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Abstract���In recent years,  the demand for sophisticated embedded systems requires the use of 
many  connected  equipments.  CAN  buses  were  developed  for  connecting many microcontrollers 
which oversee many Electronic Control Units (ECU). Because of its no deterministic performance 
and  its  limited  bandwidths  and  throughput,  existing  CAN-Bus  has  presented  some  problems. 
Switched  Fabric  CAN  Network  can  be  a  fast  and  reliable  hardware  solution.  In  fact,  high 
performance, reliability and predictability require crossbar switched fabric network. 
In this paper, we proposed a switched fabric CAN network Architecture based on CAN Controllers 
and switched fabric. This network is modeled and verified by the use of timed colored Petri nets. 
To  extract  network  performance  metrics,  the  simulation  of  the  whole  model  was  done  using 
CPNTools. Copyright © 2012 Praise Worthy Prize S.r.l. - All rights reserved. 
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I.  The Switched Fabric CAN Network 
Architecture 

The limitations of a bussed network [1] are eliminated 
with  crossbar  switch  network. A  switched-fabric  bus  is 
unique in that it allows all CAN Controllers on a bus to 
logically  interconnect  with  all  CAN  Controllers  on  the 
bus. 

The switching fabric is the physical connection within 
a  switch  between  the  input  and  output  ports;  it  can  be 
proved  that  all  switches  need  a  crossbar  inside  their 
switching  fabric  which  allow  them  to  operate  at  very 
high speed. Crossbar switches are widely used because of 
their  simplicity  and  their  high-performances  [2]  which 
promise  to  greatly  simplify  efforts  and  to  add  better 
capability and availability. 

Crossbar  switch  [3]  can  support  simultaneously 
multiple messages.  This  greatly  increases  the  aggregate 
bandwidth of the system. Because of the broadcast nature 
of  the CAN [4] protocol  (ie: messages are not  sent  to a 
specific  destination  address,  but  rather  as  a 
broadcast).The chosen crossbar switch (as it is shown in 
Figure  1)  is  configured  by  closing  all  its  crosspoints  to 
ensure  that  the  CAN message  will  be  sent  at  the  same 
time [5],[6] for all outputs nodes as it is defined in CAN 
protocol [7]. 

CAN  messages  need  to  be  queued  in  buffers  when 
short-term  overloading  occurs,  where  the  sum  of  input 
rates  for  a  single  output  port  exceeds  the  outgoing  link 
rate.  Buffering  (queueing)  characterizes  all  kinds  of 
switches. 

We  can  use  all  types  of  queueing  architectures: 
“Output Queueing (OQ)”, “Input Queueing (IQ)”, “and  

Combined  Input  Output  Queueing  (CIOQ  -  Internal 
Speedup),  Shared Buffer”,  “Block Crosspoint Queueing 
and  Crosspoint  Queueing  (CQ)”.  For  our  architecture 
(see Figure 2), we use the CIOQ as queuing architecture 
for internally non-blocking. 

In fact, Each Electronic Control Unit (CAN Controller 
Node)  produces  a  class  priority  of  messages.  For 
example,  ECU_0  produces  high  level  of  priority  and 
ECU_n (n in our model is equal 3) produce low level of 
priority. 

In fact, Produced CAN messages will be queued in the 
input queue of the incoming interface (If the input queue 
is  full,  the packet  is dropped.). Therefore,  to  respect  the 
CAN  protocol  philosophy,  CAN  messages  will  be 
broadcasted for all output port through crossbar Switched 
Fabric [8].  

 

 
 

Fig. 1. NxN crossbar Switched Fabric supporting broadcast 
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Fig. 2. Switched Fabric CAN Network interconnects 
 

Furthermore, To  reduce  congested output  port  and  to 
respect  the  priority  policy,  each  CAN  message  will  be 
queued  in  the  suitable  output  queue  of  each  outgoing 
interface  according  to  his  level  priority.  (If  the  output 
queue  is  full,  the packet  is  dropped). Then,  each output 
port  scheduler will  select  the message  to be sent among 
the  existing  CAN  message  in  accordance  with  his 
priority.  In  our  work,  we  modeled  the  switched  fabric 
CAN  Network  using  stochastic  colored  Petri.  We  also 
evaluated  it  using CPNTools. Our major  contribution  is 
to  raise  the  lack  of  the  bus  solutions  by  proposing 
switched Fabric CAN architecture  and by  evaluating  its 
performance.  In  fact, we  demonstrated  that CAN  based 
Networks using  crossbar Switched  fabric  [9]  have yet  a 
well period before its replacement and it can compete the 
new sophisticated buses. 

Our paper is organized as follow: 
•  The section 2 gives a short overview of colored Petri 

net  and  details  the  SCPN  models  of  the  most 
important Switched fabric CAN network modules. 

•  Based  on our modeling  of  the  proposed  architecture 
by stochastic and colored Petri nets (SCPN) [10], we 
present,  in  the  last  section,  some  experiments which 
are applied to the model. 
Three  important  parameters  were  measured  the 

throughput,  latency  time  and  the  loss  probability.  This 
work  is used  to demonstrate  the benefit of  the proposed 
architecture.  In  the  fourth  section  we  give  some 
conclusions of our work. 

II.  Switched Fabric CAN Network 
Modeling 

II.1.  Short Recall of Coloured Petri Net 

Coloured  Petri  Nets  have  been  developed  by  K. 
Jensen  in  course  of  his  PhD  thesis  (Jensen,  1980)  to 
expand the modeling possibilities of classical Petri Nets. 

Like other forms of Petri Nets a CPN consists of places, 
tokens, transitions and arcs. 

The  primary  feature  unique  to CPNs  is  the  inclusion 
of  evolved  data  structures  into  tokens  [11],  [12],  [13]. 
These data structures are called coloursets and resemble 
data  structures  in  high  level  programming  languages; 
they can range from simple data types such as integers to 
complex  structures  like  structs  or  unions  in  C/C++. 
Similar to programming languages it is possible to define 
variables associated with these coloursets such as linked 
list and queue. 

Some  examples  of  colourset  and  variable  definitions 
are shown  in Fig. 3. Tokens as well as places of a CPN 
are  always  associated with  a  colourset  and  a  place may 
only contain tokens of the same colourset as its own. To 
well understand the SCPN models of our Switched CAN 
controller, we give a short recall of CPN concepts. 
 

 
 

Fig. 3. Colored and variable definitions 
 

The  places  in  a CPN  are  depicted  as  ellipses  (Fig.4) 
with  the  name  of  the  place  written  into  it  and  the 
associated  colourset  (Id)  below.  A  token  in  a  CPN  is 
represented by a small circle (Fig. 4). Its value (the data 
stored  in  the  token)  is  shown  in  a  rectangle  attached  to 
the circle. A number in the circle denotes the number of 
tokens with the same value. Figure 4 for example shows 
a  place  called  Buffer_Node_1  associated  with  the 
colourset CAN_Messages and holding one  token with a 
value of: 
{{ID=[Dom,Res,Dom,Dom,Res,Dom,Dom,Dom,Res,Re
s,Dom,Dom,Dom,Res,Dom,Res,Dom,Dom,Dom,Res,Re
s,Dom,Res,Res,Res,Res,Res,Dom,Res],DATA=[byte(4),b
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yte(6),byte(5),byte(1),byte(5),byte(6),byte(6),byte(1)],TS
=0}]. 

 

Buffer_node_1I /O

[length CAN_msgs1>

CAN_msg1::CAN_msgs1

Liberate
CAN_msgs1

CAN_messages

I /O

1

1`[{ID=[Dom,Res,Dom,Dom,Res,Dom,
Dom,Dom,Res,Res,Dom,Dom,Dom,Res
,Dom,Res,Dom,Dom,Dom,Res,Res,Do
m,Res,Res,Res,Res,Res,Dom,Res],DAT
A=[byte(4),byte(6),byte(5),byte(1),by
te(5),byte(6),byte(6),byte(1)],TS=0}]

 

Fig. 4. Graphical representation of a place in CPN 

 
Transitions  in  a  CPN  are  represented  by  rectangles 

(Fig.  5)  and  can  access  the  data  stored  in  tokens  by 
mapping  tokens  to variables. There are  two possibilities 
to access this data: 
-  Guard conditions: The  transition  is enabled only  if a 

specific  condition  –  called  a  guard  condition  – 
regarding  one  or  more  variables  is  met.  Guard 
conditions are encased in brackets and written above 
the transition (Fig. 5). 

-  Transfer  function:  The  transition  reads  and  writes 
variables  according  to  a  specified  function  that  can 
range  from  simple  addition  of  values  to  complex 
conditional commands. 

-  Transfer functions consist of the definition of input () 
variables, output () variables and the commands to be 
carried  out  (action  ())  and  are  attached  below  the 
transition (Fig. 5). 
The  example  depicted  in Figure 5  shows a  transition 

that only fires if the length of variable CAN_msgs is less 
than  the  value  FIFO_length  and  generates  an  output 
variable  CAN_msg  without  taking  any  input  variables 
(Fig.  5),  the  variable CAN_msg  is  filled with  the  return 
value  of  the  function  defined  in  the  action  part, 
new_MSG_0,  which  in  this  case  is  defined  in  the 
CPNtools area Declarations. 

 
[length CAN_msgs<FIFO_length]

input ();
output (CAN_msg);
action new_MSG_()

Generate

 
 

Fig. 5. Transition Generate with guard condition 
and transfer function 

 
Places  and  transitions  in  a  CPN  are  linked  by  arcs. 

Arcs  in  a  CPN  can  be  unidirectional  or  bidirectional. 
Unidirectional  arcs  transfer  tokens  from  a  place  to  a 
transition or vice versa (Fig. 6). 
 

1`server

Server

server
Free_LineLiberate 1 1`server@0

 
 

Fig. 6. Unidirectional arc with mapping to value server 

Bidirectional arcs transfer the same token from a place 
to a  transition and back (Fig. 7). Arc  inscriptions define 
the  mapping  of  tokens  to  variables. An  inscription  can 
either  be  a  constant  value  (Fig.  6)  or  a  variable  of  the 
colourset  that  is  associated  to  the  place  the  arc  is 
connected  to  (Fig.  7).  If  all  places  connected  to  a 
transition by unidirectional input arcs or by bidirectional 
arcs hold tokens and its (optional) guard condition is met, 
the transition is said to be enabled. In case of more than 
one enabled transition in a CPN the one to fire is chosen 
randomly.  Later  on,  we  will  add  more  places  to  our 
controller models to avoid arbitrary transitions. 
 

FIFO_FULL Buffer_2

I /OI /O

CAN_msgs2

[length CAN_msgs2=FIFO_ length]
CAN_messages

1`[]

1

 
 

Fig. 7. Bidirectional arc with mapping to variable CAN_msgs 

 

For  an  analysis  of  clocked  systems  it  is  possible  to 
define  timed  colourset,  defined  by  the  keyword  timed 
(Fig.  8)  and  transition  or  arc  delays  marked  by  the 
characters @+ (Fig. 9). 

 

 
 

Fig. 8. Timed colourset 

 
If  a  colourset  is  defined  as  timed,  a  timestamp  is 

added  to  the  tokens  of  this  colourset.  The  timestamp 
cannot  be  accessed  by  guard  conditions  or  transfer 
functions.  When  using  timed  colourset  the  firing  of 
transitions depends on a global clock counter. Transitions 
can only fire if the clock value is the same as the largest 
timestamp  of  its  input  tokens.  When  a  transition  fires 
with a timed arc, the timestamp of its output token is the 
sum of  the current  clock value and  the arc delay,  in  the 
example  in  Figure  9  this  delay  is  Time_sched_delay 
clock cycles. 
 

Busy_server

ServerxCAN_message

T0
(server,CAN_msg)@+Time_sched_Delay

 
 

Fig. 9. Timed arc inscription 

II.2.  SCPN Based Switched CAN Controller Model 

In  order  to  facilitate  modeling  of  Switched  CAN 
Controller a modular approach was taken making use of 
hierarchical  CPN  models.  The  model  of  the  Switched 
Controller  is  built  following  a  hierarchical  and modular 
architecture. 

The  root  of  the  hierarchical  representation  of  the 
model is shown in the Figure 10. 
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Apply the Evaluate ML tool the text belo
to run 5 simulations of the CP-net.

CPN'Replications.nreplications 5

Switched Fabric 
     

CAN 3X3

Switched_Fabric

OUT_2OUT_1

CAN_message

OUT_0

1`()

UNIT

1`()

UNIT

1`()

UNIT

CAN_messagCAN_message

IN_1

IN_2

IN_0
Switched_Fabric

1

1

1

 
 

Fig. 10. Root level of the model 

 
The  Switched  Fabric  CAN  3x3  whose  activity  is 

modeled by the transition Switched_Fabric transmits the 
CAN message via the Switch Fabric. The places IN_i and 
OUT_i  (i  can  be  a  value  between  0:2)  play  the  role  of 
inputs/outputs for sub-models. 

Nodes in CAN are identified by their identifier (in this 
model,  colourset  Id  is  a  list  of  29  bits).  The  coloursets 
and variables used in this model are shown in Figure 11. 

Messages  sent  through  the Switched Fabric CAN are 
represented  by  tokens  of  the  colourset  CAN_message. 
This  colourset  is  a  record  of  the  colourset  Id  that 
designates  the  message  priority  and  the  colourset  Data 
which  represent  the data  field  to  be  transmitted  and  the 
colourset TS for saving the time stamp for the birth of the 
message. 

 

 
 

Fig. 11. Coloursets for CAN Network model 

 
The variables (CAN_msg, CAN_msg1 and CAN_msg2) 

are  of  type  of  the  colorset CAN_message. This  variable 
models  the  messages  which  cross  the  different  sub-
models of Figure 12 (Node_i, Broadcast_i, FiFo_i_j and 
Scheduler_i).  The  Switched  CAN  network  model  in 
Figure  12  is  composed  of  three  nodes.  Each  node  is 

represented by a transition and two places. The transition 
called  Node_i  (i  can  be  a  value  between0:2)  is  a 
hierarchical  transition  which  describes  the  messages 
generation within the node, how the messages are stored 
in  buffer.  The  place  Buffer_Node_i  is  used  to  store  the 
messages  already  generated.  This  place  is  configured 
with colourset CAN_messages which is a list of colourset 
CAN_message.  When  a  token  is  present  on  this  place 
(Length CAN_msgs >0)  a message  is  ready  for  sending. 
This last fires the hierarchical transition Broadcast_i. The 
originated message is duplicated in three places, one for 
each  output  port  of  the  Switch  fabric. According  to  the 
priority which is associated  to  the messages (defined by 
their  ID),  the  messages  are  stored  in  the  FIFO  queue 
(there  is  as many queue  as of priorities).  In  this model, 
three  levels  of  priority  are  defined:  0:  high  level  of 
priority; 1: medium priority and 2: low priority. 

FiFo_i_j is a substitution transition which presents the 
queue of  input_i  for  the  output_j.  Finally,  the  scheduler 
processes  the  different  messages  according  to  its 
scheduling policy. 

II.2.1.    Generating CAN Messages (Node_i Transition) 

As shown in Figure 13, the load source is modeled by 
the  place Next  and  the  transition Generate.  Initially  the 
place  Next  contain  one  token  and  is  connected  via  two 
arcs to the transition Generate, the arc from Generate to 
Next  is  timed  using  the  exponential  random  function. 
Thuswe can have a random message with parameterized 
inter arrival period using  the value  lambda_i (lambda_0 
for node 0: Figure 13). The place Buffer_node_i  is used 
as messages  buffer,  sized  of  4  in  our  case,  to  decouple 
the source message from the Switched CAN controller.  
When the load source increases and no room is available 
in  the  buffer,  an  overflow  occurs  and  the  transition 
FIFO_FULL  fires  leading  to  lose  the  last  generated 
message (due to a congestion or excessive load). 

II.2.2.    Broadcasting of CAN Message                   
(Broadcast_i Transition) 

The set of broadcasting message is represented by the 
model  described  in  the  Figure  14.  Transition  Liberate 
models  a  message  coming  from  Buffer_node_i.  The 
Buffer_node_i place is a list of CAN_Message. When the 
list  length  is  not  null  (i.e  there  is  at  least  a message  to 
send),  the  liberate  Transition  can  be  fired  if  the  line  is 
free  (there  is  a  token  in  Line_Free  place).  Otherwise, 
message  coming  from  Node_i  has  to  be  delayed 
Transfer_Data_Delay until the previous message will be 
liberated.  If  the  message  is  liberated,  the  Server  token 
will be moved from the place Line_Free to Line_Busy.  

Then  the  messages  will  be  duplicated  in  the  right 
place (queues) according to their priorities. For example, 
message of medium priority (CAN_msg1) will be routed 
to the places m1_0, m1_1 and m1_2. The CAN message 
m1_i will be queued  in  the queue 1 of  the output port  i 
(OUT_i). 
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Fig. 12. SCPN Switched CAN Networks model with three nodes having three different priority classes 
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Fig. 13. Generation of CAN Message (Node_0) 

 
II.2.3.    Storing CAN Messages (FiFo_i_j) 

FIFO  model  is  represented  in  the  Figure  15.  It 
processes the messages in the order of their arrival. 

The function of the transition Arrive is to concatenate 
incoming message (CAN_msgi) to the Buffer_i_j. 

Buffer_i_j  is  a  place  having  CAN_messages  as 
colourset:  i  indicates  the  level  of  the message  as  it was 
explained previously and j indicates the output port of the 
model. Thus Buffer_i_j is the queue of Message i of the 
output port j (OUT_j). 

When  the  buffer  is  full  (in  our model  FiFo_length= 
4), the transition Fifo_i_j_Full is fired and the incoming 
message will be rejected. 

 
 

II.2.4.    Scheduling CAN Messages (Scheduler_i) 

The model of the Figure 16 describes the behavior of a 
static  priority  scheduling.  The  type  of  messages  is 
classified in three groups: 
-  High  priority  messages:  These  messages  are 

generated  by  Node_0  and  are  modeled  in  the  place 
Buffer_i_0 as a list of CAN_Message (CAN_msgs) in 
the Scheduler of the output port i (OUT_i). 

-  Medium  priority  message:  Those  are  generated  by 
Node_1 and are modeled in the place Buffer_i_1 as a 
list  of  CAN_Message  (CAN_msgs1)  in  the 
Scheduler_i. 

-  Low priority message; those are generated by Node_2 
and  are modeled  in  the  place Buffer_i_2  as  a  list  of 
CAN_Message (CAN_msgs2) in the Scheduler_i. 
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Fig. 14. Broadcasting CAN Messages generated by Node 1 
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Fig. 15. Storing CAN Messages generated by Node 2 in the queue 2 of output 2 
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Fig. 16. Scheduling CAN Messages at the Scheduler of Output 0 

 
A  message  with  lowest  priorities  can  be  delayed  by 

the  other  packets  due  to  the  non-preemptive 
characteristics  of  this  kind  of  message  scheduling 
algorithms [14]. For example, in the case of Scheduler_0, 
the messages of Buffer_0_2 (low priority messages) has 
to wait until the messages of Buffer_0_0 and Buffer_0_1 
(high  and  medium  priority  messages)  are  fully 
transmitted. Then, the messages of Buffer_0_1 (medium 
priority  messages)  has  to  wait  until  the  messages  of 
Buffer_0_0  (high  priority  messages)  are  fully 
transmitted.  This  scheduling  policy  is  modeled  using 
bidirectional  arcs  between  buffers  places  and  the 
transitions T1 and T2. These arcs are inhibitor arcs. The 
method  of  usage  of  inhibitor  arc  is  described  in  more 
details  in  [13].  When  there  is  at  least  a  message  to 
transmit, the Ti transition can be fired if the server is free 
what it means that there is a token in Free_server place. 
Otherwise,  the  following  message  (according  to  the 
algorithm  described  above)  have  to  be  delayed 
Time_Sched_Delay  until  the  previous  message  is  fully 
transmitted.  After  the  transmission  of  the  message,  the 
Server  token will  be moved  from  the place Busy_sereri 
to  Free_server.  The  interest  of  the  static  priority 
algorithms  is  that  it  is  easy  to  implement.  Other 
Scheduling algorithms can be studied in future works. 

III.  SCPN Simulation and Evaluation        
of Crossbar Switched Fabric CAN 

Network 

The  objective  of  this  part  is  to  simulate  Switched 
Fabric  CAN  and  to  evaluate  it.  For  analyzing  different 
traffic  experiments,  the  nodes  in  the  network  are 
configurable by: 

�  The  duration  of  Data  bursts  (measured  in  clock 
cycles)  to  be  transmitted  is  equal  to 
Transfer_Data_Delay which  is  equal  to Total_byte x 
8= 64µs. 

�  The  duration  of  scheduling  to  choose  which  CAN 
Message have to be transmitted between all the CAN 
messages  is  equal  to  Time_Sched_Delay  which  is 
equal to the length of the Id(29 bit) x1µs =29 µs. 

�  The average delay between two successive request for 
sending message (lambda_i for each node i) 

�  Each node represent a class of message object: node 0 
is the class of high priority messages  enoted by two 
dominant  bits Dom,Dom on  the  beginning of  its  ID. 
The  second  node  1  is  the  class  for medium  priority 
messages strating with Res,Dom or Dom,Res on its ID 
field.  The  last  node  2  is  for  low  priority  messages 
denoted by Res,Res value on the beginning of his ID 
field.  
Performance measures  obtained  for  the SCPN model 

are the number of requests sent, throughput, latency and 
the  loss  probability.  The  number  of  requests  sent  is 
measured  by  the  addition  of  counting  the  times  the 
transitions Generate and FIFO_FULL fire (see Figure 13 
Node  0).  The  throughput  is  the  total  messages  sent 
divided by the total messages generated in the time spent 
[15]. Latency in this case corresponds to the average time 
spent  from  the  birth  time  of  message  (saved  in  the  TS 
variable) until its full transmission. 

Loss probability  is  the  total message  lost  (due  to  full 
FIFO  in  input  buffer  or  output  buffer)  divided  by  the 
total message  requested.  In CPNtools  there  is a monitor 
tools  which  provide  statistics  measurement  on  either 
places or transitions [12]. 
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A  group  of  monitor  called  NB_MSG_i_G  and 
NB_MSG_i_Not_load  (i  is  in  0..2)  are  used  to measure 
the occurrence  transitions of Generate and FIFO_FULL 
for  each  node.  The  total  number  of  those  occurrences 
represents the total message generated by the application 
layer.  Another  group  monitor  denoted  by 
Delay_to_S_msg is used for calculating the average delay 
that  a  message  takes  from  generation  at  transition 
Generate to the transition Transmitted_i_i. This group is 
a  data  collector  monitor  and  the  observer  function 
ensures the calculation of the time that a message spends 
using the information on the TS place (see Figure 15).  

The  average  of  this  monitor  is  in  fact  the  latency 
delay.  A  group monitor  named  NB_MSG_LOST  counts 
the  occurrence  transitions  of  FiFo_Full_sched_i  for 
node1 and node2. 

In  context  of  network  performance  analysis 
experiments have been conducted with the model. 

The experiments are defined as follow: The total inter-
arrival  time for all nodes  is  increased from 10 packets/s 
to  100000  Packets/s.  Load  varies  in  all  nodes  with  the 
same proportion by the following manner: 
- �0= � r0 
- �1= � r1 
- �2= � r2 

r0,  r1and  r2  are  chosen  to  ensure  that  the  higher 
priority  always  guaranties  the  lowest  latency.  It  is well 
known that the condition r0 � r1 � r2 must be respected. 
In  our  experiment we  chose  r0=0.2,  r1=0.3  and  r2=0.5. 
The experiment treats the influence of low priority nodes 
to  highest  nodes  and  focuses  on  the  impact  of  high 
priority nodes to the low priority nodes. 

CPNtools does not support non terminating simulation 
to  investigate  the  steady  state  of  the  modeled  system. 

However  a  group  monitor  is  used  to  detect  network 
stability.  In  fact  such  condition  uses  complicated 
algorithm  not  yet  supported  by  the  tool.  Using  the 
available  monitor  features  of  CPNtools  we  create 
conditions to know when the network is stable. The basic 
idea was to compare the last latency delay to its average 
when  is  too  close  to  it  we  increment  a  counter.  If  the 
counter  reaches a  threshold we stop  the simulation. The 
stop  condition must be  checked  for  all  the nodes of  the 
network. The group monitor Steady_Network ensures the 
stop  condition  of  the  simulation.  It  consists  of  seven 
monitors  and  is  as  follow:  two  for  each  node,  one  for 
calculating the difference of the last latency delay to the 
average; the second, msg_i_c, checks if the difference is 
less than the threshold (chosen 10 µ seconds). When the 
condition  is  true  this monitor  returns one.  If not  returns 
zero. The monitor  Stop_steady_Network  is  a  breakpoint 
monitor  which  checks  if  for  each  node  we  collect  a 
satisfied count number (chosen 1000) of the msg_i_c. To 
collect  statistically  reliable  date,  we  run  5  simulation 
replications  using  the  function 
CPN'Replications.nreplications 5 (see Figure 10). 

III.1.  Throughput 

Figure  17  shows  the  throughput  of  the  nodes  versus 
the  total  requested  load. We  can  see  that  the  node  0’s 
throughput is constant (100%) until 10000 Packets/s and 
is slightly affected at all values of the requested load. In 
fact,  node  0  is  a  high  priority  node  so  its message will 
always win the Scheduler priority even if the throughput 
increases.

 

 
 

Fig. 17. Throughput of all nodes versus the total load 
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However the others nodes can’t achieve the requested 
throughput due to an increase of high priority messages. 

The node 1’s throughput is affected by the presence of 
higher messages priority from the load of 7000 Packets/s.  

The influence is more important for the lowest priority 
messages  (node 2). We note  that  at  30000 packet/s,  the 
throughput of node 1 and 2 is affected and achieve 97.3 
and 88.5 % respectively. Then at 50000 packet/s, we see 
that the throughput of node 1 and node 2 is more affected 
and achieve only 90.6 and 38.5 % respectively. 

III.2.  Latency Delay 

Concerning  Latency  Delay,  93  µs  is  the  minimum 
time delay needed  to  transfer a packet over  the crossbar 
Switched Fabric. 

The  Figure  18  shows  that  the  latency  (for  all  the 
nodes) starts to be constant, 93 µs, from 10 packets/s till 

3000 packets/s. From the load 5000 packets/s, the latency 
delay  increases  more  for  nodes  1  and  2  than  node  0 
because of the high priority of its message. 

For example, at 10000 packets/s,  the  latency of node 
0, node 1 and node 2 reaches  100.83, 103.79 and 110.54 
µs  respectively.  But  at  20000  packets/s,  thelatencyof 
node  2  considerably  increases  comparing  to  the  others 
one. 

III.3.  Loss Probability 

Figure  19  presents  the  global  loss  probability  on 
crossbar Switched Fabric CAN network and the different 
message  classes.  We  can  see  that  the  loss  probability 
increases  when  the  node  has  lowest  priority.  In  fact, 
Node  2  and  Node  1  lost  easily  its  messages  with  the 
presence of higher priority messages produced by Node 
0. 

 

 
 

Fig. 18. Latency delay for all nodes versus the total load 
 

 
 

Fig. 19. Loss probability of all nodes versus the total load 
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The  Figure  above  shows  that  the  global  loss 
probability  increases  from  the  load  of  30000  packets/s. 
In fact,  it  reaches 16.2 % at 40000 packets/s distributed 
between medium and low priority nodes: 0.9 % for Node 
1 and 15.3 % for Node 2. 

Up  to  this  result, we note  that  the  crossbar  switched 
fabric  is  more  reliable  than  the  bus  for  the  CAN 
protocol. 

IV.  Conclusion 

In  this  paper,  Switched  Fabric  CAN  architecture  is 
presented and modeled by CPNTools. The SCPN model 
of the Switched Fabric Controller is presented with three 
nodes at transmitter side using a switch fabric (3x3). For 
that,  three message  priority  classes were  treated with  a 
clear  representation  on  ID  field.  The model  focuses  on 
queueing,  broadcasting  and  scheduling  mechanisms 
which are the keys factor for the proposed architecture. 

The  evaluation  of  throughput,  latency  and  loss 
probability  obtained  after  simulations  reflects  the  real 
time  aspect  of  the  proposed  architecture,  its  reliability 
and its high throughput values. The benefit of this work 
is  to  demonstrate  that  CAN  with  a  crossbar  switched 
fabric  has  yet  a well  period  before  its  replacement  and  
CAN  controller  manufactures  do  not  afraid  for  its 
production. A  comparison with Bussed CAN  controller 
[1] will be studied in the future works. 
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