A. Spécification et conception de systémes sur puce :
B. SystemC et approches actuelles

Fatma abbes', Mohamed abid', Emmanuel Casseau’
IGMS, ECOLE NATIONALE D’ INGENIEURS DE SFAX, 3038 SFAX, TUNISIE
ZL.E.S.T.E.R., UNIVERSITE DE BRETAGNE SUD, RUE SAINT MAUDE - 56100 LORIENT, FRANCE
fatma abbes@yahoo.fr, mohamed.abid@enis.rnu.tn, emmanuel.casseau@univ-ubs.fr

Résumé

Actuellement, les systéemes deviennent de plus en
plus complexes et la tendance est a I’intégration
du logiciel et du matériel sur un méme circuit
(SoC pour System On Chip). L'intégration d'un
systéme nécessite de relever de nouveaux défis,
en particulier en ce qui concerne I’utilisation
d’un langage unifié pour la conception de haut
niveau dite conception systéme. Dans cet article,
nous décrivons les différentes approches de
spécification avec des langages de modélisation a
un niveau d’abstraction élevé et plus
particuliérement le langage SystemC, en
développant I'approche de modélisation associée,
les outils qui supportent ce langage ainsi que les
travaux actuels correspondants. Ce travail de
synthése est réalisée afin de mettre en avant
I’importance de cette évolution en conception de
Systémes sur Puce (SoC).

Mots-clés: Conception de niveau systéme,
intégration systéme, SoC, SystemC.

I. INTRODUCTION

La complexité croissante des applications entraine
une augmentation considérable de la durée de
développement avec les méthodes de conception
conventionnelles. Une des contraintes majeures est
le délais de mise sur le marché ou
«Time to Market». La conception des SoCs
(figure 1) est un nouveau concept. Il exige
typiquement la modélisation et [’intégration
simultanée du «software» (logiciel) et du
« hardware » (matériel) : c'est 1'approche dite co-
design.

La conception de haut niveau représente 1’un des
points clés de la conception des SoCs. Cependant,
l'utilisation de langages de conception différents
(C++, HDLs, etc.), d’outils de CAO plus ou moins
compatibles et 1’usage de flots de conception
séparés pour le matériel et le logiciel handicapent
fortement la conception des SoCs [19].

Ainsi, plusieurs travaux de recherches concernant
I’exploration de nouveaux langages ou de nouvelles
méthodologies de conception pour arriver a
modéliser les parties logicielles et matérielles et
supporter les interfaces entre les deux ont démarré
ces derniéres années [18].

Spécification
Systéme
Partitionnement
logiciel/m atériel

Synthése
Software

Besoins
+
Contraintes |

Syntheése
Hardware

ro--doq)

Code +
Composants 1 ¥ Composants
Logiciels — Matériels

1
1 Intégration Systéeme 1
: b

Fig. 1 : Flot typique de conception des SoCs

Une des questions soulevées est de savoir comment
modéliser et décrire la fonctionnalité d’un systéme
a un niveau de détail suffisant permettant de prévoir
son comportement intégral, sans ambiguité ou a un
niveau d’abstraction qui ne fait pas d'hypothése sur
les cibles d'implantation. Le langage SystemC a été
développé comme un langage de modélisation dans
cette optique [14].

L’objet de ce papier est d’étudier, dans le cadre de
la conception des SoCs, le besoin en terme de
spécification au niveau systéme dans un flot de co-
design d’une part et, d’autre part, les différentes
approches existantes pour la mise en oeuvre d’un
langage de modélisation systéme. Le but de cette
analyse est de prouver, dans le contexte actuel de
concurrence entre langages systéme, 1’importance
des approches basées sur des langages de type
C/C++, notamment SystemC qui semble récolter
beaucoup d’intérét.

L'article est construit comme suit : la premiére
partie décrit les différentes approches existantes
pour la mise en oeuvre dun langage de
modélisation a un niveau d’abstraction élevé. La
section suivante s’intéresse a 1’approche associée
au langage SystemC. ses principales
caractéristiques et son intérét lors de Ia
spécification et les raffinements successifs a

plusieurs niveaux d’abstraction et plus
particuliérement dans le flot de conception matériel
sont présentés. Les troisiéme et quatriéme sections
présentent les outils adoptant le langage SystemC et
les travaux de recherche associés. La derniére partie
de larticle est consacrée aux conclusions et
perspectives ainsi qu'a une présentation de nos
travaux futurs concernant notre approche de
spécification et de raffinement.

II. LANGAGES SYSTEME : INITIATIVES ET APPROCHES
ASSOCIEES

Actuellement, les efforts se multiplient afin
d’étudier et de mettre en place un langage
permettant de décrire le matériel a un niveau
d’abstraction élevé. De plus, comme le logiciel tend
a devenir la partie la plus importante des systémes
électroniques (le software peut représenter jusqu'a
90% du modg¢le) (figure 2), les efforts sont focalisés
vers un langage autorisant des descriptions
conjointes logicielle et matérielle.

®00
. .

Logiciel

22%

eecccccccce

oheoccccocooioolese

Réutilisati
on d’IP

66% Mémoire

6% Glue

i

6%New

©9eedesccsesccsccccccse

Matériel

®000c000000000000000000000000000000

e0cc00c000c000cc0000e

Fig. 2 : Exemple de répartition logiciel/matériel

Travailler & niveau systéme permet d’obtenir des
modéles afin de gérer la complexité croissante des
systémes et d’étre indépendant de la technologie
[21].

A. Introduction de nouveaux langages

Il n'existe pas actuellement de langage permettant
de modéliser parfaitement le niveau systéme [1].
Cela a poussé la communauté a définir de nouveaux
langages avec lesquels on peut décrire les exigences
d’une modélisation de niveau systéme.

L’Initiative SLDL (VHDL International’s System-
Level Design Language) [11], financé
principalement par le comit¢ VHDL International,
estime qu’il est trop difficile de considérer tous les
critéres d’une spécification de niveau systéme, pour
tous les niveaux d’abstraction et dans tous les
domaines d’applications dans un seul langage. En
1999, ce groupe proposa Rosetta [5]. Il s'agit d'un
support pour la conception dans différents

domaines employant une sémantique commune et
une syntaxe appropriée pour chacun. Il permet de
décrire les exigences selon une variété de points ou
facettes. Chaque facette laisse la possibilité
d’approcher le probléme selon différents angles
(surface, consommation, interface utilisateur, etc.)
et permet le développement et 1’utilisation d’outils
qui sont spécifiques a la nature de chaque facette.
Toutefois Rosetta reste actuellement incomplet
sémantiquement et sa finalisation peut prendre
encore quelques années en considérant la
complexité de ce projet [17].

Co-Design Automation, une des compagnies
d’automatisation de conception électronique (EDA

Electronic Design Automation), propose le
langage Superlog comme solution de conception.
Les auteurs de Superlog [13], avec Phil Marby, le
développeur de Verilog, Peter Flake, Ie
développeur de HILO (High Logic), estiment que
ce langage est d’une part simple a lire et
suffisamment performant pour résoudre les
problémes liés a un SoC [5]. Toutefois, Superlog
est centré sur la conception matérielle et présente
quelques déficits au niveau de la conception de haut
niveau.

B. Méthodologie basée sur les langages HDLs

OVI (Open Verilog Initiative) et IEEE ont travaillé
pour améliorer Verilog depuis 1994 [7]. Le but
essentiel est d’ajouter des constructions a ce
langage afin de permettre son utilisation exclusive
pour la conception des SoCs. La base de ces
modifications est la capacité de ce langage a étre 1ié
a un code écrit en C/C++ a travers son interface de
programmation de langage (PLI: Programming
Language Interface) ce qui a favorisé I’aspect
Orienté Objet avec cette possibilité. Toutefois, ces
constructions conduisent a une diminution des
performances en temps de simulation.

Des études similaires sur l'extension du langage
VHDL ont également eu lieux.

En fait, les systémes tendant a étre dominés par le
logiciel, I’adoption d’une méthodologie basée sur
un langage HDL n'est pas vraiment appropriée.

On peut par ailleurs noter que VHDL International,
qui a le plus d’intérét dans la persistance du langage
VHDL, investie dans le langage (Rosetta) et semble
abandonner les efforts d’extension de VHDL.

C. Meéthodologies basées sur C++

La conception de systémes sur puces (SoC) basé
sur le langage C a déja donné des résultats
intéressants en terme de gain en temps de
développement et de vérification [16]. Ce langage
est typiquement choisi pour sa popularité¢ dans le
développement logiciel.

Les méthodologies utilisant des langages basés sur
le C++ tels SystemC, Ocapi, SpecC ont pour
objectif de gérer la complexité et I'nétérogénéité des
SoCs. Le principe de 1’Orienté Objet permet de
séparer I’interface de I’implémentation, et favorise
la réutilisation a un niveau d’abstraction élevé.

Une des questions qui se posent est la suivante :
pourquoi C++ et non le langage Java?
Principalement, pour simuler des systémes tres
complexes, la rapidité est exigée.
v' La technologie de compilation a base de
C++ est plus évoluée, mure et fournit des
exécutables au temps de simulation acceptable.
v' Java empéche I’accés direct au matériel ce
qui n’est pas favorable pour écrire un code
d’initialisation et les pilotes des composants
matériels
v' C/C++ permet la réutilisation plus facile
des coeurs de fonction développés pour
implémenter et simuler les systeémes
embarqués.

CynApps propose Cynlib [17]. C’est une source
ouverte basée sur C++ pour modéliser le matériel. 11
s’agit d’un ensemble de classes C++ qui
implémente des concepts existants dans les
langages matériels tels que Verilog et VHDL. La
limitation majeure de Cynlib est que la suite de
CynApps vise spécialement la conception du
matériel. Une extension de ce langage est faite au
sein du groupe CIRCUS (Codesign Interest for
Research Captivated US) : Syslib. C’est un langage
qui repose sur deux langages existants, Cynlib et
C++. 11 élargit les fonctionnalités de Cynlib dédiées
pour le niveau systéme. Un outil graphique appelé
Picasso supporte ce langage et permet de définir
une méthodologie appelée Syslib_Picasso qui fait le
lien entre le langage Cynlib et I’outil Picasso pour
modéliser des SoCs selon la méthodologie CIRCUS
[18].

SpecC est une extension de ANSI-C [12].
L’initiative de SpecC (STOC : SpecC Technologie
Open Consortium) vise a favoriser une
méthodologie de Co-Design focalisée sur les IPs
(Propriété Intellectuelle) pour la spécification, la
modélisation et les systémes embarqués au niveau
systeme. Le développement de ce langage, depuis
1999, est mené par Daniel Gajski a 'université de
California—Irvine et financé par Toshiba [4].

Actuellement, 1'initiative SystemC semble étre plus
avantagée par rapport aux autres approches [20]:
v" SystemC est supporté par les principales
sociétés de la CAO et de [D’industrie
électronique et établit une plate-forme de
modélisation commune qui sert aussi comme
base pour [D’échange des IPs et des
spécifications exécutables.
v OSCI (Open SystemC Initiative) établit un
mécanisme ouvert pour certaines compagnies

pour faire des contributions techniques et les
partager avec des communautés larges.

v" Tout comme SpecC, SystemC répond aux
besoins techniques pour le matériel, le software
et répond en ce sens aux attentes des
concepteurs systémes.

STOC et OSCI investissent énormément au profit
de I’interopérabilité afin de garantir le maximum de
bénéfices pour la conception systéme [18].

Enfin, notons que, d'aprés CynApps, Cynlib est
compatible avec SpecC et Open SystemC.

Nous proposons d'aborder dans la suite de cet
article I'approche associée a SystemC.

III. APPROCHE DE CONCEPTION ET DE SPECIFICATION A
PARTIR DE SYSTEMC

Le but de SystemC est de définir une plate-forme
de modélisation a base de C++ (librairies de classes
C++) et d’un noyau de simulation [17]. Il supporte
la spécification de niveau RTL, de niveau
comportemental et de niveau systéme.

Untimed Functional

Design exploratio| affinement
Analyse de
performance du
partionnement
HW/SW

Task Partitioning Buf cycle occurate
Abstract BCA
RTOS |

Raffinment

Timed Functional

Paftionnement HW/SW

1
Raﬂ“ncmcnt

ol

[ycle occurate
RTL synthetisable

Target/core(s
Scheduling)

Fig. 3 : Flot de raffinement SystemC (source : OSCI)

L’OSCI propose une méthodologie de raffinement
progressive d’une spécification, en débutant avec la
description du systéme a un trés haut niveau, puis,
en s’approchant progressivement, étape pas étape,
du comportement final du circuit. Il est possible
d'entrer la spécification au niveau fonctionnel et de
la simuler pour en vérifier la validité. Puis, le code
est raffiné au niveau comportemental; pour cela, on
ajoute entre autre des notions de temps, ce qui
permet de faciliter 1'étape de partitionnement.
Enfin, on raffine les spécifications vers des phases
d'implantation. Le flot complet, présenté par le
figure 3, n’utilise qu’un seul langage du début a la
fin, c'est 1a son principal intérét.

On peut donc, par raffinement successif, passer
d’un niveau donné au niveau suivant sans avoir a
réaliser un changement de langage de modélisation
qui posait obligatoirement des problémes

auparavant (sémantique différente, syntaxe
différentes etc.), sans méme parler du temps
inutilement dépensé pour cela.

C'est principalement le niveau de détail du temps
qui différencie les niveaux d'abstraction en
SystemC. La conception est progressivement
raffinée par I’ajout du code du matériel ainsi que le
chronométrage nécessaire.

Les principaux niveaux d’abstraction liés au flot
matériel sont :

Untimed Functional Level (UFL)

L’objectif est de réaliser une wvalidation des
concepts de base du systéme, et d’exprimer le
systéme sous forme de modules fonctionnels sans
chronométrage de l'information et de vérifier son
fonctionnement avant de poursuivre les étapes
suivantes du flot. On produit donc une spécification
exécutable ou I’architecture du systéme n’est pas
encore définie.

Timed Functional Level (TFL)

A ce niveau, on modélise des « pseudo-temps »
d’exécution pour chaque module, tout en respectant
toujours les contraintes du systéme (cahier des
charges).

Bus Cycle Accurate Level

A ce niveau, la modélisation des communications
entre les différents blocs de notre systéme est
nécessaire. Normalement la modélisation des
canaux de communication doit étre faite cycle par
cycle. Par contre le comportement des modules
peut rester au niveau UFL.

Cycle Accurate Level

A ce niveau, tout le fonctionnement du systéme doit
étre maintenant spécifié au cycle pres.

IV. OUTILS ET ENVIRONNEMENTS AUTOUR DE SYSTEMC

Comme nous l'avons vu précédemment, la
conception de SoCs basée sur le C a déja donné des
résultats intéressants en terme de gain en temps de
développement et de vérification [15]. Cependant,
une approche systéme ne repose pas simplement sur
le langage. Il est essentiel d'avoir un support en
terme de méthodologie et une disponibilité d'outils
EDA (Electronic Design Automation). Le choix
d'un langage est aussi conditionné par Ila
disponibilité d'outils de spécification, de synthese et
de simulation utilisant ce langage.

Au niveau systéme, spécialement au début du cycle
de wvie du produit, les complexités de
I’implémentation et la technologie du produit
exigent une méthodologie de conception robuste et
une suite d’outils sophistiqués pour automatiser le
processus. De nombreux outils de synthése
d'architectures, permettant de passer de manicre

automatique d'une spécification de niveau
comportemental a une spécification de niveau
structurel (RTL), sont par exemple déja en cours de
développement comme le suggere la méthodologie
proposée par 'OSCI [20].

Dans la suite de ce paragraphe, nous présentons les
principaux outils qui ont adopté SystemC comme
langage support.

A. CoCentric SystemC Compiler (CCSC)

CCSC de Synopsys permet de synthétiser une
description matérielle a partir d’un code source
rédigé avec SystemC (figure4). C’est un outil utile
pour les équipes de conception qui partent d’une
description C/C++ de niveau systéme pour la partie
matérielle pour ensuite migrer vers :

v Une description niveau « Porte Logique »,

v Une implémentation Verilog synthétisable

ou

v Une description VHDL-RTL.

Raffinement
(communication, temps,
mémoires)

Raffinement
(allocation, ressources,
FSM)

SystemC Compiler

Flot comportemental
' L_RTL__

SystemC Compiler
Flol RTL

Fig. 4 : Flot d’implémentation matériel avec CoCentric
SystemC Compiler

SystemC Compiler est un outil qui peut accepter
des descriptions SystemC comportementales et
SystemC RTL et exécute la synthése
comportementale ou la synthése RTL.

B. CoCentric System Studio

Cet outil de Synopsys permet la vérification aux
différents niveaux d’abstraction avec SystemC.
Avec cet outil, il est possible de vérifier la
spécification logicielle d'un SoC en combinant
différents niveaux d'abstraction (co-simulation
multi-niveaux), ce qui en fait son principal intérét

[3].

C. TestBuilder

TestBuilder a été développé par Cadence a l'origine
indépendamment de SystemC. Cet outil se présente
comme une bibliothéque de classe C++ permettant
le développement de TestBenchs avancés. 11 utilise

la méthodologie de vérification basée sur les
transactions (The Transaction-Based Verification).
Bien que SystemC possede les bases nécessaires
pour générer des TestBenchs (concurrence, etc.),
TestBuilder est particuliérement bien adapté a cet
objectif [2]. TestBuilderSC est la version de
TestBuilder dédi¢e a SystemC.

V. TRAVAUX DE RECHERCHE AUTOUR DE SYSTEMC

Il semble établi que SystemC est un candidat
privilégié au futur standard pour la spécification de
SoCs. Actuellement, SystemC est principalement
utilisé (ou expérimenté) en tant qu’environnement
de modélisation et de simulation. Des travaux sont
en cours pour contribuer a 1‘approche SystemC en
tant que méthodologie de raffinement couvrant tous
les niveaux d’abstraction (enrichissement de la
librairie de classes pour garantir la standardisation).
Les sociétés telles Coware et Synosys travaillent
sur I’automatisation du flot de conception associé a
SystemC a travers la mise en ceuvre d’outils de
synthése comme N2C et CoCentric Compiler et
d’outils de vérification comme CoCentric Studio.

On peut également mentionner les travaux suivants

CIRCUS (Ecole Polytechnique 2002) [10]

v' Analyse et modification de
l'ordonnancement des tdches du simulateur de
SystemC 2.0
v' Analyse et conception d'une plate-forme
de Co-Design
v" Comparaison de SystemC de niveau UTF
et Syslib FL.

LASSO (Laboratoire d'Analyse et de Synthése des
Systémes Ordinés) [9]

v" Modification de SystemC, méthodologies
de modélisation et modélisation UML pour Co-
Design.

v Visualisation des résultats de simulation
de matériel modélisé avec SystemC.

ENSTA (Ecole Nationale Supérieur des
Technologies Avancées, Paris) [6]

v’ Vérification formelle appliquée a
SystemC.

IRIT (Institut de Recherche en Informatique de
Toulouse) [8

v' Elaboration d'une bibliothéque de
composants de simulation de processeurs
réutilisables fondée sur SystemC.

VI. CONCLUSION ET PERSPECTIVES

Les systemes deviennent de plus en plus
complexes. La densit¢ de transistors et de

composants par circuit augmente et rendra, dans un
avenir proche, le travail de conception ingérable.
Plus que jamais, des principes et régles a suivre
s’imposent, dont entre autre la réutilisation ou
I’abstraction des spécifications du systéme.
Plusieurs initiatives ont été lancées dans cette
direction : SystemC, SpecC, Cynlib pour ne
nommer que les plus populaires. Elles reposent sur
de nouvelles méthodes de modélisation matérielle
(et logicielles dans certains cas) basé sur le langage
C++ et les fondements de 1’orienté objet. SystemC
semble étre 1’approche la plus populaire
actuellement.

Toutefois, il ne faut pas perdre de vue que SystemC
est un langage qui est en train de murir.
Aujourd’hui, beaucoup de compagnies et
d’universités s’y intéressent et désirent 1’intégrer
dans leurs outils. Cependant, comme pour tout
langage/produit en cours de maturation, tout n'est
pas encore opérationnel avec SystemC et de
nombreux travaux demeurent encore inachevés. Les
fonctionnalités de SystemC sont en train de
s'enrichir avec le développement de librairies de
classes génériques ou spécifiques. De leur coté, les
outils associés qui sont en train d’apparaitre vont
permettre d’enrichir la méthodologie de « design »
associée a ce langage.

Parmis les évolutions futures prévues au roadmap
SystemC, on peut citer :
v" Dans les futures version 2x, des méthodes
de synchronisation de processus (simulation
software), d’interruption, ainsi que Ia
modélisation de performances du systéme
devraient étre intégrées.
v' Les versions 3.x devraient permettre la
modélisation de systémes contenant des
ordonnanceurs et des RTOS,
v' Les versions 4.x doivent de leur coté
permettre la modélisation des systémes
analogiques avec les systémes numérique.

Rappelons que SystemC est né d’un besoin qui se
fait pressant par rapport aux contraintes et a la
complexité des systémes actuels. L objectif final de
SystemC est d’offrir un langage permettant de
modéliser tous les niveaux et donc de remplacer les
laborieuses descriptions multi-langages
malheureusement habituelles en conception de
SoCs.

Pour passer d'une description de niveau systéme a
I’implémentation, les différents niveaux
d’abstraction doivent étre bien définis et les
méthodes de raffinement bien précises et claires.
Nos travaux en cours en ce sens consistent a définir
une méthodologie de raffinement aux niveaux
systétmes avec ce langage. Nous proposons de
traiter quatre types de raffinements de 1’Orienté
Objet définissant, plus généralement, le raffinement
dans le flot matériel avec SystemC [22] : le

raffinement d’atomicité, le raffinement
algorithmique, le raffinement des données et le
raffinement des communications.

Notre démarche de raffinement consiste en
I’enchainement de ces étapes élémentaires qui va
nous permettre de conduire un systéme exprimé du
niveau fonctionnel jusqu’au niveau cycle prés.
L’ordre et le nombre de répétitions de chacune de
ces étapes ne sont pas figé; cela dépendra de la
complexité et de la nature du systéme a traiter.

Références

[1] Alan Fitch, "Application of SystemC to hw/sw Co-
Design". IEE Seminar - Hardware-software Co-Design.
December 2000.

[2] C. Norris Ip, Stuart Swan "Using Transaction-Based
Verification in SystemC ", rapport technique CADENCE
Inc. 11/6/2002

[3] "Cocentric System Studio enables verification at
multiple levels of abstraction with systemC", rapport
technique janvier 2002 disponible a 1’adresse
WWww.synopsys.com/products.

[4] Daniel D.Gajski, Rainer Domer , Jianwen Zhu, “IP-
Centric methodology and design with the SpecC
Language" NATO-ASI Workshop on System Level
Synthesis, Aout 1998.

[5] EDN issue 5 Juin 2000

[6] http://lester.univ-ubs.fr/

[7] http://www.eda.org/ovl/

[8] http://www.irit.fr/

[9] http://www.iro.umontreal.ca/labs/lasso/

[10] http://www.polymtl.ca/

[11] http://www.sldl.org/

[12] http://www.SpecC.org

[13] http://www.superlog.org

[14] http://www.systemc.org/

[15] KWAKABAYASHILT.OKAMOTO, "C-Based SoC
Design Flow and EDA Tools: An ASIC and System
Vendor Perspective," IEEE transactions on computer
aided design of integrated circuits and systems,
VOL.19,NO.12,Décembre 2000,pp.1507-1522.

[16] KWAKABAYASHILT.OKAMOTO, "C-Based SoC
Design Flow and EDA Tools: An ASIC and System
Vendor Perspective," IEEE transactions on computer
aided design of integrated circuits and systems,
VOL.19,NO.12,Décembre 2000,pp.1507-1522.

[17] L. Filion, G. Bois, and E. M. Aboulhamid, "Syslib:
A System-Level Language Extended from Cynlib for
SoC," Proceedings of The 11th Annual International
HDL Conference, San Jose, CA, March 11-12, 2002, pp.
191-197

[18] L. Filion, G. Bois, and E. M. Aboulhamid, "’Picasso-
Syslib : méthodologie compléte de conception des
systétmes embarqués”, cours ELE6904 Seminaires de
I’Ecole Polytechnique Montréal

[19] Luc Séméria, "Applying pointer analysis to the
synthesis of hardware from C", mémoire de thése en
génie électrique Université de Stanford, June 2001.

[20] Pete Hardee " Getting Hardware and Software to
Speak the Same Language". Dedicated Systems
Magazine pp 6-9, July 2001.

[21] S. Benedetto and G. Montorsi, "Design of parallel
concatenated convolutional codes" IEEE Trans.
Commun., vol. 44, pp. 591-600, May 1996.

[22] Steve Holloway, David Long, Alan Fitch, "From
Algorithmic to SOC with SystemC and Cocentric System
Studio", Synopsys Users Group (SNUG) Europe 7.,8
Mars 2002.

