systémes qui peuvent commu-
niquer ensemble a travers des mémoires partagées dont I’acces est protégé par des
mutex Hardware fourni avec I’environnement d’Altera. Puisque le bus avalon est
simultané multi-maitre on a proposé d’utiliser pour chaque processeur deux mé-
moires, 1’une est propre pour lui et I’autre est partagée avec les autres processeurs en
écriture. Tous les messages qui lui sont destinés sont mis dans cette mémoire et c’est
lui seul qui peut lire son contenu.

Aprés avoir congu notre architecture multiprocesseur, nous avons ajouté
I’ensemble des coprocesseurs et d’accélérateurs spécifiques a la synthese d’image 3D.
Ainsi notre plateforme de prototypage est préte figure 5.

ey =

Bus Avalon

Figure 5 : architecture proposée

1V.4. Mesures du temps d’exécution

Toutes les mesures faites visent I’application de synthése d’images 3D. Cette applica-
tion a été testée sur différentes cibles architecturales (monoprocesseur, coprocesseurs,
accélérateurs, multiprocesseur). A chaque fois on mesure le temps d’exécution par
prototypage et on détermine la valeur obtenue en appliquant le modele mis en place
pour déterminer I’erreur du modele.

tableau3. Mesures et résultats

2epu +
1 cpn leputcoproc | lcputace 2 cpu coproc
Total 3505 4676 4259 9020 9153
ALUTS (7%0) (9%0) (8%) (18%) (18%)
Temps 716576082 | 707680249 | 712248263 | 558288052
d’exécution | 1066889330
sans RTOS (-32 ,83%4) (-33,66%0) (-33,24%) (-47,67%)
Temps
d’exécution | 1071095628 | 720223958 707872710 717162554 570376431
avec RTOS
Temps

d’exécution | 1074048767 719451189 710521551 715106924 560561644
avec modéle
Errenr du
modéle

0.27% 0.1%0 0.37%% 0.28% 1.7200

En premier lieu I’application de synthéses d’images 3D a été exécutée sur différentes
cibles architecturales sans I’utilisation d’un systéme d’exploitation et des temps
d’exécution ont été pris. Cette valeur comprend le temps de communication entre le
processeur et ses périphériques et la communication inter processeurs (pour cette
raison ces valeurs ne sont pas tenues en compte dans notre modele). En second lieu
cette application a été décomposée en un ensemble de taches qui coopérent entre elles
tel que décrit dans la figure 4 et on a mesuré le nouveau temps d’exécution de
I’application sur chaque architecture. En troisieme lieu on a estimé le temps
d’exécution en utilisant le modele et on a terminé par la comparaison entre les valeurs
estimées et celles obtenues par exécution, pour déterminer I’erreur du modeéle. Le
tableau 3 récapitule les résultats obtenus. On remarque que notre modéle offre un taux
d’erreurs faible (inférieur a 2%) et ce pour plusieurs architectures testées et met en
évidence I'utilisation des mécanismes de communication inter processeurs.

V. Conclusion

Le présent article a abordé les problémes liés a I’estimation de performance des sys-
témes sur puce. Nous avons développé et illustré une nouvelle méthode d’estimation
du temps d’exécution d’une application temps réel. En effet notre méthode se base sur
une approche mixte statique/dynamique. Nous avons présenté toutes les étapes qui
nous ont conduit a la validation de la méthode proposée sur différentes cibles archi-
tecturales en utilisant un environnement de conception conjointe logicielle/matérielle
et le noyau temps réel MicroC/OS-II.

Cette méthode permet I’estimation du temps d’exécution d’une application temps
réel.

Le modele a été formulé en se basant sur une palteforme d’Alétra a base de FPGA.
Toutefois, la méme démarche peut étre appliquée sur d’autre plateforme pour la mise
en place d’un modele similaire. En effet, des travaux sur une plateforme Xilinx sont
en cours pour la validation de I’approche d’estimation présentée.

Par ailleurs, Le modele proposé présente des résultats intéressants: un taux
d’erreurs faible. Toutefois, il peut étre raffiné et ce en tenant compte de la taille de la
mémoire cache et le nombre de défauts de cache qui peut influer sur le temps
d’exécution de I’application. Ceci représente la suite des travaux futurs.

REFERENCES

1. A .Baghdadi, exploration et conception systématique d’architectures multiprocesseur mono-
puces dédiées a des applications spécifiques, thése PhD, Mai 2002, TIMA France.

2. D.Gajski, F.Vahid, S.Narayan and J.Gong System-level Exploration with SpecSyn. Design
Automation Conference, Juin 1998.

3. D.Lyonnard, S.Yoo, A.Baghdadi, A.A.Jerraya: Automatic Generation of Application-
Specific Architectures for Heterogeneous Multiprocessor System—on-Chip. DAC 2001.

4. H.J.Eikerling, W.HARDT, J.Gerlack, W.Rosenstiel: A Methodology for Rapid Analysis and
optimization of Embedded Systems. International IEEE Symposium and workshop on
ECBS, D-friedrichshafen, Mars 1996

5. J.Grode and J.Madsen Performance Estimation for Hardware/Software Codesign using Hie-
rarchical Colored Petri Nets. Proceedings of Jigh Performance Computing’98, in Special
Session on Petri Net Applications and HPC, Boston, Avril 1998.

6. J.henkel and R. Emst, High-level Estimation Techniques for usage in hardware/software
codesign. Asia and south Pasific Automation Conference Yokohama, Japan, Fevrier 1998

7. J.J.Labrosse, “MicroC/OS-IlI, the Real-Time Kernel”, Second Edition.

8. J.Liu, M.Lajolo and A.Sangiovanni-Vincentelli, Software Timing Analysis Using HW/SW
Cosimulation and Instruction Set Simulator. International Workshop on Hardware-Software
Codesign, Mars 1998.

9. L.Gauthier, Génération de systeme d’exploitation pour le ciblage de logiciel multitaches sur
des architectures multiprocesseurs hétérogénes dans le cadre de systemes embarqués, thése
PhD, décembre 2001, TIMA France.

10. P. Mabilleau Systémes en temps réel, GEI 2002.

11.Site du noyau uCO/S : http://www.ucos-ii.com/.2007

12.T-Y.Yen and W.Wolf, Communication Synthesis for Distributed Embedded Systems.
International Conference on Computer-Aided Design,1995.

13.S. Rouxel Modélisation et Caractérisation de Plates-Formes SoC Hétérogénes : Application
a la Radio Logicielle, these PhD, décembre 2006, UBS

14.A. Morton W. M. Loucks A Hardware/Software Kernel for System on Chip Designs ACM
Symposium on Applied Computing 2004

15.Site d’altera : http:// www.altera.com 2007

