
 

Estimation du temps d’exécution des systèmes sur puce 
temps réel 

Kaïs Loukil1,2,Yassine Aoudni1,2,Guy Gogniat2,Mohamed Abid1,Jean Luc Philippe2 
1  Ecole Nationale des Ingénieurs de Sfax Laboratoire CES  Sfax, Tunis 

2  Université de Bretagne Sud Laboratoire LESTER Lorient, France 
Kais_loukil@yahoo.fr 

 

Résumé: l’article suivant présente une méthode d’estimation du temps 
d’exécution d’une application temps réel dans le cadre des systèmes sur puce. 
La méthode proposée est basée sur une approche mixte statique/dynamique. 
L’objectif est d’estimer le surcoût ajouté par le système d’exploitation temps 
réel. Partant d’une application sans noyau temps réel, on estime le temps 
d’exécution de l’application complète avec un système d’exploitation temps 
réel. Notre méthode peut être utilisée pour évaluer différentes solutions 
d’implémentation pour une application temps réel.  L’implémentation de 
l’algorithme de la synthèse d’image 3D sur différentes cibles architecturales a 
été choisie pour valider la méthode proposée. Les résultats obtenus ont permis 
de déduire l’apport du système d’exploitation temps réel et le surcoût induit afin 
d’étudier son intérêt lors de l’intégration d’une application temps réel. 

I. Introduction 

Les systèmes sur puce ont subi des évolutions telles que l’intégration de plusieurs 
processeurs, accélérateurs et coprocesseurs dans une seule puce qui devient de plus en 
plus classique. En plus, et du fait de la complexité croissante des applications embar-
quées, de la présence de fortes contraintes temps réel, de la limitation des ressources 
disponibles, tant en mémoire qu’en énergie et en puissance de calcul, et du fait éga-
lement de la pression exercée par le marché sur ces produits, l’usage de systèmes 
d’exploitation temps réel (RTOS1) est devenu nécessaire dans les systèmes embarqués 
[3]. 

Cependant, et bien que le système d’exploitation temps réel soit couramment em-
ployé dans les systèmes embarqués spécifiques, celui-ci peut entraîner certains incon-
vénients en terme de coût, consommation et performances [9][14].  

D’autre part, les systèmes temps réel sont soumis à plusieurs contraintes temps 
réel. Ce qui a donné naissance à des outils d’estimation de performance des systèmes 
temps réel afin de vérifier le respect des contraintes temps réel. 

                                                             
 
1 Real Time Operating System 



 

Nous nous intéressons dans ce papier à étudier un  modèle permettant de détermi-
ner le surcoût dû à l’utilisation d’un système d’exploitation temps réel. Cette méthode 
peut être utilisée pour calculer le temps d’exécution d’une application temps réel dans 
le pire cas, ou pour évaluer différentes solutions d’implémentation d’une application 
temps réel. Les résultats obtenus permettent de déduire l’apport du système 
d’exploitation temps réel et le surcoût induit afin d’étudier son intérêt lors de 
l’intégration d’une application temps réel. 

La section suivante rappelle les principales méthodes d’estimation. La troisième 
section présente le flot du modèle généré ainsi que les facteurs intervenant sur la va-
riation du temps d’exécution d’une application temps réel. Les résultats expérimen-
taux et l’interprétation seront résumés dans la section quatre. Nous finissons ce papier 
par les conclusions et quelques perspectives. 

II. Etat de l’art 

Les méthodes d’estimation que l’on trouve dans la littérature peuvent être classées 
dans trois catégories : statiques, dynamiques et mixtes [1]. 

Méthode statique : l’estimation de performance d’une solution est le résultat d’une 
analyse statique d’une spécification, (exemple : analyse de chemins dans une spécifi-
cation de flots de contrôle). 

Méthode Dynamique : les mesures de performance d’une solution sont le résultat 
d’une analyse dynamique d’une spécification, (exemple : simulation). 

Méthode Mixte dynamique/statique : C’est l’utilisation de quelques éléments des 
deux approches précédentes pour l’analyse de performance d’une solution. 

Les approches statiques sont en général très rapides, mais elles présentent une pré-
cision moyenne vu la distance qui sépare l’implémentation et la spécification [1]. Les 
approches dynamiques sont plus précises mais en contre partie plus lentes vu le temps 
pris pour l’obtention du modèle à simuler et le temps de la simulation. Ces inconvé-
nients limitent l’utilisation de ces deux méthodes. La plupart des outils d’estimation 
existant utilisent donc des méthodes mixtes pour bénéficier des avantages des deux 
méthodes précédentes. Dans la suite on va présenter quelques méthodes utilisées pour 
l’estimation du temps d’exécution d’une application. 
La méthode décrite dans [4] se base sur des analyses statiques (calcul du temps 
d’exécution basé sur le code assembleur) et dynamiques (profilage). Alors que pour 
[6] [5] ils calculent des métriques séparées pour le logiciel, le matériel et la communi-
cation, puis, ils utilisent ces métriques dans des équations particulières. Pour la partie 
logicielle, ils calculent le temps d’exécution dans le pire cas en utilisant des tech-
niques d’analyse de chemin. [13][8] procèdent à des estimations de performance en 
utilisant des techniques d’estimation du temps d’exécution à bas niveau pour le logi-
ciel, le matériel et la communication. Les auteurs de [12] attaquent le problème d’un 
point de vue générique. Ils analysent, au niveau système, l’interaction entre les diffé-
rents processus en donnant le meilleur et le pire délai pour chacun d’entre eux. En-
suite, en partant d’un graphe acyclique représentant les dépendances de données entre 
les processus, ils calculent le temps d’exécution, dans le pire cas, pour le système 



 

entier. Dans [2], ils décrivent une méthode d’estimation mixte statique/dynamique. 
Elle est faite en deux étapes : 

• Pré-estimation : Un profilage de la description du système est réalisé pour 
obtenir des temps d’exécution pour différents niveaux (processus, bloc de 
base, communication). 

• Estimation en ligne : Les résultats obtenus durant la phase de pré-estimation 
sont utilisés dans des expressions complexes pour le calcul de la perfor-
mance globale du système. 

La plupart de ces outils offre une bonne estimation pour la partie logicielle ; mais, 
pour la partie matérielle, on trouve toujours des valeurs estimées différentes des va-
leurs réelles : ce qui influe sur l’estimation du temps d’exécution du système complet 
vu la distance qui sépare la spécification du système de l’implémentation hardware. 
En plus les travaux cités sont basés sur des techniques d’estimation par analyse abs-
traite de haut niveau (analyse des chemins critique).Nous proposons dans ce papier 
une méthode mixte (statique/dynamique) d’estimation du temps d’exécution d’une 
application temps réel. Cette méthode se base sur un prototype du système pour 
l’estimation des performances de la partie matérielle et une analyse statique de 
l’application pour estimer le temps pris par le logiciel. Cette méthode peut être utili-
sée pour calculer le temps d’exécution d’une application temps réel dans le pire cas 
afin de vérifier si le système respecte les contraintes temporelles qui lui sont imposées 
ou non et pour évaluer différentes solutions d’implémentation d’une application 
temps réel à travers différentes routines offertes par le système d’exploitation temps 
réel. Dans la section suivante on présentera les étapes qui ont conduit à la mise en 
place de notre modèle. 

III. Approche d’estimation du temps d’exécution d’une application 
temps réel 

Dans un système temps réel, plusieurs facteurs peuvent influer sur le temps 
d’exécution. Parmi ces facteurs on cite : 

• L’architecture cible (mono multiprocesseur) avec ou sans accélérateurs et 
coprocesseurs 

• Service du système d’exploitation temps réel utilisé 
• Temps de communication entre les différents modules du système (HW/SW, 

SW/SW) 
Dans la suite de cette section on présente les facteurs pris en compte et les étapes 

qui ont conduit à la mise en place du modèle. 

III.1. Principe de la méthode  

L’exploration de l’espace de solutions est une composante primordiale dans un flot de 
conception conjointe matérielle/logicielle. Le problème à résoudre dans le flot de 
conception des systèmes complexes consiste à trouver la meilleure solution  du sys-



 

tème incluant le découpage fonctionnel du système, la détermination des protocoles 
de communication et le placement/ ordonnancement, etc [1]. 

Le modèle qu’on propose permet facilement aux concepteurs d’explorer différentes 
solutions pour une application écrite avec les services d’un système d’exploitation 
temps réel (différents types de communications entre tâches, mécanismes de synchro-
nisations ….) sans avoir recours à chaque fois à réécrire l’application avec les ser-
vices voulus 

Notre idée de départ se base sur la réalisation d’un prototype qui contient tous les 
modules matériels. En utilisant ce prototype on peut calculer le temps pris par 
l’application écrite sans utilisation des services du système d’exploitation temps réel. 
Donc, en partant du temps d’exécution d’une application non temps réel on peut esti-
mer le temps de l’application temps réel en lui ajoutant le temps pris par chaque ser-
vice utilisé et le temps de communication entre les différentes tâches de l’application 
et une certaine valeur due à l’utilisation du système d’exploitation temps réel. 

On se propose en premier lieu de définir un modèle qui puisse déterminer l’effet de 
l’utilisation d’un système d’exploitation sur le temps d’exécution de l’application. En 
second lieu, on construira une base de données qui contiendra tous les services qu’on 
peut utiliser d’un système d’exploitation temps réel, ainsi que leurs temps 
d’exécution. A chaque fois qu’on emploie un service de ce système d’exploitation 
temps réel dans notre application, on ajoute le temps approprié  au temps déjà calculé. 
La figure 1 illustre les étapes de notre approche d’estimation du surcoût d’un système 
d’exploitation temps réel. Partant d’une description de l’architecture de notre système, 
on construit un prototype du système. Ensuite, on exécute le code de l’application sur 
ce prototype et on mesure son temps d’exécution. Puis en appliquant le modèle cons-
truit et en utilisant le graphe de séquences de l’application, on peut estimer le temps 
de l’application si elle est écrite avec les routines d’un système d’exploitation temps 
réel. 

Dans cette section, on va présenter en premier lieu les différents facteurs influant 
sur le temps d’exécution d’une application temps réel. En second lieu nous détaillons 
les différentes étapes faites pour la mise en place du modèle. On termine par la pré-
sentation de la plateforme utilisée ainsi que les tests réalisés pour la génération du 
modèle. 



 

 
Fig.1. Approche d’estimation 

Afin de dégager un modèle d’estimation du temps d’exécution d’une application 
temps réel, des analyses et des mesures ont été effectuées sur une plateforme à base 
de la technologie FPGA de chez ALTERA et un système d’exploitation temps réel 
embarqué MicroC/OS-II [7] [10] [11]. 

III.2. Evaluation de l’effet du MicroC/OS-II sur le temps d’exécution d’une 
fonction 

Afin de pouvoir générer un modèle qui puisse déterminer l’effet de l’utilisation d’un 
système d’exploitation temps réel sur le temps d’exécution d’une application, on a 
procédé aux étapes suivantes : 

- On a écrit une fonction qui fait un traitement quelconque. Cette fonction a été  
exécutée sur une plateforme monoprocesseur et on a pris son temps d’exécution sans 
utiliser un système d’exploitation temps réel. 

- On a pris le même code de la fonction et on a mesuré son temps d’exécution sur 
la même plateforme, mais dans une application temps réel. Cette dernière se compose 
uniquement de la tâche qui contient le code de la fonction sans utiliser des routines 
offertes par notre système d’exploitation temps réel (dans cette étape, on ne mesure 
pas le temps de création de la tâche et d’activation des services du système 
d’exploitation temps réel mais le temps d’exécution de la portion du code qui exécute 
la même fonction déjà mesurée à l’étape précédente). 



 

Le tableau 1 illustre les résultats trouvés lors de l’exécution de différentes applica-
tions sur notre plateforme qui se compose essentiellement du processeur NIOS II et 
du système d’exploitation MicroC/OS-II. 

 
Tableau1. Mesure du temps d’exécution avec et sans système d’exploitation temps réel 
 

 
Fig.2. Courbe d’estimation 

 
- A partir des mesures déjà effectuées  dans les étapes précédentes, on a construit la 

figure 2. On constate que l’ensemble des points forme une droite linaire d’équation 
Y=1.0038X (X étant le temps de l’application sans RTOS, Y est le temps de la même 
application exécutée dans une seule tâche). Cela est dû au fait que chaque système 
d’exploitation temps réel possède des tâches système qui interviennent d’une façon 
périodique dans l’exécution de l’application. 

Donc, en utilisant le graphe déjà construit, on peut déterminer le temps d’exécution 
de n’importe quelle application temps réel, tout en sachant son temps d’exécution 
sans système d’exploitation temps réel, bien évidemment sans utiliser les services 
offerts par le système d’exploitation temps réel. 

III.3. Mesure du temps pris par les services du système d’exploitation temps réel 

Une application écrite en utilisant les routines d’un système temps réel se compose 
essentiellement d’un ensemble de tâches. Ces tâches utilisent les différents services 
offerts par le système d’exploitation temps réel, pour gérer la communication et la 
synchronisation entre elles afin de réaliser la fonction globale de l’application. 

On peut classer les services d’un système d’exploitation temps réel en deux 
groupes : 

- Des services qui permettent d’une part la création des différentes tâches, méca-
nismes de synchronisation et de communication, et l’initialisation du système 
d’exploitation temps réel; et d’autre part, le démarrage de l’application temps réel. 
Généralement ces services n’entraînent pas de changement de contexte. 

- Des services de communication et de synchronisation. Généralement appelés 
dans le code des tâches à des moments bien déterminés pour réaliser la fonction glo-
bale du système. L’appel de ces services peut causer parfois des changements de 
contexte. 



 

Pour le premier groupe, on constate que le temps pris par n’importe quel service 
est indépendant du contexte là où il est appelé, puisqu’ils n’entraînent pas de change-
ments de contexte. Par conséquent, ce temps restera le même peu importe le moment 
d'utilisation. Alors que les services du deuxième groupe sont plus complexes puis-
qu’ils exigent un ré-ordonnancement du système et peuvent entraîner des change-
ments de contexte. Donc, il faut mesurer le temps pris par ces services dans les deux 
cas : 

- Appel du service mais pas de changement de contexte : dans ce cas, on mesure le 
temps pris par l’appel du service et l’exécution de l’instruction qui le suit. 

- Appel du service avec un changement de contexte : dans ce cas, on mesure le 
temps pris par l’appel du service approprié et l’exécution de la première instruction de 
la nouvelle tâche qui va être exécutée. 

Le tableau 2 présente les mesures de quelques services offerts par MicroC/OS-II : 
 
Tableau2. Temps pris par les services du MicroC/OS-II 
 

Services du MicroC/OS-II tics 

Création d’une tâche OSTaskCreateExt 9756 

Fonction OS_Start 827 

Création d’un mailbox OSMboxCreate 679 

Création d’un message queue OSQCreate 1565 

Création d’un drapeau d’évènement OSEventFlagCreate 419 

 OSEventFlag sans changement de contexte 876 

OSEventFlag avec changement de contexte 4464 

OSMboxPost sans changement de contexte 854 

OSMboxPost avec changement de contexte 3418 

OSQPost sans changement de contexte 912 

OSQPost avec changement de contexte 3966 

III.4 . Formalisation du modèle  

On considère une application qui consomme « n » cycles d’horloge lors de son exécu-
tion sur la plateforme Altera  sans utiliser les routines du MicroC/OS-II. 

Pour pouvoir estimer le temps de cette application lorsqu’elle est exécutée en utili-
sant les services d’un système d’exploitation temps réel, elle sera  décomposée en un 
ensemble de tâches pour réaliser la fonction globale du système. A partir du graphe de 
tâches construit, on doit extraire le diagramme de séquences qui décrit la succession 
des différentes tâches dans le pire cas ainsi que les routines du système d’exploitation 
temps réel utilisées pour assurer la synchronisation et la communication entre elles.  



 

III.5. Mise en équation 

Pour calculer le temps global de l’application écrite avec les routines du système 
d’exploitation temps réel, il faut : 

Déterminer la nouvelle valeur du temps d’exécution de l’application en utilisant le 
modèle. 

En utilisant le graphe de l’application,  ajouter, à chaque fois qu’on utilise un ser-
vice du système d’exploitation temps réel, le temps approprié, à partir du tableau déjà 
mesuré. 

Le modèle proposé peut se récapituler dans l’équation (E1) : 

∑
=

=

+×=
0

)(0038.1
i

ni
ii STNNtr    (1) 

• Ntr : nombre de tics de l’application temps réel. 
• N : nombre de tics de l’application sans système d’exploitation temps réel. 
• Ti(Si) : nombre de tics du service i déterminé à partir du tableau construit. 
• n : nombre de services utilisés. 

Ainsi le modèle est mis en place. La section suivante présente les différentes me-
sures effectuées pour la validation du modèle.  

IV. Expérimentation  

Afin de valider le modèle proposé, on utilise comme application la synthèse d’images 
3D sur différentes cibles architecturales. 

IV.1. Application de traitement d’images 3D (Pipeline 3D) 

Le pipeline 3D est l'ensemble des étapes nécessaires pour la création et la visualisa-
tion  d'une image 3D. Cette chaîne est décomposée en un ensemble d’opérations né-
cessaires pour afficher un objet 3D observé à partir d’une position et avec une orienta-
tion donnée.  Une mise en forme est présentée dans la figure 3. 

 

 

 
 

 
Fig.3. pipeline graphique 3D 

Triangles 

Cliping  

   

  

Transformation Test de visibilité 
 

Calculs des 
lumières 

Transformation 
des  textures 

Rastérisation 
 

Projection 
 



 

IV.2. Modèle de tâche : 

Cette application a été décomposée en 11 tâches qui coopèrent entre elles (figure 4) 
Les mécanismes de communications et de synchronisations entre les différentes 
tâches du système ont été choisis arbitrairement pour la validation du modèle. 

 
 

Fig.4. Diagramme de séquences 

IV.3. Conception de l’architecture de prototypage: 

Afin de mettre en place un système multiprocesseur, plusieurs types d’architectures 
sont envisagés [1]: 

 Les systèmes à mémoire partagée: Ce type de mémoire présente l'avantage 
de permettre un partage immédiat des données, facilitant la programmation. 
Mais cette solution coûte cher, ce qui limite le nombre de processeurs pou-
vant être ajoutés sur une même mémoire. 

 Les systèmes à mémoire distribuée : Dans ce cas, chaque processeur possède 
sa propre mémoire. La modification par l'un des processeurs de sa propre 
mémoire n'a pas d'influence directe sur celle des autres processeurs. Cela 
suppose donc de mettre en place une communication explicite entre les pro-
cesseurs. 

 Les systèmes à mémoire distribuée, partagée : Ce type de mémoire est un 
mélange des deux premiers. Dans cette architecture, il y a plusieurs groupes 
de processeurs partageant de la mémoire grâce à un réseau. Cela permet, 
dans une certaine mesure, de tirer les avantages des deux précédentes archi-
tectures et d'en réduire les inconvénients. 

Pour pouvoir choisir l’une des solutions proposées il a fallu étudier les caractéris-
tiques de la plateforme de prototypage et du bus qui assure la communication entre les 
différents processeurs.  



 

IV.3.1. Bus Avalon 
C’est le bus utilisé par Altera. Il peut être vu comme un ensemble de signaux prédéfi-
nis, permettant de connecter un ou plusieurs blocks IP. En plus, il est généré automa-
tiquement par le NIOS-II Builder. Le bus Avalon est un bus multi maîtres simultanés. 
Les maîtres peuvent accéder simultanément à leurs esclaves et en cas de besoin les 
maîtres peuvent échanger des données à travers une mémoire partager. Généralement 
l’accès à cette mémoire est géré par le système d’exploitation utilisé. 

Comme solution on  va utiliser un module d’un RTOS implémenté en hardware 
(mutex) pour assurer la gestion des  accès aux mémoires partagées entre les différents 
processeurs [15]. 

IV.3.2.Le Mutex : 
Le mutex fournit une opération « test-and-set » à base de matériel, permettant au 
logiciel dans un environnement multiprocesseur de déterminer le processeur qui pos-
sède l’accès à une ressource partagée [15]. 

IV.3.3.Architecture multiprocesseur proposer 
Suite à l’étude des caractéristiques de l’environnement de conception nous proposons 
une plateforme qui se compose d’un ensemble de sous systèmes qui peuvent commu-
niquer ensemble à travers des mémoires partagées dont l’accès est protégé par des 
mutex Hardware fourni avec l’environnement d’Altera. Puisque le bus avalon est 
simultané multi-maître on a proposé d’utiliser pour chaque processeur deux mé-
moires, l’une est propre pour lui et l’autre est partagée avec les autres processeurs en 
écriture. Tous les messages qui lui sont destinés sont mis dans cette mémoire et c’est 
lui seul qui peut lire son contenu. 

Après avoir conçu notre architecture multiprocesseur, nous avons ajouté 
l’ensemble des coprocesseurs et d’accélérateurs spécifiques à la synthèse d’image 3D. 
Ainsi notre plateforme de prototypage est prête figure 5.  

 
Figure 5 : architecture proposée 



 

IV.4. Mesures du temps d’exécution  

Toutes les mesures faites visent l’application de synthèse d’images 3D. Cette applica-
tion a été testée sur différentes cibles architecturales (monoprocesseur, coprocesseurs, 
accélérateurs, multiprocesseur). A chaque fois on mesure le temps d’exécution par 
prototypage et on détermine la valeur obtenue en appliquant le modèle mis en place 
pour déterminer l’erreur du modèle. 

tableau3. Mesures et résultats 
 

 
 
En premier lieu l’application de synthèses d’images 3D a été exécutée sur différentes 
cibles architecturales sans l’utilisation d’un système d’exploitation et des temps 
d’exécution ont été pris. Cette valeur comprend le temps de communication entre le 
processeur et ses périphériques et la communication inter processeurs (pour cette 
raison ces valeurs ne sont pas tenues en compte dans notre modèle). En second lieu 
cette application a été décomposée en un ensemble de tâches qui coopèrent entre elles 
tel que décrit dans la figure 4 et on a mesuré le nouveau temps d’exécution de 
l’application sur chaque architecture. En troisième lieu on a estimé le temps 
d’exécution en utilisant le modèle et on a terminé par la comparaison entre les valeurs 
estimées et celles obtenues par exécution, pour déterminer l’erreur du modèle. Le 
tableau 3 récapitule les résultats obtenus. On remarque que notre modèle offre un taux 
d’erreurs faible (inférieur à 2%) et ce pour plusieurs architectures testées et met en 
évidence l’utilisation des mécanismes de communication inter processeurs. 

V. Conclusion 

Le présent article a abordé les problèmes liés à l’estimation de performance des sys-
tèmes sur puce. Nous avons développé et illustré une nouvelle méthode d’estimation 
du temps d’exécution d’une application temps réel. En effet notre méthode se base sur 
une approche mixte statique/dynamique. Nous avons présenté toutes les étapes qui 
nous ont conduit à la validation de la méthode proposée sur différentes cibles archi-
tecturales en utilisant un environnement de conception conjointe logicielle/matérielle 
et le noyau temps réel MicroC/OS-II.  



 

Cette méthode permet l’estimation du temps d’exécution d’une application temps 
réel. 

Le modèle a été formulé en se basant sur une palteforme d’Alétra à base de FPGA. 
Toutefois, la même démarche peut être appliquée sur d’autre plateforme pour la mise 
en place d’un modèle similaire. En effet, des travaux sur une plateforme Xilinx sont 
en cours pour la validation de l’approche d’estimation présentée.  

Par ailleurs, Le modèle proposé présente des résultats intéressants : un taux 
d’erreurs faible. Toutefois, il peut être raffiné et ce en tenant compte de la taille de la 
mémoire cache et le nombre de défauts de cache qui peut influer sur le temps 
d’exécution de l’application. Ceci représente la suite des travaux futurs. 

REFERENCES 
1. A .Baghdadi, exploration et conception systématique d’architectures multiprocesseur mono-

puces  dédiées à des applications spécifiques, thèse PhD, Mai 2002, TIMA France. 
2. D.Gajski, F.Vahid, S.Narayan and J.Gong System-level Exploration with SpecSyn. Design 

Automation Conference, Juin 1998. 
3. D.Lyonnard, S.Yoo, A.Baghdadi, A.A.Jerraya: Automatic Generation of Application-

Specific Architectures for Heterogeneous Multiprocessor System–on-Chip. DAC 2001. 
4. H.J.Eikerling, W.HARDT, J.Gerlack, W.Rosenstiel: A Methodology for Rapid Analysis and 

optimization of Embedded Systems. International IEEE Symposium and workshop on 
ECBS, D-friedrichshafen, Mars 1996 

5. J.Grode and J.Madsen Performance Estimation for Hardware/Software Codesign using Hie-
rarchical Colored Petri Nets. Proceedings of Jigh Performance Computing’98, in Special 
Session on Petri Net Applications and HPC, Boston, Avril 1998. 

6. J.henkel and R. Emst, High-level Estimation Techniques for usage in hardware/software 
codesign. Asia and south Pasific Automation Conference Yokohama, Japan, Fevrier 1998 

7.  J.J.Labrosse,  “MicroC/OS-II, the Real-Time Kernel”, Second Edition. 
8. J.Liu, M.Lajolo and A.Sangiovanni-Vincentelli, Software Timing Analysis Using HW/SW 

Cosimulation and Instruction Set Simulator. International Workshop on Hardware-Software 
Codesign, Mars 1998. 

9. L.Gauthier, Génération de système d’exploitation pour le ciblage de logiciel multitâches sur 
des architectures multiprocesseurs hétérogènes dans le cadre de systèmes embarqués, thèse 
PhD, décembre 2001, TIMA France. 

10. P. Mabilleau Systèmes en temps réel, GEI 2002. 
11.Site du noyau uCO/S : http://www.ucos-ii.com/.2007 
12.T-Y.Yen and W.Wolf,  Communication Synthesis for Distributed Embedded Systems. 

International Conference on Computer-Aided  Design,1995. 
13.S. Rouxel Modélisation et Caractérisation de Plates-Formes SoC Hétérogènes : Application 

à la Radio Logicielle, thèse PhD, décembre 2006, UBS 
14.A. Morton W. M. Loucks A Hardware/Software Kernel for System on Chip Designs  ACM 

Symposium on Applied Computing 2004 
15.Site d’altera : http:// www.altera.com 2007 


