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Abstract-Designing component-based SoC (System On Chip)
has become a communication design problem. The reuse of
Intellectual Property (IP) cores in Multiprocessor SoC is
facilitated by the concept of packaging and wrapping. In this
paper, we present an approach to automate the integration
process of hardware accelerators/ coprocessors. This approach
gives an interface modelling considering communication
adaptation concepts/context throughout the integration steps.
Graph formalism has been established to specify the interface
considering the IP execution cycle accurate behaviour. This
allows for automatic generation of interface architecture for
simulation towards its synthesis. We illustrate the utility of the
proposed framework that enables faster simulation times
compared to existing methodologies which allow the designer to
quickly evaluate alternative system implementations.

I.  INTRODUCTION

Easy and quick assembling of various cores to obtain a
fully functional system has not yet become reality. In fact,
the core integration widely remains a manual and error-prone
process. Despite the key idea of dissociating communication
and computation [1], designers are still forced to fully
understand the functionality and interface features of the
components they want to integrate in their design.

In order to resolve this problem, several methodologies
called “Communication-based Design” emerge and open the
door for innovative solutions for SoC design. Techniques
and tools [2] relative to those new methodologies aim at
reducing the system design time when complexity becomes
too large. Unfortunately, such tools do not efficiently
manage low-level details relative to IP interface synthesis
(computing latency, 1/0 timing constraints etc.). In order to
facilitate plug-n-play style IP reuse, two approaches have
recently been dealt with. The first one defines a standard bus
protocol like CoreConnect from IBM [3]. The spreading of
the “platform-based design” methodology imposing
particular buses on the chip includes this tendency. The
second one defines standard protocols that interface between
a bus wrapper and the core internals. For example, VCI [4]
and OCPIP [5]] are interconnect-independent protocols.
Unluckily, the use of these standard protocols does not
exempt the wrapper task of the data time control (beginning
time and end time). Other work has been done on interfacing
with cores being based considering the whole system
execution: COSY [6], Fast Prototyping [7], Polis [8],
Coware [9]. These approaches represent dedicated
approaches for specific application field. Furthermore, they
require having a perfect knowledge of the protocols of both
the sender and the receiver. Other tendencies rest on the
capability of languages. For example, SystemC methodology
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talks about transaction level modelling in [10] that aims at
communication modelling to optimize simulation speed.
However, it does not address automatic generation of such
models. Moreover, the emergence of networks on chip
requires new interface features like intelligent scheduling
control and update parameters capabilities of modules in
systems [11].

So, methodologies based on the idea that a virtual
component can be reused without additional design effort are
not valid any more. This is particularly true with applications
dominated by data processing. Indeed, the systems working
on strong volumes of information require a viable solution of
implementation to take into account the data exchanges
organization [12]. Besides, automatic IP assembly for SoCs
design involves compatibility checking between the IP
protocols, system level simulation of the solution and
interface synthesis considering protocol mismatches and
component composition. These additional steps increase the
designers’ effort and time required for chip design. Different
formalisms can be used for modelling communicating
hardware for automation [13].

In this paper, the proposed formalisms of interface and
input/ output (I/O) automata control present significant
differences. It deals with low-level details for IP core
integration process. The established formalism has been
developed to specify the interface adaptation based on Finite
State Machine (FSM) based framework considering its cycle
accurate behavior. The interface specification can then
configure a generic interface architecture structure. So, the
approach allows 1) to obtain an IP encapsulation model for
simulating, which hides low IP functionality behind a high
level interface forwarding its adaptation during its lifetime; 2)
to enable a systematic interface architecture generation
towards its system verification and its synthesis. This
research targets “component-based design” and “platform
based design” focusing on automatic IP integration into
multiprocessor SoC (MPSoC) context.

The paper is organized as follow. Section 2 presents the
proposed design flow to model interface for IP integration
steps. In Section 3, architecture modelling is detailed. In
section 4, we give the experimental results following the
application of the considered integration approach to the
Object Motion Detection algorithm. Finally, in section 5, we
conclude this work and we present the future work.

The goal of the specification method is to abstract system
communication to a level that is independent of the protocol
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module and the technology details, while being easy to use
and expressive [14]. At this level what is known is the 1/O
signals of interacting modules and their inter-module data
and control flow requirements, which is equivalent to the
interface behavior. This section presents an overview of the
proposed design flow describing IP integration steps. It
details spacio-temporal hypothesis that will be considered.

A.  Method Overview: Design flow for IP integration steps

Target SoC architecture includes hardware accelerators
and coprocessors which represent computing units that have
not enough control logic to be autonomous. These
accelerators need external control unit to manage the
communication transfers. They are considered as slaves and
controlled by the master processor through the architecture
interconnect.

In our approach, we define the wrapper at two abstraction
levels. At the first level, we define an abstract wrapper
architecture that hides the communication details
(encapsulation model). The second level will corresponds to
the RTL level where the abstract wrapper is implemented.
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Figure 1. Design Flow steps overview

Figure 1 shows IP integration steps starting from the
system specification as interconnected tasks. Mapping the
specification to SoC architecture is performed by the
partitioning step. Hardware system tasks are considered in
their synthesized form. The data interface-modelling step
considers spacio-temporal data scheduling to generate
correspondent abstract models. Thus, our integration
methodology is built around two main steps: interface
behavior modelling for checking compatibility and interface
architecture generation (figure 1). Compatibility is verified if
the integrator system (rest of the system) verifies data
scheduling at IP interface. Generic interface architecture is
defined as FSM models. The 1/O interface modelling is then
needed for configuration to automatically generate the
correspondent interface architecture structure.

The approach targets both the simulation and the
synthesis since the IP interface can be simulated and is
synthesizable. The work presented is (1) the definition of a
method to generate wrappers automatically and (2) the
introduction of a generic wrapper architecture that can be
applied to coprocessor and accelerator components.
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B. Integration constraints

The communication interface generation is based on the
IP interface (characterization information), system
requirements (task model priorities that define the
scheduling of the whole execution of the target application)
and the designer specification exigencies (interconnect style,
use of Direct Memory Access (DMA)...). The integration
mechanism is strictly ~ target  data-independent
communications. So that, the information needed for the
interface modelling allows for the unambiguous
identification of which data is input (respectively. output) at
each clock cycle for each input port (respectively. output).
The interface block disposes a local memory with first-in
first-out (FIFO) semantics for storing data. If the production
order and the consumption order are different in a point-to-
point communication, a simple FIFO in this case is not
enough for a transformation of N_dimension data structure
to 1 dimension data structure. It is necessary to envisage
more complex mechanism for intermediate memorization
according to [15].

For this work, we suppose that the system knows the
information related to the data succession in each port but it
is unaware of the sending order and the sending time of the
data to the input interface. The system is locally synchronous
at the IP interface side but globally asynchronous. So that,
the production order and the consumption order are the same
for a flow transiting on a given port. This restriction allows
the definition of a pseudo order that guarantees the data
order for each structure. The data are assumed a power of 2.
The inputs and the outputs are supposed uninterrupted with
beginning and end virtual times defining the delay of an IP
iteration computation. An iteration of computation is a
repetitive execution of a basic motif of data sequence
considered by the IP. The communication interface
encapsulates the IP architecture (adaptation of the IP
interface to the interconnect) and guarantees data
transferring. This kind of IP integration problems are
accentuated in a context of multiprocessor SoC design.

To model the data exchanges between the environment
and the virtual component, we use a graphic modelling
defined in the next subsection. These abstract graphs based
model completely express the input/output communication
behavior of the system interface and the IP interface relying
on the /O data scheduling behavior.

C. Data InterfaceModelling: Abstract Graph Models

IP cores can be categorized into three main types: Sofft,
Firm or Hard cores [16]. The approach we propose can be
applied whatever the type of IP. The information needed
describes the 1/O signals and their data and control flow
requirements, which is equivalent to the IP interface
behavior relating to an iteration of computation. It should be
provided by the IP designer and constitute a key element of
successful integration.

The proposed graph models definition illustrated in figure
2 rests on the work of Ku and Michel [17]: the IOCG graph
(Input Output Constraint Graph) and the IPERM model (IP
Execution Requirement Model) [18]. These models support
the modelling of (1) the type of transfers, (2) the temporal
variations of the data arrival times, (3) the data exchanged
sequencing and transit ports etiquette, (4) the related
mechanisms to the communication protocols.



Definition 1: Input Output Scheduling Graph (I10SG)

IOSG is a hierarchical polar directed graph 10SG (V, E)
where the nodes set V = {Vv0,... ,vn} represents data transfers
stages containing the whole of the consumed/produced data
equipped with the number of transit channel. vO and vn are
respectively the node source and the node destination and
symbolize the beginning and the end of a data transfer
sequencing. The arcs set E= {va, vb} represent the transfers
sequencing specified by deadlines. A weight noted “wab”,
associated to the arc noted “Eab”, represents the transfer
time separating two transfers from data va and vb. 10SG
represents the IP interface behavior considering that the
system works without interruptions.

Definition 2: Structure Input Output Scheduling Graph (SIOSG)

Eliminating the time constraints and information on the
indexing in the data structure from 10SG, SIOSG is defined
for each data structure. It is used to know the sequencing
order for each data structure.
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Figure 2. Graph models

Definition 3: System Scheduling Graph (SSG)

For system interface behavior, we propose a graph
resulting from the I0SG: the SSG. It is a third type of graph
which is used to specify the data produced/consumed by the
system. The SSG is obtained by eliminating the indexing
information from the data in graphs SIOSG. The system data
transfer must validate SSG to satisfy the hypothesis of the
pseudo-order. The pseudo-order granted to the data
sent/received by the system (SSG) checks the data order for
each structure. For the SSG, we do not use time information.
So that, the encapsulation model can target the integration of
synchronous and asynchronous architectures. Indeed, the
interface time constraint of the IP is expressed by a delay
(wab in figure 2) weighting the transition arcs.

D. Compatibility Checking Step

SIOSG, SSG result from the same model of graph: 10SG.
This compatibility enables integrating IP core automatically
in the design work flow. SSG in figure 3 is used to define the
order definition in which the system is sending/receiving the
data. According to this order, the software driver is
generated. It is used to pilot the interface. This software part
of the interface must order the communication of the data
between the IP and the memory of the integral system. It
must be generated automatically starting from the
specification of the entries left to the interface the IP. It is
carried out by the processor which orders the material
accelerator (IP) via the hardware interface. IOSG configures
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the generic interface architecture modules defined as
Interface FSM models. Compatibility checking step verifies
the pseudo order. For that, two sides are considered: the
behavior at IP interface and system data transfer to ensure
their compatibility. If the graphs compatibility is not
validating, the data interface modelling step is re-studied.
The key idea of the proposed approach is to model data
constraints behavior as abstract graphs considering the
integrator system and the IP execution.

Interface | Rest of the system

1
1
I |IP core (s)
1

- -~

_____

Not

Sw driver

Figure 3. Compatibility checking

OK

This specification is considered with a generic interface
architectural modelling allowing automatic IP integration in
a context of re-use. The interface FSM models in figure 3 are
defined as a library to generate the interface architecture
modules. This library and graphs interaction are detailed in
the following section in the context of the proposed generic
interface architectural structure.

An IP is considered as a cycle accurate “black-box™. Only
the communication interface is known. It has a number of
I/0 ports, each having a bit-width, latency and data ports
scheduling. A key strategy for minimizing the system design
effort and managing growth of the application complexity is
using modules library. This holds design information and
simulation models related to each module, making it
reusable among several applications. So, the generic
communication interface relies on FSM as a model of
computations interacting with interface graph models and
communication with the rest of the integrator system.

GENERIC ARCHTECTURAL MODELLING

A.  Architecture Interface Structure

Input communication channel mechanism transforms the
request from an external slave port into a signal dedicated to
the IP communication interface. Output interface mechanism
translates the data back from the interface into a slave
response. The interface sub-modules follow the rules of the
design reuse: their FSMs are instantiated according to the
spatial and temporal 1/O constraints described as graph
models. We use a network of FSMs describing the
communication interface  while abstracting its
implementation. It is composed of: 1) an FSM for the input
FIFO, 2) an FSM for the output FIFO, 3) an FSM for the
controller unit. Figure 4 illustrates the interface FSM and
graphs interdependency. SIOSG allow the correct operation
of the controller FSM in the following FSM network



designing the interface modules behavior. IOSG and SSG
describe and manage the behavior with the interface.

We consider the particular aspects of hardware design
and metaprogramming capabilities with SystemC [8] for
simulation: high-level design using design patterns and
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generalization using templates C++. Encapsulation resides in
putting methods into C++ classes. The technical details
which will be explained deal with the communication
interface of the input channel. We consider the output part in
the interface structure design as the symmetrical.
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Figure 4. Interface FSMs and graphs interacts

In order to connect the IP to other SoC components, the
interface has to respect refinement and specification of the
I/0 protocols, data sequence orders and timing information
constraints of data transfers. To be able to integrate the IP,
more information in particular the size of the interconnect
and the size available to buffer data (FIFO size and FIFO
depth) are needed. There are as many FIFO_IN as the IP has
input ports. The Controller_FSM dispatches data information
according to the real size and their corresponding structure. It
is configured according to the graph models before data are
transmitted. The Enable_FSM is cadenced with a virtual
clock (simple counter) to control IP temporal execution. It is
reset for new computation iteration and can freeze the
behavior of the IP if data are not ready (for example, if the
system has no yet provided the data).

We distinguish two design solutions in order to dispatch
serialized data to the corresponding ports of the architecture
interface structure. In one hand, transferring data can be
realised by decoding address structure from FIFO input. This
relies on the initiators addresses (addresses allowing knowing
the structure). We suppose that the interconnect protocol
vehicles only the initiator address for an input/output
structure. This assumption allows the controller decoding
addresses to differentiate the data port. In the other hand, the
conception of the interface architecture doesn’t consider
addresses. A sentence is preliminarily decided as a set of data
that will be sent/ produced to/by the architecture to feed the
architecture /system during computation iteration. A pattern
describing data scheduling can gather several motifs in order
to take advantage of the interconnect burst mode. Input
pattern and output pattern must be carefully merged in
serialized form taking into account available cells to avoid
deadlocks. We consider a pattern describing the order in
which the serialized data arrive to the controller FSM. This
order is the same as the system data sending order. It is
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written in the form of software driver piloting the architecture
of the IP.

The experimentation of this IP integration approach using
a generic interface structure is detailed in the following
section. Discussions deal with simulations results
differentiating between the two ways considered to dissociate
serialized data by the communication IP interface.

IV. EXPERIMENTAL RESULTS

The automatic interface generation has been tried on the
Object Motion Detection (OMD) algorithm. This algorithm
allows the detection of motion objects in a video sequence
using mathematical and morphological operations on a
sequence of successive images [20] as shown in figure 5. The
“Mean” function computes the mean between the input and N
old images in the algorithm. This function is used to be as a
hardware accelerator in order to experiment the proposed
encapsulation methodology. A “Mean” function computes the
mean between the input and N old images in the algorithm.

’ <D
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Threshold
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Figure 5. OMD algorithm

This IP is synthesized with the high level synthesis tool:
GAUT [21]. In this case, the “Mean” IP core requires



extracting data line by line, from every image (i.e. data
structure). In order to simulate the whole system, we have
used the SoCLiB platform. SoCLiB proposes an open
modelling as a simulation platform for SoC design to allow
modelling of complex systems VCI (Virtual Component
Interface) compliant [22]. The simulation platform we have
used contains a standard memory (RAM), a MIPS R3000
processor with its cache, and the hardware accelerator
("Mean" IP). Both the software part (“driver”) and the
hardware part (the interface) of the communication channel
are generated from the same data transfer description. The
host processor initiates the communications. It sends
(respectively. receives) data according to the software script
scheduling. The script has to respect the order by structure
(pseudo order).

Simulations have been carried out and validated under
Pentium M Centrino (1,5 GHz, 512 MB RAM) with Linux
environment as O.S, SystemC-2.0.1 simulator and GCC 3.3.1
compiler. The overall hardware/ software design is then co-
simulated. The throughput of this system, measured in frames
per second, is 12,5 for frames in gray levels Bmp format of
155x235 pixels (Design 1 in figure 5). The system should be
able to process 25 frames per second as a real-time standard.
The problem is in the slow communication link. Clearly, the
bottleneck is the system 32-bit width of the SoCLiB platform.
However, the platform is used to validate our interfacing
approach. Simulation results performance will be compared
with real prototyping of the interface.

Simulation Times (s)

M@ Design 1
W Design 2

Image size (octet)

~100k

~1M

Figure 6. SoCliB OMD Simulation times

To compare performances of the proposed interface
designs, communication interface decoding data address
(design 1 in figure 5) is flexible since it can target the
multiprocessor context. It is independent from the
interconnect protocol and its software driver is simple to
generate. However, it is not optimal in terms of memorization
units: FIFO_IN contains the data and the sender address. The
controller of the interface contains an address decoder. On the
other hand, communication interface dissociating data
according to a fixed pattern is optimal. It is independent from
the interconnect protocol and reduces the simulation time
(figure 5). However, it can’t target MPSoC context without a
scheduling arbiter and its driver is more complex to generate.

The specification tends to simulate faster than the RTL
(Register Transfer Level) model and favors systematic
interface synthesis. Moreover, it guarantees more safety in
building interface architecture in a SOC/MPSoC context. In
fact, all the interface sub-models are generated as CABA
(Cycle Accurate Bit Accurate) models defined by the Mealy
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Moore FSM. This style of implementation generates
simulation models that are semantically similar to final RTL
implementation.

V. CONCLUSIONS AND FUTURE WORKS

This paper proposes an approach of encapsulation to
integrate lower level IP in a multiprocessing context. The
solution is based on a generic configurable interfacing model.
Abstract graph models illustrating low-level constraints for IP
execution details have proved to have a high utility value for
the integration task where internal features of the IP core are
hidden. The design methodology relies on library which
contains interface modules and a strategy to capture the
protocol and timing information necessary for interface
generation. Various choices allowed in the interface design
have been described. The communication of the system is
validated using SystemC fast simulation. In addition, the
associated generic architecture modelling allows an easy
hardware implementation of the interface.

We are currently focusing on providing tool supporting the
methodology described here. We expect in the future to
design a tool based on the presented design models and
formal illustration in order to automate the RTL wrapper
generation before the logic synthesis process.
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