Hardware accelerator for self adaptive Augmented
Reality systems

Tarek FRIKHA, Nader BENAMOR, Kais LOUKIL,
Agnes Ghorbel, Mohamed ABID

CES-Laboratory
Sfax SUD University, National Engineering School of Sfax
Sfax TUNISIA
tarek.frikha@gmail.com

Abstract: The emergency of multimedia applications particularly
in mobile embedded systems puts new challenges for the design
of such systems. The major difficulty is the embedded system’s
reduced energy and computational resources that must be
carefully used to execute complex application often in
unpredictable environments. So the system architecture must be
energy efficient and flexible enough to adapt resources to
application requirements to manage the environment
architectures and mobile’s constraints. The augmented reality is
a very promising 3D embedded multimedia application. It’s
based on the addition of specific 3D’s animations on a video flow.
In this paper, we describe our concept of flexible architecture
and we give implementation results based on Pixel Shader
Accelerator. This is the first step of the project and we compare
various hardware and software implementation.

l. INTRODUCTION

The multimedia embedded applications inflate the
computer sciences domain. Watching a HD video or a 3D
movie is now possible not only with a 3D TV but also possible
on small portable systems such as smartphone and tablets.

The design of such systems faces new challenges due to the
limited available resources and the external environment
fluctuations such as noise, bandwidth fluctuations, available

energy...)

To tackle those problems, adaptive systems are a
promising solution. Those systems can adjust the used
hardware resources according to the application requirement
and the environment state. Algorithmic adaptations (based on
applications parameter and algorithm tuning) can also be used
for energy saving purpose or QoS adaptation.

In this paper, we present preliminary results of the design
of an adaptive embedded system based on reconfigurable HW
variable units dedicated to augmented reality applications.

AR technique consists to enhance real video sequences
with virtual objects. [1] The AR touches many fields such as :
medicine (3D organs modeling...), military (Head-Up
Display), industrial (total immersion, remote maintenance [2]),
marketing and commercial (advertisements, virtual visits...),

Jean-Philippe DIGUET

Lab-STICC
University Bretagne Sud,
Lorient, FRANCE
jean-philippe.diguet@univ-ubs.fr

entertainments (video games and sport events (player numbers,
offside virtual lines, WR comparison line, give visual
information for TV viewers from hidden angles in sport match

[2] ...). [4]

Our target AR application (see Figure 1) is the combination
of a video flow recorded with a camera and images synthesis.

Transmittor perturbations

Transmittor
w=—Video Video flow
cquisijtion transformation

MJPEG Video
Compression

Bandwith perturbations

= ?
FPGA
Implementation
s Network transfer
e on a 2™ platform
v § H
Compressed [ 3D application MJPEG Video
Wdeo displdy optimization decompression | |
Receivor peﬂurbat«o% Receivor

-

Figure 1: Application demonstrator

Our demonstrator is composed by two parts: a transmitter
and a receiver. A camera is used for video acquisition. This
camera transmits a video flow to the transmitter. The
transmitter is composed of a video flow transformation bloc
and a MJPEG coder (embedded in a first ML 507 FPGA board)
which is used to compress the video. The 3D animations
specifications are multiplexed with the encoded video. They
are sent over the TCP IP network using an XML file. At the
reception, the video is decoded; 3D animations are computed
using XML specifications and mixed with the decoded file.

The figure 2 reperesents the 3D adaptation technique.
According to the 3D object characteristics we add the
appropriate hardware blocs. The final data are saved on a
memory blocs.



Rotations architecture

HW
swqe Bl |1
I _>
[Translations architecture|

0:‘/'\ 3D . i
adaptation @
| hSaved data

I —§
Textures architecture

HW
I _>

Figure 2: Adaptation technique
SW : Software, HW : Hardware, T Translation, R Rotation,
HL: Hline

The paper is organized as follows. Section Il gives our
work major features and compares it with related works.
Section 1ll presents our application design and details our
Hardware accelerator. Section 1V shows the implementation
and the obtained results. Finally, section V concludes the paper
with a brief outlook on future works.

Il.  AUGMENTED REALITY AND USED ARCHITECTURES

The advances in the field of computer vision and mobile
computing have made possible the development of complex
but one of the main issues remains outdoor application in
unknown environment. Applications become more complex,
and the environment conditions are unpredictable (sunlight,
unrestricted mobility, etc.) and where different types of sensors
can be used.[3] In this paper we’ll talk about the 3D
application implementation.

Used architectures:

3D computation requires high performance architecture.
GPP are greedy. A solution would be to adopt computing units
(shader, geometric).

To work with complex 3D applications many GPUs are
used. This GPUs architecture evolution increased the last years.
ATI and NVIDIA leaders of GPUs used different architectures
to display 3D images[5].

The architectures presented are based on geometry shaders
for different movements (translation, rotation ...) and vertex
shaders (image textures...). The first architectures consist on
using one of each one to do different computation. After that,
they increased the number of the shaders and make it work in
parallel.

The number and type of shaders used depends on the type
of images and objects. With a richly textured video, many
vertex shaders are required with moving video, geometry
shaders. GPU use a unified shader to display the video. This
architecture is an optimal one for the process using but need
many resources.

In the next part, we present an alternative solution based on
reconfigurable architecture for 3D objects displaying. Our job
is oriented to add the 3D object to the embedded video. We
need to have a trade-off between the video quality display and
the limited FPGA resources.

I1l.  APPLICATION DESIGN AND HARDWARE ACCELERATOR:

A. 3D image synthesis application overview:.

B ) I -y & B
: : Visibility | Luminosity

[ Triangles ]:Dﬁ'ransformatlon]:% e |:(> jniilviinns J?\
|

o j

| e st ¢ - Texture |4/ /

|Rasterisation H Projection <— Clipping H

( transform

Figure 3: Graphical 3D pipeline

The triangles represent the input of our 3D graphical
pipeline (figure 3). The transformation step represents the
conversion from local coordinate system to a global one,
which is the camera coordinate system. We’ll use translations,
rotations and homoteties to obtain the final result.

The visibility test consists in identifying which pixel will be
viewed and which one will be hidden on the screen using the
angle between the vision vector and the hidden one.

The luminosity calculation step gives the luminous intensity
attributed to each pixel.

The clipping step consists in eliminating the pixel which
will not be on the projected screen but on the computer
monitor: if the pixel is a hidden one, it is not displayed.

The projection step is the application of the projective
geometry which consists on how displaying a 3D point on a
2D scene.

The rasterisation step is very important because it gives the
projected 2D objet a 3D visual aspect when it is projected on
the screen. Because of the complexity of the 3D application,
we accelerate this software application by introducing
hardware blocks. Inspired by the GPP architecture, the
software bloc communicates with hardware blocks with the
FSL bus.



B. Application analysis and profiling

We use a 3D application available as a C code. In this
application the object rotates around different axis. Due to its
complexity, the software application version can be displayed
but are so slow. We need to accelerate the application by
creating hardware blocks replacing the heaviest 3D application
functions. To know which functions must be transformed on a
hardware block, we profile the native C code via the profiling
tool of the Nios Il embedded processor on Altera Platform.

The table 1 represents the 3D application profiling.

Table 1: 3D’s function application profiling

Functions Time percentage
Hline (Pixel Shader) 69%
Rotation (Geometry Shader) 13%
Scale 5%
Translation (Geometry Shader) 5%
All other functions <2%

The profiling result gives us that the polygon filling takes
the most important part of 3D application. The 3D application
is based on a rotation around an only one axis.

69% of the application time was dedicated to the Hline
function which is oriented to fill in each pixel the attributed
color value. Each pixel of the triangle contains a value which
is an integer that belongs to [0,255]. We must assign the
appropriate value to each pixel. However, one may keep in
mind that this profiling depends on the benchmark.

All the other application function didn’t use less than 13%
and that’s why we choose the Hline to accelerate it.

The Hline function can be called pixel shading whereas the
rotation and translations functions represents the geometry’s
one.

Our 3D object is formed by a set of triangles. Each triangle
is filled using horizontal lines formed with pixels. The Hline
function attributes to the pixels of each horizontal line of each
triangle the color value according to the Gouraud shading
algorithm.

C. Hline hardware accelerator architecture:

The implementation of the hardware accelerator aims to
speed up a low frequency low cost architecture to display the
3D object moving on the screen without being heavy.

Our study and implementation is based on Virtex that can
be dynamically and partially reconfigured.

Figure 4 represents the accelerator with more details

This accelerator contains two important stages:

v'Lines extremities determination
v'Pixel color filling.

a) Segment’s extremity determination (SED):

The line extremities determination is represented by two
steps which are represented in the figure 4:

v' Segment’s extremity determination.
v' Segment’s pixel extremities filling

AX,Y,.C)

ik Dl Lol L

——— ‘

' Step 3: All triangle's pixels
" filling

Step 2 : Segment's pixel _
Extremities filling

|| M ]

Step 1 : Segment extremity .~
determination

7

B(X,Y,C) C(X.Y.C)

-l ¥ ¥y

Step 4 : Saving data on memory
Figure 4: 3D triangle’s pixel filling accelerator

Segment extremity determination consists on finding the x
coordinate of the pixels which are the extremity of each
triangle’s line side.

Every triangle is formed by three sides. To fill the entire
triangle we have to find the pixels which are on every triangle
side. Since the triangle is displayed on the screen our
landmark entity will be the pixel not only horizontally but also
vertically.

To find the triangle segment’s extremity we must find
director coefficients of each triangle’s side. Using the three
top coordinates, we can calculate the director coefficient using
the equations system:

yv=ax+b (1)

¥ — Va
Xg — X4

a= etbh=y,— ax, (2)

Each pixel value will be incremented by the director’s
coefficient a. We skim from the minimum value of the abscise
to the maximum one.

To obtain the coefficient a value, a division is required. This
arithmetical operation is done by using the IP core generator
of Xilinx.

b) Segment’s pixel filling(SPF):

Pixel color filling is also based on two steps:

v'All triangles pixels filling.
v'Saving data on memory.

The color value of each pixel obtained is the difference
between the vertices colors divided by the difference between
Ysand Yaas mentioned in equation (3):

Cp— C4
Cine = (3]
Y — Va
Once all triangles are found, all these values will be
saved on the FPGA external dual port BRAM memory [8].
We use a dual port BRAM memory because we need to



save the SPF data on the memories. These data will be used
as the input of the All triangle pixels fillings blocs.

Finally, we will focus on the accelerator which is the
Pixel color filling.

c) All triangles pixels filling:

After filling the color value of the triangle’s side, we’ll find
the value of the color of each pixel interior to our triangle.
We’ll use the same method used for the triangle extremities
values.

Then, we’ll save the pixels filling values on a BRAM bloc.

d) Saving data on the memory:

The last step of our accelerator will be to save the data
obtained on a BRAM memory bloc.

This bloc generated by the Xilinx IP core generator contains
also every pixel abscise value and the color that we’ll affect to
this pixel. These values will be used when we’ll obtain the
entire image to display on the screen after the entire treatment.

The figure 5 represents the entire 3D accelerator.

AX.Y.C) AXY.C)

® = @

Finding the triangle's
Side pixels values in
[AB] and [AC]

B{X,Y,C) CIX,Y.C)

Segment's extremity determination

[30's tnangle's
pixels BRAM

BIX,Y,C,) C(X,Y,C))

BX.Y,C) CIX,Y,C)

Saving data on memory Segmert'sspii:ixe\ filling

Figure 5: 3D triangle’s pixel filling accelerator steps

Global flexible architecture :The whole project lies on a
concept of self-adaptive architecture based on a softcore
(Microblaze) [6] enhanced with a set of reconfigurable VHDL
accelerators (see Fig 6). Based on various profiling we can
observe that Geometry Computation and Pixel Shaders (Hline)
accelerators must be considered. However the number of
accelerator of each kind can be adapted according to
application needs. The Hline accelerator integration is detailed
in the next section.

3" configurafion

Soficors
W Bleze [

Figure 6: Global architecture: G: Geometry, H:
Hline

D. Hline architecture :

The interface between Microblaze and accelerators is based
on FSL bus, since FSL FIFOs are provide fast communication
between hardware blocks and the processor.

Black BOX
‘ BRAM ‘
1T u
Softcore
) sep
FSL
uBlaze [\ T2 SPF
| BRAM ‘

Figure 7: Hline architecture

Figure 7 represents the accelerator’s architecture. The
Microblaze, communicates with a black Box [7] containing
the two VHDL functions which write data on BRAMs.

The microblaze communicates with Black box through a
FSL bus. The inputs of the black box are processed by the
SED module. The SED results are saved in the first BRAM
block.

This data are the input of the SPF module which fills all the
triangles color in the second BRAM block.

The resulted data are sent via the FSL to the Microblaze to
end the process. This data are sent for the VGA controller to
display it.

We test this architecture with the 3D application. We do the
test with an only one hardware accelerator then with 4
accelerators in parallel.

Aiming the AR applications, we’ll not project the 3D object
on the screen but a smallest representation of it on the screen.
The obtained results of a 50*80 3D object will be shown on
the next part.



IV. IMPLEMENTATION AND EXPERIMENTATION RESULTS:

The test of pure software 3D object code and the mixed
Software/Hardware one is exposed in the Table 2.

Table 2: Software / Hardware comparison

Version Time (second) Frames/second
(ps)

Software 6.5 0.15

Mixed HW/ SW

Using 1 HW Block 0.273 4

Using 4 HW Blocks 0.075 14

The hardware accelerator allows for a speed up of almost
24x. The use of multiple accelerators gives implementation
almost 87 times faster than the software version. This
improvement was possible due to the architectural parallelism.
A frame rate of 14 fps is achieved with 4 HW blocks, with an
acceleration of geometric functions and improvement of the
current standard C software implementation the objective of
24fps will be obtained.

The FPGA occupation after the hardware implementation is
described in the table 3. The use of 4 hardware blocks need 4
times more hard design use.

We increase the FPGA use to obtain a better result.

Table 3: Single Hline accelerator

Device utilization summery Number | % ML 507

Slice Registers 5,790 12

Used memory 204 1

External Memory (kb) 1,080 20

V. CONCLUSION / PERSPECTIVES:

We have presented our concept of flexible architecture for
AR systems and detailed the main accelerator dedicated to
pixel shading. The second accelerator, dedicated to geometric
operations will be presented, in a following paper. The
combination of both accelerators will guaranty a 24fps frame
rate with a 100MHz clock frequency. This is the first step of
the project. But, as previously mentioned, resource
requirements are strongly data dependent in 3D applications
(geometry vs pixel shading, size and number of objects). So,
the second step is the implementation of self-adaptation as a
software function on the Microblaze that controls online the
dynamic configuration of hardware accelerators, according to
application needs.

REFERENCES

[1] Cemil Azizoglu, Ph. D, “High Performance Graphics on Android”,
Khronos group, 2010

[2] B. Thomas, B. Close, J. Donoghue, J. Squires, P. De Bondi, M. Morris,
and W. Piekarski. “ARQuake :an outdoor/indoor augmented reality first
person application”. In The Fourth International Symposium on
Wearable Computers, 2000.

(3]
[4]

(5]

(6]

(71
(8]

Gerhard Reitmayr, Tom W. Drummond “ Going out: Robust Model-
based Tracking for Outdoor Augmented Reality”.

Sturman, D.J. and Zeltzer, D., A survey of glove-based input, Computer
Graphics and Applications, IEEE , V14 #1, Jan. 1994,30 -39

D.Luebke, SIGGRAPH 2008,Beyond programmable shading in
action“GPU  Architercutre Implications & Trends”. NVIDIA
Coorporation 2007.

K. Loukil, N. Ben Amor, M. Abid “ HW/SW Partitioning Approach on
Reconfigurable Multimedia System I'Art ” on ChiplInternational Journal
of Engineering (1JE) 2011 avril 2011 volume5, Page 568..
www.xilinx.com/support/documentation/sw_manuals/xilinx11/mb_ref g
uide.pdf, MicroBlaze Processor Reference Guide.
www.xilinx.com/support/documentation/ip_documentation/fsl_v20.pdf,
LogiCORE IP Fast Simplex Link (FSL) V20 Bus (v2.11c)



