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Abstract-Designing component-based SoC (System On Chip) 

has become a communication design problem. The reuse of 
Intellectual Property (IP) cores in Multiprocessor SoC is 
facilitated by the concept of packaging and wrapping. In this 
paper, we present an approach to automate the integration 
process of hardware accelerators/ coprocessors. This approach 
gives an interface modelling considering communication 
adaptation concepts/context throughout the integration steps. 
Graph formalism has been established to specify the interface 
considering the IP execution cycle accurate behaviour. This 
allows for automatic generation of interface architecture for 
simulation towards its synthesis. We illustrate the utility of the 
proposed framework that enables faster simulation times 
compared to existing methodologies which allow the designer to 
quickly evaluate alternative system implementations.  

I. INTRODUCTION 

Easy and quick assembling of various cores to obtain a 
fully functional system has not yet become reality. In fact, 
the core integration widely remains a manual and error-prone 
process. Despite the key idea of dissociating communication 
and computation [1], designers are still forced to fully 
understand the functionality and interface features of the 
components they want to integrate in their design.  

In order to resolve this problem, several methodologies 
called “Communication-based Design” emerge and open the 
door for innovative solutions for SoC design. Techniques 
and tools [2] relative to those new methodologies aim at 
reducing the system design time when complexity becomes 
too large. Unfortunately, such tools do not efficiently 
manage low-level details relative to IP interface synthesis 
(computing latency, I/O timing constraints etc.). In order to 
facilitate plug-n-play style IP reuse, two approaches have 
recently been dealt with. The first one defines a standard bus 
protocol like CoreConnect from IBM [3]. The spreading of 
the “platform-based design” methodology imposing 
particular buses on the chip includes this tendency. The 
second one defines standard protocols that interface between 
a bus wrapper and the core internals. For example, VCI [4] 
and OCPIP [5]] are interconnect-independent protocols. 
Unluckily, the use of these standard protocols does not 
exempt the wrapper task of the data time control (beginning 
time and end time). Other work has been done on interfacing 
with cores being based considering the whole system 
execution: COSY [6], Fast Prototyping [7], Polis [8], 
Coware [9]. These approaches represent dedicated 
approaches for specific application field. Furthermore, they 
require having a perfect knowledge of the protocols of both 
the sender and the receiver. Other tendencies rest on the 
capability of languages. For example, SystemC methodology 

talks about transaction level modelling in [10] that aims at 
communication modelling to optimize simulation speed. 
However, it does not address automatic generation of such 
models. Moreover, the emergence of networks on chip 
requires new interface features like intelligent scheduling 
control and update parameters capabilities of modules in 
systems [11]. 

 So, methodologies based on the idea that a virtual 
component can be reused without additional design effort are 
not valid any more. This is particularly true with applications 
dominated by data processing. Indeed, the systems working 
on strong volumes of information require a viable solution of 
implementation to take into account the data exchanges 
organization [12].  Besides, automatic IP assembly for SoCs 
design involves compatibility checking between the IP 
protocols, system level simulation of the solution and 
interface synthesis considering protocol mismatches and 
component composition. These additional steps increase the 
designers’ effort and time required for chip design. Different 
formalisms can be used for modelling communicating 
hardware for automation [13].  

In this paper, the proposed formalisms of interface and 
input/ output (I/O) automata control present significant 
differences. It deals with low-level details for IP core 
integration process. The established formalism has been 
developed to specify the interface adaptation based on Finite 
State Machine (FSM) based framework considering its cycle 
accurate behavior. The interface specification can then 
configure a generic interface architecture structure. So, the 
approach allows 1) to obtain  an IP encapsulation model for 
simulating, which hides low IP functionality behind a high 
level interface forwarding its adaptation during its lifetime; 2) 
to enable a systematic interface architecture generation 
towards its system verification and its synthesis. This 
research targets “component-based design” and “platform 
based design” focusing on automatic IP integration into 
multiprocessor SoC (MPSoC) context.  

The paper is organized as follow. Section 2 presents the 
proposed design flow to model interface for IP integration 
steps. In Section 3, architecture modelling is detailed. In 
section 4, we give the experimental results following the 
application of the considered integration approach to the 
Object Motion Detection algorithm. Finally, in section 5, we 
conclude this work and we present the future work. 

II. INTERFACE MODELLING  

The goal of the specification method is to abstract system 
communication to a level that is independent of the protocol 
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module and the technology details, while being easy to use 
and expressive [14]. At this level what is known is the I/O 
signals of interacting modules and their inter-module data 
and control flow requirements, which is equivalent to the 
interface behavior.  This section presents an overview of the 
proposed design flow describing IP integration steps. It 
details spacio-temporal hypothesis that will be considered.  

A. Method Overview: Design flow for IP integration steps 
Target SoC architecture includes hardware accelerators 

and coprocessors which represent computing units that have 
not enough control logic to be autonomous. These 
accelerators need external control unit to manage the 
communication transfers. They are considered as slaves and 
controlled by the master processor through the architecture 
interconnect.  

In our approach, we define the wrapper at two abstraction 
levels. At the first level, we define an abstract wrapper 
architecture that hides the communication details 
(encapsulation model). The second level will corresponds to 
the RTL level where the abstract wrapper is implemented. 
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Figure 1.  Design Flow steps overview 

 
Figure 1 shows IP integration steps starting from the 

system specification as interconnected tasks. Mapping the 
specification to SoC architecture is performed by the 
partitioning step. Hardware system tasks are considered in 
their synthesized form. The data interface-modelling step 
considers spacio-temporal data scheduling to generate 
correspondent abstract models. Thus, our integration 
methodology is built around two main steps: interface 
behavior modelling for checking compatibility and interface 
architecture generation (figure 1). Compatibility is verified if 
the integrator system (rest of the system) verifies data 
scheduling at IP interface. Generic interface architecture is 
defined as FSM models. The I/O interface modelling is then 
needed for configuration to automatically generate the 
correspondent interface architecture structure.  

The approach targets both the simulation and the 
synthesis since the IP interface can be simulated and is 
synthesizable. The work presented is (1) the definition of a 
method to generate wrappers automatically and (2) the 
introduction of a generic wrapper architecture that can be 
applied to coprocessor and accelerator components. 

B. Integration constraints 
The communication interface generation is based on the 

IP interface (characterization information), system 
requirements (task model priorities that define the 
scheduling of the whole execution of the target application) 
and the designer specification exigencies (interconnect style, 
use of Direct Memory Access (DMA)...). The integration 
mechanism is strictly target data-independent 
communications. So that, the information needed for the 
interface modelling allows for the unambiguous 
identification of which data is input (respectively. output) at 
each clock cycle for each input port (respectively. output). 
The interface block disposes a local memory with first-in 
first-out (FIFO) semantics for storing data. If the production 
order and the consumption order are different in a point-to-
point communication, a simple FIFO in this case is not 
enough for a transformation of N_dimension data structure 
to 1_dimension data structure. It is necessary to envisage 
more complex mechanism for intermediate memorization 
according to [15]. 

For this work, we suppose that the system knows the 
information related to the data succession in each port but it 
is unaware of the sending order and the sending time of the 
data to the input interface. The system is locally synchronous 
at the IP interface side but globally asynchronous. So that, 
the production order and the consumption order are the same 
for a flow transiting on a given port. This restriction allows 
the definition of a pseudo order that guarantees the data 
order for each structure. The data are assumed a power of 2. 
The inputs and the outputs are supposed uninterrupted with 
beginning and end virtual times defining the delay of an IP 
iteration computation. An iteration of computation is a 
repetitive execution of a basic motif of data sequence 
considered by the IP. The communication interface 
encapsulates the IP architecture (adaptation of the IP 
interface to the interconnect) and guarantees data 
transferring. This kind of IP integration problems are 
accentuated in a context of multiprocessor SoC design.  

To model the data exchanges between the environment 
and the virtual component, we use a graphic modelling 
defined in the next subsection. These abstract graphs based 
model completely express the input/output communication 
behavior of the system interface and the IP interface relying 
on the I/O data scheduling behavior. 

C.  Data InterfaceModelling: Abstract Graph Models 
IP cores can be categorized into three main types: Soft, 

Firm or Hard cores [16]. The approach we propose can be 
applied whatever the type of IP. The information needed 
describes the I/O signals and their data and control flow 
requirements, which is equivalent to the IP interface 
behavior relating to an iteration of computation. It should be 
provided by the IP designer and constitute a key element of 
successful integration.  

The proposed graph models definition illustrated in figure 
2 rests on the work of Ku and Michel [17]: the IOCG graph 
(Input Output Constraint Graph) and the IPERM model (IP 
Execution Requirement Model) [18]. These models support 
the modelling of (1) the type of transfers, (2) the temporal 
variations of the data arrival times, (3) the data exchanged 
sequencing and transit ports etiquette, (4) the related 
mechanisms to the communication protocols.  

67



Definition 1: Input Output Scheduling Graph (IOSG) 
IOSG is a hierarchical polar directed graph IOSG (V, E) 

where the nodes set V = {v0,… ,vn} represents data transfers 
stages containing the whole of the consumed/produced data 
equipped with the number of transit channel. v0 and vn are 
respectively the node source and the node destination and 
symbolize the beginning and the end of a data transfer 
sequencing. The arcs set E= {va, vb} represent the transfers 
sequencing specified by deadlines. A weight noted “wab”, 
associated to the arc noted “Eab”, represents the transfer 
time separating two transfers from data va and vb. IOSG 
represents the IP interface behavior considering that the 
system works without interruptions. 
Definition 2: Structure Input Output Scheduling Graph (SIOSG) 

Eliminating the time constraints and information on the 
indexing in the data structure from IOSG, SIOSG is defined 
for each data structure. It is used to know the sequencing 
order for each data structure. 
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Figure 2. Graph models 

 
Definition 3: System Scheduling Graph (SSG) 

For system interface behavior, we propose a graph 
resulting from the IOSG: the SSG. It is a third type of graph 
which is used to specify the data produced/consumed by the 
system. The SSG is obtained by eliminating the indexing 
information from the data in graphs SIOSG. The system data 
transfer must validate SSG to satisfy the hypothesis of the 
pseudo-order. The pseudo-order granted to the data 
sent/received by the system (SSG) checks the data order for 
each structure. For the SSG, we do not use time information. 
So that, the encapsulation model can target the integration of 
synchronous and asynchronous architectures. Indeed, the 
interface time constraint of the IP is expressed by a delay 
(wab in figure 2) weighting the transition arcs. 

D. Compatibility Checking Step  
SIOSG, SSG result from the same model of graph: IOSG. 

This compatibility enables integrating IP core automatically 
in the design work flow. SSG in figure 3 is used to define the 
order definition in which the system is sending/receiving the 
data. According to this order, the software driver is 
generated. It is used to pilot the interface. This software part 
of the interface must order the communication of the data 
between the IP and the memory of the integral system. It 
must be generated automatically starting from the 
specification of the entries left to the interface the IP. It is 
carried out by the processor which orders the material 
accelerator (IP) via the hardware interface. IOSG configures 

the generic interface architecture modules defined as 
Interface FSM models. Compatibility checking step verifies 
the pseudo order. For that, two sides are considered: the 
behavior at IP interface and system data transfer to ensure 
their compatibility. If the graphs compatibility is not 
validating, the data interface modelling step is re-studied. 
The key idea of the proposed approach is to model data 
constraints behavior as abstract graphs considering the 
integrator system and the IP execution. 
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Figure 3. Compatibility checking 

 
This specification is considered with a generic interface 

architectural modelling allowing automatic IP integration in 
a context of re-use. The interface FSM models in figure 3 are 
defined as a library to generate the interface architecture 
modules. This library and graphs interaction are detailed in 
the following section in the context of the proposed generic 
interface architectural structure.  

III. GENERIC ARCHTECTURAL MODELLING  

An IP is considered as a cycle accurate “black-box”. Only 
the communication interface is known. It has a number of 
I/O ports, each having a bit-width, latency and data ports 
scheduling. A key strategy for minimizing the system design 
effort and managing growth of the application complexity is 
using modules library. This holds design information and 
simulation models related to each module, making it 
reusable among several applications. So, the generic 
communication interface relies on FSM as a model of 
computations interacting with interface graph models and 
communication with the rest of the integrator system.  

A.  Architecture Interface Structure 
Input communication channel mechanism transforms the 

request from an external slave port into a signal dedicated to 
the IP communication interface. Output interface mechanism 
translates the data back from the interface into a slave 
response. The interface sub-modules follow the rules of the 
design reuse: their FSMs are instantiated according to the 
spatial and temporal I/O constraints described as graph 
models. We use a network of FSMs describing the 
communication interface while abstracting its 
implementation. It is composed of: 1) an FSM for the input 
FIFO, 2) an FSM for the output FIFO, 3) an FSM for the 
controller unit. Figure 4 illustrates the interface FSM and 
graphs interdependency. SIOSG allow the correct operation 
of the controller_FSM in the following FSM network 
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designing the interface modules behavior. IOSG and SSG 
describe and manage the behavior with the interface.  

We consider the particular aspects of hardware design 
and metaprogramming capabilities with SystemC [8] for 
simulation: high-level design using design patterns and 

generalization using templates C++. Encapsulation resides in 
putting methods into C++ classes. The technical details 
which will be explained deal with the communication 
interface of the input channel. We consider the output part in 
the interface structure design as the symmetrical. 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 4. Interface FSMs and graphs interacts 
 

In order to connect the IP to other SoC components, the 
interface has to respect refinement and specification of the 
I/O protocols, data sequence orders and timing information 
constraints of data transfers. To be able to integrate the IP, 
more information in particular the size of the interconnect 
and the size available to buffer data (FIFO size and FIFO 
depth) are needed. There are as many FIFO_IN as the IP has 
input ports. The Controller_FSM dispatches data information 
according to the real size and their corresponding structure. It 
is configured according to the graph models before data are 
transmitted. The Enable_FSM is cadenced with a virtual 
clock (simple counter) to control IP temporal execution. It is 
reset for new computation iteration and can freeze the 
behavior of the IP if data are not ready (for example, if the 
system has no yet provided the data).  

We distinguish two design solutions in order to dispatch 
serialized data to the corresponding ports of the architecture 
interface structure. In one hand, transferring data can be 
realised by decoding address structure from FIFO input. This 
relies on the initiators addresses (addresses allowing knowing 
the structure). We suppose that the interconnect protocol 
vehicles only the initiator address for an input/output 
structure. This assumption allows the controller decoding 
addresses to differentiate the data port. In the other hand, the 
conception of the interface architecture doesn’t consider 
addresses. A sentence is preliminarily decided as a set of data 
that will be sent/ produced to/by the architecture to feed the 
architecture /system during computation iteration. A pattern 
describing data scheduling can gather several motifs in order 
to take advantage of the interconnect burst mode. Input 
pattern and output pattern must be carefully merged in 
serialized form taking into account available cells to avoid 
deadlocks. We consider a pattern describing the order in 
which the serialized data arrive to the controller FSM. This 
order is the same as the system data sending order. It is 

written in the form of software driver piloting the architecture 
of the IP.  

The experimentation of this IP integration approach using 
a generic interface structure is detailed in the following 
section. Discussions deal with simulations results 
differentiating between the two ways considered to dissociate 
serialized data by the communication IP interface. 

IV. EXPERIMENTAL RESULTS  

The automatic interface generation has been tried on the 
Object Motion Detection (OMD) algorithm. This algorithm 
allows the detection of motion objects in a video sequence 
using mathematical and morphological operations on a 
sequence of successive images [20] as shown in figure 5. The 
“Mean” function computes the mean between the input and N 
old images in the algorithm. This function is used to be as a 
hardware accelerator in order to experiment the proposed 
encapsulation methodology. A “Mean” function computes the 
mean between the input and N old images in the algorithm. 
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Figure 5. OMD algorithm 
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extracting data line by line, from every image (i.e. data 
structure). In order to simulate the whole system, we have 
used the SoCLiB platform. SoCLiB proposes an open 
modelling as a simulation platform for SoC design to allow 
modelling of complex systems VCI (Virtual Component 
Interface) compliant [22]. The simulation platform we have 
used contains a standard memory (RAM), a MIPS R3000 
processor with its cache, and the hardware accelerator 
("Mean" IP). Both the software part (“driver”) and the 
hardware part (the interface) of the communication channel 
are generated from the same data transfer description. The 
host processor initiates the communications. It sends 
(respectively. receives) data according to the software script 
scheduling. The script has to respect the order by structure 
(pseudo order).  

Simulations have been carried out and validated under 
Pentium M Centrino (1,5 GHz, 512 MB RAM) with Linux 
environment as O.S, SystemC-2.0.1 simulator and GCC 3.3.1 
compiler. The overall hardware/ software design is then co-
simulated. The throughput of this system, measured in frames 
per second, is 12,5 for frames in gray levels Bmp format of 
155x235 pixels (Design 1 in figure 5). The system should be 
able to process 25 frames per second as a real-time standard. 
The problem is in the slow communication link. Clearly, the 
bottleneck is the system 32-bit width of the SoCLiB platform. 
However, the platform is used to validate our interfacing 
approach. Simulation results performance will be compared 
with real prototyping of the interface.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6. SoCliB OMD Simulation times  

To compare performances of the proposed interface 
designs, communication interface decoding data address 
(design 1 in figure 5) is flexible since it can target the 
multiprocessor context. It is independent from the 
interconnect protocol and its software driver is simple to 
generate. However, it is not optimal in terms of memorization 
units: FIFO_IN contains the data and the sender address. The 
controller of the interface contains an address decoder. On the 
other hand, communication interface dissociating data 
according to a fixed pattern is optimal. It is independent from 
the interconnect protocol and reduces the simulation time 
(figure 5). However, it can’t target MPSoC context without a 
scheduling arbiter and its driver is more complex to generate.  

The specification tends to simulate faster than the RTL 
(Register Transfer Level) model and favors systematic 
interface synthesis. Moreover, it guarantees more safety in 
building interface architecture in a SoC/MPSoC context. In 
fact, all the interface sub-models are generated as CABA 
(Cycle Accurate Bit Accurate) models defined by the Mealy 

Moore FSM. This style of implementation generates 
simulation models that are semantically similar to final RTL 
implementation. 

V. CONCLUSIONS AND FUTURE WORKS 

This paper proposes an approach of encapsulation to 
integrate lower level IP in a multiprocessing context. The 
solution is based on a generic configurable interfacing model. 
Abstract graph models illustrating low-level constraints for IP 
execution details have proved to have a high utility value for 
the integration task where internal features of the IP core are 
hidden. The design methodology relies on library which 
contains interface modules and a strategy to capture the 
protocol and timing information necessary for interface 
generation. Various choices allowed in the interface design 
have been described. The communication of the system is 
validated using SystemC fast simulation. In addition, the 
associated generic architecture modelling allows an easy 
hardware implementation of the interface.  

We are currently focusing on providing tool supporting the 
methodology described here. We expect in the future to 
design a tool based on the presented design models and 
formal illustration in order to automate the RTL wrapper 
generation before the logic synthesis process. 
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