

Abstract-- Modern systems become more and more complex

and tendency turn to the integration on one single chip: System
on Chip (SoC). A major constraint consists of "Time-to-Market".
Hence, the emergence of SoC is creating many new challenges,
especially, the necessity of a unified language for the system level
design. SystemC is proposed as a standardized modeling language
intended to enable system level design at multiple abstraction
levels for hardware / software systems. This paper describes a
method of stepwise refinement with SystemC, starting from an
algorithmic description and progressively adding implementation
details. The method is described with reference to a Turbo
encoder, which is progressively moved from a purely abstract
level to a more detailed description. This study is realized to
emphasize on the importance of this tendency within the
framework of SoC design. We also present the experimental
results from specification, refinement and validation with
SystemC and simulation effectiveness of the proposed method.

Index Terms-- SoC, System Level Modeling, SystemC,

Refinement Methodology, Turbo Code.

I. INTRODUCTION

Design exploration for SoC designs requires a high-level
language to provide a model of the whole system. This model
should express the design functionality at a sufficiently
abstract level so the design is easy to understand and verify
[1].

Furthermore, if the SoC design models can be simulated
rapidly, then the whole design process can be accelerated. The
current approach to system level design uses a mixture of
design languages. Each language is used for the aspect of the
system to which it is best suited: C/C++ may be used for the
system level analysis and software development process.
VHDL [2] or Verilog [3] can be used for hardware design.

This approach is time consuming so there is a need for a
unified modeling language to rapidly design a whole system.

In response to these needs, the Open SystemC Initiative
(OSCI) [4] was announced in September 1999. It is a
modeling platform consisting of C++ class libraries and a

simulation kernel [5]. SystemC is a language based on C++,

Manuscript received August 14, 2003.
F. Abbes is with the GMS, ENIS, 3038 Sfax, Tunisia (e-mail:

abbes@iuplo.univ-ubs.fr).
E. Casseau is with L.E.S.T.E.R., BREST, Road Saint Maude - 56100

Lorient, France (e-mail: emmanuel.casseau@univ-ubs.fr).
M. Abid is with the GMS, ENIS, 3038 Sfax, Tunisia (e-mail:

mohamed.abid@enis.rnu.tn).

meant to represent functionality, communication, software and
hardware at various system levels of abstraction.

Besides, a market for all these researches is that of
telecommunications which represents one of the most
interesting applications of co-design because it implies the
production at a lower cost of systems with strict constraints
and this must be made in an environment of big competition
where a short time of launch on market is crucial [6].

In this paper, we briefly describe existing modeling
languages approaches for the design of a system at a high level
of abstraction, in particular the SystemC Initiative. The

work is done as a case study with focus on the SystemC
modeling and simulation effectiveness for telecommunication
systems. In order to estimate the associate flow methodology,
we considered the Turbo encoder technique according to
different considered level of abstraction iterating appropriate
elementary refinements. We describe the different refinement
steps with SystemC, starting from a purely algorithmic
description and progressively adding details about data flow,
data representation, algorithm timing and scheduling.

The objective of this work is to evaluate the simulation
performance of SystemC 2.0 using different ways of modeling
at different levels when the complexity of the model increases.
We restricted our development experimentation to the
hardware flow.

This paper is organized as follows. Section 2 analyzes the
need of system level specification in the co-design flow and
summarize various existing approaches for the implementation
of a system modeling language, especially the SystemC
approach, on the one hand, and outlines elementary
refinements to consider at different levels of abstraction on the
other hand. Section 3 describes the Turbo encoder function at
various conception steps. Section 4 gives the experimental
results from specification, refinement and validation with
SystemC and simulation performance. Finally, section 5
concludes this paper.

II. SYSTEM LEVEL DESIGN REQUIREMENTS
With the increasing complexity of today’s systems and the

move towards SoC, there are growing needs for system-level
modeling languages that can be used to describe systems at a
high level of abstraction. In order to improve time-to-market
and help to simplify the design process, it would be helpful if a
single high-level model of the system could be used to
implement the whole system.

SoC Design Case Study Using SystemC
Specifications
F. Abbes, E. Casseau, M. Abid

A. The Need For System Level Design
System level design issues are becoming increasingly

critical as implementation technology involves more and more
complex integrated circuits and software programs. Mixed-
language system level design flows don’t allow rapid
exploration of the design space or a unified specification and
modeling language. There is an obvious advantage in the use
of a single language for the system level model, which can also
describe Intellectual Property (IP) blocks, system hardware
and software. So that, we can easily move functionality
between these domains to obtain the best partition from
numerous alternatives so any design problems can be resolved
much earlier in the design process.

Because there was no existing “perfect” system level design
language, three predominant approaches are currently batted
around in the marketplace. Indeed, some people suggested
developing of totally new languages (such as Rosetta and
Superlog) [7]. Other people suggested reshaping the C++
programming language to enable it to describe hardware
concepts (SystemC for example). The third approach extends
the existing HDLs upwards in abstraction, so they can express
system-levels concepts. Each approach has its strengths and
weaknesses at various points along the path from high level
design description down to RTL [8].

Since SoCs are often 80% software and 20% hardware on
average and C/C++ has traditionally been used for
programming, the C/C++ derivatives are considered the best
approach for full system-level work [7]. However, a system
approach does not rest only on the language. It is also essential
to have a support in terms of methodology and an availability
of EDA tools [9]. Hence, OSCI seems to be more favored with
regard to the other approaches as far as the main EDA
companies support it. To examine the feasibility of this
approach, we need to examine the features and characteristics
of SystemC.

B. SystemC Approach
SystemC introduces many concepts to support the material

modeling and description and its inherent characteristics such
as concurrency, temporal aspect and features for generalized
modeling of communication and synchronization.

To begin, let us introduce some basic SystemC concepts and
nomenclature. A system may be modeled as a set of modules: a
basic entity in SystemC that contain processes, ports, channels,
and even other modules. Channels, interfaces and events are
features for generalized modeling of communication and
synchronization. Processes define the behavior of a particular
module and provide express concurrency. Conceptually,
processes execute in parallel, and they may be triggered by
various events in the system. SystemC supports three different
types of processes- methods, threads and clocked threads. A
channel implements one or more interfaces, where an interface
is implying a collection of method (a.k.a. function) definitions
to be implemented within a channel. A process accesses a
channel’s interface via a port on the module. SystemC includes
a simulation kernel. The kernel contains a scheduler that is

responsible for scheduling processes and updating data
communication.

The "refinement" is the central concept of the SystemC
design flow [5]. Refinement transforms a model to a lower
level of abstraction whilst preserving its functionality. A test
bench developed, initially at a high level of abstraction may be
reused to verify that the design is correctly transformed at each
level. The SystemC design flow shows the SystemC models
used at each level of abstraction in the refinement approach
(figure 1). The highest level is called the Untimed Functional
level (UTF). The UTF model describes the system as a data-
driven network of processes, which execute in zero time. The
next level is characterized by allocating timing to processes
(refinement step 1). The explicit modeling defines the timed
functional level (TF). Hence, the system model can be
partitioned. This involves allocating processes to either
hardware blocks or as tasks which run on a system processor.

O
com
Th
mo
pro
Re
fun
acc
beh

S
the
and
as

H
syn
abs
foc
lev

Fig. 1. SystemC Design Flow

nce partitioning has been performed, the hardware
ponent is refined to the Bus Cycle Accurate (BCA) level.

is means that the interfaces between the processes may be
deled using a clocked bus cycle model whereas the
cesses themselves may still execute with zero time delay.
finement step n° 2 takes the hardware model from a timed
ctional level to a bus cycle accurate level. The cycle
urate level (CA) describes the hardware in terms of
avior with reference to the system clock.
tep 3 in figure 1 shows refinement from the BCA model to

 CA model. The CA level consists of a combination of RTL
 implicit state machine modeling. CA models can be used

input to SystemC synthesis tools [10].
owever, we should not expect to have a totally automated

thesis tool to generate systematically the design from the
tract specification. In this context, our work consists in
using in a manual refinement methodology at the systems
els with SystemC. From the system to the implementation

Abstract
RTOS

RTOS
RTL

BCA

Untimed Functional

Timed Functional

Partionment HW/SW

Bus cycle occurate

Cycle occurate

De sign exploration

HW/SW analysis
of partionnement
performance

Refinement 1

HardwareSoftware

Target/core
(Scheduling)

Task Partitioning

UTF

TF

Refinement

Refinement 2

Refinement 3

level descriptions, the various abstraction levels must be well
defined and the refinement steps very precise and clear.

C. Refinement Using SystemC
We need a reliable methodology that allows the designer to

continue refining the C/C++ executable specification created
by the system architect or system level designer into one that is
less abstract, i.e. that contains greater details about the
structure and operation of the hardware/software it represents.
This is usually performed with small steps to keep the process
manageable. Each step produces a new model which must be
verified to ensure compliance with the original specification
and that no design errors have been introduced by the reuse of
the original C/C++ testbench. The refinement steps that
address these respective aspects are termed as “atomicity
refinement”, “algorithmic refinement”, “communication
refinement”, and “data refinement”.

The following subsections describe how these refinement
steps may be applied in more detail.
1) Atomicity Refinement (AtR)

For a SystemC design, the starting point executes a
sequential program. Atomicity refinement converts this
algorithm into one that contains concurrently executing
processes.
2) Algorithmic Refinement (AlR)

This is a series of steps for splitting complex tasks into a
sequence of smaller so simpler tasks. Algorithmic refinement
replaces the functions used in abstracted level programs with a
collection of simple functions that can be directly implemented
in hardware.
3) Communication Refinement (CR)

Communication refinement is a process to replace a
primitive channel with a refined channel. A refined channel
will often have a more complex interface than the primitive
channel previously used.
4) Data Refinement (DR)

This is the process to replace abstract data types such as
C++ defined type by data structures.

The order and the number of repetition of each of these
stages are not congealed; it depends, generally, on the
complexity and on the nature of the system to deal with. This
could be the model structure, its functionality, communication
or internal data representation. It should be noticed that the
original testbench is maintained throughout the refinement
process. In this way the model functionality is always
measured against the original specification. This refinement
approach is presented in the following section with the turbo
encoder modeling.

III. EXPERIMENTATION
Error correcting codes are a means of including redundancy

in a stream of information bits to allow the detection and
correction of symbol errors during transmission. Turbo coding
is going to be an important forward-error correcting technique
in many of the newer wireline and wireless data-
communication systems. There are very powerful forms that

bring the performance of practical coding even closer to
Shannon’s theoretical specifications [11].

In order to estimate the SystemC methodology, we
considered a Turbo encoder as a case study, in particular the
PCCC family (Parallel Concatenated Convolutional Code).
PCCCs employ two or more recursive systematic
convolutional (RSC) encoders joined in parallel by one or
more pseudo-random interleavers [12].

A. Turbo encoder design
At its conception, this Turbo encoder comprised of the

parallel concatenation of two recursive systematic
convolutional RSC codes as shown in figure 2 below. An
interleaver is used to scramble the order of the input bits
before feeding them into the second encoder.

The data bits “input data” are fed into the first encoder
which generates a set of systematic and parity bits. The data
bits are passed to the second encoder after being permuted by
a pseudo-random interleaver. The second encoder also
generates a set of systematic and parity bits. Because sending
two sets of systematic bits is redundant, the overall code is
punctured by deleting the second set of systematic bits.

Fig. 2. Turbo encoder Structure

The resulting bit stream consists of a systematic bit from the
first encoder followed by the parity bits from the first and
second encoders, respectively. Multiplexing the systematic
information with the parity information from both RSC
encoders produces the output stream of a Turbo encoder.

We assured C++ specification of the application
independently from the application properties in term of time,
synchronization etc... at first time. It allowed us to ensure
functional check by guarding the same sequences to encode.

Details about which refinements steps took place in the
Turbo encoder design flow are analysed in the below
subsections.

B. UTF Turbo encoder Model
At the initial stage of the refinement process, a Turbo

encoder C++ algorithm is incorporated into an UTF SystemC
model – it is simply placed inside a SystemC module wrapper.
This model is used as the reference model for lower
abstraction levels in order to evaluate different design
properties. Inside a module, the functionality is placed within
SystemC Turbo encoder process. The inputs used to drive the
algorithm are supplied from a stimulus module (Sc_module
stim) and the algorithm results are passed to a result module

Systematic output
RSC encoder

#1

RSC encoder

#2

Interleaver

Multiplexor

Input data

Parity output

(Sc_module res).
The simulation is event-driven. The event checking

mechanism is that of the sc_fifo primitive channel available in
SystemC 2.0. This channel support data communication
between modules. The Sc_module stim contains an Sc_thread
process that can be suspended and reactivated by events or by
module signals. The res module has an Sc_method process
made sensitive to its input port.

C. TF Turbo encoder Model
We proceed to refine the UTF model to the TF model.

Many features of SystemC and the C++ cannot yet be
implemented in hardware [13]. Therefore, in order to use later
synthesis tools, hardware designs must use a restricted subset
of SystemC and C/C++.
1) TFV1(Version 1)

In the C++ algorithm, a matrix defined data type is used to
simplify data manipulation. We affect the named DR to break
down this defined data type and so to omit it from the code so
that the design hasn’t global neither variable nor pointer for
dynamic memory allocation. The refined system has been
revalidated with the same input sequences to the C++
algorithm.

We add a level of hierarchy to the Turbo encoder module
which instantiates two RSC modules, an interleaver module
and one multiplexor module. This was achieved by placing
each appropriate function for these modules inside a Sc_thread
process. Each of the modules was given a timed behavior.
2) TFV2(version 2)

There is no particular interest to use a hierarchical
organization for this example. This is used when there is an
inheritance mechanism which reads the module container to
sub-modules. That is why, in this second TF version, the
independence of every module is assured and separate module
were created as atomicity refinement suggests.

Event mechanism adjusts the processing modules and code
was written to interface between the sub-modules.
Communication between Turbo encoder system and the
stimulus modules (stim, res) modules still as initially modeled
using an sc_fifo primitive channel.
3) TFV3(version 3)

We consider here the RSC module for refining. At this point
in the refinement process, an analysis was performed for a
suitable choice of a static representation in the RSC module,
so that it receives only one bit as input data. The TF model
still retains the data-driven execution for the other modules in
the system. Another layer of hierarchy was added after an AtR:
a RSC module instantiates three XOR port module and two
flip-flop port module which include Sc_module processes.
RSC is now at a CA model and its data transformations are
scheduled with respect to a clock as shown in figure 3.

Data processing is triggered on the positive clock edge
when start is asserted. When the process finishes, the done
signal is asserted. The RSC module is expressed in clock
cycles.

Fig. 3. Refined RSC encoder (dotted lines apply for trellis termination only

for decoding)
To co-simulate all Turbo encoder modules, we need to

coordinate activation and suspension of do_interleaver,
do_stim and do_res processes via operations of data type
conversion in appropriate ports and boolean handshaking
signals to synchronize bit transferring and data_driven
transferring.

IV. RESULTS
Our purpose was to estimate the capacity of SystemC to

model, to refine and to validate the conception of an SoC
telecommunication function at various levels of abstraction.
The modeling and simulation possibilities of this language
have been considered with the Turbo encoder case study. This
encoder is characterized by the generator matrix of the RSC
encoder:

G = [1 1 1, 1 0 1] = [g0, g1]=[7,5]octal

We check the well RSC functionality by means of
GTKwave viewer.

The transfer functions of the 6-state constituent code for
PCCC is:

G = [1; g1 / g0]
The initial values of the shift registers of the 6-state

constituent encoders are all zeros when starting to encode the
input bits.

In order to evaluate the simulation performance of SystemC,
for each refinement step previously described, simulations
have been done and the associated times have been noticed.
These simulation times were obtained with the "time" utility
and according to the average afterward 10 simulations for the
encoding of the same test sequence of 200 bits. We observe a
great evolution of the simulation times with regard to the
abstraction levels as shown in figure 4. Indeed, SystemC is
based on a real-time kernel giving the designer the possibility
to write process definitions with wait-statements and
sensitivity lists. Therefore, the SystemC simulation
performance is very dependent on the modeling style [14] as
well as the full computational model of interaction between the
user defined processes and the simulation kernel process.
Derived from hierarchically organized modules, SystemC
establishes a hierarchical network of a finite number of parallel
communicating processes which, under the supervision of the
simulation kernel process, concurrently update new values for
given signals and variables. Signals do not change their values
immediately. Their assignments become effective only in the
next simulation cycle [14].

Clock

C/C++
V.FU

V.FT1
V.FT2

V.FT3

0
500

1000
1500

2000

2500

3000

3500

4000

C/C++

V.FU

V.FT1

V.FT2

V.FT3

Fig. 4. Turbo encoder simulation Times (Pentium 3, 800MHz 128Mo, Linux
Mandrake 8.2)

We notice that versions at high level of abstraction (at the
left of the top graphic) take a short simulation time with regard
to that at lower levels.

The majority of the simulation time is spent in SystemC's
simulator to administer the processes activation as well as to
identify eligible processes. When details are added to the
SystemC model, then more simulation overhead is incurred. In
particular, atomicity refinement slow down simulations
because of the increase in the number of SystemC processes.
That explains the huge difference in the simulation time
between FTV2 and FTV3. The SystemC simulation kernel has
to handle this additional workload in addition to an increased
number of events. Furthermore, simulation kernel process
communicates with the other threads according to internal
functions in the used operating system: the realized simulation
under an UNIX environment, Linux either Windows NT
requires a different time lapse according to the environment
characteristics.

If we had still continued to refine the conception, we would
have models which should be very long to simulate. With the
available tools, it is difficult with so complex applications
(Turbo-code for example) to quantify the exact time employed
by the scheduler for administering everything.

V. CONCLUSION
The use of system design language such as SystemC aims at

providing a single modeling language for all design abstraction
levels. This paper presents our experiments about manual
refinements with SystemC. We proceed to the refinement of a
convolutional Turbo encoder from a purely functional
specification described in SystemC, according to the hardware
SystemC design flow. For different refinement steps, SystemC
simulation performance has been extracted in order to quantify
the simulation time overhead associated to a more refined
specification. Although more automation is needed, this work
shows that a reasonably efficient implementation can be
obtained, allowing for faster system development and quicker
time-to-market.

Using this methodology, a Turbo encoder has been created
and can be used as an input source file to current SystemC
synthesis tools. Further work will focus on the Turbo encoder
synthesis to achieve a complete SystemC encoder design.

REFERENCES
[1] Santarini, Michael. “Million-gate ASICs will require hierarchical flow”,

EE Times, http://www.eedesign.com/story/OEG20000120S0052
[2] Alan Fitch, "Application of SystemC to hw/sw co-design". IEEE

Seminar - Matériel-logiciel co-design. December 2000.
[3] Matériel Description Languages Compared: Verilog and SystemC,

Gianfranco Bonanome, Columbia University, Department of Computer
Science, New York, NY.

[4] http://www.systemc.org
[5] Synopsys, SystemC version 2.0 User’s guide.2001
[6] S. Benedetto and G. Montorsi, "Design of parallel concatenated

convolutional codes," IEEE Trans. Commun., vol. 44, pp. 591-600, May
1996.

[7] Pete Hardee " Getting Matériel and Logiciel to Speak the Same
Language". Dedicated Systems Magazine pp 6-9, July 2001.

[8] “Design Languages Vie For System-Level Dominance”, Electronic
Design Automation 53-60, 1 October 2001.

[9] K.WAKABAYASHI, T.OKAMOTO, "C-Based SoC Design Flow and
EDA Tools: An ASIC and System Vendor Perspective," IEEE
transactions on computer aided design of integrated circuits and
systems, VOL.19, NO.12, December 2000, pp.1507-1522.

[10] Economakos G, Oikonomakos P, Panagopoulos I, Poulakis I,
Papakonstantinou G, "Behavioural Synthesis with SystemC",
Proceedings of DATE-2001, pp p.21-5, 2001.

[11] C.Berrou, A. Glavieux et P. Thitimajshima "Near Shannon Limit Error-
Correcting Coding and Decoding: Turbo-Codes", IEEE International
Conference on Communications, ICC-93, May 1993, vol. 2, pp. 1064-
1070.

[12] Eric K.hall and Stephan G.Wilson "Stream_Oriented Turbo Codes",
IEEE Vehicular Technology Conf. VTC '98 Ottawa, CA, May 1998.

[13] Synopsys, Inc, CoCentric SystemC Compiler, "Describing Synthetisable
RTL in SystemC" , January 2002.

[14] Wolfgang Mueller, "The Simulation Semantics of SystemC", DATE 01,
Munich, Germany, March 2001.

Seconds

	INTRODUCTION
	System Level Design Requirements
	The Need For System Level Design
	SystemC Approach
	Refinement Using SystemC
	Atomicity Refinement (AtR)
	Algorithmic Refinement (AlR)
	Communication Refinement (CR)
	Data Refinement (DR)

	Experimentation
	Turbo encoder design
	UTF Turbo encoder Model
	TF Turbo encoder Model
	TFV1(Version 1)
	TFV2(version 2)
	TFV3(version 3)

	Results
	Conclusion

