
A. Spécification et conception de systèmes sur puce :
B. SystemC et approches actuelles

Fatma abbes1, Mohamed abid1, Emmanuel Casseau2

1GMS, ECOLE NATIONALE D’INGENIEURS DE SFAX, 3038 SFAX, TUNISIE
2L.E.S.T.E.R., UNIVERSITE DE BRETAGNE SUD, RUE SAINT MAUDE - 56100 LORIENT, FRANCE

fatma_abbes@yahoo.fr, mohamed.abid@enis.rnu.tn, emmanuel.casseau@univ-ubs.fr

Résumé

Actuellement, les systèmes deviennent de plus en
plus complexes et la tendance est à l’intégration
du logiciel et du matériel sur un même circuit
(SoC pour System On Chip). L'intégration d'un
système nécessite de relever de nouveaux défis,
en particulier en ce qui concerne l’utilisation
d’un langage unifié pour la conception de haut
niveau dite conception système. Dans cet article,
nous décrivons les différentes approches de
spécification avec des langages de modélisation à
un niveau d’abstraction élevé et plus
particulièrement le langage SystemC, en
développant l'approche de modélisation associée,
les outils qui supportent ce langage ainsi que les
travaux actuels correspondants. Ce travail de
synthèse est réalisée afin de mettre en avant
l’importance de cette évolution en conception de
Systèmes sur Puce (SoC).

Mots-clés : Conception de niveau système,
intégration système, SoC, SystemC.

I. INTRODUCTION

La complexité croissante des applications entraîne
une augmentation considérable de la durée de
développement avec les méthodes de conception
conventionnelles. Une des contraintes majeures est
le délais de mise sur le marché ou
« Time_to_Market ». La conception des SoCs
(figure 1) est un nouveau concept. Il exige
typiquement la modélisation et l’intégration
simultanée du « software » (logiciel) et du
« hardware » (matériel) : c'est l'approche dite co-
design.

La conception de haut niveau représente l’un des
points clés de la conception des SoCs. Cependant,
l'utilisation de langages de conception différents
(C++, HDLs, etc.), d’outils de CAO plus ou moins
compatibles et l’usage de flots de conception
séparés pour le matériel et le logiciel handicapent
fortement la conception des SoCs [19].

Ainsi, plusieurs travaux de recherches concernant
l’exploration de nouveaux langages ou de nouvelles
méthodologies de conception pour arriver à
modéliser les parties logicielles et matérielles et
supporter les interfaces entre les deux ont démarré
ces dernières années [18].

S y n th è s e
S o f tw a r e

P a r t i t io n n e m e n t
lo g ic ie l /m a té r ie l

S p é c i f ic a t io n
S y s tè m e

S y n th è s e
H a r d w a r e

S y n th è s e
d ’ in te r fa c e s H /S

C o d e +
C o m p o s a n ts

L o g ic ie ls
C o m p o s a n ts

M a té r ie ls

B e s o in s
+

C o n tr a in te s

In té g r a t io n S y s tè m e
S O C

C o -s im u la t io n

P r o to ty p a g e

Fig. 1 : Flot typique de conception des SoCs

Une des questions soulevées est de savoir comment
modéliser et décrire la fonctionnalité d’un système
à un niveau de détail suffisant permettant de prévoir
son comportement intégral, sans ambiguïté ou à un
niveau d’abstraction qui ne fait pas d'hypothèse sur
les cibles d'implantation. Le langage SystemC a été
développé comme un langage de modélisation dans
cette optique [14].

L’objet de ce papier est d’étudier, dans le cadre de
la conception des SoCs, le besoin en terme de
spécification au niveau système dans un flot de co-
design d’une part et, d’autre part, les différentes
approches existantes pour la mise en oeuvre d’un
langage de modélisation système. Le but de cette
analyse est de prouver, dans le contexte actuel de
concurrence entre langages système, l’importance
des approches basées sur des langages de type
C/C++, notamment SystemC qui semble récolter
beaucoup d’intérêt.

L'article est construit comme suit : la première
partie décrit les différentes approches existantes
pour la mise en oeuvre d’un langage de
modélisation à un niveau d’abstraction élevé. La
section suivante s’intéresse à l’approche associée
au langage SystemC. ses principales
caractéristiques et son intérêt lors de la
spécification et les raffinements successifs à

plusieurs niveaux d’abstraction et plus
particulièrement dans le flot de conception matériel
sont présentés. Les troisième et quatrième sections
présentent les outils adoptant le langage SystemC et
les travaux de recherche associés. La dernière partie
de l'article est consacrée aux conclusions et
perspectives ainsi qu'à une présentation de nos
travaux futurs concernant notre approche de
spécification et de raffinement.

II. LANGAGES SYSTEME : INITIATIVES ET APPROCHES
ASSOCIEES

Actuellement, les efforts se multiplient afin
d’étudier et de mettre en place un langage
permettant de décrire le matériel à un niveau
d’abstraction élevé. De plus, comme le logiciel tend
à devenir la partie la plus importante des systèmes
électroniques (le software peut représenter jusqu'à
90% du modèle) (figure 2), les efforts sont focalisés
vers un langage autorisant des descriptions
conjointes logicielle et matérielle.

Fig. 2 : Exemple de répartition logiciel/matériel

Travailler à niveau système permet d’obtenir des
modèles afin de gérer la complexité croissante des
systèmes et d’être indépendant de la technologie
[21].

A. Introduction de nouveaux langages

Il n'existe pas actuellement de langage permettant
de modéliser parfaitement le niveau système [1].
Cela a poussé la communauté à définir de nouveaux
langages avec lesquels on peut décrire les exigences
d’une modélisation de niveau système.

L’Initiative SLDL (VHDL International’s System-
Level Design Language) [11], financé
principalement par le comité VHDL International,
estime qu’il est trop difficile de considérer tous les
critères d’une spécification de niveau système, pour
tous les niveaux d’abstraction et dans tous les
domaines d’applications dans un seul langage. En
1999, ce groupe proposa Rosetta [5]. Il s'agit d'un
support pour la conception dans différents

domaines employant une sémantique commune et
une syntaxe appropriée pour chacun. Il permet de
décrire les exigences selon une variété de points ou
facettes. Chaque facette laisse la possibilité
d’approcher le problème selon différents angles
(surface, consommation, interface utilisateur, etc.)
et permet le développement et l’utilisation d’outils
qui sont spécifiques à la nature de chaque facette.
Toutefois Rosetta reste actuellement incomplet
sémantiquement et sa finalisation peut prendre
encore quelques années en considérant la
complexité de ce projet [17].

Co-Design Automation, une des compagnies
d’automatisation de conception électronique (EDA
: Electronic Design Automation), propose le
langage Superlog comme solution de conception.
Les auteurs de Superlog [13], avec Phil Marby, le
développeur de Verilog, Peter Flake, le
développeur de HILO (High Logic), estiment que
ce langage est d’une part simple à lire et
suffisamment performant pour résoudre les
problèmes liés à un SoC [5]. Toutefois, Superlog
est centré sur la conception matérielle et présente
quelques déficits au niveau de la conception de haut
niveau.

B. Méthodologie basée sur les langages HDLs

OVI (Open Verilog Initiative) et IEEE ont travaillé
pour améliorer Verilog depuis 1994 [7]. Le but
essentiel est d’ajouter des constructions à ce
langage afin de permettre son utilisation exclusive
pour la conception des SoCs. La base de ces
modifications est la capacité de ce langage à être lié
à un code écrit en C/C++ à travers son interface de
programmation de langage (PLI : Programming
Language Interface) ce qui a favorisé l’aspect
Orienté Objet avec cette possibilité. Toutefois, ces
constructions conduisent à une diminution des
performances en temps de simulation.

Des études similaires sur l'extension du langage
VHDL ont également eu lieux.

En fait, les systèmes tendant à être dominés par le
logiciel, l’adoption d’une méthodologie basée sur
un langage HDL n'est pas vraiment appropriée.

On peut par ailleurs noter que VHDL International,
qui a le plus d’intérêt dans la persistance du langage
VHDL, investie dans le langage (Rosetta) et semble
abandonner les efforts d’extension de VHDL.

C. Méthodologies basées sur C++

La conception de systèmes sur puces (SoC) basé
sur le langage C a déjà donné des résultats
intéressants en terme de gain en temps de
développement et de vérification [16]. Ce langage
est typiquement choisi pour sa popularité dans le
développement logiciel.

Logiciel

66% Mémoire

22%

Réutilisati
on d’IP

6% Glue

6%New

Matériel

Les méthodologies utilisant des langages basés sur
le C++ tels SystemC, Ocapi, SpecC ont pour
objectif de gèrer la complexité et l'hétérogénéité des
SoCs. Le principe de l’Orienté Objet permet de
séparer l’interface de l’implémentation, et favorise
la réutilisation à un niveau d’abstraction élevé.

Une des questions qui se posent est la suivante :
pourquoi C++ et non le langage Java ?
Principalement, pour simuler des systèmes très
complexes, la rapidité est exigée.

 La technologie de compilation à base de
C++ est plus évoluée, mure et fournit des
exécutables au temps de simulation acceptable.

 Java empêche l’accès direct au matériel ce
qui n’est pas favorable pour écrire un code
d’initialisation et les pilotes des composants
matériels

 C/C++ permet la réutilisation plus facile
des cœurs de fonction développés pour
implémenter et simuler les systèmes
embarqués.

CynApps propose Cynlib [17]. C’est une source
ouverte basée sur C++ pour modéliser le matériel. Il
s’agit d’un ensemble de classes C++ qui
implémente des concepts existants dans les
langages matériels tels que Verilog et VHDL. La
limitation majeure de Cynlib est que la suite de
CynApps vise spécialement la conception du
matériel. Une extension de ce langage est faite au
sein du groupe CIRCUS (Codesign Interest for
Research Captivated US) : Syslib. C’est un langage
qui repose sur deux langages existants, Cynlib et
C++. Il élargit les fonctionnalités de Cynlib dédiées
pour le niveau système. Un outil graphique appelé
Picasso supporte ce langage et permet de définir
une méthodologie appelée Syslib_Picasso qui fait le
lien entre le langage Cynlib et l’outil Picasso pour
modéliser des SoCs selon la méthodologie CIRCUS
[18].

SpecC est une extension de ANSI-C [12].
L’initiative de SpecC (STOC : SpecC Technologie
Open Consortium) vise à favoriser une
méthodologie de Co-Design focalisée sur les IPs
(Propriété Intellectuelle) pour la spécification, la
modélisation et les systèmes embarqués au niveau
système. Le développement de ce langage, depuis
1999, est mené par Daniel Gajski à l’université de
California–Irvine et financé par Toshiba [4].

Actuellement, l'initiative SystemC semble être plus
avantagée par rapport aux autres approches [20]:

 SystemC est supporté par les principales
sociétés de la CAO et de l’industrie
électronique et établit une plate-forme de
modélisation commune qui sert aussi comme
base pour l’échange des IPs et des
spécifications exécutables.

 OSCI (Open SystemC Initiative) établit un
mécanisme ouvert pour certaines compagnies

pour faire des contributions techniques et les
partager avec des communautés larges.

 Tout comme SpecC, SystemC répond aux
besoins techniques pour le matériel, le software
et répond en ce sens aux attentes des
concepteurs systèmes.

STOC et OSCI investissent énormément au profit
de l’interopérabilité afin de garantir le maximum de
bénéfices pour la conception système [18].

Enfin, notons que, d'après CynApps, Cynlib est
compatible avec SpecC et Open SystemC.

Nous proposons d'aborder dans la suite de cet
article l'approche associée à SystemC.

III. APPROCHE DE CONCEPTION ET DE SPECIFICATION A
PARTIR DE SYSTEMC

Le but de SystemC est de définir une plate-forme
de modélisation à base de C++ (librairies de classes
C++) et d’un noyau de simulation [17]. Il supporte
la spécification de niveau RTL, de niveau
comportemental et de niveau système.

Abstract
RTOS

RTOS
RTL

BCA

Untimed Functional

Timed Functional
Partionnement HW/SW

Bus cycle occurate

Cycle occurate
synthetisable

Design exploration

Analyse de
performance du
partionnement
HW/SW

Raffinement

Hardware Software

Target/core(s
Scheduling)

Task Partitioning

UTF

TF

Raffinement R affinement

Fig. 3 : Flot de raffinement SystemC (source : OSCI)

L’OSCI propose une méthodologie de raffinement
progressive d’une spécification, en débutant avec la
description du système à un très haut niveau, puis,
en s’approchant progressivement, étape pas étape,
du comportement final du circuit. Il est possible
d'entrer la spécification au niveau fonctionnel et de
la simuler pour en vérifier la validité. Puis, le code
est raffiné au niveau comportemental; pour cela, on
ajoute entre autre des notions de temps, ce qui
permet de faciliter l'étape de partitionnement.
Enfin, on raffine les spécifications vers des phases
d'implantation. Le flot complet, présenté par le
figure 3, n’utilise qu’un seul langage du début à la
fin, c'est là son principal intérêt.

On peut donc, par raffinement successif, passer
d’un niveau donné au niveau suivant sans avoir à
réaliser un changement de langage de modélisation
qui posait obligatoirement des problèmes

auparavant (sémantique différente, syntaxe
différentes etc.), sans même parler du temps
inutilement dépensé pour cela.

C'est principalement le niveau de détail du temps
qui différencie les niveaux d'abstraction en
SystemC. La conception est progressivement
raffinée par l’ajout du code du matériel ainsi que le
chronométrage nécessaire.

Les principaux niveaux d’abstraction liés au flot
matériel sont :

Untimed Functional Level (UFL)

L’objectif est de réaliser une validation des
concepts de base du système, et d’exprimer le
système sous forme de modules fonctionnels sans
chronométrage de l'information et de vérifier son
fonctionnement avant de poursuivre les étapes
suivantes du flot. On produit donc une spécification
exécutable où l’architecture du système n’est pas
encore définie.

Timed Functional Level (TFL)

A ce niveau, on modélise des « pseudo-temps »
d’exécution pour chaque module, tout en respectant
toujours les contraintes du système (cahier des
charges).

Bus Cycle Accurate Level

A ce niveau, la modélisation des communications
entre les différents blocs de notre système est
nécessaire. Normalement la modélisation des
canaux de communication doit être faite cycle par
cycle. Par contre le comportement des modules
peut rester au niveau UFL.

Cycle Accurate Level

A ce niveau, tout le fonctionnement du système doit
être maintenant spécifié au cycle près.

IV. OUTILS ET ENVIRONNEMENTS AUTOUR DE SYSTEMC

Comme nous l'avons vu précédemment, la
conception de SoCs basée sur le C a déjà donné des
résultats intéressants en terme de gain en temps de
développement et de vérification [15]. Cependant,
une approche système ne repose pas simplement sur
le langage. Il est essentiel d'avoir un support en
terme de méthodologie et une disponibilité d'outils
EDA (Electronic Design Automation). Le choix
d'un langage est aussi conditionné par la
disponibilité d'outils de spécification, de synthèse et
de simulation utilisant ce langage.

Au niveau système, spécialement au début du cycle
de vie du produit, les complexités de
l’implémentation et la technologie du produit
exigent une méthodologie de conception robuste et
une suite d’outils sophistiqués pour automatiser le
processus. De nombreux outils de synthèse
d'architectures, permettant de passer de manière

automatique d'une spécification de niveau
comportemental à une spécification de niveau
structurel (RTL), sont par exemple déjà en cours de
développement comme le suggère la méthodologie
proposée par l'OSCI [20].

Dans la suite de ce paragraphe, nous présentons les
principaux outils qui ont adopté SystemC comme
langage support.

A. CoCentric SystemC Compiler (CCSC)

CCSC de Synopsys permet de synthétiser une
description matérielle à partir d’un code source
rédigé avec SystemC (figure4). C’est un outil utile
pour les équipes de conception qui partent d’une
description C/C++ de niveau système pour la partie
matérielle pour ensuite migrer vers :

 Une description niveau « Porte Logique »,
 Une implémentation Verilog synthétisable

ou
 Une description VHDL-RTL.

Spécification Fonctionnelle

Spécification Architecturale

RTL

Gate Level Netlist

SystemC Compiler
Flot comportemental

SystemC Compiler
Flot RTL

Raffinement
(communication, temps,

mémoires)

Raffinement
(allocation, ressources,

FSM)

Fig. 4 : Flot d’implémentation matériel avec CoCentric
SystemC Compiler

SystemC Compiler est un outil qui peut accepter
des descriptions SystemC comportementales et
SystemC RTL et exécute la synthèse
comportementale ou la synthèse RTL.

 B. CoCentric System Studio

Cet outil de Synopsys permet la vérification aux
différents niveaux d’abstraction avec SystemC.
Avec cet outil, il est possible de vérifier la
spécification logicielle d'un SoC en combinant
différents niveaux d'abstraction (co-simulation
multi-niveaux), ce qui en fait son principal intérêt
[3].

C. TestBuilder

TestBuilder a été développé par Cadence à l'origine
indépendamment de SystemC. Cet outil se présente
comme une bibliothèque de classe C++ permettant
le développement de TestBenchs avancés. Il utilise

la méthodologie de vérification basée sur les
transactions (The Transaction-Based Verification).
Bien que SystemC possède les bases nécessaires
pour générer des TestBenchs (concurrence, etc.),
TestBuilder est particulièrement bien adapté à cet
objectif [2]. TestBuilderSC est la version de
TestBuilder dédiée à SystemC.

V. TRAVAUX DE RECHERCHE AUTOUR DE SYSTEMC

Il semble établi que SystemC est un candidat
privilégié au futur standard pour la spécification de
SoCs. Actuellement, SystemC est principalement
utilisé (ou expérimenté) en tant qu’environnement
de modélisation et de simulation. Des travaux sont
en cours pour contribuer à l‘approche SystemC en
tant que méthodologie de raffinement couvrant tous
les niveaux d’abstraction (enrichissement de la
librairie de classes pour garantir la standardisation).
Les sociétés telles Coware et Synosys travaillent
sur l’automatisation du flot de conception associé à
SystemC à travers la mise en œuvre d’outils de
synthèse comme N2C et CoCentric Compiler et
d’outils de vérification comme CoCentric Studio.

On peut également mentionner les travaux suivants
:

CIRCUS (École Polytechnique 2002) [10]

 Analyse et modification de
l'ordonnancement des tâches du simulateur de
SystemC 2.0

 Analyse et conception d'une plate-forme
de Co-Design

 Comparaison de SystemC de niveau UTF
et Syslib FL.

LASSO (Laboratoire d'Analyse et de Synthèse des
Systèmes Ordinés) [9]

 Modification de SystemC, méthodologies
de modélisation et modélisation UML pour Co-
Design.

 Visualisation des résultats de simulation
de matériel modélisé avec SystemC.

ENSTA (Ecole Nationale Supérieur des
Technologies Avancées, Paris) [6]

 Vérification formelle appliquée à
SystemC.

IRIT (Institut de Recherche en Informatique de
Toulouse) [8]

 Elaboration d'une bibliothèque de
composants de simulation de processeurs
réutilisables fondée sur SystemC.

VI. CONCLUSION ET PERSPECTIVES

Les systèmes deviennent de plus en plus
complexes. La densité de transistors et de

composants par circuit augmente et rendra, dans un
avenir proche, le travail de conception ingérable.
Plus que jamais, des principes et règles à suivre
s’imposent, dont entre autre la réutilisation ou
l’abstraction des spécifications du système.
Plusieurs initiatives ont été lancées dans cette
direction : SystemC, SpecC, Cynlib pour ne
nommer que les plus populaires. Elles reposent sur
de nouvelles méthodes de modélisation matérielle
(et logicielles dans certains cas) basé sur le langage
C++ et les fondements de l’orienté objet. SystemC
semble être l’approche la plus populaire
actuellement.

Toutefois, il ne faut pas perdre de vue que SystemC
est un langage qui est en train de mûrir.
Aujourd’hui, beaucoup de compagnies et
d’universités s’y intéressent et désirent l’intégrer
dans leurs outils. Cependant, comme pour tout
langage/produit en cours de maturation, tout n'est
pas encore opérationnel avec SystemC et de
nombreux travaux demeurent encore inachevés. Les
fonctionnalités de SystemC sont en train de
s'enrichir avec le développement de librairies de
classes génériques ou spécifiques. De leur coté, les
outils associés qui sont en train d’apparaître vont
permettre d’enrichir la méthodologie de « design »
associée à ce langage.

Parmis les évolutions futures prévues au roadmap
SystemC, on peut citer :

 Dans les futures version 2x, des méthodes
de synchronisation de processus (simulation
software), d’interruption, ainsi que la
modélisation de performances du système
devraient être intégrées.

 Les versions 3.x devraient permettre la
modélisation de systèmes contenant des
ordonnanceurs et des RTOS,

 Les versions 4.x doivent de leur coté
permettre la modélisation des systèmes
analogiques avec les systèmes numérique.

Rappelons que SystemC est né d’un besoin qui se
fait pressant par rapport aux contraintes et à la
complexité des systèmes actuels. L’objectif final de
SystemC est d’offrir un langage permettant de
modéliser tous les niveaux et donc de remplacer les
laborieuses descriptions multi-langages
malheureusement habituelles en conception de
SoCs.

Pour passer d'une description de niveau système à
l’implémentation, les différents niveaux
d’abstraction doivent être bien définis et les
méthodes de raffinement bien précises et claires.
Nos travaux en cours en ce sens consistent à définir
une méthodologie de raffinement aux niveaux
systèmes avec ce langage. Nous proposons de
traiter quatre types de raffinements de l’Orienté
Objet définissant, plus généralement, le raffinement
dans le flot matériel avec SystemC [22] : le

raffinement d’atomicité, le raffinement
algorithmique, le raffinement des données et le
raffinement des communications.

Notre démarche de raffinement consiste en
l’enchaînement de ces étapes élémentaires qui va
nous permettre de conduire un système exprimé du
niveau fonctionnel jusqu’au niveau cycle près.
L’ordre et le nombre de répétitions de chacune de
ces étapes ne sont pas figé; cela dépendra de la
complexité et de la nature du système à traiter.

Références

[1] Alan Fitch, "Application of SystemC to hw/sw Co-
Design". IEE Seminar - Hardware-software Co-Design.
December 2000.
[2] C. Norris Ip, Stuart Swan "Using Transaction-Based
Verification in SystemC ", rapport technique CADENCE
Inc. 11/6/2002
[3] "Cocentric System Studio enables verification at
multiple levels of abstraction with systemC", rapport
technique janvier 2002 disponible à l’adresse
www.synopsys.com/products.
[4] Daniel D.Gajski, Rainer Domer , Jianwen Zhu, “IP-
Centric methodology and design with the SpecC
Language" NATO-ASI Workshop on System Level
Synthesis, Aout 1998.
[5] EDN issue 5 Juin 2000
[6] http://lester.univ-ubs.fr/
[7] http://www.eda.org/ovl/
[8] http://www.irit.fr/
[9] http://www.iro.umontreal.ca/labs/lasso/
[10] http://www.polymtl.ca/
[11] http://www.sldl.org/
[12] http://www.SpecC.org
[13] http://www.superlog.org
[14] http://www.systemc.org/
[15] K.WAKABAYASHI,T.OKAMOTO, "C-Based SoC
Design Flow and EDA Tools: An ASIC and System
Vendor Perspective," IEEE transactions on computer
aided design of integrated circuits and systems,
VOL.19,NO.12,Décembre 2000,pp.1507-1522.
[16] K.WAKABAYASHI,T.OKAMOTO, "C-Based SoC
Design Flow and EDA Tools: An ASIC and System
Vendor Perspective," IEEE transactions on computer
aided design of integrated circuits and systems,
VOL.19,NO.12,Décembre 2000,pp.1507-1522.
[17] L. Filion, G. Bois, and E. M. Aboulhamid, "Syslib:
A System-Level Language Extended from Cynlib for
SoC," Proceedings of The 11th Annual International
HDL Conference, San Jose, CA, March 11-12, 2002, pp.
191-197
[18] L. Filion, G. Bois, and E. M. Aboulhamid, ”Picasso-
Syslib : méthodologie complète de conception des
systèmes embarqués”, cours ELE6904 Seminaires de
l’Ecole Polytechnique Montréal
[19] Luc Séméria, "Applying pointer analysis to the
synthesis of hardware from C", mémoire de thèse en
génie électrique Université de Stanford, June 2001.
[20] Pete Hardee " Getting Hardware and Software to
Speak the Same Language". Dedicated Systems
Magazine pp 6-9, July 2001.
[21] S. Benedetto and G. Montorsi, "Design of parallel
concatenated convolutional codes" IEEE Trans.
Commun., vol. 44, pp. 591-600, May 1996.

[22] Steve Holloway, David Long, Alan Fitch, "From
Algorithmic to SOC with SystemC and Cocentric System
Studio", Synopsys Users Group (SNUG) Europe 7.,8
Mars 2002.

