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Abstract. We consider the problem of reasoning with uncertain evi-
dence in Bayesian networks (BN). There are two main cases: the first
one, known as virtual evidence, is evidence with uncertainty, the second,
called soft evidence, is evidence of uncertainty. The initial inference al-
gorithms in BNs are designed to deal with one or several hard evidence
or virtual evidence. Several recent propositions about BN deal with soft
evidence, but also with ambiguity and vagueness of the evidence. One
of the proposals so far advanced is based on the fuzzy theory and called
fuzzy evidence. The original contribution of this paper is to describe the
different types of uncertain evidence with the help of a simple example,
to explain the difference between them and to clarify the appropriate
context of use.
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1 Introduction

Bayesian networks (BN) [Pe88,Je96] are powerful tools for knowledge repre-
sentation and inference under uncertainty. They combine multiple sources of
information to provide a formal framework within which complex systems can
be represented and processed. The different sources of information are not al-
ways perfect, therefore, the observation can be uncertain and imprecise. For the
purpose of this paper, we present five types of evidence: hard evidence, virtual
evidence (VE), also called likelihood evidence, that is evidence with uncertainty
[Pe88], soft evidence (SE) that is evidence of uncertainty [VK02], and two ap-
proaches of fuzzy evidence [MM11,TL07]. These methods are applied and pre-
sented on a simple example. A result of this work is to clarify the distinction
between these different types of evidence. The presence of several soft evidences
has to be treated using specific algorithms. We detail the case of a single evidence
and briefly explain the case of several evidences.
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2 Different Types of Evidence in Bayesian Networks

2.1 Definitions and Vocabulary

Evidence in BN may be regular or uncertain. Regular evidence, called also hard
evidence specifies which value a variable is in. This is the usual way to enter an
observation to be propagated in a BN [Pe88,Je96]. Uncertain evidence specifies
the probability distribution of a variable. We focus on two types of uncertain
evidences. According to [VK02,PZ10], we use the terms virtual evidence and soft
evidence as follows: virtual evidence [Pe88] can be interpreted as evidence with
uncertainty, and can be represented as a likelihood ratio. This kind od evidence
is also called likelihood evidence. Soft evidence [VK02], can be interpreted as
evidence of uncertainty, and is represented as a probability distribution of one
or more variables.

Many BN engines accept a probability distribution as input for the update.
Most existing implementations of uncertain evidence are virtual evidence, but
the literature is not consistent about naming uncertain evidence. The term soft
evidence is used in many cases incorrectly as indicated in Table 1. In the cases
listed in Table 1, the evidence is considered to be a virtual evidence and is
propagated by adding a virtual node.

Table 1. Different Names of the Virtual Evidence (VE) in the BN Engines

BN engines Names of the VE Web Site

BNT Soft evidence http://www.cs.ubc.ca/~murphyk/
Software/BNT/bnt.html

Bayesialab Likelihood distribution http://www.bayesia.com

NETICA Likelihood http://www.norsys.com

HUGIN Likelihood findings http://www.hugin.com

GeNIe Soft evidence http://genie.sis.pitt.edu

2.2 Algorithms Dealing with Uncertain Evidence

The issue of how to deal with uncertain evidence in BN appears in [Pe88] and
has recently been the subject of many algorithms developments as indicated in
Table 2. To clarify the distinction between the different types of evidence in BN
we present in the following sections an illustrative example and the modeling of
the different types of evidence.



Uncertain Evidence in BN 3

Table 2. Algorithms dealing with uncertain evidence (VE: virtual evidence, SE: soft
evidence)

Algorithms Type of References
evidence

VE method VE [Pe90]

Jeffrey’s rule VE and single SE [Je83]

IPFP SE First appeared in [Kr37]
(Iterative Proportional Studied in [Cs75,Fi70,PD05]
Fitting Procedure) Extended in [Bo89,Cr00]

The big Clique algorithm SE [VK02]
and extension

Derived Algorithm VE and SE [PZ10]
Combining VE method,
Jeffrey’s rule and IPFP

3 Comparison of Different Types of Evidence with a
Simple Example

3.1 Presentation of the ”Snow Example”

Our example models the influence of the amount of snow on the congestion
(Fig. 1). The variable S represents the ”amount of snow in mm” with values in
[0, 120] and the variable C represents the ”congestion” with values in {yes, no}.

Fig. 1. Bayesian network graph of the snow example

The conditional probability of C given S is defined by the equation:

P (C = yes | S) = e−
1
2×(S−60

40 )2 (1)

This probability function can be understood as follows: under the threshold of
60 mm of snow, the congestion is all the more probable that the amount of snow
is important. Beyond this threshold, people leave their homes less and less and
subsequently the probability of congestion decreases. Whereas some BN engines
deal with continuous variables, or even mixted variables, the most common way
is to use a discretization of the variable S (see Table 3). The BN engine Netica
[Ne] offers the possibility to obtain the Conditional Probability Table (CPT) of
the node S discretized from the equation (1). In the following cases, the CPT
P (C|S) is conformed to the equation (1), to ensure a proper comparison of results
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of the different methods. Our starting model is described by the graph presented
in Fig. 1 and by the probabilities given in Tables 3 and 4 for the probabilities.

Table 3. P (S)

S1 0 0.6
S2 ]0,40] 0.22
S3 ]40,80] 0.14
S4 ]80,120] 0.04

Table 4. P (C | S)

S1 S2 S3 S4

yes 0.3247 0.6058 0.96 0.6058
no 0.6753 0.3942 0.04 0.3942

We propagate the same observation for the different types of evidence to
ensure a good comparison. Assume that the amount of snow is effectively 80
mm. We are going to compute P (C = yes|e), P (C = yes|ve), P (C = yes|se)
where e represents an hard evidence, ve denotes a virtual evidence and se denotes
a soft evidence. The last two parts concern the case of ambiguity.

3.2 Junction Tree Algorithm

We apply the junction tree inference algorithm [La88,Je90] to different types of
evidence. We will trace the changes in calculation and graph during the successive
stages of this algorithm. It can be summarized as follows:

– Construction process (or transformation of the graph): moralizing the graph,
triangulating the graph, forming the junction tree.

– Initialization process: initializing the potential of cliques and separators.
– Propagation process: ordered series of local manipulations, called message

passing, on the join-tree potentials. The result is a consistent join tree.
– Marginalization process: from the consistent join tree, compute the posterior

probability P (V ) for each variable of interest V .

After construction of the junction tree, the network of our example is reduced to a
single clique {SC}. The construction process is valid for all types of BN. However,
the other three phases are different depending on the presence or absence of
observations. In this paper, we study the case of presence of observation.

3.3 Hard Evidence

Hard evidence is an observation of a random variable having with certainty a
particular value V = v. To encode observations on a variable V , we consider the
notion of likelihood ΛV as indicated in [HD96], which is encoded as follows: If V
is observed, then ΛV (v) = 1 when v is the observed value of V and ΛV (v) = 0
otherwise. If V is not observed, then ΛV (v) = 1 for each value v. The likelihood
encoding of evidence is used in the initialization process to enter the observa-
tion in the junction tree. A hard evidence is represented by a likelihood where
ΛV (v) = 1 for exactly one value v. Assume that the amount of snow observed
is 80 mm. This observation is interpreted as S = S3 and illustrated in Table 5.
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Table 5. Likelihood encoding an hard evidence

S C

v S1 S2 S3 S4 yes no
ΛV (v) 0 0 1 0 1 1

The probability P (C = yes | e) where e denotes the hard evidence S = S3 is a
part of the definition of the BN: P (C = yes | e) = 0.96 (see Table 4).

The drawback of discretization is that all values in the same interval are
treated in the same way no matter their position in the interval. In our example,
the observation of 41 mm or 79 mm provides the same results. Since the chosen
discretization is coarse with only 4 states, the result may be not satisfying. The
finer the discretization, the more relevant are the results, and the larger is the
CPT. A discretization of S with 13 states provides P (C = yes | e) = 0.93 and
with 60 states we obtain P (C = yes | e) = 0.893, where e represents the hard
evidence S = Si and Si is the interval containing 80 in the chosen discretization.

3.4 Virtual Evidence

Virtual Evidence (VE), proposed by Pearl in [Pe88], provides a convenient way
of incorporating evidence with uncertainty. A VE on a variable V is represented
by a likelihood ΛV where each ΛV (v) is a real number in [0, 1]. Pearl’s method
extends the given BN by adding a binary virtual node which is a child of V . In
our example, we add a node Sobs and a directed edge from S toward Sobs (see
Fig. 2).

Fig. 2. Bayesian Network graph encoding a virtual evidence on S.

In our example, we consider now the virtual evidence ve on S represented
by the likelihood given in Table 7. This translates that the observed amount of
snow is about 80 mm, and since the measure is rough, both intervals S3 and S4

must be considered. In the BN, the main value of Sobs, say yes, corresponds to
the virtual evidence ve that is represented by the CPT of the virtual node Sobs

(Table 6).
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Table 6. CPT of P (Sobs | S)

S1 S2 S3 S4

Sobs = yes 0 0 0.5 0.5
Sobs = no 1 1 0.5 0.5

Table 7. Likelihood encoding ve

S C
v S1 S2 S3 S4 yes no

ΛV (v) 0 0 0.5 0.5 1 1

The virtual evidence ve can be easily propagated by propagating the hard
evidence Sobs = yes in the augmented BN; we obtain P (C = yes | ve) = P (C =
yes | Sobs = yes) = 0.881. This result can be obtained as follows:

P (C = yes | ve) =
∑

i P (C = yes | Si)×Q(S = Si)∑
c,i P (C = c | Si)×Q(S = Si)

(2)

where Q(S = Si) = P (S = Si | Sobs = yes) represents the quantified values as
indicated in [TA04]. In the VE method, the propagated value is the marginal on
S, represented by the quantified values Q.

3.5 Soft Evidence

Soft evidence (SE), named by Valtorta in [VK02], can be interpreted as evidence
of uncertainty. SE is given as a probability distribution of one or several variables
R(Y ), Y ⊆ X, where X is the set of variables. Therefore, there is uncertainty
about the specific state Y is in but we are sure of the probability distribution
R(Y ). Since R(Y ) is a certain observation, this distribution should be preserved
by updating belief. This is the main difference with virtual evidence for which
this is not required.

In case of a single soft evidence, Chan and Darwiche [CD05] showed that
a soft evidence can be converted into a virtual evidence and updating can be
carried out by virtual evidence method as detailed in [PZ10]. This method is
not directly applicable to the situation in which multiple soft evidences are pre-
sented since it does not guarantee that the soft evidence R(Y ) will be preserved
after updating. Updating several SE requires specific algorithms to preserve the
initial distribution (see Table 2). An interesting use of soft evidence regarding
discretization is proposed in [DB08].

In our example, we assume that we have a soft evidence se on S, given by
the distribution R(S) = (0, 0, 0.5, 0.5). This means that we are sure that the

amount of snow is in the interval [40, 120]. The likelihood ratio is L(S) = R(S)
P (S)

where P (S) is the marginal probability of S given in Table 3. Thus, in our
example, L(S) = 0 : 0 : 0.5

0.14 : 0.5
0.04 . After normalization, we obtain (0 : 0 : 0.222 :

0.778). Eventually, these values of the likelihood ratio are considered as a virtual
evidence; we obtain P (C = yes | se) = 0.783.

The comparison of the values of P (C = yes | ve) = 0, 881 and P (C = yes |
se) = 0, 783 obtained in our example can be explained as follows. The soft evi-
dence (0, 0, 0.5, 0.5) has been converted into the virtual evidence (0, 0, 0.222, 0.778)
by using the likelihood ratio. Thus, the probability 0.222 associated to S3 is less
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than the initial probability 0.5, in order to compensate the influence of the
prior distribution over S, in which S3 is more probable than S4 (see table 1).
Since S3 leads to congestion with a higher probability than S4, updating the VE
(0, 0, 0.5, 0.5) leads to a higher probability of congestion than updating the ve
(0, 0, 0.222, 0.778).

4 Fuzzy Evidence

In this section, we consider the proposition presented in [MM11] to model fuzzy
evidence by using the fuzzy logic theory. In that aim, we consider the BN of the
Fig. 1 in which the node S is replaced by the node Sf whose possible states are
representing the amount of snow in natural language: Sf

1 =’not at all’, Sf
2 =’a

little’, Sf
3 =’some’ and Sf

4 =’a lot’. We substitute vagueness by a member-
ship degree and we model the relationship between the amount of snow and
the linguistics states of snowing by the fuzzy sets shown in Fig. 3. The CPT

Fig. 3. Fuzzy sets of Sf .

of P (C | Sf ) is given in Table 8. In order to be consistent with the previous
example, it has been computed according to equation 1 and Fig. 3. The algo-

Table 8. P (C | Sf )

Sf
1 Sf

2 Sf
3 Sf

4

P (C = yes | Sf
i ) 0.3247 0.67 0.9137 0.6707

rithm used to propagate ambiguous observations is based on the junction tree
algorithm. Assume that the amount of snow is 80 mm. The fuzzy evidence fe
can be expressed thanks to the following membership degrees:

µ1(80) = 0, µ2(80) = 0, µ3(80) = 0.5, µ4(80) = 0.5.



8 A. Ben Mrad, V. Delcroix, M. A. Maalej, S. Piechowiak, M. Abid

Table 9 shows the likelihood encoding of the fuzzy evidence fe. It is used in
the junction tree algorithm as in the previous section.

Table 9. Likelihood encoding fe

S C

v Sf
1 Sf

2 Sf
3 Sf

4 yes no
ΛV (v) 0 0 0.5 0.5 1 1

The result is obtained by:

P (C = yes | fe) =
∑

i P (C = yes | Sf
i )× µi(80)∑

c,i P (C = c | Sf
i )× µi(80)

(3)

This method applied to the snow example provides P (C = yes | fe) = 0.792.

The important distinction between uncertain evidence and fuzzy evidence is
that with a fuzzy evidence, there is no uncertainty about the value ’not at all’,
’a little’, ’some’ and ’a lot’ of the snowfall but rather an ambiguity about the
degree to which a value matches the category ’not at all’, ’a little’, ’some’ and
’a lot’. This ambiguity is treated by fuzzy sets (Fig. 3).

5 Fuzzy Reasoning in Bayesian Networks

In this section, we introduce fuzzy Bayesian equations, as down in [TL07]. Ac-
cording to Zadeh’s definition [Za68], the probability of a fuzzy event Ã in X is
given by

P (Ã) =
∑
x∈X

µÃ(x)× P (x) (4)

In our context, X denotes a variable from the Bayesian network and x is
one of its value. µÃ is the membership function of Ã and µÃ(x) is the grade of

membership of x into Ã.
We present fuzzy Bayesian equations through our snow example. The Bayesian

network considered is described by Fig. 1 and Tables 3 and 4. We are interested
in fuzzy events consisted of Si; for example the fuzzy event S̃ = ’some’ (see
Fig. 3) is described by the membership function: µS̃(S1) = 0, µS̃(S2) = 0.0625,
µS̃(S3) = 0.9375, µS̃(S4) = 0.0625. In this case, following eq. 11 in [TL07],
Bayesian equation is

P (C = yes | S̃) =
∑
i∈I

µS̃(Si)× P (S = Si | C = yes)× P (C = yes)/P (S̃) (5)

The marginal fuzzy probability is P (S̃) =
∑

i∈I µS̃(Si)× P (S = Si) (see eq. 12

in [TL07]) Thus we can figure out P (C = yes | S̃) = 0.92.
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Wemay also be interested in fuzzy events of Cj , for example C̃ = ’little congestion’.
Then, following eq. 10 in [TL07], Bayesian equation is

P (C̃ | S = Si) =
∑
j

µC̃(Cj)×P (S = Si | C = Cj)×P (C = Cj)/P (S = Si) (6)

If S̃ and C̃ are both fuzzy events, then we have (see eq. 13 in [TL07])

P (C = C̃ | S = S̃) =
∑

j∈J

∑
i∈I µC̃(Cj)× µS̃(Si)× P (S = Si | C = Cj)

×P (C = Cj)/P (S̃) (7)

The advantage of this method is threefold. First, we can insert fuzzy ob-
servation as shown in (5). Second, we can calculate the probability of a fuzzy
event as shown in (6). Finally, we can calculate the probability of a fuzzy event
conditional to another fuzzy event as shown in (7).

6 Conclusion

This paper considers the problem of reasoning with uncertain evidence in Bayesian
Networks. The use of uncertain evidence significantly extends the power of
Bayesian networks since it is needed in lots of real applications. A key contribu-
tion of our work is to describe and to explain the different ways of modeling and
updating uncertain evidences. We also propose so-called fuzzy evidence which
are pertinent for ambiguous observations. Our comparison between hard evi-
dence, virtual evidence, soft evidence and fuzzy evidence, showed that each kind
of evidence is adequate for a specific context.

Even if the term ”soft evidence” has been used in a confusing way in the
literature, it is clear that virtual evidence reflects an observation with uncertainty
whereas soft evidence expresses an observation of uncertainty.

This throw light on the posterior probability of the observed node which not
change in the case of soft evidence because we are certain about this probability
distribution, but it changes in virtual evidence because we are uncertain of the
probability distribution which is thus modified by the marginalization process.
Concerning fuzzy evidence, the observation can belong in the same time to more
than one class (80 mm is considered in the same time as ’some’ and ’a lot’
snowfall with membership degrees).

In the last section, we presented fuzzy reasoning in Bayesian network. This
method allows to insert fuzzy evidence, to calculate the probability of fuzzy
event, and to calculate the probability of fuzzy event conditional to a fuzzy
observation.
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