

TOOD : TASK OBJECT ORIENTED DESCRIPTION FOR ERGONOMIC
INTERFACES SPECIFICATION

A. Mahfoudhi, M. Abed, J-C. Anguژ

L.A.M.I.H., University of Valenciennes,
B.P. n� 311 59304 Valenciennes Cedex FRANCE

Tel. : + (33).27.14.14.61 E-mail : mahfoudhi@univ-valenciennes.fr

Abstract : Despite the recent progress in the domain of Man-Machine Interface
engineering, several problems concerning the incompatibily between the information
presentation to the user and his cognitive representation are still present. This paper
presents a new Task Object Description methodology (TOOD). It tries to relate the
characteristics of the user’s task with those of the interface. The introduction of ergonomic
concepts allows to take the human factors into account. And the joint use of the object
oriented techniques and the High Level Petri Nets supplies complete, coherent and re-
usable entities allowing to give a formal description of the interactive systems’
characteristics and an appropriate specification of the user interface. An example, extracted
from the air traffic control, is presented to illustrate this new methodology.

Keywords : Task Analysis, Man-Machine Interface, Specification, Co-operation, Object
Oriented Techniques, Object Petri Nets, Human Factors.

1. INTRODUCTION

The technological evolution and increase of
economic constraints have given birth to high-
performance systems. However, several ergonomic
problems are still present during the complex
systems design where the presence of operators is
and will remain necessary. These problems can be
essentially related to the lack of taking into
consideration the users' knowledge and human
factors which are either implicit or explicit during
the evaluation phase, and the absence of formal
method for the Man-Machine Interface specification.
So, it’s very important to have models and methods
that allow, on the one hand to make more accessible
the users’ knowledge, and mainly to make more
formal and more detailed their description. On the
other hand to allow the specification of the
communication interface (Man-Machine Interface :
MMI).

Over the last few years, the domain of man-machine
interaction has been enriched with new methods and
techniques. Some of them try to exploit the

knowledge acquired by the cognitive theories in
order to describe the operator tasks and its strategies
(Richard et al., 1992). The others use the simulation
to study the decisional behaviour of the human
operator (HO) (Cacciabue, 1988). At the same time,
studies are carried out in order to modelize the man-
machine interaction (Norman et al., 1986) and to
modelize the user interface (Coutaz, 1987) and
(Green et al., 1986). Recently several users’ tasks
analysis and description methods, such as MAD
proposed by Scapin and Pierret-Golbreith (1989) or
the SADT/Petri method proposed by Abed (1990),
have tried to describe the task as a set of operations
and, at the same time, they integrate implicit
information about human factors.

Our contribution consists in the proposition of a
global methodology, called Task Object Oriented
Description (TOOD), beginning from the task
analysis and description to the MMI specification,
based on the object oriented techniques and Object
Petri Nets (OPN). TOOD has three goals : (1) to
assure the transition between the different phases of
the system development, (2) to allow the taking into

consideration of the appropriate knowledge of the
three system’s components (the process or
application, the MMI and the user), and (3) to offer a
framework of efficient collaboration between the
different contributors in the system development
(ergonomists, computer specialists and users).

This article is structured into two sections : the first
one presents a brief discussion of the tasks collection
and modelling formalism used by TOOD, called
“External Model”. The second section explains the
transition from the external model to the MMI
specification called “Internal Model”. The examples
presented along this article are provided in the air
traffic control context (Mahfoudhi and Abed, 94).

2. USERS’ TASKS DESCRIPTION : “EXTERNAL

MODEL”

Like the majority of task description methods,
TOOD advocates the hierarchical approach for the
tasks description. Although it's highly structured, the
hierarchical approach allows to represent the user’s
cognitive model. Indeed, it allows to identify all the
tasks to be carried out by the user with different
choice of actions and possibilities of sequences.

Before presenting the different stages of the external
model, it is advisable to define the different used
terms. The generic term “Task-Object” indicates
each task of the hierarchy. Indeed, the task-object is
defined as an independent entity and responsible for
a treatment, whatever his complexity level, to reply
to a goal to be carried out with given conditions. Let
us consider the air traffic control, “to plan the
traffic” can be regarded as a task-object. In order to
reduce its abstraction, this task-object can be
decomposed into two children task-objects : “to plan
the traffic in the sector” and “to plan the traffic in
the sector's frontiers”.

The task-object has a graphic form, inspired from
the HOOD formalism (Michel, 1991) and Extended
SADT method (Feller and Rucker, 1990), presented
in Fig. 1.

task-object name Tx

Reactions

Output
dataInput

data

Control /
Command

data

Events

Body

Resources

In
pu

t I
nt

er
fa

ce

O
ut

pu
t I

nt
er

fa
ceE

C

I

R

O

M

(set of operations)

Fig. 1. graphic structure of the task-object

A task-object is also defined by a set of attributes,
called "descriptors”, that defines the execution
conditions and the effects of the task, as well as the
actions or sub-tasks to be carried out to reply to a
given functional context.

Table 1. the task-object’s descriptors.

Descriptor Definition

Name a name which identifies the task.

Input
Interface

identifies the initial state of task-
object. It is composed of three
elements (E, C, I).

E define the necessary Events for the
task release.

C Control/Command data : define the
constraints to be respected at the time
of the task execution.

I Input data : define the list of data and
information transformed by the task
execution.

Output
Interface

identifies the final state of task-object.
It is composed of two elements (R,
O).

R Reactions : define the reports of the
task-object execution (action realized
or service demanded from other task-
object).

O Output data : defines the list of
modified input data and/or a new data
created after task-object execution.

Body describes the operational model of the
task-object.

Resource defines the necessary human and
material entities for the task-object
execution.

The majority of methods presents the disadvantage
that their descriptors are not exploited and their
treatments are not detailed. TOOD has found a
solution for this problem. Indeed, the notion of TCS
(Task Control Structure) exploiting the task object’s
descriptors, allows to describe precisely the different
task-object’s states.

To establish the external model, three stages must be
realized :

- task-objects identification,
- task-objects specification,
- description of the TCS (Task Control

Structure).

2. 1. Task-objects identification

In order to identify all the tasks to be designed in the

future system, TOOD begins by analyzing the
existing system and the operator’s current tasks. It
allows to avoid the disadvantages of the existing
system and to add the new desirable characteristics.

By a hierarchical decomposition, TOOD organizes
the identified tasks-objects in a hierarchical tree
form. It starts from the global task-object (the
hierarchical tree’s root) passing through the least
abstract task-objets (the knots) and finishes with the
terminal task-objects (the leaves).

Once all future system’s tasks are identified, TOOD
defines the constraints and relations between them. It
also makes the distinction between the users’ tasks
and the computer’s tasks. Indeed, it attributes all the
interactive and manual tasks to the user, while the
automatic tasks are attributed to the computer. Once
the allocation bas been effected, TOOD takes an
interest in the users’ tasks because only this category
can be used for specifying the users’ interfaces.

2. 2. Task-objects specification

This specification stage defines all the execution
conditions and the effects of each task-object. Based
on the encapsulation concept, it describes what the
task-object can do through the input/output
interfaces.

For each task-object, the specification consists in :

- listing and identifying all the enclenchement
events and the reactions. Indeed, the task
execution can be asked for by the emission of an
event, while the treatment report of the task-
object is provided by a reaction.

- listing and identifying all the input, output and
control/command data required and supplied by
the task-object.

2. 3. Task Control Structure : TCS

The last stage describes the dynamic task-object
behaviour. To that aim, a Task Control Structure
"TCS" is used. The TCS is modelized by a Coloured
Petri Net (Jensen, 1987ت) called “Petri Net Task
Control Structure: PNTCS" (Fig. 2).

In order to remove any lack of determinism, two
functions of data distribution (f and g) and a priority
function (δ) are associated to the input and output
transitions. Indeed, the functions f and g group
together all the Pre and Post functions usually
combined with the arcs of a coloured Petri net. Their
aim is, on the one hand to select the necessary input
and control/command data to activate the task-object
with a given enclenchement event; on the other hand
to specify the output data produced with the
reaction. The priority function (δ) arranges the
enclenchement events of the task according to their
importance (alarms, interruption, temporal

constraints, etc.).

Task-object name Tx

Body

E

C

I

R

O

Resources

gfδ

P1

P2

P3

P4

P5

P7

P6

t1 t2

Fig. 2. Task Control Structure (TCS)

The formal aspect of the TCS allows to identify, at
any time, the current state of the task-object
(treatment authorised, waiting for an enclenchement
event, producing a reaction, etc....).

The resulting document of the external model
includes two kinds of description : a graphic
specification for a clean, legible and exploitable
representation, and a textual specification for a
complete description (Mahfoudhi et al., 94).

3. USER INTERFACE SPECIFICATION :
“INTERNAL MODEL”

The aim of this stage is the automatic passage from
the users’ tasks description (external model) to the
MMI specification (internal model) Fig. 3. It
completes the external model by defining the
operational level of each terminal task-object.
Indeed, it allows to define all the necessary action
plans and manipulated objects for the task executing.
So, the resources of each terminal task-object
become its component-objects belonging to the
classes : Interface, Application and Operator (Fig.
3).

A PPLICATION

INTERFACE

PRESENTATION

Pr oc ess

OPERATOR

Cognit ion

A ct ion

Perc eption

Object -3

Objec t-2

Object -1

DIALOGUE

Global
Task-obj ect

Task-obj ect

Term inal
Task-obj ect

Ex
te

rn
al

 M
od

el
 :

Ta

sk
s A

na
ly

si
s a

nd
 D

es
cr

ip
tio

n
In

te
rn

al
 M

od
el

 :
M

an
-M

ac
hi

ne
 S

ys
te

m
 M

od
el

lin
g

an
d

M
M

I S
pe

ci
fic

at
io

n

M
M

I
Re

al
iz

at
io

n

Task-obj ect

Task-obj ect

Terminal
Task-object

Fig. 3. From the users’ tasks description to the MMI

specification.
The MMI specification is carried out on two stages.
The first one consists in specifying of the
component-objects of each terminal task-object, with
an aggregation of these component-objects; the
second stage allows to specify the user interface.

3. 1. Component-objects specification

All the component-objects co-operate in a precisely
manner in order to fulfil the aim of the terminal task-
object in reply to a given functional context. A
component-object shall be defined from its class
(Interface or Operator) and provided with a set of
states and a set of operations (or actions) which
allow to change these states. For example, from the
P3 state (strip selected) of the component-object
“new strips table” the operator has the possibility to
carry out two actions : t3 (open a road-zoom) or t5
(temporize the new strip) Fig.4. On the other hand,
the set of states and operations of an Operator
component-object represents the different possible
procedures for the execution of the terminal task.
Indeed, the procedure represents the different
activity phases of a human operator : situation
apprehension, goals identification, preparation of an
action plan, application of this action plan, control of
the situation, correction (Norman et al., 86).

Graphically, the component-object is presented in an
identical structure that the one of a task-object in the
external model. However its internal control
structure called Object Control Structure “ObCS” is
modelized by an Object Petri Net “OPN” (Sibertin,
85).The OPNs are characterized by the fact that the
tokens which constitute the place markings are not
atomic nor similar entities, but they can be
distinguished from each other and take values
allowing to describe the characteristics of the

system.

In addition to its formal aspect, the ObCS enjoys a
simple and easily understandable graphic
representation, allowing to represent - with the
places of the OPN - all the possible states of the
component-object, and with the transitions, to
represent all the operations and actions that can be
taken from these states. The graphic representation
used for the ObCS is inspired by the cooperative and
interactive objects formalism proposed by Palanque
(1992).

The different states of the operator component-
object come down to the three states : Perception,
Cognition and Action. The ObCS allows the
distinction between these states (table 2).

Table 2. the states of the operator component-object

Place State

perception

cognition

action (an operator action on the interface)

The communication between the component-objects
is carried out through their input and output
interfaces. So, an action “A” executed by a
component-object “X” (operator) on the component-
object “Y”) interface (can be read as :the

component-object "X "execute s his reaction
operation corresponding to his quiry of the action A.
This execution is rendered by a reaction R in the
output interface of the component-object X. The
output interface transmits the reaction R to the input
interface of the component-object Y. So the reaction
R becomes an event E. And lastly this event
activates the service operation of the component-
object Y corresponding to the action A asked by the
component-object X.

Graphically, the ObCS allows the distinction
between the different kinds of operations (private
operation, service operation and reaction operation)
table 3.

Table. 3. the different transitions in the ObCS

Transition Description

tP: private transition does not
communicate with the interfaces of the
component-object.

I1,1 E1,1

C1,1
tS: service transition. The Ei, Ci and Ii
communicate with the input interface.

O1,1 R1,1

tR: reaction transition. The Ri and Oi
communicate with the output interface.

Pre-condition
(=, <, >)

The Pre-condition part of the transition
which has a test about the input data of the
transition.

Nom
Action (:=)

The action part of the transition which has
the name and the expression of the
operation

The execution of a service (service operation) by the
component-object is equivalent to the fire of the
service transition (tS) associated to this service.

The fire of a reaction transition (tR) renders the fact
that the component-object executed the reaction
operation (produced a reaction) associated with this
transition. The ObCS can also contain transitions
that are not associated to any services nor to a
reaction; these transitions are called “Private
Transition” (tP). They modelize the internal changes
of the states of the component-object.

An example taken from the air traffic control,
corresponding to the terminal task-object “take
knowledge the new flight” taken from (Mahfoudhi
and Abed, 94), needs using two component-objects :
“a New Strips Table : NST” and “ Organic

Controller : OC” (figure 4). The comportment of the
component-object “a New Strips Table” is defined
by four states P1, P2, P3 and P4. From each state the
Organic Controller can carry out a group of actions
(transitions). From the P3 state (strip selected), For
example, he has the possibility to achieve two
actions : t3 (open a road-zoom) or t5 (temporize the
new strip).

For the component-object “Organic Controller”, the
set of states and operations represents the different
possible procedures to execute the terminal task
“Take knowledge of a new flight” in reply to a given
functional context. So, the display of a New Strip
NS in the component-object "new strips table"
invokes, by the event E2,1, the operation service
"Consult the NS" of the component-object "Organic
Controller OC". According to his selection "Ch=",
the organic controller carries out a first reading of
the NS information ("Consult the road" or "Consult
the level"). After this reading, he changes his state
into cognition in order to evaluate his information
level. Then he decides to "read again the basic
information" or "to ask for additional information".
The asking for additional information expresses
itself by a change of his state into "Action" in order
to "select the NS" and to "open the Road-Zoom".
Both actions transmit R2,2 and R2,3 reactions to the
component-object "new strips table". It is to be
noticed that the organic controller carries out the
action "open a road-zoom" only after receiving the
event E2,2 confirming that the action "Select the
NS" has been carried out. Once the Road-Zoom has
been opened, the Organic Controller changes his
state into "information reading" in order to read the
additional information and then into the "situation
evaluation" state to decide either to read again the
information, or "to temporize the NS" or to invoke
the terminal task-object "T112 : analyse the entrance
conditions".

- 6 -

No
 Strip

New Strip
displayed

Display NS
In:=1;Tp:=1;Cd:=1;
Eb:=1;Rt=1;Nv:=1;

Z-Rt:=0; C:=0;

Select
the new strip

P2

P1

P3

Road-zoom
opened

P4

t1

t2

Close the
Road-zoom

t4

t5

R1,1
R1,2
R1,3

E1,1
E1,2
E1,3
E1,4

I1-1

E1,1I1,1

R1,1

R1,2

E1,2

E1,4

E1,3

Open a Road-
zoom

t3

R1,3

A new strips table

Strip
selected

Temporize
the new strip

Z-Rt=1

Z-Rt=0

C:=0

No
treatment

Consult the NS

Ch:=Rt v Nv

Ch=Rt v Z-Rt

Consult the Road

Ch=Nv

Consult the level

Read basic info.

Ch:=Rt v Nv

Evaluate the
information level

Information
reading

Ask for additional Info.

Ch:=Z-Rt

Action

Temporize the NS

situation
evaluation

Analyse the
entrance conditions

Ch=Z-RT

Open a road-zoom Select the NS

Organic Controller OC

R2,1
R2,2
R2,3
R2,3

E2,1
E2,2
E2,3

R2,4

E2,1

Read additional Info.

E2,3

E2,2

R2,3 R2,2

R2,1

Take knowledge of a new flight T111

R2,1

I1-1

E1,1

Fig. 4. A graphic Specification of the component-objects "New Strips Table" and "Organic Controller"

3. 2. Aggregation mechanism

In order to realize the MMI in its real structure, the
construction of the object classes of the MMI
suggests the aggregation of the different component-
objects which have the same name, specified during
the description of the internal model of each terminal
task-object. This aggregation mechanism is
comparable to the composition relation of the
HOOD method called the parent/child relation.

Thus, an object class of the MMI is built according
to the duplication of all the elements (events,
control/command data, input data, reactions, output
data and ObCSs) of the component-objects which
have the same name. Yet, there would be some
modifications which are detailed in (Mahfoudhi and
Abed, 94).

4. CONCLUSION

The TOOD methodology enjoys the contributions of
methods and concepts taken from cognitive sciences
and ergonomy domains together with those of the
software engineering domain. It provides a
framework of efficient collaboration between
various users and between ergonomists and
computer specialists. Its formalism allows on the one
hand to define in a formal, coherent and structured
way, the different entities intervening in the task
model, and on the other hand to specify an adapted
interface to the users' characteristics. Moreover, its
mathematical formalism allows it to have a tool for
the validation and the simulation. There is still to
develop a language leading to its exploitation on a
large scale.

5. REFERENCES

Abed, M., 1990, Contribution ˆ la modژlisation de la
t‰che par des outils de spژcification exploitant
les mouvements oculaires: application ˆ la
conception et l'ژvaluation des Interfaces
Homme-Machine [contribution to the task
modelling with a specification tools exploiting
the ocular activities : application to the man-
machines interfaces design and evaluation],
Doctorate thesis, University of Valenciennes
France.

Cacciabue, 1988, Modelling Human Behaviour in the

context of a simulation of Man-Machine
Systems, Trainaing Human Decision Marking
and Control, Elsevier Science Publishers B.V.,
North Holland,

Coutaz, J., 1987, PAC : An Implementation Model
For Dialog Design. Interact’87, pp 431-436,
Stuttgart.

Feller, A., and Rucker, R., 1990, Extending
Structured Analysis Modelling with A.I.: An
Application to MRPII Profiles and SFC Data

Communications Requirements Specifications,
IFIPS Conference.

Green, 1986, A survey of three dialogue models.

ACM Transaction on graphics. Vol. 5, Nb. 3
pp. 244-275.

Jensen, K., 1987, Coloured Petri Nets, In Petri Nets :
Central models and their properties, LNCS Nb.
254, Spring Verlag.

Mahfoudhi, A. and Abed, M., 1994, Description
orientژe objet des t‰ches du contr™leur pour la
spژcification et la conception des interfaces [a
controler's tasks object oriented description for
the interfaces specification and design], Contract
research report CENA 94, University of
Valenciennes France.

Michel, L., 1991, Conception orientژe objet :
Pratique de la mژthode HOOD [object oriented
design : practice of the HOOD method], Dunod
Press Paris.

Norman, D. and Draper, 1986, User centered system
design, Lawrence Erlbaum Associates,
Publishers.

Palanque, P, 1992, Modژlisation par objets
Coopژratifs Interactifs d'interfaces homme
machine dirigژes par l'utilisateur [modelling of
the man machine interfaces managed by the
users using interactive and cooperative objects],
Doctorate thesis, University of Toulouse I
France.

Richard J.F., Poitrenaud S., Tijus C.A., Barcenilla J.,
1992 Semantic of action networks : a cognitive
model for human and system interaction. HCI
92, Universitژ de Paris 8.

Scapin, D.L. and Pierret-Golbreith, C., 1989, MAD :
Une Mژthode Analytique de Description de
T‰ches [MAD : a tasks analytic description
method], Actes du Colloque sur l’ingژnierie des
Interfaces Homme-Machine, Sophia-Antipolis,
France.

Sibertin, B.C, 1985, High-level Petri nets with Data
Structure. 6th European Workshop on Petri Net
and application, Espoo, Finland.

