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Abstract — In recent years, the demand for sophisticated embedded systems requires the use of
many connected equipments. CAN buses were developed for connecting many microcontrollers
which oversee many Electronic Control Units (ECU). Because of its no deterministic performance
and its limited bandwidths and throughput, existing CAN-Bus has presented some problems.
Switched Fabric CAN Network can be a fast and reliable hardware solution. In fact, high
performance, reliability and predictability require crossbar switched fabric network.

In this paper, we proposed a switched fabric CAN network Architecture based on CAN Controllers
and switched fabric. This network is modeled and verified by the use of timed colored Petri nets.
To extract network performance metrics, the simulation of the whole model was done using
CPNTools. Copyright © 2012 Praise Worthy Prize S.r.l. - All rights reserved.
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The Switched Fabric CAN Network
Architecture

L

The limitations of a bussed network [1] are eliminated
with crossbar switch network. A switched-fabric bus is
unique in that it allows all CAN Controllers on a bus to
logically interconnect with all CAN Controllers on the
bus.

The switching fabric is the physical connection within
a switch between the input and output ports; it can be
proved that all switches need a crossbar inside their
switching fabric which allow them to operate at very
high speed. Crossbar switches are widely used because of
their simplicity and their high-performances [2] which
promise to greatly simplify efforts and to add better
capability and availability.

Crossbar switch [3] can support simultaneously
multiple messages. This greatly increases the aggregate
bandwidth of the system. Because of the broadcast nature
of the CAN [4] protocol (ie: messages are not sent to a
specific  destination address, but rather as a
broadcast).The chosen crossbar switch (as it is shown in
Figure 1) is configured by closing all its crosspoints to
ensure that the CAN message will be sent at the same
time [5],[6] for all outputs nodes as it is defined in CAN
protocol [7].

CAN messages need to be queued in buffers when
short-term overloading occurs, where the sum of input
rates for a single output port exceeds the outgoing link
rate. Buffering (queueing) characterizes all kinds of
switches.

We can use all types of queueing architectures:
“Output Queueing (0Q)”, “Input Queueing (IQ)”, “and
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Combined Input Output Queueing (CIOQ - Internal
Speedup), Shared Buffer”, “Block Crosspoint Queueing
and Crosspoint Queueing (CQ)”. For our architecture
(see Figure 2), we use the CIOQ as queuing architecture
for internally non-blocking.

In fact, Each Electronic Control Unit (CAN Controller
Node) produces a class priority of messages. For
example, ECU_O produces high level of priority and
ECU_n (n in our model is equal 3) produce low level of
priority.

In fact, Produced CAN messages will be queued in the
input queue of the incoming interface (If the input queue
is full, the packet is dropped.). Therefore, to respect the
CAN protocol philosophy, CAN messages will be
broadcasted for all output port through crossbar Switched
Fabric [8].
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Fig. 1. NxN crossbar Switched Fabric supporting broadcast
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Fig. 2. Switched Fabric CAN Network interconnects

Furthermore, To reduce congested output port and to
respect the priority policy, each CAN message will be
queued in the suitable output queue of each outgoing
interface according to his level priority. (If the output
queue is full, the packet is dropped). Then, each output
port scheduler will select the message to be sent among
the existing CAN message in accordance with his
priority. In our work, we modeled the switched fabric
CAN Network using stochastic colored Petri. We also
evaluated it using CPNTools. Our major contribution is
to raise the lack of the bus solutions by proposing
switched Fabric CAN architecture and by evaluating its
performance. In fact, we demonstrated that CAN based
Networks using crossbar Switched fabric [9] have yet a
well period before its replacement and it can compete the
new sophisticated buses.

Our paper is organized as follow:

The section 2 gives a short overview of colored Petri
net and details the SCPN models of the most
important Switched fabric CAN network modules.
Based on our modeling of the proposed architecture
by stochastic and colored Petri nets (SCPN) [10], we
present, in the last section, some experiments which
are applied to the model.

Three important parameters were measured the
throughput, latency time and the loss probability. This
work is used to demonstrate the benefit of the proposed
architecture. In the fourth section we give some
conclusions of our work.

II.  Switched Fabric CAN Network
Modeling
II.1.  Short Recall of Coloured Petri Net

Coloured Petri Nets have been developed by K.
Jensen in course of his PhD thesis (Jensen, 1980) to
expand the modeling possibilities of classical Petri Nets.
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Like other forms of Petri Nets a CPN consists of places,
tokens, transitions and arcs.

The primary feature unique to CPNs is the inclusion
of evolved data structures into tokens [11], [12], [13].
These data structures are called coloursets and resemble
data structures in high level programming languages;
they can range from simple data types such as integers to
complex structures like structs or unions in C/C++.
Similar to programming languages it is possible to define
variables associated with these coloursets such as linked
list and queue.

Some examples of colourset and variable definitions
are shown in Fig. 3. Tokens as well as places of a CPN
are always associated with a colourset and a place may
only contain tokens of the same colourset as its own. To
well understand the SCPN models of our Switched CAN
controller, we give a short recall of CPN concepts.

¥ Color Declarations

¥ colset bit =with Res|Dom;

¥ colset byte= list bit with 8..8;

¥ colset Data= list BYTE with Total_Byte..Total_Byte;
¥Variable Dedarations

vvar data: Data;

Fig. 3. Colored and variable definitions

The places in a CPN are depicted as ellipses (Fig.4)
with the name of the place written into it and the
associated colourset (Id) below. A token in a CPN is
represented by a small circle (Fig. 4). Its value (the data
stored in the token) is shown in a rectangle attached to
the circle. A number in the circle denotes the number of
tokens with the same value. Figure 4 for example shows
a place called Buffer_Node_1 associated with the
colourset CAN_Messages and holding one token with a
value of:
{{ID=[Dom,Res,Dom,Dom,Res,Dom,Dom,Dom,Res,Re
s,Dom,Dom,Dom,Res,Dom,Res,Dom,Dom,Dom,Res,Re
s,Dom,Res,Res,Res,Res,Res,Dom,Res],DATA=[byte(4),b
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yte(6),byte(5),byte(1),byte(5),byte(6),byte(6),byte(1)], TS
=0}].

1' [{ID=[Dom,Res,Dom,Dom,Res,Dom,
Dom,Dom,Res,Res,Dom,Dom,Dom, Res
,Dom,Res,Dom,Dom,Dom,Res,Res,Do
m,Res,Res, Res,Res,Res,Dom,Res], DAT
A=[byte(4),byte(6),byte(5),byte(1),by
te(5),byte(6),byte(6),byte(1)],TS=0}]

CAN_msgl::CAN_msgsl

Buffer_node_1 )g

"] Liberate

[length CAN_msgs1:

CAN_msgsl
CAN_messages

Fig. 4. Graphical representation of a place in CPN

Transitions in a CPN are represented by rectangles
(Fig. 5) and can access the data stored in tokens by
mapping tokens to variables. There are two possibilities
to access this data:

Guard conditions: The transition is enabled only if a
specific condition — called a guard condition —
regarding one or more variables is met. Guard
conditions are encased in brackets and written above
the transition (Fig. 5).

Transfer function: The transition reads and writes
variables according to a specified function that can
range from simple addition of values to complex
conditional commands.

Transfer functions consist of the definition of input ()
variables, output () variables and the commands to be
carried out (action ()) and are attached below the
transition (Fig. 5).

The example depicted in Figure 5 shows a transition
that only fires if the length of variable CAN_msgs is less
than the value FIFO_length and generates an output
variable CAN_msg without taking any input variables
(Fig. 5), the variable CAN_msg is filled with the return
value of the function defined in the action part,
new_MSG _0, which in this case is defined in the
CPNtools area Declarations.

[length CAN_msgs<FIFO_length]

input ();
output (CAN_msg);
action new_MSG_()

Generate

Fig. 5. Transition Generate with guard condition
and transfer function

Places and transitions in a CPN are linked by arcs.
Arcs in a CPN can be unidirectional or bidirectional.
Unidirectional arcs transfer tokens from a place to a
transition or vice versa (Fig. 6).

1" server

Server

Liberate

Fig. 6. Unidirectional arc with mapping to value server
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Bidirectional arcs transfer the same token from a place
to a transition and back (Fig. 7). Arc inscriptions define
the mapping of tokens to variables. An inscription can
either be a constant value (Fig. 6) or a variable of the
colourset that is associated to the place the arc is
connected to (Fig. 7). If all places connected to a
transition by unidirectional input arcs or by bidirectional
arcs hold tokens and its (optional) guard condition is met,
the transition is said to be enabled. In case of more than
one enabled transition in a CPN the one to fire is chosen
randomly. Later on, we will add more places to our
controller models to avoid arbitrary transitions.

FIFO_FULL

[length CAN_msgs2=FIFO_length]
CAN_messages

Fig. 7. Bidirectional arc with mapping to variable CAN_msgs

For an analysis of clocked systems it is possible to
define timed colourset, defined by the keyword timed
(Fig. 8) and transition or arc delays marked by the
characters @+ (Fig. 9).

¥Dadarations
¥ Constant Daclarations
vval Time_sched_Delay=29;
vcolsat Server = with server imad;

vcolsat ServarkCAN massaga = product Sarver * CAN meassage timad:

Fig. 8. Timed colourset

If a colourset is defined as timed, a timestamp is
added to the tokens of this colourset. The timestamp
cannot be accessed by guard conditions or transfer
functions. When using timed colourset the firing of
transitions depends on a global clock counter. Transitions
can only fire if the clock value is the same as the largest
timestamp of its input tokens. When a transition fires
with a timed arc, the timestamp of its output token is the
sum of the current clock value and the arc delay, in the
example in Figure 9 this delay is Time_sched_delay
clock cycles.

(server,CAN_msg)@+Time_sched_Delay

Busy_server

[ ]

ServerxCAN_message

Fig. 9. Timed arc inscription

11.2.  SCPN Based Switched CAN Controller Model

In order to facilitate modeling of Switched CAN
Controller a modular approach was taken making use of
hierarchical CPN models. The model of the Switched
Controller is built following a hierarchical and modular
architecture.

The root of the hierarchical representation of the
model is shown in the Figure 10.
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{Switched_Fabric

10
UNIT )
@ Switched Fabric
1)
UNIT '! o CAN 3X3
UNIT

CAN_message CAN_message CAN_messag
CPN'Replications.nreplications 5

Apply the Evaluate ML tool the text belt
to run 5 simulations of the CP-net.

Fig. 10. Root level of the model

The Switched Fabric CAN 3x3 whose activity is
modeled by the transition Switched_Fabric transmits the
CAN message via the Switch Fabric. The places IN_i and
OUT_i (i can be a value between 0:2) play the role of
inputs/outputs for sub-models.

Nodes in CAN are identified by their identifier (in this
model, colourset Id is a list of 29 bits). The coloursets
and variables used in this model are shown in Figure 11.

Messages sent through the Switched Fabric CAN are
represented by tokens of the colourset CAN_message.
This colourset is a record of the colourset Id that
designates the message priority and the colourset Data
which represent the data field to be transmitted and the
colourset T for saving the time stamp for the birth of the
message.

¥Declarations
» Monitor Declarations
» Constant Declarations
» Standard declarations
¥ Color Declarations
¥ colset Server = with server timed;
» colset bit
» colset send_status
¥ colset byte= list bit with 8..8;
¥ colset Id=list bit with 29..29;
¥ colset Id_2=list bit with 27..27;
¥ colset BYTE = index byte with 1. Total_Byte;
¥ colset two_bit= list bit with 2..2;
¥ val resdom = [Res,Dom];
¥val domres = [Dom,Res];
¥ colset R_twao_bit= subset two_bit with [resdom,domres];
¥ colset Data= list BYTE with Total_Byte..Total_Byte;
¥ colset CAN_message = record 1D Id * DATA: Data * TS: INT timed;
¥ colset CAN_messages= list CAN_message;
¥ colset ServerxCAN_message = product Server * CAN_message timed;
»Variable Declarations
» Function Declarations
» Monitors
¥ Switched_CAN
» Switched_Fabric

Fig. 11. Coloursets for CAN Network model

The variables (CAN_msg, CAN_msgl and CAN_msg2)
are of type of the colorset CAN_message. This variable
models the messages which cross the different sub-
models of Figure 12 (Node_i, Broadcast_i, FiFo_i_j and
Scheduler_i). The Switched CAN network model in
Figure 12 is composed of three nodes. Each node is
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represented by a transition and two places. The transition
called Node_i (i can be a value between(:2) is a
hierarchical transition which describes the messages
generation within the node, how the messages are stored
in buffer. The place Buffer_Node_i is used to store the
messages already generated. This place is configured
with colourset CAN_messages which is a list of colourset
CAN_message. When a token is present on this place
(Length CAN_msgs >0) a message is ready for sending.
This last fires the hierarchical transition Broadcast_i. The
originated message is duplicated in three places, one for
each output port of the Switch fabric. According to the
priority which is associated to the messages (defined by
their ID), the messages are stored in the FIFO queue
(there is as many queue as of priorities). In this model,
three levels of priority are defined: O: high level of
priority; 1: medium priority and 2: low priority.

FiFo_i_j is a substitution transition which presents the
queue of input_i for the output_j. Finally, the scheduler
processes the different messages according to its
scheduling policy.

I11.2.1. Generating CAN Messages (Node_i Transition)

As shown in Figure 13, the load source is modeled by
the place Next and the transition Generate. Initially the
place Next contain one token and is connected via two
arcs to the transition Generate, the arc from Generate to
Next is timed using the exponential random function.
Thuswe can have a random message with parameterized
inter arrival period using the value lambda_i (lambda_0
for node O: Figure 13). The place Buffer_node_i is used
as messages buffer, sized of 4 in our case, to decouple
the source message from the Switched CAN controller.
When the load source increases and no room is available
in the buffer, an overflow occurs and the transition
FIFO_FULL fires leading to lose the last generated
message (due to a congestion or excessive load).

11.2.2. Broadcasting of CAN Message
(Broadcast_i Transition)

The set of broadcasting message is represented by the
model described in the Figure 14. Transition Liberate
models a message coming from Buffer_node_i. The
Buffer_node_i place is a list of CAN_Message. When the
list length is not null (i.e there is at least a message to
send), the liberate Transition can be fired if the line is
free (there is a token in Line_Free place). Otherwise,
message coming from Node_i has to be delayed
Transfer_Data_Delay until the previous message will be
liberated. If the message is liberated, the Server token
will be moved from the place Line_Free to Line_Busy.

Then the messages will be duplicated in the right
place (queues) according to their priorities. For example,
message of medium priority (CAN_msgl) will be routed
to the places mI_0, mi_I and mI_2. The CAN message
ml_i will be queued in the queue 1 of the output port i
(OUT_J).
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Broadcast 0 — .
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—
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[ FiFo_0_0 ’ FiFo_0_1 ’ FiFo_0_2 ’ FiFo_2_0 ‘ FiFo_2 1 ’ FiFo_2_2 ‘
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10 10
Buffer_0_ O Buffer_0_1 o Buffer_0_2 0 Buffer7270 @o@o
CAN_messagdeg AN_messages CAN_messages XN_messages
_njessages CAN_1hessages

Scheduler_0 Scheduler_2
Sched_0 — Sched_2
@ @ ﬂom
CAN_message CAN_message

CAN_message

Fig. 12. SCPN Switched CAN Networks model with three nodes having three different priority classes

[length CAN_msgs=FIFO_length]
FIFO_FULL

[length CAN_msgs<FIFO_length]

CAN_msgs”™"~[CAN_msg] 2
Generate - '(
()@+expTime(lambda_0) CAN_msgs

input ();

output (CAN_msg);

action new_MSG_0();

»

Buffer_0

UNIT CAN_message

Fig. 13. Generation of CAN Message (Node_0)

11.2.3. Storing CAN Messages (FiFo_i_j) 11.2.4.  Scheduling CAN Messages (Scheduler _i)
FIFO model is represented in the Figure 15. It The model of the Figure 16 describes the behavior of a
processes the messages in the order of their arrival. static priority scheduling. The type of messages is
The function of the transition Arrive is to concatenate classified in three groups:
incoming message (CAN_msgi) to the Buffer_i_j. - High priority messages: These messages are
Buffer_i_j is a place having CAN_messages as generated by Node_0 and are modeled in the place
colourset: i indicates the level of the message as it was Buffer_i_0 as a list of CAN_Message (CAN_msgs) in
explained previously and j indicates the output port of the the Scheduler of the output port i (OUT_i).
model. Thus Buffer_i_j is the queue of Message i of the - Medium priority message: Those are generated by
output port j (OUT_)). Node_1 and are modeled in the place Buffer_i_I as a
When the buffer is full (in our model FiFo_length= list of CAN_Message (CAN_msgsl) in the
4), the transition Fifo_i_j_Full is fired and the incoming Scheduler_i.
message will be rejected. - Low priority message; those are generated by Node_2

and are modeled in the place Buffer i 2 as a list of
CAN_Message (CAN_msgs2) in the Scheduler_i.
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1°1]
Buffer_node_1 o

server

(server,CAN_msgl)@+Ttansfer_Data_Delay @?
@

Server
ServerxCAN_message

(server,CAN_msgl)

server
N_msgl
CAN_msg1 CAN_msgl
Out ‘
CAN_message CAN_message CAN_message

Fig. 14. Broadcasting CAN Messages generated by Node 1

Delay_to_lost_msg2

#TS CAN_msg2

Fifo_2_2_Full [length CAN_msgs2=FIFO_length]

CAN_msg2

CAN_message

Fig. 15. Storing CAN Messages generated by Node 2 in the queue 2 of output 2
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Buffer 0_0 0

CAN_messages

CAN_messages

Buffer_0_1 (@)

Buffer_0_2 (1)

TA CAN_messages

CAN_msg2::CAN_msg$2
AN_msgs1
R CAN_msgs2
\\ SN esrerver Free_server (1

CAN_msg::CAN_msgs

CAmengsL (
y

Server

(server,CAN_msg) @+T|jme_sched_Delay

Busy_server

ServerxCAN_message

(server,

Transmitted_0_0

L server

T1

(server,CAN_msgl)@+Time_sched_Delay
S

(server,CAN_msg1)

Transmitted_0_1

(server,CAN_msg2)@+Time_sched_Delay

Busy_server2

erverxCAN_message ServerxCAN_message

(server,CAN_msg2)

Transmitted_0_2
server

server

CAN_message

Fig. 16. Scheduling CAN Messages at the Scheduler of Output 0

A message with lowest priorities can be delayed by
the other packets due to the non-preemptive
characteristics of this kind of message scheduling
algorithms [14]. For example, in the case of Scheduler_0,
the messages of Buffer_0_2 (low priority messages) has
to wait until the messages of Buffer_0_0 and Buffer_0_1
(high and medium priority messages) are fully
transmitted. Then, the messages of Buffer_0_1 (medium
priority messages) has to wait until the messages of
Buffer 0_0 (high priority messages) are fully
transmitted. This scheduling policy is modeled using
bidirectional arcs between buffers places and the
transitions 77 and T2. These arcs are inhibitor arcs. The
method of usage of inhibitor arc is described in more
details in [13]. When there is at least a message to
transmit, the Ti transition can be fired if the server is free
what it means that there is a token in Free_server place.
Otherwise, the following message (according to the
algorithm described above) have to be delayed
Time_Sched_Delay until the previous message is fully
transmitted. After the transmission of the message, the
Server token will be moved from the place Busy_sereri
to Free_server. The interest of the static priority
algorithms is that it is easy to implement. Other
Scheduling algorithms can be studied in future works.

III. SCPN Simulation and Evaluation
of Crossbar Switched Fabric CAN

Network
The objective of this part is to simulate Switched
Fabric CAN and to evaluate it. For analyzing different

traffic experiments, the nodes in the network are
configurable by:
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The duration of Data bursts (measured in clock

cycles) to be transmitted is equal to
Transfer_Data_Delay which is equal to Total_byte x
8= 64us.

The duration of scheduling to choose which CAN
Message have to be transmitted between all the CAN
messages is equal to Time_Sched _Delay which is
equal to the length of the Id(29 bit) x1us =29 ps.

The average delay between two successive request for
sending message (lambda_i for each node 1)

Each node represent a class of message object: node 0
is the class of high priority messages enoted by two
dominant bits Dom,Dom on the beginning of its ID.
The second node 1 is the class for medium priority
messages strating with Res, Dom or Dom,Res on its ID
field. The last node 2 is for low priority messages
denoted by Res,Res value on the beginning of his ID
field.

Performance measures obtained for the SCPN model
are the number of requests sent, throughput, latency and
the loss probability. The number of requests sent is
measured by the addition of counting the times the
transitions Generate and FIFO_FULL fire (see Figure 13
Node 0). The throughput is the total messages sent
divided by the total messages generated in the time spent
[15]. Latency in this case corresponds to the average time
spent from the birth time of message (saved in the 7S
variable) until its full transmission.

Loss probability is the total message lost (due to full
FIFO in input buffer or output buffer) divided by the
total message requested. In CPNtools there is a monitor
tools which provide statistics measurement on either
places or transitions [12].

International Review on Computers and Software, Vol. 7, N. 2
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A group of monitor called NB_MSG_ i_G and
NB_MSG_i_Not _load (i is in 0..2) are used to measure
the occurrence transitions of Generate and FIFO_FULL
for each node. The total number of those occurrences
represents the total message generated by the application
layer.  Another group monitor denoted by
Delay_to_S_msg is used for calculating the average delay
that a message takes from generation at transition
Generate to the transition Transmitted_i_i. This group is
a data collector monitor and the observer function
ensures the calculation of the time that a message spends
using the information on the TS place (see Figure 15).

The average of this monitor is in fact the latency
delay. A group monitor named NB_MSG_LOST counts
the occurrence transitions of FiFo_Full_sched_i for
nodel and node2.

In context of network performance analysis
experiments have been conducted with the model.

The experiments are defined as follow: The total inter-
arrival time for all nodes is increased from 10 packets/s
to 100000 Packets/s. Load varies in all nodes with the
same proportion by the following manner:

-AM0=Ar10
-Al=Arl
-A2=A12

r0, rland r2 are chosen to ensure that the higher
priority always guaranties the lowest latency. It is well
known that the condition r0 < rl1 < r2 must be respected.
In our experiment we chose r0=0.2, r1=0.3 and r2=0.5.
The experiment treats the influence of low priority nodes
to highest nodes and focuses on the impact of high
priority nodes to the low priority nodes.

CPNtools does not support non terminating simulation
to investigate the steady state of the modeled system.

100

However a group monitor is used to detect network
stability. In fact such condition uses complicated
algorithm not yet supported by the tool. Using the
available monitor features of CPNrools we create
conditions to know when the network is stable. The basic
idea was to compare the last latency delay to its average
when is too close to it we increment a counter. If the
counter reaches a threshold we stop the simulation. The
stop condition must be checked for all the nodes of the
network. The group monitor Steady_Network ensures the
stop condition of the simulation. It consists of seven
monitors and is as follow: two for each node, one for
calculating the difference of the last latency delay to the
average; the second, msg_i_c, checks if the difference is
less than the threshold (chosen 10 u seconds). When the
condition is true this monitor returns one. If not returns
zero. The monitor Stop_steady_Network is a breakpoint
monitor which checks if for each node we collect a
satisfied count number (chosen 1000) of the msg_i_c. To
collect statistically reliable date, we run 5 simulation
replications using the function
CPN'Replications.nreplications 5 (see Figure 10).

HIL1. Throughput

Figure 17 shows the throughput of the nodes versus
the total requested load. We can see that the node 0’s
throughput is constant (100%) until 10000 Packets/s and
is slightly affected at all values of the requested load. In
fact, node O is a high priority node so its message will
always win the Scheduler priority even if the throughput
increases.

Throughput Versus Requested total Load

—

_i

Node —+—

Nodey —
Nodey —W—

95

90

85

80

15

Throughput en (%)

70

65

60 L

1 1 1

108

5.10%

104 2,104 3.104 5.10%

Requested total Load(Packets/s)

Fig. 17. Throughput of all nodes versus the total load
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However the others nodes can’t achieve the requested
throughput due to an increase of high priority messages.

The node 1’s throughput is affected by the presence of
higher messages priority from the load of 7000 Packets/s.

The influence is more important for the lowest priority
messages (node 2). We note that at 30000 packet/s, the
throughput of node 1 and 2 is affected and achieve 97.3
and 88.5 % respectively. Then at 50000 packet/s, we see
that the throughput of node 1 and node 2 is more affected
and achieve only 90.6 and 38.5 % respectively.

II1.2. Latency Delay

Concerning Latency Delay, 93 ps is the minimum
time delay needed to transfer a packet over the crossbar
Switched Fabric.

The Figure 18 shows that the latency (for all the
nodes) starts to be constant, 93 us, from 10 packets/s till

3000 packets/s. From the load 5000 packets/s, the latency
delay increases more for nodes 1 and 2 than node 0
because of the high priority of its message.

For example, at 10000 packets/s, the latency of node
0, node 1 and node 2 reaches 100.83, 103.79 and 110.54
us respectively. But at 20000 packets/s, thelatencyof
node 2 considerably increases comparing to the others
one.

I11.3. Loss Probability

Figure 19 presents the global loss probability on
crossbar Switched Fabric CAN network and the different
message classes. We can see that the loss probability
increases when the node has lowest priority. In fact,
Node 2 and Node 1 lost easily its messages with the
presence of higher priority messages produced by Node
0.

Latency Delay versus Requested total Load
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The Figure above shows that the global loss
probability increases from the load of 30000 packets/s.
In fact, it reaches 16.2 % at 40000 packets/s distributed
between medium and low priority nodes: 0.9 % for Node
1 and 15.3 % for Node 2.

Up to this result, we note that the crossbar switched
fabric is more reliable than the bus for the CAN
protocol.

IV. Conclusion

In this paper, Switched Fabric CAN architecture is
presented and modeled by CPNTools. The SCPN model
of the Switched Fabric Controller is presented with three
nodes at transmitter side using a switch fabric (3x3). For
that, three message priority classes were treated with a
clear representation on ID field. The model focuses on
queueing, broadcasting and scheduling mechanisms
which are the keys factor for the proposed architecture.

The evaluation of throughput, latency and loss
probability obtained after simulations reflects the real
time aspect of the proposed architecture, its reliability
and its high throughput values. The benefit of this work
is to demonstrate that CAN with a crossbar switched
fabric has yet a well period before its replacement and
CAN controller manufactures do not afraid for its
production. A comparison with Bussed CAN controller
[1] will be studied in the future works.

References
[1] Oussama KALLEL, Sofiene DRIDI, Salem Hasnaoui “Modeling
and Evaluating a CAN Controller Components Using Stochastic
and Colored Petri Nets”, International Review on Computers and
Software (IRECOS), Vol.4 N.1, pp 142-151; January 2009.
Rojdi Rekik, Tarek Guesmi, Salem Hasnaoui "Challenges in the
Implementation, the Configuration and the Evaluation of a QoS-
enabled Middleware for Real-Time Embedded Systems",
International Review on Computers and Software (IRECOS), vol.
3, n°3, May 2008.
Brett Murphy, Emmanuel Eriksson. “Fabrics and Publish-
Subscribe Schemes: A Net-Centric Blend” COTS Journal Oct.
2009
http://www.cotsjournalonline.com/articles/print_article/100148
Salem Hasnaoui, Oussema Kallel "A proof-of-concept
Implementation of Modified CAN Protocol on CAN Fieldbus
Controller Component"; Accepted oct. 2004, Revised Jan. 2005;
AMLI. Journal, Ref 03/08.
Marko Bago, SiniSa Marijan, Nedjeljko Peri¢; Modeling
Controller Area Network Communication, Proceedings of the
Ninth Workshop on Practical Use of Coloured Petri Nets and the
CPN Tools, October 20-22, 2008.
CUI Lian-cheng, ZHAO Zheng-fang, XU Xiao-ju2, WU Fang-
ming, SHAN Wei-zhen “Real Time Performance Analysis of
CAN Bus Based on TimeNET” The 3rd International Conference
on Innovative Computing Information and Control (ICICIC'08),
2008.
Prodanov, W.; Valle, M.; Buzas, R.; Pierscinski, H.”A Mixed-
Mode behavioral model of a Controller-Area-Network bus
transceiver: a case study” Behavioral Modeling and Simulation
Workshop, 2007. BMAS 2007. IEEE International Volume, Issue
, 20-21 Sept. 2007 Page(s):67-72
Arshad, Nauman, Stewart Dewar, and Ian Stalker. “Serial
Switched Fabrics Enable New Military System Architectures.”
COTS Journal Dec. 2005
<www.cotsjournalonline.com/home/article.php ?id=10043>

[3]

[5]

[8]

Copyright © 2012 Praise Worthy Prize S.r.1. - All rights reserved

577

Dr. Rajive Joshi,” Using Switched Fabrics and Data Distribution
Service to Develop High Performance Distributed Data-Critical

Systems” The Journal of Defense Software Engineering. April
2007.
[10] K. Jensen , “Coloured Petri Nets. Basic Concepts, Analysis

Methods and Practical Use. Volume 1, Basic Concepts”
(Monographs in Theoretical Computer Science, Springer-Verlag,
1997).

Ehrig, H.; Juhas, G.; Padberg, J.; Rozenberg, G. (Eds.), “Unifying
Petri Nets - Advances in Petri Nets” (Springer-Verlag, 2001).
A.V. Ratzer, L.Wells, HM.Larsen, M.Laursen, J.F.Qvortrup,
M.S.Stissing, M. Westergaard, S. Christensen, K.Jensen. CPN
Tools for editing, simulating, and analysing Coloured Petri Net.
LNC, 2679:450-462, 2003.

[12]

[13] Design/CPN Manuals. Meta Software Corporation and
Department  of  Computer  Science,  University  of
Aarhus,Denmark. On-line version: http://www.
daimi.aau.dk/designCPN/.

[14] John D. Pape, “Implementation of an On-chip Interconnect Using
the i-SLIP Scheduling Algorithm”. (The University of Texas at
Austin Chap 3 pp 11-15: December 2006)

Salem Hasnaoui, M. Hamdi, S. Tahar, “Throughput Performance
Analysis of Wireless Control Area Networks and its Coupling to
the Latency Time”, accepted for publication as a regular paper
in Wireless Communications & Mobile Computing (WCMC) John
Wiley Interscience Journal, April 2006, Revised September 2006,
Ref WCMC-1105-353.To appear in 2009 (Editor's letter).

[15]

Authors’ information

Mohamed Mazouzi was born in 1980 in Sfax,
Tunisia. He received the degree in computer
science engineering from The National School
of Computer Sciences, Tunisia, in 2004, and the
postgraduate  research  degree in  New
Technologies of Dedicated Computer Systems,
~ in 2006, from National School of Engineering of
¥ % Sfax. Since 2006, he is a PHD student in the
Computer and Embedded Systems laboratory of National School of
Engineering of Sfax. Since 2006, he occupied the post of a
Technologist at the Higher Institute of Technological Studies of Sfax in
Computer Sciences and High Technology Department. His research
interests are industrial networks for real-time and distributed
applications.

Oussama Kallel was born in 1977 in Sfax,
Tunisia. He received the degree in electrical
engineering  from  National = School of
Engineering of Tunis, Tunisia, in 2000, and the
postgraduate research degree in communication
networks, in 2002, from National School of
Engineering of Tunis. In 2009, he obtained his
PhD degree in telecommunications at National
School of Engineering of Tunis (El Manar University of TUNISIA).
Since 2003, he occupied the post of an assistant at the Science Faculty
of Bizerte in Physic department (Electronics Unit). His research
interests are industrial networks for real-time and distributed
applications and their implementations on FPGA component.

-

.

—
-

£

L
5
!

Salem Hasnaoui is a professor in the
Department of Computer and Communication
Technologies at the National School of
Engineering of Tunis. He received the Engineer
diploma degree in electrical and computer
engineering from  National = School of
Engineering of Tunis. He obtained a M.Sc. and
third cycle doctorate in electrical engineering, in
1988 and 1993 respectively. The later is extended to a PhD. degree in
telecommunications with a specialization in networks and real-time
systems, in 2000. Salem is author and co-author of more than 120
refereed publications, more than 30 papers in international journals, a
patent and a book. His current research interests include real-time
systems, sensor networks, network controllers and multicores, QoS

International Review on Computers and Software, Vol. 7, N. 2



M. Mazouzi, O. Kallel, S. Hasnaoui, M. Abid

control & networking, adaptive distributed real-time middleware and
protocols that provide performance-assured services in unpredictable
environments. Prof. Hasnaoui is the responsible of the research group
"Networking and Distributed computing" within the Communications
Systems Laboratory at the National School of Engineering of Tunis. He
served on many conference committees and journals reviewing
processes.

Mohamed Abid is currently professor at Sfax
University in Tunisia. He holds a Diploma in
electrical engineering in 1986 from the

= University of Sfax in Tunisia and received his
PhD degree in computer engineering in 1989 at
e University of Toulouse in France. His current

research interests include Hardware-Software

System on Chip co-design, reconfigurable
FPGA, real time system and embedded system. Dr. Abid has
authored/co-authored over 150 papers in international journals and
conferences. He served on several technical program committees and
as a co-organizer of several international conferences. He also served
Guest Editor of special issues of two international journals.

Copyright © 2012 Praise Worthy Prize S.r.1. - All rights reserved

578

International Review on Computers and Software, Vol. 7, N. 2



