
 

  
Abstract-- Modern systems become more and more complex 

and tendency turn to the integration on one single chip: System 
on Chip (SoC). A major constraint consists of "Time-to-Market". 
Hence, the emergence of SoC is creating many new challenges, 
especially, the necessity of a unified language for the system level 
design. SystemC is proposed as a standardized modeling language 
intended to enable system level design at multiple abstraction 
levels for hardware / software systems. This paper describes a 
method of stepwise refinement with SystemC, starting from an 
algorithmic description and progressively adding implementation 
details. The method is described with reference to a Turbo 
encoder, which is progressively moved from a purely abstract 
level to a more detailed description. This study is realized to 
emphasize on the importance of this tendency within the 
framework of SoC design. We also present the experimental 
results from specification, refinement and validation with 
SystemC and simulation effectiveness of the proposed method. 

 
Index Terms-- SoC, System Level Modeling, SystemC, 

Refinement Methodology, Turbo Code. 

I. INTRODUCTION 

Design exploration for SoC designs requires a high-level 
language to provide a model of the whole system. This model 
should express the design functionality at a sufficiently 
abstract level so the design is easy to understand and verify 
[1].  

Furthermore, if the SoC design models can be simulated 
rapidly, then the whole design process can be accelerated. The 
current approach to system level design uses a mixture of 
design languages. Each language is used for the aspect of the 
system to which it is best suited: C/C++ may be used for the 
system level analysis and software development process. 
VHDL [2] or Verilog [3] can be used for hardware design. 

This approach is time consuming so there is a need for a 
unified modeling language to rapidly design a whole system. 

In response to these needs, the Open SystemC Initiative 
(OSCI) [4] was announced in September 1999. It is a 
modeling platform consisting of C++ class libraries and a  

simulation kernel [5]. SystemC is a language based on C++, 
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meant to represent functionality, communication, software and 
hardware at various system levels of abstraction.  

Besides, a market for all these researches is that of 
telecommunications which represents one of the most 
interesting applications of co-design because it implies the 
production at a lower cost of systems with strict constraints 
and this must be made in an environment of big competition 
where a short time of launch on market is crucial [6]. 

In this paper, we briefly describe existing modeling 
languages approaches for the design of a system at a high level 
of abstraction, in particular the SystemC Initiative. The  

work is done as a case study with focus on the SystemC 
modeling and simulation effectiveness for telecommunication 
systems. In order to estimate the associate flow methodology, 
we considered the Turbo encoder technique according to 
different considered level of abstraction iterating appropriate 
elementary refinements. We describe the different refinement 
steps with SystemC, starting from a purely algorithmic 
description and progressively adding details about data flow, 
data representation, algorithm timing and scheduling.  

The objective of this work is to evaluate the simulation 
performance of SystemC 2.0 using different ways of modeling 
at different levels when the complexity of the model increases. 
We restricted our development experimentation to the 
hardware flow. 

This paper is organized as follows. Section 2 analyzes the 
need of system level specification in the co-design flow and 
summarize various existing approaches for the implementation 
of a system modeling language, especially the SystemC 
approach, on the one hand, and outlines elementary 
refinements to consider at different levels of abstraction on the 
other hand. Section 3 describes the Turbo encoder function at 
various conception steps. Section 4 gives the experimental 
results from specification, refinement and validation with 
SystemC and simulation performance. Finally, section 5 
concludes this paper.  

II. SYSTEM LEVEL DESIGN REQUIREMENTS 
With the increasing complexity of today’s systems and the 

move towards SoC, there are growing needs for system-level 
modeling languages that can be used to describe systems at a 
high level of abstraction. In order to improve time-to-market 
and help to simplify the design process, it would be helpful if a 
single high-level model of the system could be used to 
implement the whole system. 
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A. The Need For System Level Design 
System level design issues are becoming increasingly 

critical as implementation technology involves more and more 
complex integrated circuits and software programs. Mixed-
language system level design flows don’t allow rapid 
exploration of the design space or a unified specification and 
modeling language. There is an obvious advantage in the use 
of a single language for the system level model, which can also 
describe Intellectual Property (IP) blocks, system hardware 
and software. So that, we can easily move functionality 
between these domains to obtain the best partition from 
numerous alternatives so any design problems can be resolved 
much earlier in the design process. 

Because there was no existing “perfect” system level design 
language, three predominant approaches are currently batted 
around in the marketplace. Indeed, some people suggested 
developing of totally new languages (such as Rosetta and 
Superlog) [7]. Other people suggested reshaping the C++ 
programming language to enable it to describe hardware 
concepts (SystemC for example). The third approach extends 
the existing HDLs upwards in abstraction, so they can express 
system-levels concepts. Each approach has its strengths and 
weaknesses at various points along the path from high level 
design description down to RTL [8].  

Since SoCs are often 80% software and 20% hardware on 
average and C/C++ has traditionally been used for 
programming, the C/C++ derivatives are considered the best 
approach for full system-level work [7]. However, a system 
approach does not rest only on the language. It is also essential 
to have a support in terms of methodology and an availability 
of EDA tools [9]. Hence, OSCI seems to be more favored with 
regard to the other approaches as far as the main EDA 
companies support it. To examine the feasibility of this 
approach, we need to examine the features and characteristics 
of SystemC. 

B. SystemC Approach  
SystemC introduces many concepts to support the material 

modeling and description and its inherent characteristics such 
as concurrency, temporal aspect and features for generalized 
modeling of communication and synchronization.  

To begin, let us introduce some basic SystemC concepts and 
nomenclature. A system may be modeled as a set of modules: a 
basic entity in SystemC that contain processes, ports, channels, 
and even other modules. Channels, interfaces and events are 
features for generalized modeling of communication and 
synchronization. Processes define the behavior of a particular 
module and provide express concurrency. Conceptually, 
processes execute in parallel, and they may be triggered by 
various events in the system.  SystemC supports three different 
types of processes- methods, threads and clocked threads. A 
channel implements one or more interfaces, where an interface 
is implying a collection of method (a.k.a. function) definitions 
to be implemented within a channel. A process accesses a 
channel’s interface via a port on the module. SystemC includes 
a simulation kernel. The kernel contains a scheduler that is 

responsible for scheduling processes and updating data 
communication. 

The "refinement" is the central concept of the SystemC 
design flow [5]. Refinement transforms a model to a lower 
level of abstraction whilst preserving its functionality. A test 
bench developed, initially at a high level of abstraction may be 
reused to verify that the design is correctly transformed at each 
level. The SystemC design flow shows the SystemC models 
used at each level of abstraction in the refinement approach 
(figure 1). The highest level is called the Untimed Functional 
level (UTF). The UTF model describes the system as a data-
driven network of processes, which execute in zero time. The 
next level is characterized by allocating timing to processes 
(refinement step 1). The explicit modeling defines the timed 
functional level (TF). Hence, the system model can be 
partitioned. This involves allocating processes to either 
hardware blocks or as tasks which run on a system processor. 
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Fig.  1.  SystemC Design Flow 

nce partitioning has been performed, the hardware 
ponent is refined to the Bus Cycle Accurate (BCA) level. 

is means that the interfaces between the processes may be 
deled using a clocked bus cycle model whereas the 
cesses themselves may still execute with zero time delay. 
finement step n° 2 takes the hardware model from a timed 
ctional level to a bus cycle accurate level. The cycle 
urate level (CA) describes the hardware in terms of 
avior with reference to the system clock. 
tep 3 in figure 1 shows refinement from the BCA model to 

 CA model. The CA level consists of a combination of RTL 
 implicit state machine modeling. CA models can be used 

input to SystemC synthesis tools [10]. 
owever, we should not expect to have a totally automated 

thesis tool to generate systematically the design from the 
tract specification. In this context, our work consists in 
using in a manual refinement methodology at the systems 
els with SystemC. From the system to the implementation 
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level descriptions, the various abstraction levels must be well 
defined and the refinement steps very precise and clear. 

C. Refinement Using SystemC 
We need a reliable methodology that allows the designer to 

continue refining the C/C++ executable specification created 
by the system architect or system level designer into one that is 
less abstract, i.e. that contains greater details about the 
structure and operation of the hardware/software it represents. 
This is usually performed with small steps to keep the process 
manageable. Each step produces a new model which must be 
verified to ensure compliance with the original specification 
and that no design errors have been introduced by the reuse of 
the original C/C++ testbench. The refinement steps that 
address these respective aspects are termed as “atomicity 
refinement”, “algorithmic refinement”, “communication 
refinement”, and “data refinement”. 

The following subsections describe how these refinement 
steps may be applied in more detail.  
1) Atomicity Refinement (AtR) 

For a SystemC design, the starting point executes a 
sequential program. Atomicity refinement converts this 
algorithm into one that contains concurrently executing 
processes. 
2) Algorithmic Refinement (AlR) 

This is a series of steps for splitting complex tasks into a 
sequence of smaller so simpler tasks. Algorithmic refinement 
replaces the functions used in abstracted level programs with a 
collection of simple functions that can be directly implemented 
in hardware. 
3) Communication Refinement (CR) 

Communication refinement is a process to replace a 
primitive channel with a refined channel. A refined channel 
will often have a more complex interface than the primitive 
channel previously used. 
4) Data Refinement (DR) 

This is the process to replace abstract data types such as 
C++ defined type by data structures.  

The order and the number of repetition of each of these 
stages are not congealed; it depends, generally, on the 
complexity and on the nature of the system to deal with.  This 
could be the model structure, its functionality, communication 
or internal data representation. It should be noticed that the 
original testbench is maintained throughout the refinement 
process. In this way the model functionality is always 
measured against the original specification. This refinement 
approach is presented in the following section with the turbo 
encoder modeling.  

III. EXPERIMENTATION 
Error correcting codes are a means of including redundancy 

in a stream of information bits to allow the detection and 
correction of symbol errors during transmission. Turbo coding 
is going to be an important forward-error correcting technique 
in many of the newer wireline and wireless data-
communication systems. There are very powerful forms that 

bring the performance of practical coding even closer to 
Shannon’s theoretical specifications [11].  

In order to estimate the SystemC methodology, we 
considered a Turbo encoder as a case study, in particular the 
PCCC family (Parallel Concatenated Convolutional Code). 
PCCCs employ two or more recursive systematic 
convolutional (RSC) encoders joined in parallel by one or 
more pseudo-random interleavers [12]. 

A. Turbo encoder design 
At its conception, this Turbo encoder comprised of the 

parallel concatenation of two recursive systematic 
convolutional RSC codes as shown in figure 2 below. An 
interleaver is used to scramble the order of the input bits 
before feeding them into the second encoder. 

The data bits “input data” are fed into the first encoder 
which generates a set of systematic and parity bits. The data 
bits are passed to the second encoder after being permuted by 
a pseudo-random interleaver. The second encoder also 
generates a set of systematic and parity bits. Because sending 
two sets of systematic bits is redundant, the overall code is 
punctured by deleting the second set of systematic bits. 

 
 
 
 
 
 
 
 
 
 

Fig.  2.  Turbo encoder Structure 

The resulting bit stream consists of a systematic bit from the 
first encoder followed by the parity bits from the first and 
second encoders, respectively. Multiplexing the systematic 
information with the parity information from both RSC 
encoders produces the output stream of a Turbo encoder. 

We assured C++ specification of the application 
independently from the application properties in term of time, 
synchronization etc... at first time. It allowed us to ensure 
functional check by guarding the same sequences to encode. 

Details about which refinements steps took place in the 
Turbo encoder design flow are analysed in the below 
subsections.  

B. UTF Turbo encoder Model 
At the initial stage of the refinement process, a Turbo 

encoder C++ algorithm is incorporated into an UTF SystemC 
model – it is simply placed inside a SystemC module wrapper. 
This model is used as the reference model for lower 
abstraction levels in order to evaluate different design 
properties. Inside a module, the functionality is placed within 
SystemC Turbo encoder process. The inputs used to drive the 
algorithm are supplied from a stimulus module (Sc_module 
stim) and the algorithm results are passed to a result module 

Systematic output 
RSC encoder 

#1 

RSC encoder 

#2 

Interleaver  

Multiplexor 

Input data 

Parity output 



 

(Sc_module res). 
The simulation is event-driven. The event checking 

mechanism is that of the sc_fifo primitive channel available in 
SystemC 2.0. This channel support data communication 
between modules. The Sc_module stim contains an Sc_thread 
process that can be suspended and reactivated by events or by 
module signals. The res module has an Sc_method process 
made sensitive to its input port. 

C. TF Turbo encoder Model 
We proceed to refine the UTF model to the TF model. 

Many features of SystemC and the C++ cannot yet be 
implemented in hardware [13]. Therefore, in order to use later 
synthesis tools, hardware designs must use a restricted subset 
of SystemC and C/C++.  
1) TFV1(Version 1) 

In the C++ algorithm, a matrix defined data type is used to 
simplify data manipulation. We affect the named DR to break 
down this defined data type and so to omit it from the code so 
that the design hasn’t global neither variable nor pointer for 
dynamic memory allocation. The refined system has been 
revalidated with the same input sequences to the C++ 
algorithm. 

We add a level of hierarchy to the Turbo encoder module 
which instantiates two RSC modules, an interleaver module 
and one multiplexor module. This was achieved by placing 
each appropriate function for these modules inside a Sc_thread 
process. Each of the modules was given a timed behavior. 
2) TFV2(version 2) 

There is no particular interest to use a hierarchical 
organization for this example. This is used when there is an 
inheritance mechanism which reads the module container to 
sub-modules. That is why, in this second TF version, the 
independence of every module is assured and separate module 
were created as atomicity refinement suggests.  

Event mechanism adjusts the processing modules and code 
was written to interface between the sub-modules. 
Communication between Turbo encoder system and the 
stimulus modules (stim, res) modules still as initially modeled 
using an sc_fifo primitive channel. 
3) TFV3(version 3) 

We consider here the RSC module for refining. At this point 
in the refinement process, an analysis was performed for a 
suitable choice of a static representation in the RSC module, 
so that it receives only one bit as input data.  The TF model 
still retains the data-driven execution for the other modules in 
the system. Another layer of hierarchy was added after an AtR: 
a RSC module instantiates three XOR port module and two 
flip-flop port module which include Sc_module processes. 
RSC is now at a CA model and its data transformations are 
scheduled with respect to a clock as shown in figure 3. 

Data processing is triggered on the positive clock edge 
when start is asserted. When the process finishes, the done 
signal is asserted. The RSC module is expressed in clock 
cycles.  

 

 
 
 
 
 
 
 
Fig.  3.  Refined RSC encoder (dotted lines apply for trellis termination only 

for decoding) 
To co-simulate all Turbo encoder modules, we need to 

coordinate activation and suspension of do_interleaver, 
do_stim and do_res processes via operations of data type 
conversion in appropriate ports and boolean handshaking 
signals to synchronize bit transferring and data_driven 
transferring. 

IV. RESULTS 
Our purpose was to estimate the capacity of SystemC to 

model, to refine and to validate the conception of an SoC 
telecommunication function at various levels of abstraction. 
The modeling and simulation possibilities of this language 
have been considered with the Turbo encoder case study. This 
encoder is characterized by the generator matrix of the RSC 
encoder:      

G = [1 1 1, 1 0 1] = [g0, g1]=[7,5]octal 

We check the well RSC functionality by means of 
GTKwave viewer.  

The transfer functions of the 6-state constituent code for 
PCCC is:             

G = [1; g1 / g0] 
The initial values of the shift registers of the 6-state 

constituent encoders are all zeros when starting to encode the 
input bits. 

In order to evaluate the simulation performance of SystemC, 
for each refinement step previously described, simulations 
have been done and the associated times have been noticed. 
These simulation times were obtained with the "time" utility 
and according to the average afterward 10 simulations for the 
encoding of the same test sequence of 200 bits. We observe a 
great evolution of the simulation times with regard to the 
abstraction levels as shown in figure 4. Indeed, SystemC is 
based on a real-time kernel giving the designer the possibility 
to write process definitions with wait-statements and 
sensitivity lists. Therefore, the SystemC simulation 
performance is very dependent on the modeling style [14] as 
well as the full computational model of interaction between the 
user defined processes and the simulation kernel process. 
Derived from hierarchically organized modules, SystemC 
establishes a hierarchical network of a finite number of parallel 
communicating processes which, under the supervision of the 
simulation kernel process, concurrently update new values for 
given signals and variables. Signals do not change their values 
immediately. Their assignments become effective only in the 
next simulation cycle [14]. 
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Fig.  4.  Turbo encoder simulation Times (Pentium 3, 800MHz 128Mo, Linux 
Mandrake 8.2) 

We notice that versions at high level of abstraction (at the 
left of the top graphic) take a short simulation time with regard 
to that at lower levels.  

The majority of the simulation time is spent in SystemC's 
simulator to administer the processes activation as well as to 
identify eligible processes. When details are added to the 
SystemC model, then more simulation overhead is incurred. In 
particular, atomicity refinement slow down simulations 
because of the increase in the number of SystemC processes. 
That explains the huge difference in the simulation time 
between FTV2 and FTV3. The SystemC simulation kernel has 
to handle this additional workload in addition to an increased 
number of events. Furthermore, simulation kernel process 
communicates with the other threads according to internal 
functions in the used operating system: the realized simulation 
under an UNIX environment, Linux either Windows NT 
requires a different time lapse according to the environment 
characteristics. 

If we had still continued to refine the conception, we would 
have models which should be very long to simulate. With the 
available tools, it is difficult with so complex applications 
(Turbo-code for example) to quantify the exact time employed 
by the scheduler for administering everything. 

V. CONCLUSION  
The use of system design language such as SystemC aims at 

providing a single modeling language for all design abstraction 
levels. This paper presents our experiments about manual 
refinements with SystemC. We proceed to the refinement of a 
convolutional Turbo encoder from a purely functional 
specification described in SystemC, according to the hardware 
SystemC design flow. For different refinement steps, SystemC 
simulation performance has been extracted in order to quantify 
the simulation time overhead associated to a more refined 
specification. Although more automation is needed, this work 
shows that a reasonably efficient implementation can be 
obtained, allowing for faster system development and quicker 
time-to-market. 

Using this methodology, a Turbo encoder has been created 
and can be used as an input source file to current SystemC 
synthesis tools. Further work will focus on the Turbo encoder 
synthesis to achieve a complete SystemC encoder design. 

REFERENCES 
[1] Santarini, Michael. “Million-gate ASICs will require hierarchical flow”, 

EE Times, http://www.eedesign.com/story/OEG20000120S0052 
[2] Alan Fitch, "Application of SystemC to hw/sw co-design". IEEE 

Seminar - Matériel-logiciel co-design. December 2000.  
[3] Matériel Description Languages Compared: Verilog and SystemC, 

Gianfranco Bonanome, Columbia University, Department of Computer 
Science, New York, NY. 

[4] http://www.systemc.org 
[5] Synopsys, SystemC version 2.0 User’s guide.2001 
[6] S. Benedetto and G. Montorsi, "Design of parallel concatenated 

convolutional codes," IEEE Trans. Commun., vol. 44, pp. 591-600, May 
1996. 

[7] Pete Hardee " Getting Matériel and Logiciel to Speak the Same 
Language". Dedicated Systems Magazine pp 6-9, July 2001. 

[8] “Design Languages Vie For System-Level Dominance”, Electronic 
Design Automation 53-60, 1 October 2001. 

[9] K.WAKABAYASHI, T.OKAMOTO, "C-Based SoC Design Flow and 
EDA Tools: An ASIC and System Vendor Perspective," IEEE 
transactions on computer aided design of integrated circuits and 
systems, VOL.19, NO.12, December 2000, pp.1507-1522. 

[10]  Economakos G, Oikonomakos P, Panagopoulos I, Poulakis I, 
Papakonstantinou G, "Behavioural Synthesis with SystemC", 
Proceedings of DATE-2001, pp p.21-5, 2001. 

[11] C.Berrou, A. Glavieux et P. Thitimajshima  "Near Shannon Limit Error-
Correcting Coding and Decoding: Turbo-Codes", IEEE International 
Conference on Communications, ICC-93, May 1993, vol. 2, pp. 1064-
1070. 

[12] Eric K.hall and Stephan G.Wilson "Stream_Oriented Turbo Codes", 
IEEE Vehicular Technology Conf. VTC '98 Ottawa, CA, May 1998.  

[13] Synopsys, Inc, CoCentric SystemC Compiler, "Describing Synthetisable 
RTL in SystemC" ,  January 2002. 

[14] Wolfgang Mueller, "The Simulation Semantics of SystemC", DATE 01, 
Munich, Germany, March 2001.   

 
 
 

Seconds 


	INTRODUCTION
	System Level Design Requirements
	The Need For System Level Design
	SystemC Approach
	Refinement Using SystemC
	Atomicity Refinement (AtR)
	Algorithmic Refinement (AlR)
	Communication Refinement (CR)
	Data Refinement (DR)


	Experimentation
	Turbo encoder design
	UTF Turbo encoder Model
	TF Turbo encoder Model
	TFV1(Version 1)
	TFV2(version 2)
	TFV3(version 3)


	Results
	Conclusion

