
 
 
 
 
 
 

 

 

 

 

 

Abstract: Augmented reality (AR) systems emerged and become a 
very gifted 3D embedded multimedia application. AR consists on 
adding specific 3D’s animations on a video flow. The design and 
the implementation of such systems on FPGA are complex and 
difficult. To reduce computational resources that must be 
carefully used to execute complex application. This execution can 
be often done in unpredictable environments: it is the major 
problem to solve. The system architecture must be efficient and 
flexible enough to adapt system resources to the application 
requirements and the environment architectures and mobile’s 
constraints. In this paper, we describe our concept of flexible 
architecture: we have developed IPs to obtain self-adaptive 
augmented reality systems to implement on FPGA.  

I. INTRODUCTION 
 

HE multimedia embedded applications inflate the computer 
sciences  domain. Watching a HD video or a 3D movie is 
now possible not only with a 3D TV but also possible with 

new Smartphone, video games and others.  

Thus, the design of multimedia systems applications 
becomes a major research axis. These applications must have 
an acceptable quality of service (QoS) despite the limitation of 
used resources (computing, energy, data transfer…) and the 
environmental external fluctuations (noise, dust, vibrations…).    

To design an efficient embedded product it’s important to 
maximize the product QoS and to minimize the application 
complexity. The aim of each embedded developer is to resolve 
this equation’s system.  

One of the used solutions for the previous problem is the 
adaptable systems: this technique helps to have the best QoS 
when needed and decrease it we don’t. We can use also the 
hardware accelerators to minimize the software use and to have 
an important earn in time’s execution and consequently a better 
embedded applications quality of service.  

In this paper, we present preliminary results for the design 
of an adaptive embedded system based on reconfigurable HW 
variable units dedicated to augmented reality applications. 

The paper is organized as follow. Section II gives our work 
major features and compares it with related works. Section III 
presents the augmented reality application and talks about 
proposed architecture. Section IV talks about the Partial  

 

 

 

 

 

 

 

 

 

 

 

reconfiguration and estimated hardware IP results. Finally, 
section VI concludes the paper with a brief outlook on future 
works. 

II. STATE OF ART 
 

The state of art chapter contains 2 important parts which 
are adaptive systems and augmented reality. We’ll introduce 
our demonstrator.  

1. Adaptatif systems: 

Various adaptation techniques have been proposed in to 
ameliorate the QOS. These techniques touch different levels: 
application, operating system or hardware levels. Due to the 
complexity of embedded system, their ability to support new 
services, the limited energy and the need for mobility, a new 
type of adaptation techniques is required. It is necessary to 
adopt global adaptation strategy which combines the 
previously described adaptation methods. 

 Several techniques in the domain of self-adaptation have 
been tested to embedded systems. These adaptation techniques 
can be applied to the following layers: architecture, operating 
system and application. We describe the advantages of the 
proposed techniques as well as their limitations. 

a.  Architecture (HW)-level adaptation 
HW adaptation has been applied to reconfigurable 

platforms. The change of the system architecture is made 
according to both the needs of the application and the 
system’s constraints. Such a method is applied to partition the 
system using two techniques, the first of which uses a 
heuristic algorithm [1] while the second uses a genetic 
algorithm [2]. 

b.  OS- level adaptation 
OS and middleware layers to providing predictable CPU 

allocation and adaptation services of OS have been treated [3]. 
In some researches, the managers of CPU resources provide 
performance guarantees in “soft” real time. Adaptation is 
based on the dynamic change of the scheduling policy in [3] to 
handle the variations of application runtime.  

c. Application-level Adaptation 
In many projects, adaptation is used at the application 

layer for different purposes. The authors explore the technique 
of adapting the behavior of the application to the constraints 
of energy consumption in [4]. Mesarina et al. [5] discuss how 
to reduce the energy for the decoding MPEG application using 

T 

Self adaptive Augmented Reality systems on FPGA 
 

Tarek FRIKHA, Nader BEN AMOR, Ines 
BENHLIMA, Kais LOUKIL, Mohamed ABID 

CES-Laboratory 
Sfax University, National Engineering School of Sfax  

Sfax TUNISIA 
tarek.1982@gmail.com 

Jean-Philippe DIGUET 
Lab-STICC 

University Bretagne Sud,  
Lorient, FRANCE 

jean-philippe.diguet@univ-ubs.fr 
 



parameter modification. In [6], to improve the constraints of 
resources and network bandwidth, two approaches are 
proposed for the deterioration of the quality of 3D. 

 

d.  Cross layer adaptation 
Previous adaptations are not orthogonal; therefore, cross 

layer adaptation has been proposed to combine their benefits 
according to interlayer dependencies. Most of the previous 
researches were based on methods, which work 
simultaneously on the various layers of the system such as 
GRACE 1 and 2 [7,8]. 

Our work, based on Kais Loukil and al [9] research, add 
the partial reconfiguration as an adaptation technique. He need 
in his PHD to embed configurations on the FPGA. The 
application become complex particularly energy consumption. 
To solve this problem we introduce the partial reconfiguration 
part. We need with this technique to embed only the used 
configuration on the FPGA and not the whole. We choose the 
3D application to obtain the augmented [10] reality 
demonstrator.  

2. Augmented reality: 

AR technique consists to enhance real video sequences with 
virtual objects. [11] The AR touches many fields such as : 
medicine (3D organs modeling…), military (Head-Up 
Display), industrial (total immersion, remote maintenance 
[12]), marketing and commercial (advertisements, virtual 
visits…), entertainments (video games and sport events (player 
numbers, offside virtual lines, WR comparison line, give visual 
information for TV viewers from hidden angles in sport match 
[12] …). [14] 

Our target AR application (see Figure 1) is the combination 
of a video flow recorded with a camera and images synthesis.  

 
 

Our demonstrator is composed by two parts: a transmitter 
and a receiver. A camera is used for video acquisition. This 
camera transmits a video flow to the transmitter. The 
transmitter is composed of a video flow transformation bloc 
and a MJPEG coder (embedded in a first ML 507 FPGA 
board) which is used to compress the video. The 3D 
animations specifications are multiplexed with the encoded 

video. They are sent over the TCP IP network using an XML 
file. At the reception, the video is decoded; 3D animations are 
computed using XML specifications and mixed with the 
decoded file before being projected on the screen.  

 

III. AUGMENTED REALITY AND USED ARCHITECTURES 

 
 

The advances in the field of computer vision and mobile 
computing have made possible the development of complex 
but one of the main issues remains outdoor application in 
unknown environment. Applications become more complex, 
and the environment conditions are unpredictable (sunlight, 
unrestricted mobility, etc.) and where different types of sensors 
can be used. [13] In this paper we’ll talk about the 3D 
application implementation.  

    Adopted architectures: 
 

3D computation requires high performance architecture. 
GPP are greedy. A solution would be to adopt specific 
computing units (shader, geometric) these units will be 
described in the section IV, part B. 

To work with complex 3D applications, different GPUs are 
used.. ATI and NVIDIA leaders of GPUs used different 
architectures to display 3D images[15]. 

Inspired from the NVIDIA architecture, we present an 
architecture based on geometry shaders (GS) for different 
movements (translation, rotation …) and vertex shaders (VS) 
(image textures…). The first architectures consist on using one 
GS and one VS. After that we parallelize the application by 
adding shader and making some of them working a the same 
time and the other pipelined.  

The number and type of shaders used depends on the type 
of images and objects. With a richly textured video, many 
vertex shaders are required with moving video, geometry 
shaders. GPU use a unified shader to display the video. This 
architecture is an optimal one for the process using but need 
many resources.  

In the next part, we present an alternative solution based on 
reconfigurable architecture for 3D objects displaying. Our job 
is oriented to add the 3D object to the video. This architecture 
insures a trade-off between the video quality display and the 
limited FPGA resources. 

 

IV. APPLICATION DESIGN AND HARDWARE ACCELERATOR: 
 

A. 3D image synthesis application overview:. 
 

 
Figure 2: Graphical 3D pipeline 

The triangles represent the input of our 3D graphical 
pipeline (figure 2).  The transformation step represents the 
conversion from local coordinate system to a global one, 
which is the camera coordinate system. We’ll use translations, 
rotations and homoteties to obtain the final result. 

Figure 1: Application demonstrator 



The visibility test consists in identifying which pixel will be 
viewed and which one will be hidden on the screen using the 
angle between the vision vector and the hidden one. 

The luminosity calculation step gives the luminous intensity 
attributed to each pixel. 

The clipping step consists in eliminating the pixel which 
will not be on the projected screen but on the computer 
monitor: if the pixel is a hidden one, it is not displayed.  

The projection step is the application of the projective 
geometry which consists on how displaying a 3D point on a 
2D scene. 

The rasterisation step is very important because it gives the 
projected  2D objet a 3D visual aspect when it is projected on 
the screen. Because of the complexity of the 3D application, 
we accelerate this software application by introducing 
hardware blocks. Inspired by the GPP architecture, the 
software bloc communicates with hardware blocks with the 
FSL bus. 

B. Application analysis and profiling  
We use a 3D application available as a C code. In this 

application the object rotates around different axis. Due to its 
complexity, the software application version can be displayed 
but are so slow.  

 To know which functions must be transformed on a 
hardware block, we analyze the functions and particularly 
arithmetic used operations that consume the major part of 
execution time. 

The 3D application study divides the function in two 
important parts:  
• Geometric shader 
• Vertex shader 
We’ll describe in the next the two shaders. 

C. Geometric shader 
The geometric shader represents the 3D application 

geometric functions. The figure 3 describes the geometric 
shader.  

 
 

The geometric pipeline is composed by two parts:  
a) Preparation functions: 

• The used functions to prepare the geometric object move 
matrixare: Preparpal : permits the color level calculation. 

• Identity matrix: create an identity matrix 
• Scale matrix: zoom the object to obtain the needed object 

scale. 
• Rotation: calculates the rotation of the used object. 
• Translation: calculates the translation of the used object. 
 Perspective transform : calculates the object coordinates  

projective geometric. 
 Matrix multiplication: calculates the multiplication of 

two 4*4 matrix.  
The 3D’s C code is profiled to obtain the number of 

allocated cycles of each function. 
 
 

Function  
 

Allocated 
cycles 

 

Occurrences 
 

% of an 
occurence 

 
Barycentre  194244  3* nb of 

objects 
4,40% 

Normalize  2397997  3* nb of 
objects 

54,39% 

Transformation  325676  3* nb of 
objects 

7,38% 

Mult_mytice  22640  1  0,51% 

Esperspective  22688  1  0,51% 

Translation  35330  1  0,80% 

Rotation  45774  2  1,03% 

Echelle   32262  1  0,73% 

Ident_matrice   146  1  0,003% 

Ident_matrice   403  1  0,01% 

Loadasm  922750  1  20,93% 

   4408764     1 

 
The application’s profiling result is described in table 1. The 

calcnormal uses 54% of the code time. This function precedes 
loadasm the transformation and the Barycentre one.   

Loadasm is used to load the polygon coordinates. That’s 
why we don’t describe it on the 3D application functions 
pipelines. The other functions are repeated. We describe the 
repated functions in the next paragraph.  
 

b) Repeated functions: 
 Matrix transform: multiply each triangle summit with the 

generic matrix obtained after the previous described 
geometric operations.   

 Normalization : permits to obtain the normalized surface 
vector. This function contains two important functions 
which are vectorial and normalize.  
 The vectorial function permits to calculate the 

vectorial product between two vectors. 
 The normalize function contains many arithmetic 

operators such as square root, divisions, additions and 
subtractions.   

Figure 3: 3D application geometric shader 

Table 1: 3D function profiling 



The matrix transform and normalization functions are 
computed on every polygons summits of the 3D objet. Each 
function is used 3 n polygons with n is the number of our 
object polygons. 

 

D.  Vertex shader: 
The Vertex shader permits to compute each pixel color 

value to  save it on on memory and to make it ready to the 
VGA controller. The figure 4 describes the Vertex shader 
functions used to prepare each pixel color value. 

 

  
 

 
The vertex shader functions based on the open GL ES 

principle contains dessine_object function. This function 
includes dessin_poly function which permits to draw the 
each polygon. Each pixel color is obtained after that by 
calculating the barycentre function. This function is the base 
of Open GL ES 3D application implementation.  

 
V.  PARTIAL RECONFIGURATION ARCHITECTURE AND 

ESTIMATED RESULTS: 
 

In this section, we describe the proposed reconfigurable 
architecture and the estimated results. 

 

A. Proposed architecture: 
 

The adopted reconfigurable architecture is described in the 
figure 5. There are 3 hardware accelerator zones. 

The zone 1 (Z1) contains Normal #1 and Transform #1 as 
described in Section III, C and b). These functions represented 
the geometric shader. This zone is a permanent one.. This 
zone is attached to the microblaze [16] via FSL [16]. The data 
will be sent to the zone 2 or zone 3 for vertex shading. The 
microblaze is the Xilinx softcore. 

The zone 2 (2) is the reconfigured one. It can be used for 
not only geometric shader but also a vertex one. If we have a 
geometrically rich application, the zone 2  is similar to zone 1. 
In this last case, the FIFO is virtual. We don’t need it in 
geometric shader but we used it because of the reconfigurable 
zone. This zone can be also a vertex pipeline. This pipeline 
needs a FIFO to save the data on it. The Reconfigurable zone 
needs to have the same input and output despite the 
configuration type. That’s why the FIFO is always used in the 
second zone. This zone is also connected to the microblaze via 
FSL. If the Z2 is similar to Z1 (moved object), the FSL send 
data to microblaze to be treated after that by the zone 3 (Z3). 
If the Z2 is similar to Z3 (textured object), the output are 
saved on FIFO.  

The third and final zone contains three blocks. The 
barycenter block. This block determinates the input of the 
Dessine-Poly (DP) block. These data are saved on FIFO to be 

ready for the DP treatment. The Z3 or/and Z2 results are saved 
after treatment on a FIFO. The two blocks can be used in 
parallel. For this reason we use the FIFO to save data. 
The µB*, is used to transfer data from FIFO to VGA IP via 
the PLB bus [16]. We can use also a picoblaze to do this task.  
 

 
 

 
 

B. Results: 
 

In this part, we’ll describe the profiling synthesis obtained 
results and the estimated results of the future implementation 
jobs. 

 

a. Obtained results: 
We describe in this part the results obtained by the hardware 

simulated block. We use the Xilinx profiling tools to have the 
aimed results. We compare a software function with a mixed 
software/hardware (SW/HW) using the Xilinx IP’s core and 
finally a mixed (SW/HW) using a manually created HW IP. 
We choose to estimate the normalize function which is one of 
the most complex one in term of number of arithmetic 
operators. The table 2 describes the obtained results after the 
function profiling.  

 
 

Chosen architecture Number of slices Execution time 
 Software 2229 1.2 
HW/SW (Xilinx IP) 3656 1.1 
HW/SW (ManualIP) 2800 0.9 

 
The software function needs a number of slices smaller than 

the HW/SW one but need more execution time. We have a 
gain of 25% of execution time in this case. We can increase 

Figure 4 : Vertex shader functions 

Figure 5: Reconfigurable proposed architecture 

Table2: 3D normalize profiling 

µB

I Normal #1

II Transform #1

III Normal #2

IV Transform #2

Z1

Z2

V Bary # 1 FIFO VI D.P # 1 Z3

III Bary # 2 FIFO IV D.P # 2 Z2

F
I
F
O

F
I
F
O*

µB*

PLB

IP VGA

FSL 1

FSL 2

FSL 1

FSL 3

FSL 2



this gain and in the same time decrease the number of slices if 
we use a microblaze without the Floating Point Unit. The FPU 
unit permits to use arithmetic operators such as division, 
square roots, sinus, cosines and other arithmetic operators. To 
improve results, we can transform all the functions in VHDL 
blocks. With this transformation, we don’t need to use the 
FPU unit and by consequent we gain 1000 slices. (10% of to 
the FPGA total slice) 

We can note that the manual realized VHDL blocks are 
more efficient than the Xilinx one because their architecture is 
specified to the application and not a generic one such as 
Xilinx IP. 

 
b. Estimated results: 

Using an only one arithmetic accelerator we obtained a gain 
of 25% in time execution. We can add to our architecture for 
the square root and multiplications as hardware blocks in the 
normalize blocks. We win more than 60% of execution time. 
In addition, as mentioned in previous paragraph we don’t need 
the use of FPU and consequently we aim many slices. 

Approximating these results and using them with the rest of 
hardware blocks, we obtain the results described in Table 3. 

 
 

Used function Execution 
time cycles 

Percentage 
gain  

Estimation 
time cycles 

Normalize 
 

2397997  70% 719399 

Transformation 
 

325676  40% 195406 

Barycentre and 
Dessine_poly 

194244  70 % 58273 

Total  2917917  66% 973078 
 
The table 3 that describes the accelerator blocks estimation 

time proves the important benefits obtained by used 
accelerator hardware blocks. This gain is obtained by using an 
only one hardware accelerator for Z1 and Z2 blocks. 

The total gain estimation obtained by using hardware block 
is a 60% of execution time. The same executed code is 0.4 
times faster.   

 
VI. CONCLUSION / PERSPECTIVES: 

 

We have presented our concept of flexible architecture for 
dynamically partial reconfigurable application and detailed the 
accelerators dedicated to the application. The obtained 
simulation results are very interesting and make clearer the 
steps to do for obtaining and augmented reality demonstrator 
for the 3D application. In the first time, we’ll adopt this 
architectural model and implement it on the Xilinx ML 507 
embedded kit. After that, we’ll test this approach on different 
bench marks and adopt it for different 3D video application. 
According to the complexity of the application in term of 
texture or movement, we’ll adopt automatically the best 
architectural model.  
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