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Abstract: The emergency of multimedia applications particularly 
in mobile embedded systems puts new challenges for the design 
of such systems. The major difficulty is the embedded system’s 
reduced energy and computational resources that must be 
carefully used to execute complex application often in 
unpredictable environments. So the system architecture must be 
energy efficient and flexible enough to adapt resources to 
application requirements to manage the environment 
architectures and mobile’s constraints. The augmented reality is 
a very promising 3D embedded multimedia application. It’s 
based on the addition of specific 3D’s animations on a video flow. 
In this paper, we describe our concept of flexible architecture 
and we give implementation results based on Pixel Shader 
Accelerator. This is the first step of the project and we compare 
various hardware and software implementation. 

 

I. INTRODUCTION 
 

The multimedia embedded applications inflate the 
computer sciences domain. Watching a HD video or a 3D 
movie is now possible not only with a 3D TV but also possible 
on small portable systems such as smartphone and tablets.  

The design of such systems faces new challenges due to the 
limited available resources and the external environment 
fluctuations such as noise, bandwidth fluctuations, available 
energy…) 

 To tackle those problems, adaptive systems are a 
promising solution. Those systems can adjust the used 
hardware resources according to the application requirement 
and the environment state. Algorithmic adaptations (based on 
applications parameter and algorithm tuning) can also be used 
for energy saving purpose or QoS adaptation. 

In this paper, we present preliminary results of the design 
of an adaptive embedded system based on reconfigurable HW 
variable units dedicated to augmented reality applications. 

AR technique consists to enhance real video sequences 
with virtual objects. [1] The AR touches many fields such as : 
medicine (3D organs modeling…), military (Head-Up 
Display), industrial (total immersion, remote maintenance [2]), 
marketing and commercial (advertisements, virtual visits…), 

entertainments (video games and sport events (player numbers, 
offside virtual lines, WR comparison line, give visual 
information for TV viewers from hidden angles in sport match 
[2] …). [4] 

Our target AR application (see Figure 1) is the combination 
of a video flow recorded with a camera and images synthesis.  

 

 
 

 
 

 

Our demonstrator is composed by two parts: a transmitter 
and a receiver. A camera is used for video acquisition. This 
camera transmits a video flow to the transmitter. The 
transmitter is composed of a video flow transformation bloc 
and a MJPEG coder (embedded in a first ML 507 FPGA board) 
which is used to compress the video. The 3D animations 
specifications are multiplexed with the encoded video. They 
are sent over the TCP IP network using an XML file. At the 
reception, the video is decoded; 3D animations are computed 
using XML specifications and mixed with the decoded file.  

The figure 2 reperesents the 3D adaptation technique. 
According to the 3D object characteristics we add the 
appropriate hardware blocs. The final data are saved on a 
memory blocs. 

Figure 1: Application demonstrator 



  

 
 

 

 

The paper is organized as follows. Section II gives our 
work major features and compares it with related works. 
Section III presents our application design and details our 
Hardware accelerator. Section IV shows the implementation 
and the obtained results. Finally, section V concludes the paper 
with a brief outlook on future works. 

 

II. AUGMENTED REALITY AND USED ARCHITECTURES 
 

The advances in the field of computer vision and mobile 
computing have made possible the development of complex 
but one of the main issues remains outdoor application in 
unknown environment. Applications become more complex, 
and the environment conditions are unpredictable (sunlight, 
unrestricted mobility, etc.) and where different types of sensors 
can be used. [3] In this paper we’ll talk about the 3D 
application implementation. 

 

    Used architectures: 
 

3D computation requires high performance architecture. 
GPP are greedy. A solution would be to adopt computing units 
(shader, geometric). 

To work with complex 3D applications many GPUs are 
used. This GPUs architecture evolution increased the last years. 
ATI and NVIDIA leaders of GPUs used different architectures 
to display 3D images[5]. 

The architectures presented are based on geometry shaders 
for different movements (translation, rotation …) and vertex 
shaders (image textures…). The first architectures consist on 
using one of each one to do different computation. After that, 
they increased the number of the shaders and make it work in 
parallel. 

The number and type of shaders used depends on the type 
of images and objects. With a richly textured video, many 
vertex shaders are required with moving video, geometry 
shaders. GPU use a unified shader to display the video. This 
architecture is an optimal one for the process using but need 
many resources.  

In the next part, we present an alternative solution based on 
reconfigurable architecture for 3D objects displaying. Our job 
is oriented to add the 3D object to the embedded video. We 
need to have a trade-off between the video quality display and 
the limited FPGA resources. 

 

III. APPLICATION DESIGN AND HARDWARE ACCELERATOR: 
 

A. 3D image synthesis application overview:. 
 

 
Figure 3: Graphical 3D pipeline 

 
The triangles represent the input of our 3D graphical 

pipeline (figure 3).  The transformation step represents the 
conversion from local coordinate system to a global one, 
which is the camera coordinate system. We’ll use translations, 
rotations and homoteties to obtain the final result. 

The visibility test consists in identifying which pixel will be 
viewed and which one will be hidden on the screen using the 
angle between the vision vector and the hidden one. 

The luminosity calculation step gives the luminous intensity 
attributed to each pixel. 

The clipping step consists in eliminating the pixel which 
will not be on the projected screen but on the computer 
monitor: if the pixel is a hidden one, it is not displayed.  

The projection step is the application of the projective 
geometry which consists on how displaying a 3D point on a 
2D scene. 

The rasterisation step is very important because it gives the 
projected 2D objet a 3D visual aspect when it is projected on 
the screen. Because of the complexity of the 3D application, 
we accelerate this software application by introducing 
hardware blocks. Inspired by the GPP architecture, the 
software bloc communicates with hardware blocks with the 
FSL bus. 

 

Figure 2: Adaptation technique 
SW : Software, HW : Hardware, T Translation, R Rotation, 

HL: Hline 



B. Application analysis and profiling  
We use a 3D application available as a C code. In this 

application the object rotates around different axis. Due to its 
complexity, the software application version can be displayed 
but are so slow. We need to accelerate the application by 
creating hardware blocks replacing the heaviest 3D application 
functions. To know which functions must be transformed on a 
hardware block, we profile the native C code via the profiling 
tool of the Nios II embedded processor on Altera Platform.  

The table 1 represents the 3D application profiling. 
 

 
Table 1: 3D’s function application profiling 
Functions Time percentage  

Hline (Pixel Shader) 69% 

Rotation (Geometry Shader) 13% 

Scale  5% 

Translation (Geometry Shader) 5% 

All other functions < 2% 
 

The profiling result gives us that the polygon filling takes 
the most important part of 3D application. The 3D application 
is based on a rotation around an only one axis. 

69% of the application time was dedicated to the Hline 
function which is oriented to fill in each pixel the attributed 
color value. Each pixel of the triangle contains a value which 
is an integer that belongs to [0,255]. We must assign the 
appropriate value to each pixel. However, one may keep in 
mind that this profiling depends on the benchmark. 

All the other application function didn’t use less than 13% 
and that’s why we choose the Hline to accelerate it. 

The Hline function can be called pixel shading whereas the 
rotation and translations functions represents the geometry’s 
one.  

Our 3D object is formed by a set of triangles. Each triangle 
is filled using horizontal lines formed with pixels. The Hline 
function attributes to the pixels of each horizontal line of each 
triangle the color value according to the Gouraud shading 
algorithm.  

 
C. Hline hardware accelerator architecture: 

 
The implementation of the hardware accelerator aims to 

speed up a low frequency low cost architecture to display the 
3D object moving on the screen without being heavy. 

Our study and implementation is based on Virtex that can 
be dynamically and partially reconfigured. 

Figure 4 represents the accelerator with more details 
This accelerator contains two important stages: 

 Lines extremities determination  
 Pixel color filling. 

 
a) Segment’s extremity determination (SED): 

The line extremities determination is represented by two 
steps which are represented in the figure 4: 

 Segment’s extremity determination. 
 Segment’s pixel extremities filling 

 
 
 
 
 
Segment extremity determination consists on finding the x 

coordinate of the pixels which are the extremity of each 
triangle’s line side. 

Every triangle is formed by three sides. To fill the entire 
triangle we have to find the pixels which are on every triangle 
side. Since the triangle is displayed on the screen our 
landmark entity will be the pixel not only horizontally but also 
vertically. 

To find the triangle segment’s extremity we must find 
director coefficients of each triangle’s side. Using the three 
top coordinates, we can calculate the director coefficient using 
the equations system: 

 

 
 

 
 

Each pixel value will be incremented by the director’s 
coefficient a. We skim from the minimum value of the abscise 
to the maximum one.  

To obtain the coefficient a value, a division is required. This 
arithmetical operation is done by using the IP core generator 
of Xilinx. 

 
b) Segment’s pixel filling(SPF): 

 
Pixel color filling is also based on two steps: 

 All triangles pixels filling. 
 Saving data on memory. 

The color value of each pixel obtained is the difference 
between the vertices colors divided by the difference between 
YB and YA as mentioned in equation (3):  

 
Once all triangles are found, all these values will be 

saved on the FPGA external dual port BRAM memory [8]. 
We use a dual port BRAM memory because we need to 

Figure 4: 3D triangle’s pixel filling accelerator 



save the SPF data on the memories. These data will be used 
as the input of the All triangle pixels fillings blocs. 

Finally, we will focus on the accelerator which is the 
Pixel color filling.  

 
c) All triangles pixels filling: 

 
After filling the color value of the triangle’s side, we’ll find 

the value of the color of each pixel interior to our triangle. 
We’ll use the same method used for the triangle extremities 
values. 

Then, we’ll save the pixels filling values on a BRAM bloc. 
 

d) Saving data on the memory: 
 

The last step of our accelerator will be to save the data 
obtained on a BRAM memory bloc. 

This bloc generated by the Xilinx IP core generator contains 
also every pixel abscise value and the color that we’ll affect to 
this pixel. These values will be used when we’ll obtain the 
entire image to display on the screen after the entire treatment. 

The figure 5 represents the entire 3D accelerator. 
 
 

 
 

 
 

Global flexible  architecture :The whole project lies on a 
concept of self-adaptive architecture based on a softcore 
(Microblaze) [6] enhanced with a set of reconfigurable VHDL 
accelerators (see Fig 6). Based on various profiling we can 
observe that Geometry Computation and Pixel Shaders (Hline) 
accelerators must be considered. However the number of 
accelerator of each kind can be adapted according to 
application needs. The Hline accelerator integration is detailed 
in the next section. 

 

 

 

 

 

D. Hline architecture : 
The interface between Microblaze and accelerators is based 

on FSL bus, since FSL FIFOs are provide fast communication 
between hardware blocks and the processor.  

 

 
 

 
 
Figure 7 represents the accelerator’s architecture. The 

Microblaze, communicates with a black Box [7] containing 
the two VHDL functions which write data on BRAMs. 

The microblaze communicates with Black box through a 
FSL bus. The inputs of the black box are processed by the 
SED module. The SED results are saved in the first BRAM 
block. 

This data are the input of the SPF module which fills all the 
triangles color in the second BRAM block. 

The resulted data are sent via the FSL to the Microblaze to 
end the process. This data are sent for the VGA controller to 
display it. 

We test this architecture with the 3D application. We do the 
test with an only one hardware accelerator then with 4 
accelerators in parallel. 

Aiming the AR applications, we’ll not project the 3D object 
on the screen but a smallest representation of it on the screen. 
The obtained results of a 50*80 3D object will be shown on 
the next part. 

Figure 5: 3D triangle’s pixel filling accelerator steps 

Figure 7: Hline architecture 

Figure 6: Global architecture: G: Geometry, H: 
Hline  



IV. IMPLEMENTATION AND EXPERIMENTATION RESULTS: 
 

The test of pure software 3D object code and the mixed 
Software/Hardware one is exposed in the Table 2.  

 
Table 2: Software / Hardware comparison 

Version Time (second) Frames/second 
(fps) 

Software  6.5  0.15 
Mixed HW/ SW  
Using 1 HW Block 0.273 4 
Using 4 HW Blocks 0.075 14 

 
The hardware accelerator allows for a speed up of almost 

24x. The use of multiple accelerators gives implementation 
almost 87 times faster than the software version. This 
improvement was possible due to the architectural parallelism. 
A frame rate of 14 fps is achieved with 4 HW blocks, with an 
acceleration of geometric functions and improvement of the 
current standard C software implementation the objective of 
24fps will be obtained. 

 
The FPGA occupation after the hardware implementation is 

described in the table 3. The use of 4 hardware blocks need 4 
times more hard design use. 

 We increase the FPGA use to obtain a better result. 
 
 
              Table 3: Single Hline accelerator 

Device utilization summery Number % ML 507 
Slice Registers 5,790 12 
Used memory 204 1 
External Memory (kb) 1,080 20 

 

V. CONCLUSION / PERSPECTIVES: 
 

We have presented our concept of flexible architecture for 
AR systems and detailed the main accelerator dedicated to 
pixel shading. The second accelerator, dedicated to geometric 
operations will be presented, in a following paper. The 
combination of both accelerators will guaranty a 24fps frame 
rate with a 100MHz clock frequency. This is the first step of 
the project. But, as previously mentioned, resource 
requirements are strongly data dependent in 3D applications 
(geometry vs pixel shading, size and number of objects). So, 
the second step is the implementation of self-adaptation as a 
software function on the Microblaze that controls online the 
dynamic configuration of hardware accelerators, according to 
application needs. 
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