Self adaptive Augmented Reality systems on FPGA

Tarek FRIKHA, Nader BEN AMOR, Ines
BENHLIMA, Kais LOUKIL, Mohamed ABID

CES-Laboratory
Sfax University, National Engineering School of Sfax
Sfax TUNISIA
tarek.1982@gmail.com

Abstract: Augmented reality (AR) systems emerged and become a
very gifted 3D embedded multimedia application. AR consists on
adding specific 3D’s animations on a video flow. The design and
the implementation of such systems on FPGA are complex and
difficult. To reduce computational resources that must be
carefully used to execute complex application. This execution can
be often done in unpredictable environments: it is the major
problem to solve. The system architecture must be efficient and
flexible enough to adapt system resources to the application
requirements and the environment architectures and mobile’s
constraints. In this paper, we describe our concept of flexible
architecture: we have developed IPs to obtain self-adaptive
augmented reality systems to implement on FPGA.

l. INTRODUCTION

THE multimedia embedded applications inflate the computer
sciences domain. Watching a HD video or a 3D movie is

now possible not only with a 3D TV but also possible with
new Smartphone, video games and others.

Thus, the design of multimedia systems applications
becomes a major research axis. These applications must have
an acceptable quality of service (QoS) despite the limitation of
used resources (computing, energy, data transfer...) and the
environmental external fluctuations (noise, dust, vibrations...).

To design an efficient embedded product it’s important to
maximize the product QoS and to minimize the application
complexity. The aim of each embedded developer is to resolve
this equation’s system.

One of the used solutions for the previous problem is the
adaptable systems: this technique helps to have the best QoS
when needed and decrease it we don’t. We can use also the
hardware accelerators to minimize the software use and to have
an important earn in time’s execution and consequently a better
embedded applications quality of service.

In this paper, we present preliminary results for the design
of an adaptive embedded system based on reconfigurable HW
variable units dedicated to augmented reality applications.

The paper is organized as follow. Section Il gives our work
major features and compares it with related works. Section 111
presents the augmented reality application and talks about
proposed architecture. Section 1V talks about the Partial

Jean-Philippe DIGUET

Lab-STICC
University Bretagne Sud,
Lorient, FRANCE
jean-philippe.diguet@univ-ubs.fr

reconfiguration and estimated hardware IP results. Finally,
section VI concludes the paper with a brief outlook on future
works.

Il. STATE OF ART

The state of art chapter contains 2 important parts which
are adaptive systems and augmented reality. We’ll introduce
our demonstrator.

1. Adaptatif systems:

Various adaptation techniques have been proposed in to
ameliorate the QOS. These techniques touch different levels:
application, operating system or hardware levels. Due to the
complexity of embedded system, their ability to support new
services, the limited energy and the need for mobility, a new
type of adaptation techniques is required. It is necessary to
adopt global adaptation strategy which combines the
previously described adaptation methods.

Several techniques in the domain of self-adaptation have
been tested to embedded systems. These adaptation techniques
can be applied to the following layers: architecture, operating
system and application. We describe the advantages of the
proposed techniques as well as their limitations.

a. Architecture (HW)-level adaptation

HW adaptation has been applied to reconfigurable
platforms. The change of the system architecture is made
according to both the needs of the application and the
system’s constraints. Such a method is applied to partition the
system using two techniques, the first of which uses a
heuristic algorithm [1] while the second uses a genetic
algorithm [2].

b. OS- level adaptation

OS and middleware layers to providing predictable CPU
allocation and adaptation services of OS have been treated [3].
In some researches, the managers of CPU resources provide
performance guarantees in “soft” real time. Adaptation is
based on the dynamic change of the scheduling policy in [3] to
handle the variations of application runtime.

c. Application-level Adaptation

In many projects, adaptation is used at the application
layer for different purposes. The authors explore the technique
of adapting the behavior of the application to the constraints
of energy consumption in [4]. Mesarina et al. [5] discuss how
to reduce the energy for the decoding MPEG application using

parameter modification. In [6], to improve the constraints of
resources and network bandwidth, two approaches are
proposed for the deterioration of the quality of 3D.

d. Cross layer adaptation

Previous adaptations are not orthogonal; therefore, cross
layer adaptation has been proposed to combine their benefits
according to interlayer dependencies. Most of the previous
researches were based on methods, which work
simultaneously on the various layers of the system such as
GRACE 1and 2 [7,8].

Our work, based on Kais Loukil and al [9] research, add
the partial reconfiguration as an adaptation technique. He need
in his PHD to embed configurations on the FPGA. The
application become complex particularly energy consumption.
To solve this problem we introduce the partial reconfiguration
part. We need with this technique to embed only the used
configuration on the FPGA and not the whole. We choose the
3D application to obtain the augmented [10] reality
demonstrator.

2. Augmented reality:

AR technique consists to enhance real video sequences with
virtual objects. [11] The AR touches many fields such as :
medicine (3D organs modeling...), military (Head-Up
Display), industrial (total immersion, remote maintenance
[12]), marketing and commercial (advertisements, virtual
visits...), entertainments (video games and sport events (player
numbers, offside virtual lines, WR comparison line, give visual
information for TV viewers from hidden angles in sport match
[12] ...). [14]

Our target AR application (see Figure 1) is the combination
of a video flow recorded with a camera and images synthesis.

Hoises

&
XML 3D animation
descrption

i belebebedtl b == = = = e
Sereen View I
I
1
1 Network sent
| Yidsg capture Video
Network
~Y I compresson —*
9 1 FPGA Xiipg ML 507 1
e e e e e e e o mRER _ _

Miging & Videg Adaptation Recention
" .

Animation

Figure 1: Application demonstrator

Our demonstrator is composed by two parts: a transmitter
and a receiver. A camera is used for video acquisition. This
camera transmits a video flow to the transmitter. The
transmitter is composed of a video flow transformation bloc
and a MJPEG coder (embedded in a first ML 507 FPGA
board) which is used to compress the video. The 3D
animations specifications are multiplexed with the encoded

video. They are sent over the TCP IP network using an XML
file. At the reception, the video is decoded; 3D animations are
computed using XML specifications and mixed with the
decoded file before being projected on the screen.

Ill. AUGMENTED REALITY AND USED ARCHITECTURES

The advances in the field of computer vision and mobile
computing have made possible the development of complex
but one of the main issues remains outdoor application in
unknown environment. Applications become more complex,
and the environment conditions are unpredictable (sunlight,
unrestricted mobility, etc.) and where different types of sensors
can be used.[13] In this paper we’ll talk about the 3D
application implementation.

Adopted architectures:

3D computation requires high performance architecture.
GPP are greedy. A solution would be to adopt specific
computing units (shader, geometric) these units will be
described in the section IV, part B.

To work with complex 3D applications, different GPUs are
used.. ATl and NVIDIA leaders of GPUs used different
architectures to display 3D images[15].

Inspired from the NVIDIA architecture, we present an
architecture based on geometry shaders (GS) for different
movements (translation, rotation ...) and vertex shaders (VS)
(image textures...). The first architectures consist on using one
GS and one VS. After that we parallelize the application by
adding shader and making some of them working a the same
time and the other pipelined.

The number and type of shaders used depends on the type
of images and objects. With a richly textured video, many
vertex shaders are required with moving video, geometry
shaders. GPU use a unified shader to display the video. This
architecture is an optimal one for the process using but need
many resources.

In the next part, we present an alternative solution based on
reconfigurable architecture for 3D objects displaying. Our job
is oriented to add the 3D object to the video. This architecture
insures a trade-off between the video quality display and the
limited FPGA resources.

IV. APPLICATION DESIGN AND HARDWARE ACCELERATOR:

A. 3D image synthesis application overview:.

V|5|b1I|ty Lum|n05|ty
‘ Triangles J:>Transformauon o |:> | calculation \

) ;
?Rasterisation}(ﬂf ProjectionH Clipping H‘Eﬁ?‘;&mk

Figure 2: Graphical 3D pipeline
The triangles represent the input of our 3D graphical
pipeline (figure 2). The transformation step represents the
conversion from local coordinate system to a global one,
which is the camera coordinate system. We’ll use translations,
rotations and homoteties to obtain the final result.

The visibility test consists in identifying which pixel will be
viewed and which one will be hidden on the screen using the
angle between the vision vector and the hidden one.

The luminosity calculation step gives the luminous intensity
attributed to each pixel.

The clipping step consists in eliminating the pixel which
will not be on the projected screen but on the computer
monitor: if the pixel is a hidden one, it is not displayed.

The projection step is the application of the projective
geometry which consists on how displaying a 3D point on a
2D scene.

The rasterisation step is very important because it gives the
projected 2D objet a 3D visual aspect when it is projected on
the screen. Because of the complexity of the 3D application,
we accelerate this software application by introducing
hardware blocks. Inspired by the GPP architecture, the
software bloc communicates with hardware blocks with the
FSL bus.

B. Application analysis and profiling

We use a 3D application available as a C code. In this
application the object rotates around different axis. Due to its
complexity, the software application version can be displayed
but are so slow.

To know which functions must be transformed on a
hardware block, we analyze the functions and particularly
arithmetic used operations that consume the major part of
execution time.

The 3D application study divides the function in two
important parts:

e Geometric shader

e Vertex shader

We’ll describe in the next the two shaders.

C. Geometric shader

The geometric shader represents the 3D application
geometric functions. The figure 3 describes the geometric
shader.

| Idant_matnce | -+Cop|e_rnam:e
Copie_matrice wa—| Ident_matnice *
Copie_matrice 14| MUl_maince |.g Echelle |

Rotationt

Copie_matrice

Ident_matrice |—mmCopie_matrice

Mult_matrice [—# Cople_matnce

Copie_malrice ma— ldent_matnice

Rotation2

Cope_matnce 4 Mull_matnce ilden_‘rnalnco | .+Cop|0 mamcoi

| Translation

'

| esFrustum |-1 |es__WrT.99ctw|

Vectoriel

Mult_matrice ——|capia._ma:m:e I
(Cople_matrice

Calcnormal

Figure 3: 3D application geometric shader

The geometric pipeline is composed by two parts:
a) Preparation functions:

e The used functions to prepare the geometric object move
matrixare: Preparpal : permits the color level calculation.
Identity matrix: create an identity matrix
Scale matrix: zoom the object to obtain the needed object
scale.

e Rotation: calculates the rotation of the used object.
Translation: calculates the translation of the used object.
Perspective transform : calculates the object coordinates
projective geometric.

e Matrix multiplication: calculates the multiplication of
two 4*4 matrix.

The 3D’s C code is profiled to obtain the number of
allocated cycles of each function.

Table 1: 3D function profiling

Function Allocated Occurrences % of an

cycles occurence

Barycentre 194244 3* nb of 4,40%
objects

Normalize 2397997 3* nb of 54,39%
objects

Transformation 325676 3* nb of 7,38%
objects

Mult_mytice 22640 1 0,51%

Esperspective 22688 1 0,51%

Translation 35330 1 0,80%

Rotation 45774 2 1,03%

Echelle 32262 1 0,73%

Ident_matrice 146 1 0,003%

Ident_matrice 403 1 0,01%

Loadasm 922750 1 20,93%

4408764 1

The application’s profiling result is described in table 1. The
calcnormal uses 54% of the code time. This function precedes
loadasm the transformation and the Barycentre one.

Loadasm is used to load the polygon coordinates. That’s
why we don’t describe it on the 3D application functions
pipelines. The other functions are repeated. We describe the
repated functions in the next paragraph.

b) Repeated functions:

e Matrix transform: multiply each triangle summit with the
generic matrix obtained after the previous described
geometric operations.

* Normalization : permits to obtain the normalized surface
vector. This function contains two important functions
which are vectorial and normalize.

v" The vectorial function permits to calculate the
vectorial product between two vectors.

v' The normalize function contains many arithmetic
operators such as square root, divisions, additions and
subtractions.

The matrix transform and normalization functions are
computed on every polygons summits of the 3D objet. Each
function is used 3 n polygons with n is the number of our
object polygons.

D. Vertex shader:

The Vertex shader permits to compute each pixel color
value to save it on on memory and to make it ready to the
VGA controller. The figure 4 describes the Vertex shader
functions used to prepare each pixel color value.

Ordre
‘ dessine_poly HDessmefomet K

Scalaire

Z_buffer

Mirtuel
Vertex shader

Figure 4 : Vertex shader functions

The vertex shader functions based on the open GL ES
principle contains dessine_object function. This function
includes dessin_poly function which permits to draw the
each polygon. Each pixel color is obtained after that by
calculating the barycentre function. This function is the base
of Open GL ES 3D application implementation.

V. PARTIAL RECONFIGURATION ARCHITECTURE AND
ESTIMATED RESULTS:

In this section, we describe the proposed reconfigurable
architecture and the estimated results.

A. Proposed architecture:

The adopted reconfigurable architecture is described in the
figure 5. There are 3 hardware accelerator zones.

The zone 1 (Z1) contains Normal #1 and Transform #1 as
described in Section 111, C and b). These functions represented
the geometric shader. This zone is a permanent one.. This
zone is attached to the microblaze [16] via FSL [16]. The data
will be sent to the zone 2 or zone 3 for vertex shading. The
microblaze is the Xilinx softcore.

The zone 2 (2) is the reconfigured one. It can be used for
not only geometric shader but also a vertex one. If we have a
geometrically rich application, the zone 2 is similar to zone 1.
In this last case, the FIFO is virtual. We don’t need it in
geometric shader but we used it because of the reconfigurable
zone. This zone can be also a vertex pipeline. This pipeline
needs a FIFO to save the data on it. The Reconfigurable zone
needs to have the same input and output despite the
configuration type. That’s why the FIFO is always used in the
second zone. This zone is also connected to the microblaze via
FSL. If the Z2 is similar to Z1 (moved object), the FSL send
data to microblaze to be treated after that by the zone 3 (Z3).
If the Z2 is similar to Z3 (textured object), the output are
saved on FIFO.

The third and final zone contains three blocks. The
barycenter block. This block determinates the input of the
Dessine-Poly (DP) block. These data are saved on FIFO to be

ready for the DP treatment. The Z3 or/and Z2 results are saved
after treatment on a FIFO. The two blocks can be used in
parallel. For this reason we use the FIFO to save data.

The puB*, is used to transfer data from FIFO to VGA IP via
the PLB bus [16]. We can use also a picoblaze to do this task.

| Normal #1

FSL1 Z1
Il Transform #1

FSL2
A |l Normal #2

E
|

L3 IV Transform #2 F

O*

L2 y
VBary#l:{ FIFO }I}VI D.P#1||Z3

uB

#m Bary # 2:[FIFO }:} IVD.P#2||Z2

PLB

Figure 5: Reconfigurable proposed architecture

B. Results:

In this part, we’ll describe the profiling synthesis obtained
results and the estimated results of the future implementation
jobs.

a. Obtained results:

We describe in this part the results obtained by the hardware
simulated block. We use the Xilinx profiling tools to have the
aimed results. We compare a software function with a mixed
software/hardware (SW/HW) using the Xilinx IP’s core and
finally a mixed (SW/HW) using a manually created HW IP.
We choose to estimate the normalize function which is one of
the most complex one in term of number of arithmetic
operators. The table 2 describes the obtained results after the
function profiling.

Table2: 3D normalize profiling

Chosen architecture Number of slices Execution time

Software 2229 1.2
HW/SW (Xilinx IP) 3656 1.1
HW/SW (ManuallP) 2800 0.9

The software function needs a number of slices smaller than
the HW/SW one but need more execution time. We have a
gain of 25% of execution time in this case. We can increase

this gain and in the same time decrease the number of slices if
we use a microblaze without the Floating Point Unit. The FPU
unit permits to use arithmetic operators such as division,
square roots, sinus, cosines and other arithmetic operators. To
improve results, we can transform all the functions in VHDL
blocks. With this transformation, we don’t need to use the
FPU unit and by consequent we gain 1000 slices. (10% of to
the FPGA total slice)

We can note that the manual realized VHDL blocks are
more efficient than the Xilinx one because their architecture is
specified to the application and not a generic one such as
Xilinx IP.

b. Estimated results:

Using an only one arithmetic accelerator we obtained a gain
of 25% in time execution. We can add to our architecture for
the square root and multiplications as hardware blocks in the
normalize blocks. We win more than 60% of execution time.
In addition, as mentioned in previous paragraph we don’t need
the use of FPU and consequently we aim many slices.

Approximating these results and using them with the rest of
hardware blocks, we obtain the results described in Table 3.

Table3: Accelerator blocks estimation time

Used function Execution | Percentage | Estimation
time cycles | gain time cycles

Normalize 2397997 | 70% 719399

Transformation 325676 | 40% 195406

Barycentre and 194244 | 70 % 58273

Dessine_poly

Total 2917917 | 66% 973078

The table 3 that describes the accelerator blocks estimation
time proves the important benefits obtained by used
accelerator hardware blocks. This gain is obtained by using an
only one hardware accelerator for Z1 and Z2 blocks.

The total gain estimation obtained by using hardware block
is a 60% of execution time. The same executed code is 0.4
times faster.

VI. CONCLUSION / PERSPECTIVES:

We have presented our concept of flexible architecture for
dynamically partial reconfigurable application and detailed the
accelerators dedicated to the application. The obtained
simulation results are very interesting and make clearer the
steps to do for obtaining and augmented reality demonstrator
for the 3D application. In the first time, we’ll adopt this
architectural model and implement it on the Xilinx ML 507
embedded kit. After that, we’ll test this approach on different
bench marks and adopt it for different 3D video application.
According to the complexity of the application in term of
texture or movement, we’ll adopt automatically the best
architectural model.

REFERENCES

[1] P. Ngoc, G. Lafruit, J-Y. Mignolet , G. Deconinck, and R. Lauwereins
“QOS aware HW/SW partitioning on run-time reconfigurable
multimedia platforms” Proceedings of the International Conference on
Engineering of Reconfigurable Systems and Algorithms, ERSA'04, June
21-24, 2004, Las Vegas, Nevada, USA. CSREA Press 2004, ISBN 1-
932415-42-4

[2] W. Van Raemdonck, G. Lafruit, E.F.M. Steffens, C.M. Otero Pérez, R.J.
Bril “Scalable graphics processing in consumer terminals” Multimedia
and Expo, 2002. ICME '02. Proceedings. 2002 IEEE International
Conference

[3] S. Banachowski and S. Brandt, “The BEST scheduler for integrated
processing of best-effort and soft real-time processes,” in Proc. of SPIE

Multimedia Computing and Networking Conference, San Jose, CA, Jan.
2002.

[4] J. Flinn and M. Satyanarayanan, “PowerScope: A tool for profiling the
energy usage of mobile applications,” in Proc. of 2nd IEEE Workshop
on Mobile Computing Systems and Applications, Feb. 1999.

[5] M. Mesarina and Y. Turner, “Reduced energy decoding of MPEG
streams,” in Proc. of SPIE Multimedia Computing and Networking
Conference, San Jose, CA, Jan. 2002.

[6] P. Ngoc, G. Lafruit, J-Y. Mignolet , G. Deconinck, and R. Lauwereins
“QOS aware HW/SW partitioning on run-time reconfigurable
multimedia platforms” Proceedings of the International Conference on
Engineering of Reconfigurable Systems and Algorithms, ERSA'04, June
21-24, 2004, Las Vegas, Nevada, USA. CSREA Press 2004, ISBN 1-
932415-42-4

[7] W. Yuana, K. Nahrstedta, S. V. Advea, D. L. Jonesb, R. H. Kravets
“Design and Evaluation of a Cross-Layer Adaptation Framework for
Mobile Multimedia Systems” Appears in SPIE/ACM Multimedia
Computing and Networking Conference (MMCN), 2003

[8] GRACE-2: V. Vardhan, D. G. Sachs, W. Yuan, A. F. Harris, S. V.
Adve, D. L. Jones, R. H. Kravets, and K. Nahrstedt, “Integrating Fine-
Grained Application Adaptation with Global Adaptation for Saving
Energy,” Int. J.Embedded Systems, 2007

[9] Kais Loukil, “Approche de gestion de performances/contraintes pour les
systémes embarqués temps réel”

[10] John D. Owens, Mike Houston, David Luebke, Simon Green, John E.
Stone, and James C. Phillips “Graphics Processing Units, powerful,
programmable, and highly parallel are increasingly targeting general-
purpose computing applications”. GPU-Survey_Proceeding of the IEEE,
2008

[11] Cemil Azizoglu, Ph. D, “High Performance Graphics on Android”,
Khronos group, 2010

[12] B. Thomas, B. Close, J. Donoghue, J. Squires, P. De Bondi, M. Morris,
and W. Piekarski. “ARQuake :an outdoor/indoor augmented reality first
person application”. In The Fourth International Symposium on
Wearable Computers, 2000.

[13] Gerhard Reitmayr, Tom W. Drummond “ Going out: Robust Model-
based Tracking for Outdoor Augmented Reality”.

[14] Sturman, D.J. and Zeltzer, D., A survey of glove-based input, Computer
Graphics and Applications, IEEE , V14 #1, Jan. 1994,30 -39

[15] D.Luebke, SIGGRAPH 2008,Beyond programmable shading in
action“GPU Architercutre Implications & Trends”. NVIDIA
Coorporation 2007.

[16] www.xilinx.com.

