SENDA’08 Monastir, Tunisia, May 08-10 2008

APPROCHE DE CONCEPTION DE SYSTEME

D’EXPLOITATION TEMPS REEL POUR UNE ARCHITECTURE
MULTIPROCESSEUR RECONFIGURABLE

Kais LOUKIL, Hajer KRICHENE, Nader BEN AMOR, Mohamed ABID

Kais_loukil@ieee.org RESUME
Ecole Nationale d’Ingénieur de Sfax,
Actuellement on assiste a une large diffusion des produits électroniques embarqués chez une
large gamme d’utilisateurs. Ces systémes permettent d’exécuter divers types d’applications de
plus en plus complexes. Par conséquent, I’architecture multiprocesseur est I’une des solutions
pour répondre aux exigences des nouvelles applications. Nous proposons dans ce papier une
approche de conception de systeme d’exploitation temps réel pour les architectures
multiprocesseur. Il s’agit d’une couche générique de communications inter-processeur qui
permet d’adapter les systémes d’exploitation monoprocesseur aux architectures
multiprocesseur. Nous présentons également les étapes qui ont conduit a la mise en place d’une
plateforme de prototypage multiprocesseur reconfigurable. Cette couche a été validée a travers
I’application de syntheése d’images 3D.

Mots clefs
MPSoC, RTOS, couche de communication inter-processeur.

1 INTRODUCTION

Avec le progres de la capacité d’intégration de centaines de millions de transistors sur
une seule puce et I’avancement au niveau de la conception des cceurs de processeurs embarqués.
Les nouvelles technologies s’orientent vers 1’intégration sur une méme puce de plusieurs
processeurs, DSP, IP matériels et logiciels, mémoires, bus partagés, etc. Nous parlons ainsi de
systemes multiprocesseurs mono puce (MPSoC) [1, 11, 12]. En fait, les systémes
multiprocesseurs sont 1’une des solutions pour répondre a la complexité croissante des systémes
intégrés utilisés pour des applications telles que les applications multimédia.

En plus, et du fait de la complexité croissante de ces systemes, de la présence de fortes
contraintes temps réel, de la limitation des ressources disponibles, tant en mémoire qu’en
énergie disponible et donc en puissance de calcul, mais également de la pression exercée par le
marché sur ces produits, 1’usage de systémes d’exploitation temps réel (RTOS) est devenu
indispensable dans les systemes embarqués [2, 13, 14]. Par ailleurs actuellement, la plupart des
RTOS existants ne supportent pas les architectures multiprocesseur d’ou la nécessité de trouver
des méthodes pour répondre aux exigences de tel systemes. Deux solutions peuvent étre
distinguées la premiere consiste a développer de nouveaux systemes d’exploitation qui
supportent des architectures multiprocesseurs. La deuxiéme solution consiste a étendre les
systémes existants par d'autres fonctionnalités pour qu’ils puissent supporter ces architectures.
Dans ce cadre se situe notre travail qui consiste a étendre un RTOS existant par une couche de
communication inter processeur pour gérer la communication entre les processeurs de notre
systeme.

Ce papier est organisé de la facon suivante. La premiére section, est consacrée pour la
présentation des différents modeles de communication inter-processeur. La deuxiéme section
présente les caractéristiques de I’environnement utilisé ainsi que la topologie de 1’architecture

multiprocesseur adopté. La troisieme section illustre la couche de communication
interprocesseur implémentée ainsi que sa validation. On terminera par quelques conclusions.

2 Couche générique de communication inter-processeur

Dans le cadre d’un systéme multiprocesseur, il est nécessaire que les processeurs se
communiquent. Cette communication est accomplie par envoi de messages (Message Passing)
[9].

2.1 Modele de communication inter-processeur
Généralement, les communications peuvent étre synchrones ou asynchrones, bloquantes ou
non bloquantes. Les communications synchrones sont plus lentes et généralement bloquantes,
c'est a dire que les deux processeurs engagés dans la communication doivent attendre la fin de
la communication pour continuer.
Par contre les communications asynchrones sont la plupart du temps non bloquantes. En
fait, quand un processeur veut envoyer un message a un autre, il envoie le message, et il peut
immédiatement reprendre son exécution sans se soucier de l'autre processeur quand il recevra
le message. C'est le principal avantage des communications asynchrones.
Dans le modéle de la couche de communications inter processeur implémentée, nous avons
considéré une mémoire partagée dont 1’accés est protégé par le mutex hardware et une file de
messages (Message Queuing) a travers laquelle les processus des nceuds envoient et regoivent
des messages. Ainsi, la couche de communications développée est un ensemble de routines
permettant d’envoyer et de recevoir des messages de différentes facons en combinant les
parametres suivants :
. Envoi/Réception bloquant et non bloquant ;
. Envoi/Réception de messages uniques ou composes ; « Envoi de
messages synchrone ou asynchrone.

2.2 Différents modeles de communication

Il existe deux modéles principaux de communications pour 1’échange d’information,

appelés aussi modeles de synchronisation, le modele synchrone et le modéle asynchrone [10].
2.2.1. Modele synchrone : Dans le cadre d’une communication synchrone (Synchronous
Message Passing), I’expéditeur est sir que le destinataire a recu le message. D’autre
part, I’expéditeur d’une demande doit attendre une réponse du récepteur prévu avant
de pouvoir effectuer le traitement restant. Le délai d’attente de 1’émetteur dépend
entierement du temps nécessaire au récepteur pour traiter la demande et envoyer une
réponse. Typiquement, le temps d’attente de la réponse a la demande est assez long.

2.2.2. Modéle asynchrone : Dans le cadre d’une communication asynchrone
(Asynchronous Message Passing), I’expéditeur envoie son message dés qu’il soit prét,
et le récepteur peut éventuellement attendre si le message n’est pas encore arrivé.

Avec ce modele, I’émetteur n’attend jamais, mais aussi avec moins de contrdle sur la
réception. La communication asynchrone peut étre soit bloquante, soit non bloquante, ou bien
par interruptions.

2 .2.2.1. Mode bloguant : Pour I’envoi de message, 1’appel a la primitive d’envoi se termine
lorsque le message a quitté 1’expéditeur. Toutefois, cela ne signifie pas que le destinataire I’a
bien regu. Pour la réception, I’appel a la primitive de réception se termine quand le message est
arrivé et qu’il est copié dans le buffer de réception.

2.2.2.2. Mode non bloquant : Le but de ce mode est de diminuer le temps d’attente. En fait, La
couche logicielle expédie ou regoit dés que c’est possible. L’exécution d’une telle
communication asynchrone non bloquante s’effectue aussi sans attendre qu’elle soit finie. Il
s’agit donc de masquer le temps des communications.

2.2.2.3. Mode par interruptions : Ce mode est défini pour les communications asynchrones, et il
est rarement disponible. Dans le cadre de ce mode, I’arrivée d’un message génére une

interruption au niveau de I’application.
2.3 Choix conceptuelle:

Partant des deux modeéles de communication présentes, nous avons été amenés a adopter le
modele asynchrone comme modele de communication (Asynchronous Message Passing). En
fait, la communication a travers des files d’attente est, par nature, asynchrone dans la mesure
ou les messages sont envoyés a une file d’attente et recus d’une file d’attentes dans des
processus différents.

2.3.1. Gestionnaire de messages : La gestion des messages de communication est tributaire d’une
part a la gestion de la file de communication et ses buffers de messages, et d’autre part a la
gestion du support de communication (mémoire partagée).

2. 3.1.1. Gestion de la file de communication : La file d’attente est un objet permettant la
communication asynchrone de messages entre des taches. Les principales propriétés mises en
jeu pour la gestion de cette file de communications sont les suivantes :

» Capacité maximale de la file : En fait, la file d’attente (pending-message-queue) définit
un nombre maximal et bien déterminé de messages en attente. Cette propriété est
indispensable pour éviter I’échec de I’envoi de messages.

* Propriété d’expiration . Cette notion de « timeout », liée au temps, dispose d'un meilleur
contrle & nos messages. Elle détermine la durée maximale d'existence d'un message
dans le systeme avant son élimination. Cette propriété est utilisée en cas d’une
communication asynchrone bloquante.

* Propriété d’optimisation : 1l s’agit, en fait, d’employer la notion d’ « importance » (ou
d’ « urgence ») qui affecte 1’ordre dans lequel les messages sont envoyés vers la file de
communications. Le parametre de I’importance d'un message détermine 1'emplacement
du message dans la file d'attente. Les messages envoyés avec un degré d’urgence élevé
sont placés plus haut dans la file d'attente, tandis que ceux affectés d'une importance
faible sont placés plus bas dans la file. Cette propriété est utilisée dans les deux cas de
communications étudiés : bloquante et non bloquante.

2.3.1.2. Gestion des tampons de messages : Un message est caractérisé par une longueur, un type
(unique ou composé), un degré d’urgence et une identification. La longueur de message est
mesurée par octets. Cependant, le nombre maximal d’octets définissant la longueur est fixé
lors de la création de la file de messages. Ainsi, si la taille du message a envoyer est
supérieure a celle déja définie lors de I’initialisation de la communication, le message
correspondant sera rejeté.

2.3.1.3. Adressage mémoire : La mémoire partagée est repartie en un nombre bien défini de
blocks ayant tous la méme taille en octets. En fait, la taille d’un block est égale a la taille
maximale d’un buffer de message. Ainsi, le nombre de buffers de la file d’attente ne doit pas
dépasser le nombre total de blocks de la mémoire partagée, sinon la création de la file sera
échouée et donc la communication ne sera pas établie.

Pour ce faire, et afin de pouvoir gérer les buffers de messages transmis vers la mémoire
partagée, nous avons tenu en considération :

* Attribution d’un block mémoire a un seul buffer de messages.

» Utilisation des identificateurs pour designer les taches.

« Utilisation des identificateurs pour designer les processeurs.

3 Etude de cas : Conception d’architecture multiprocesseur a travers ’environnement
d’Altera
Afin de mettre en place un systéme multiprocesseur, plusieurs topologies d’architectures

multiprocesseurs sont envisagées [3] :

» Les systémes a mémoire partagee : ce type de mémoire présente l'avantage de permettre un
partage immédiat des données, facilitant la programmation. Mais le nombre de processeurs
ajoutés sur une méme mémoire est limité [4].

» Les systemes a meémoire distribuée : dans ce cas, chaque processeur possede sa propre
mémoire. La modification par I'un des processeurs de sa propre mémoire n'a pas d'influence
sur celle des autres processeurs. Cela suppose donc de mettre en place une communication
explicite entre les processeurs. C'est au programmeur de gérer la plupart des détails de la
communication entre les processeurs. Cette topologie rend également difficiles les
échanges complets de structures de données, elle pose des problémes d'accés non uniformes
dans le temps, et elle rend la cohérence de données plus dure a maintenir.

» Les systémes a mémoire distribuée, partagée : Ce type de mémoire est un mélange des deux
premiers. Dans cette architecture, il y a plusieurs groupes de processeurs partageant de la
mémoire. Cela permet, dans une certaine mesure, de tirer les avantages des deux précédentes
architectures et d'en réduire les inconvénients [5].

Dans le but de choisir une topologie d’architecture multiprocesseur il a été convenu
d’étudier les caractéristiques de notre environnement de conception (le kit excalibur
d’ALTERA). Cet environnement utilise le bus avalon qui peut étre vu comme un ensemble de
signaux prédéfinis, permettant de connecter un ou plusieurs blocks IP. En plus, il est généré
automatiquement par le NIOS-11 Builder. Le bus Avalon a comme caractéristiques principales
c’est qu’il est simultané multi maitres ; les maitres peuvent accéder simultanément a leurs
esclaves et en cas de besoin les maitres peuvent échanger des données a travers une mémoire
partagée. Généralement ’acces a cette mémoire est géré par le systéme d’exploitation utilisé
[7]. Comme solution on va utiliser un module d’un RTOS implémenté en hardware « mutex »
pour assurer la gestion des acceés concurrents aux mémoires partagées entre les différents
processeurs [8]. Le mutex fournit une opération « test-and-set » a base de matériel, permettant
au logiciel dans un environnement multiprocesseur de déterminer le processeur qui possede
I’acces a une ressource partagée. Le mutex est utilisé dans la conjonction avec la mémoire
partagée pour mettre en ceuvre des dispositifs de coordination d'inter processeurs
complémentaires.

Apres 1’étude faite sur I’environnement d’altera nous avons adopté la topologie
d’architecture multiprocesseur a mémoire distribuée, partagée. Cette plateforme se compose
d’un ensemble de sous systémes qui peuvent communiquer ensemble a travers des mémoires
partagées dont I’accés est protégé par des mutex Hardware fournis avec 1’environnement
d’Altera (figl). Chaque sous systéme posseéde son propre RTOS et en cas de besoin ils peuvent
échanger des données a travers la mémoire partagée.

RTOS_ticks. Boot_rom0 Boot_rom1 RTOS_ticks
TimerD OnChipMem NIOS32 NIOS32 OnChipMem Timer1
CPUO
e
10 EiY 1] < I 1l 10 1l 10 10
< CPUO-Data
& HIL HI7 11 Il 1 11
< cP 3 >
Il T 1 I | I
< I I I&% T ﬂ>
=1 i ‘ ﬂ>
Gl (T d L | CTLT | L
UARTO Aveion Tastaie | TR AT | AvenTasien || uarrs
1T I 3T 1T 11 B
CEICETET [
IDT17V061 Mémoire panagée IDT17V0561
SRAMO OnChipMemory SrRAM1

Figure 1. topologie adoptée pour une architecture multiprocesseur
Ainsi notre environnement de prototypage multiprocesseur est mis en place. Dans la suite
de ce papier nous proposons une couche générique de communications inter-processeur, qui
permet d’adapter un systéme d’exploitation monoprocesseur aux architectures multiprocesseur.
4 Expérimentation : Implémentation des routines de communication:
4.1 Communication inter-processeur:
L’établissement d’une communication entre plusieurs processeurs nécessite différentes
phases telle que I’initialisation de la communication, 1’envoi et la réception des messages
4.2.1. Initialisation de la communication :
Une étape d’initialisation de la communication est nécessaire avant que les processeurs ne
commencent I’envoi et la réception des messages. Cette phase contient les €tapes suivantes :
o Définir les propriétés de la queue de message et ce a travers la fonction
« definirPropriétésMsgQueue() » o S’il y a un espace suffisant dans la mémoire
partagée la queue de message sera crée sinon un message d’erreur apparait.
4.2.2 Réception d’un message :
La phase de réception contient les étapes suivantes :
o La vérification de I’existence d’une queue de message o Recevoir le
message avec la fonction « getMessageBuffer() »
Si le message regu est NULL donc il y a une erreur d’émission sinon on
décrément le nombre de messages dans la queue de message et on dé
alloue le bloc mémoire réserve au message regu
4.2.3 Envoi d’un message :
La phase d’envoi d’un message comporte les étapes suivantes : o
Vérifier ’existence d’une queue de message

o

o S’assurer que la taille du message a envoyer est inférieure a celle définie lors de
I’étape d’initialisation.

o Lorsque la queue de message est pleine et il existe un message qui a un degré
d’urgence inférieur a celui du message a envoyer on dé alloue le bloc mémoire
associ¢ au message de plus petit degré d’urgence.

o Si notre queue de message peut contenir d’autres messages on crée un buffer de
messages et on I’insére dans la queue de message.

o Incrémenté le nombre de messages dans la queue de messages

4.2 Validation :

Aprés avoir implémenté les différentes routines de communication inter-processeur, dans
un premier temps, nous avons opté a des tests pour chaque routine a part. Dans nos tests on a
utilisé le systéme d’exploitation temps réel monoprocesseur MicroC_OS-I1 fournit avec le kit
excalibur d’altera. Il est a signaler que le code source est ouvert et il écrit en langage C, ce qui

a facilité ’intégration de la couche de communications inter-processeur implémentée dans ce
systéme d’exploitation. Le portage de notre nouveau systeéme d’exploitation « multiprocesseur
» a été fait en utilisant I’environnement IDE fourni avec notre kit de conception.

Dans un second temps, et aprés avoir validé toutes les fonctions implémentées nous avons
optés a la validation de cette couche a travers 1’application de synthése d’images 3D sur la
plateforme multiprocesseur mise en place. Pour ce faire en premier lieu on a extrait le graphe
de tache de cette application qui représente les différentes taches de I’application ainsi que les
données échangées entre eux. En suite, et d’'une facon manuelle on est passés a 1’étape de
partitionnement de I’application sur les différents processeurs.

5 Conclusion
Le travail entrepris a permis d’étudier de pres les contraintes et les problemes engendrés par

le prototypage des systemes multiprocesseurs temps réel sur des architectures reconfigurables.

En premier lieu, des études bibliographiques sur les architectures des systemes multiprocesseur,

a été faite pour explorer le domaine et avoir une idée sur leurs caractéristiques. En second lieu

on a visé la mise en place d’une plateforme multiprocesseur ainsi que la proposition d’une

couche générique de communication inter-processeur qui permet d’adapter les systémes
d’exploitation monoprocesseur pour des architectures multiprocesseur. On a terminé par la
validation de la couche implémentée sur le systeme d’exploitation temps réel MicroC OS-II.

Notre objectif a court terme consiste a valider la couche de communication proposé sur d’autres

systemes d’exploitation.

Les résultats obtenus durant ce travail ont permis d’ouvrir divers axes de recherche. Le
premier axe vise I’exploration de 1’espace des solutions architecturales. Le concepteur se trouve
devant divers types d’architectures d’ou la nécessité de mettre en place des outils qui aident le
concepteur a choisir I’architecture adéquate a son systémes et surtout dans le domaine des
systémes sur puce puisqu’ils sont mobiles avec des ressources limitées et évoluant dans des
environnements variables. Le deuxiéeme axe concerne le partitionnement automatique de
I’application sur une architecture multiprocesseur. 6 References
[1] Bambha, N., Kianzad, V., Khandelia, M., and Bhattacharrya, S.S., Intermediate

Representations for Design Automation of Multiprocessor DSP Systems. In Design

Automation for Embedded Systems, vol. 7, 307-323, Kluwer Academic Publishers, 2002.
[2] Le Moigne, R.; Pasquier, O.; Calvez, J.-P.; “A generic RTOS model for real-time systems

simulation with systemC”, Design, Automation and Test in Europe Conference and

Exhibition, Feb. 2004.

[3] Conception d’un systéme a haute performance, le calcul parallele , CETMEF 2004.

[4] Amer BAGHDADI: Exploration et conception systématique d’architectures
multiprocesseurs monopuces dédiées a des applications spécifiques these PhD, TIMA
France.

[5] CM: The CM-5 Connection Machine : A Scalable Supercomputer, W. Daniel Hillia and
Lewis W.Tucker. Communication of the ACM, November 1993, Vol. 36, No. 11.

[6] J.J. Labrosse, « Micro C/OS-II, the Real-Time Kernel”, Second Edition.

[71 http:// www.altera.com

[8] K. loukil, Y. aoudni, G. Gogniat, M.abid, J.L. philippe, Estimation du temps d’exécution
des systemes sur puce temps réel. GEI 2007

[9] « Présentation rapide de MPI : Message Passing Interface », Géraud Krawezik, LRI —
Université de Paris Sud, EADS CCR — Blagnac, 28 Octobre 2003.

[10] Ph. Marquet, « Bibliothéque de communications », Maitrise en Informatique, Université
des sciences et technologies, Lille.

[11] L.Wang and N. Manjikian. A performance study of chip multiprocessors with integrated
dram. In Proc. 2003 Symp. on Perf. Eval. of Computer and Telecommunications Systems,
Montreal, Quebec, July 2003.

[12] N. Manjikian. Multiprocessor enhancements of the SimpleScalar tool set. ACM Computer
architecture News, 29(1):8-15, March 2001.

[13] Dongkun Shin and Jihong Kim. Power-Aware Scheduling of Conditional Task Graphs in
Real-Time Multiprocessor Systems. In Proc. International Symposium on Low Power
Electronics and Design (ISLPED), August 2003.

[14] Victor B. Lortz, Kang G. Shin, Fellow, IEEE, and Jinho Kim [14]MDARTS: A
Multiprocessor Database Architecture for Hard Real-Time Systems IEEE transactions on
knowledge and data engineering, VOL. 12, NO. 4, JULY/AUGUST 2000

[15] M. Ben Said, K. Loukil, N. Ben Amor, M. Abid, Jean Philippe Diguet «A timing constraints
control technique for embedded real time systems» Design and technology of integrated
Systems (DTIS 2010) March 2010

[16] Hanen Abbes, Kais Loukil, Hafedh Abid, Mohamed Abid, Ahmad Toumi «
Implementation of Photovoltaic Maximum Power Point Tracking Fuzzy Logic Controller
on FPGA » Journal of Information Assurance and Security, pp. 097 — 106, Vol. 11, Issue
2,2016

