J Supercomput
DOI 10.1007/s11227-011-0557-9

Compositional specification of real time embedded
systems by priority time Petri Nets

Adel Mahfoudhi - Yessine Hadj Kacem -
Walid Karamti - Mohamed Abid

© Springer Science+Business Media, LLC 2011

Abstract An important key challenge in Embedded Real Time Systems (ERTS)
analysis is to provide a seamless scheduling strategy. Formal methods for checking
the temporal characteristics and timing constraints at a high abstraction level have
proven to be useful for making the development process reliable. In this paper, we
present a Petri Net modeling formalism and an analysis technique which supports
not only systems scheduling analysis but also the compositional specification of real
time systems. The proposed Priority Time Petri Net gives determinism aspect to the
model and accelerates its execution. Indeed, a compositional specification of a PTPN
for complex application and multiprocessor architecture that solves the problem of
hierarchy is presented.

Keywords ERTS - Scheduling analysis - PTPN - Compositional specification

1 Introduction

An important key challenge in Embedded Real Time Systems (ERTS) analysis is to
provide a seamless scheduling strategy. Formal methods for checking the temporal
characteristics and the timing constraints at a high abstraction level have proven to
be useful for making reliable the development process. In fact, the specification and

A. Mahfoudhi (X)) - Y. Hadj Kacem - W. Karamti - M. Abid
CES Laboratory, University of Sfax, ENIS Soukra km 3,5, B.P. 1173-3000 Sfax, Tunisia
e-mail: adel.mahfoudhi @fss.rnu.tn

Y. Hadj Kacem
e-mail: yessine.hadjkacem @ceslab.org

W. Karamti
e-mail: walid.karamti @ceslab.org

M. Abid
e-mail: mohamed.abid @enis.rnu.tn

Published online: 02 February 2011 &\ Springer

mailto:adel.mahfoudhi@fss.rnu.tn
mailto:yessine.hadjkacem@ceslab.org
mailto:walid.karamti@ceslab.org
mailto:mohamed.abid@enis.rnu.tn

A. Mahfoudhi et al.

formal verification techniques constitute an important and recent field of research,
whose purpose is to be more trustworthy.

The model checking category of formal method produces an example showing
why an imposed constraint is not satisfactory. Thus, Petri Nets (PN) have been suc-
cessfully used in ERTS specification. Petri Nets also present an adequate model
checking thanks to their great expressivity dynamic vision and executable aspect.
Consequently, various PN extensions and generalizations and numerous supporting
computer tools have been developed to further increase their modeling opportunities,
though falling short of ERTS verification. However, the application of Petri Nets to
a scheduling problem is far from being trivial; determinism aspect is undertaken nei-
ther in regular Petri Nets nor in their extension for real time system verification. For
schedulability analysis operations [21], verifying whether a schedule of a task exe-
cution meets the imposed timing constraints, is more challenging. This is due to the
distribution of and complex interactions between the multiple execution resources of
the target hardware architecture. In fact, it has been proven that when it is used for
modeling the distribution of a parallel application onto heterogeneous computing re-
sources, the specification power of Petri Nets reaches its limitations. In particular, the
following problems were identified:

— Need for supporting systems scheduling analysis, considering periodicity, fixed
priority, preemption, multiprocessor architecture and intertask relations

— Favoring determinism aspect for the model and accelerating its execution

— Necessity of simple scheduling problem presentation: while modeling complex
real time tasks, a hierarchical approach is necessary in order to allow the designer
to separate issues of local modeling from those of global modeling.

In this paper, we present a Petri Net modeling formalism and a technique of analy-
sis that support both systems scheduling analysis and the compositional specifica-
tion of real time systems (RTS). The proposed Priority Time Petri Net (PTPN) gives
determinism aspect to the model and accelerates its execution. Indeed, the composi-
tional specification of a PTPN for complex application and multiprocessor architec-
ture solves the problem of hierarchy while modeling complex systems. Besides, the
developed tool of our support infrastructure is founded on the Eclipse platform, in the
form of a plug-in capable of exchanging data with Eclipse Features.

The remainder of this article is organized as follows. Section 2 provides a brief
discussion about related work. As an introduction to the technical sections, basic
concepts on Petri Nets are overviewed in Sect. 3. Then Sect. 4 introduces the Pri-
ority Time Petri Nets highlighting computational and analysis models. Next, Sect. 5
presents how our extended formalism support is used for specifying the schedulabil-
ity analysis problem. Afterward, the local composition, explained in Sect. 6, yields
the main PTPN components. While the interconnection between PTPN components
is illustrated in Sect. 7, their analysis is described in Sect. 8. As for Sect. 9, it intro-
duces the supporting tool and depicts experiments. Finally, the proposed approach is
briefly outlined and future perspectives are given in the last section.

@ Springer

Compositional specification of real time embedded systems

2 Related work

The adoption of model checking by means of PN extensions has been vastly investi-
gated. In [19], the authors use T-Timed stochastic Petri Nets to model real time tasks.
They stress the independent periodic tasks in order to support Rate Monotonic (RM)
strategy [13]. For them, priorities are integrated using the inhibitor arcs which con-
nect the waiting places of each task with transitions that call the processor modeled
by a place. Besides, the temporal faults, considered as a task behavior, are presented
in the Petri Nets task model. However, if the tasks to be modeled are too complex
then the size of the model will be enormous and the added inhibitor arcs encounter
difficulties to interpret the graph.

Roux [20] presented the Scheduling Timed Petri Nets (STPN) to analyze the
schedulability of the independent tasks on a multiprocessor architecture. Each proces-
sor is modeled by a place; thus the concept of priority is introduced by the inhibitor
arcs. The motivation behind this approach was mainly to propose a calculation of a
more reduced state space than the traditional state graph suggested by [2] and the
difference bound matrix. This work is extended in [11] to support the tasks with vari-
able time execution. Another improvement [12] consists in extending the STPN to
manage the dynamic priorities and support variant scheduling policies.

In the same line of thought, Berthomieu et al. [3] introduced the notion of priorities
within the temporal Petri nets framework via the Pr'TPN (Priority Time Petri Nets)
extension. His proposal is based on the constraint that a transition will be fired only
when it has the highest priority compared to the concurrent and enabled transitions.
To introduce the priorities, the author also uses inhibiting arcs as a new component
which connects the simultaneous transitions. The problem arises when the network
is of an enormous size and several transitions are dependent. The model will then be
difficult to be presented and interpreted.

As a notable model-checker, the Extended Place-timed Petri Net (EPdPN) [5] is
worth mentioning. EPdPN is based on P-Timed Petri Net and introduces two priori-
ties to solve the problem of transitions’ conflict. Nevertheless, the contribution of the
authors does not take into account the periodicity of real time tasks.

Pailler and Choquet-Geniet, in [16] propose a methodology for scheduling analy-
sis from accessibility graph. They suggest to extract a scheduling graph that contains
all valid sequences. The optimal sequence presents a simple activity. However, this
approach is restricted to the offline scheduling.

The literature also illustrates other research work carried out to address the sep-
aration problem of local PN blocs from global modeled network. For example, the
approach presented in [23] for scheduling analysis specification is based on the sep-
aration between timing and behavior properties. In the proposal, the compositional
timing analysis aims at easily analyzing the structured Time Petri Nets. But, the struc-
tured Petri Nets elements have to be decomposed into a number of subsequences in
order to test the system schedulability regardless of the direct model analysis con-
struction.

@ Springer

A. Mahfoudhi et al.

3 Preliminaries

In this section, background concepts that are useful to understand our proposal are
provided. In what follows, some definitions on Petri Nets are briefly recalled. Then
the hierarchical approach in PN is explained through the concept of Petri Nets in
object. Finally, this section ends with a brief discussion.

3.1 Background for Petri Nets and Time Petri Nets

Petri Net [17] is a mathematical formalism that allows the specification of the be-
havior of real time interactive systems. Concurrent real time concepts such as timing
constraints, shared resource and synchronization are taken into account through two
main Petri Nets extensions: Time Petri Nets [14] and Timed Petri Nets [18].

Definition 1 A Petri Nets is a 4-tuple [15], R ={P, T, B, F}, where:

(1) P={p1, p2,--., pn} is a finite set of places n > 0O;
) T={n,1,...,t,} is afinite set of transition m > 0;

(3) B: (P x T)+ Nis the backward incidence function;
(4) F: (P x T)+— Nis the forward incidence function.

Each system state is represented by a marking M of the net and defined by:
M:P— N

Definition 2 A marked Petri Net is a couple PN = (R, My), where R is a Petri Nets
and M) is the initial marking.

Definition 3 A vector Ft; is associated with each marking M which presents the
transitions to fire. Fty is defined by: Ft; : T — { ! VieT and B(P,t) <M &t €

0
Fty & Fto(t) = 1.

Definition 4 The firing of a transition is described by:
Let M be a marking, V¢ € Ft,, then the firing of the transition ¢ is presented as
follows:

M' =M+ F(P,t)— B(P,t)

. . . . t
In the rest of this section, we use the following notation: M — M’.

Definition 5 M’ is reachable from a marking M iff: 3r € T, M LM

Thanks to its power of expressivity, the regular PN makes it possible to describe par-
allelism, dependency, and semaphores, which present important properties of ERTS.
In spite of this significant ability, regular PNs are not able to model the temporal
evolution of ERTS. That is why the regular PN is extended to Time Petri Net.

@ Springer

Compositional specification of real time embedded systems

Definition 6 Time Petri Nets associate a static time interval with the transition firing.
A Time Petri Net is a 3-tuple 7PN
TPN = {PN, Tin, Tmax }, Where:

(1) PN is a regular Petri Net;
(2) Tmin : T~ Q| Tmin(#;) is the earliest firing time mapping;
(B) Tmax : T+ Q1 U{oo}, Tmax(t;) is the latest firing time mapping.

A global clock is coupled with the system.

Definition 7 Each transition in a TPN is accompanied with a local clock. All local
clocks are grouped in a vector called (HI), with HI : T — Q™ . The clock transition
is activated as soon as the transition is enabled and remains activated until it is valid.

Definition 8 A transition is valid when it is firable and the local clock has met the
time interval:

tisvalid <t e Fty A HI(t) € [Tinin, Tmax]

Definition 9 Only valid transitions will be fired. To simplify their selections, the
vector Ft; is filtered and the temporal filter is described by:

¢ is not valid = Fig(1) <=0
Set Increment HI(t)

Hence, the marking after filtering is: M’ = M + F(P,t) — B(P,t) =t € Fi;.
3.2 Petri Nets in objects

A major tendency of integration between objects and PN consists in using the net-
works to describe the internal behavior of the objects. In this approach, the internal
state of the object is modeled by tokens in the places, and the execution of a method
by the object is modeled by the net’s transitions. So, the net structure specifies the
availability of a method according to the internal state of the object, and indicates the
possible sequences of methods execution by the object. The interest of Petri Nets is
to describe the intrinsically competing objects capable of executing several methods
at the same time. Furthermore, certain transitions of the net can remain “hidden” or
protected inside an object, and therefore model the internal and spontaneous behavior
of an object by contrast to the services it offers to its environment.

The fundamental concern of such approach is to allow the use of concepts stem-
ming from the objects approach (classification, encapsulation) to describe the system
structure, instead of using a purely hierarchical structuring. In the “Petri Nets in ob-
jects” paradigm, a system is described as a set of objects which communicate the
behavior of each object being described in terms of Petri Nets. Mostly, these ap-
proaches are class-based, which allows the association of a PN with a class of objects
rather than with an individual object.

@ Springer

A. Mahfoudhi et al.

3.3 Discussion

As already mentioned, regular PNs are not able to support the temporal evolution
of ERTS. Among the multitude of the existing extensions of Petri Nets for ERTS
modeling, the following can be cited:

— Timed Petri Nets in which time can be assigned to places or transitions. In fact, P-
Timed Petri Nets and T-Timed Petri Nets are two subclasses of this PN extension.
While firing a transition with a duration d; in Transition Timed Petri Nets, the
required tokens are removed from the input place at an indeterminate time and
added to the output place after the duration d;. Timed Petri Nets can lead to a well-
performing analysis method but could not cover the scheduling problem which
requires determinism aspect.

— Previously presented Time Petri Nets: They offer a suitable solution able to de-
scribe the different states of a Task and their related events.

While the Time Petri Net is quite accurate for the task behavior characterization,
there are some issues in the cases of the real time task with fixed priorities. It is worth
noting that the Time Petri Nets lead to a good presentation of all system tasks and
events, but they intercalate an interval of firing the transitions which present an event.
This could bring the passage of a task state towards another during an undeterminable
time. Indeed, in our study, the tasks with the highest priority are executed. However,
a Time Petri Net handles the tasks in an equitable way (no transition priority) that
causes the problem of transition conflict. The states graph of the set of all nodes does
not obey to a strategy of real time scheduling. Thus, if we attribute the notion of
priority to transitions, the new formalization of Time Petri Nets can overcome the
indeterminism problem.

As mentioned in Sect. 2, the existing research work suffers from two major prob-
lems. The first one concerns the indefinite date of transitions firing. Indeed, the exten-
sions of the PN dedicated to the analysis of RTS scheduling are based on the temporal
or delayed PN. For example, the STPN [20], the extension of the temporal PN, adds
constraints on the crossing of the transitions to verify the respect for the firing inter-
val. Besides, the check of these constraints is a new dimension added to the problem
of scheduling analysis. The determinist crossing of the valid transitions presents our
first contribution for the modeling of the RTS.

In order to solve the problems of conflict of the valid transitions, the existing work
has integrated the priorities within the PN but the way to do so is the second problem.
Indeed, most of the extensions such as PrTPN [3] and STPN [20] make appeal to
additional components such as the inhibitory arcs to specify the priorities. In fact,
the modeling of a complex RTS with the PN generally produces complex models.
Besides, the addition of the other constituents gradually increases their complications.

The mastery of the increasing complexity of the PN models of scheduling analysis
is our second contribution. Firstly, we present a new way of integrating the priorities
into networks without using additional components. Secondly, we propose a new
modeling of the RTS based on components which mask PN models.

@ Springer

Compositional specification of real time embedded systems

4 Priority Time Petri Net: PTPN

PTPN is proposed to overcome the firable transition problems. Only the transition
that has the highest priority is fired with the extended formalism. The PTPN se-
mantics permits to support the scheduling strategy with a fixed priority such as Rate
Monotonic (RM). In what follows, the basic definitions of the proposed formalism are
stressed. Then its firing semantic which accelerates the simulation of firing transition
vector is explained.

4.1 PTPN elements

Definition 10 PTPN is a 3-tuple defined by PTPN = (R, Ty, P,) where:

(1) R is aregular Petri Net
Q) Tr: T QT is the firing time of a transition
(3) P: (T x P)r> Nis the priority of a transition according to a place.

The relation between P, and B is defined as:

VteT AVpeP,if B(p,t)=0< P.(t,p) =0

Let p € P and the set T, = {Vt e T\B(p,t) > 0}

For a concrete presentation of B, we consider it as a matrix of 7 rows and P columns,

P _ Pr(t0, po) Pr(to, pn)
' Py (tm, po) Pr(tm, pn)

N*, ifreT,

Vpe PandVteT, P.(p,t) — {0

Definition 11 The marked PTPN is the couple MPTPN = (PTPN, My):

(1) PTPN is a PTPN network
(2) My is the initial marking of the net PTPN is an extension of Time Petri Nets; so
the definitions of local and global clock and firable transitions Ft, are preserved.

Definition 12 A transition is valid if it is firable and it respects it firing date.
VteT isvalid<=te Ft; NHI(t) =Tr(t)

The marking strategy is based on priorities: the transition having the highest priority
will be fired. When such policy is applied to a valid Ft; vector, then this vector will
present only independent transitions.

Definition 13 Two transitions are independent if the firing of the first does not influ-
ence that of the second. Let t,t € T with B(P,t;) <M and B(P,t)) <M

M'=M + F(P,t1)B(P, 1)

t1 and £, are independent < and
B(P,p) <M’

@ Springer

A. Mahfoudhi et al.

Priority

Firable ﬁrepr?rzsl Cil:_ering:
Transitions For valid ﬁ alid and
transition priority

(Firing O

Fig. 1 PTPN Firing Machine

Independent
and valid
FTs

t1 influence 1, if 1, is not enabled by the new marking M’. To accelerate the firing of
transitions with PTPN, we propose a method that makes it possible to fire a vector of
independent transitions.

After describing the necessary PTPN definitions, we present essential concepts of
the method for merging the transition firing and the PTPN state space in order to
compute a feasible system schedule.

Definition 14 To fire a marking, a PTPN Firing Machine (PFM) is offered by our ex-
tended formalism, whose mechanism is described in Fig. 1. The PFM input is a PTPN
marking. For each entry, the machine triggers four events considered as jobs: During
the first job, PFM determines the vector of firable transitions F'#; which presents the
input of the second job. The second job consists in isolating non-valid transitions
from Ft; which respect the firing time.

Definition 15 F't; temporal filtering is defined as:
Vt € Ftyand HI(t;)) # Ty(i) = Ft,(ti) <0

After this filtering, we can say:

Vt € Ft; <=t is valid.

The objective of the third job is to ensure that the vector contains only independent
transitions. So, PFM applies a priority filtering.

Definition 16 Filtering must take into account all places, if two transitions are in
competition for place sharing, then the transition which has the highest priority will
be fired. In fact, the product of the Ft; vector and the matrix Pr is calculated in order
to select a concurrent and valid transition for each place; it is saved in the vector Prod

@ Springer

Compositional specification of real time embedded systems

as follows: Prod: P+ Ftg; X Pr

Fiy(t0) Pr(to, pi)

Prod(P;) = X ,where i € [0, n]

Ft(ty) Pr(tm, pi)

Next, the transition having the highest priority per place is selected from the vector
Prod(p;).

[Fty(t0) x Pr(to, pi) |

8O [Prod(pi)lt; 1), where :

| Ft5(tm) X Pr(tm, pi) |

- i€[0,n]
- jel[0,m]
— Max is a function that returns the transition with the highest priority.

Now, each vector Prod() of each place is transformed into a binary vector through
the following function:
Fori € [0, n]

Vtj € Ft,\Max(Prod(p;)) = Prod(p;)[t;] <1
Vt; € Fty A (tj = Max(Prod(p;))) = Prod(p;)[t;] <0

Bin :—

In that case, the vector Ft, is updated by subtracting the vector Pr from each place
pi of the Ft; vector:

Fty < Fty — Prod(p;)
Fty(t) Prod(p;)lto]

Fty < —

Fts(tm) Prod(p;)[tm]

Definition 17 The firing of Fz, is defined as: M’ = M + ZIEFIS (F(P,t)— B(P,1)).
The PFM accelerates the PTPN evolution by firing the whole vector since all Ff,
transitions are independent.

Ft,
We note M — M’, where M is an input marking and M’ is the output marking. To
simplify notations, M’ is said to be accessible via M through F't.

@ Springer

A. Mahfoudhi et al.

Algorithm 1 State graph construction
1: repeat
2: if valid transition exists then
3 Firing F'ty and state construction and New marking
4 else
S: Set increment clock
6
7:

end if
until marking < B

4.2 PTPN state space

In PTPN, a state is a node composed of (M, tmp), where M is a marking and tmp is
the time for its firing. The state space is a set of nodes connected to the arcs having
Ft; weight. The connection arcs will be established only when two markings of the
nodes are accessible via a valid and independent Fz; vector.

The construction of PTPN state space corresponds to the execution algorithm
shown in Algorithm 1. This process starts with the creation of an initial state(My, 0).
Then, for each clock tick, an iterative process is triggered. A marking is sent to the
PFM. Next, the machine brings back a new marking that allows the creation of a new
node (M, tmp) with an arc having the weight of the Ft; vector. The new generated
marking present the new entry point of the PFM. This iteration is continued while
there are firable and valid transitions.

5 Model construction

This section depicts how PTPN is used to model real time tasks and particularly their
periodicity, priority, dependency, and distribution on distributed architecture.

5.1 Task creation and activation with PTPN

We will use the net shown in Fig. 2 to illustrate the creation and activation of task with
PTPN. There are six places (“Uncreated,” “Period,” “Created,” “Disabled,” “Ready,”
and “Activated”) and three transitions (“Creation,” “TPeriod” and “Activation”). The
vector Ty is defined by (R;,P;, 0). In the state shown in Fig. 2, there are two tokens;
one in the place “Uncreated” and another in the place “Disabled.” The tokens in the
place “Uncreated” represents an uncreated Task which is ready to be created at the
time R;. The token in the place “Disabled” indicates that the task is disabled. If the
task is activating a job, then there are no tokens in “Disabled” place and there is one
token in the “Activated” one. At time 0, the transition “Uncreated” is enabled and
the firing time is R;. So, at the time R;, it will be validated. The firing consumes the
token from “Uncreated” and produces two tokens: one is for “Period” and another for
“Created.” Now the transition “Activation” is enabled, the firing time is 0 and conse-
quently it is validated. “Activated” fires at time “Ri” and consumes one token from
“Disabled” and another from “Created.” The firing produces one token in “Ready”
and one in “Activation.”

@ Springer

Compositional specification of real time embedded systems

Fig. 2 Creation and activation Uncreated
of a task with PTPN

Creation

Disabled

5.2 Task execution

According to the adapted organization strategy, a task can occupy the free processor
only when it has the highest priority. The event of activity allows the passage of a
task toward the execution state as well as that of the processor toward the busy state.

Indeed, the modeling of this event with PTPN, consists in creating two entry arcs
towards the “GetProc” activity transition. The first arc arises from the “Ready” place
and the second comes from the “Processor” place which is shared by the various
“GetProc” transitions of the tasks. The outputting arcs of this place have to carry the
priorities associated with the suitable tasks. When a token appears in the “Ready”
place, the task is set to occupy the processor. The associated “GetProc” transition is
valid only when each one of the “Ready” and “Processor” places presents a token.
The firing allows the consumption of both tokens and the production of the other one
in the “inExecution” place. The new marking describes the activity of the processor
of the current task. Of course, we are interested in preemptive systems, whose notion
is managed as follows: each task occupies the processor for a single unit of time.
If the task remains the most primary, then it occupies it again, otherwise it will be
anticipated. The modeling with PTPN similarly inserts a firing date (1) on the “in-
crementing StopWatch” transition. The firing allows incrementing the chronometers
which calculate the time of the processor use per task. Each task has two stopwatches:
the first one to compute the “Ci” units and the second to count the “du” units. They
are modeled by two places “StopWatchCi” and “StopWatchDu.” For any “inExecu-
tion” firing, there is a production of tokens in both stopwatch places. As soon as
the “StopWatchCi” place indicates the presence of Ci tokens, the transition “endCi”
is validated. Its firing allows the liberation of the processor as well as the blocking
of the task up to the new wake. The transition “endDu” is valid when the “Stop-
WatchDu” place indicates the presence of Du tokens. The firing allows the liberation
of the processor and the deactivation of the task (the task did not appear in the line
of the processor). In particular cases where Du is a multiple of Ci, the transitions
“endCi” and “endDu” are valid. The task has to pass towards the “Terminated” state
to indicate that it is well organized, then the transition “endDu” is more principal
than “endCi.” To integrate both priorities associated with these two transitions with

@ Springer

A. Mahfoudhi et al.

Processor

GetProc P /4 <

Pr.

inExecution

incrementin

StopWatch

Ci StopWatch

Du

Actived(x
L]
N DU o
endDuration
endCi -
3 A N
Terminated
™ /T
Disable
/] M
b
Successor

Fig. 3 Executing a task with PTPN

PTPN, we need a shared place between both transitions. Figure 3 presents a “Maker”
place which plays the role of a judge for both events. “Maker” allows the firing of a
“ReleaseProc” transition responsible for the liberation of the processor for the pre-
emption.

A task in the course of execution on a processor can be preempted by a more
prioritized one. With PTPN, the common task releases the processor after each unit
of time by firing the transition “ReleaseProc” even if it is still the most prioritized.
The firing of the transition engenders the passage of the current task towards the state
ready for the execution. The place “Ready” becomes marked, which leads to the state
where all the active tasks, the most prioritized of which is then going to occupy the
processor, are ready for the execution.

Two scenarios are possible. The current task, still the most prioritized, is going
to continue its execution. Should the opposite occur, the other more prioritized one
occupies the processor and the common task would be preempted.

An important issue in real time system verification is to check if each job has met
its deadline. Therefore, we identify two verification levels: the periodicity and the
deadline. As shown in Fig. 4, there are four places (“Period,” “Created,” “Activated,’
“Deadline”), two transitions (“Tperiod,” “Tdeadline”) and T'7(0, 0). The transition
“Tperiod” is valid for each P; time unit. The firing consumes the token from the
place “Period” and produces two: One in the place “Created” and the other in the

@ Springer

Compositional specification of real time embedded systems

Fig. 4 Meeting deadlines with Period
PTPN

yTperiod

Tdeadline

Created Activated

place “Period.” This means that the task is ready to wake up and the new period
is loaded. If the task has already been activated, the transition “Tdeadline” is valid.
The firing of the transition “Tdeadline” provides a token to the place “Deadline” and
disables the task execution.

According to the described models presented previously, the scheduling analy-
sis of a real-time system modeled with PTPN produces a model whose size is very
important. The great complexity of the ERTS makes it difficult to understand and
manage. In order to solve the problems of organization and interpretation of the mod-
els described in PTPN, we resort to the structuring method of the Petri Nets in the
session that follows.

6 Local PTPN components for scheduling analysis specification

As highlighted before, an RTS consists of a set of real-time tasks and a set of proces-
sors. The formal definition of an ERTS is presented by Definition 18.

Definition 18 The ERTS §2 is defined by the 5-uplet 2 = {TK, R;, Proc, alloc,
Prio}, with:

— TK: is a finite set of real-time tasks with each task determined by the following
parameters:
— R;: the date of the first activation

P;: the period associated with the task

C;: the execution period of the task for the P; period
— D,,: the life cycle of the task (the duration of total execution). For each task, two

invariants must be respected: C; < D, and R; < P;

— Proc : afinite set of processors

— Rs: TK — {TK} U {©®}, a function which initializes precedence relations between
tasks

— Alloc : TK +— Proc, a function which allocates a task to a processor

— Prio: TK x Proc — N, a function which allocates priorities to the tasks according
to the processor. If the task is not allotted to a processor, the priority will be null,
that is to say:
VTK; e TK A P € Proc, Alloc(TK;) = P = YP; € Proc\{P}, Prio(P;) =0.

It should be born in mind that we are interested in the multiprocessor scheduling by
clustering, where each task is assigned to a single processor. In other words, a task can

@ Springer

A. Mahfoudhi et al.

take place only on a single resource of execution. So, the problem of multiprocessor
scheduling is reduced to monoprocessor subsolutions. That is why the application of
the policies of monoprocessor scheduling is justified. Our concern is in the RTS with
a fixed priority where the RM strategy is an optimal policy. From the moment a task
is created, a priority is allocated to it and the priority remains fixed until its end.

In order to apply the detailed structuring in the previous section, we start with the
modeling of the behavior of the first object “Task.”

6.1 Task behavior encapsulation

The PN paradigm in objects necessitates the encapsulation of the various behaviors
of the object in a centenary called PN component. We propose a PTPN constituent
called “Tc” to encapsulate the behavior of a real-time task. It is characterized by input
and output places which assure the communication with the environment. Figure 5
describes the graphic presentation of the constituent “Tc.”

Formally, “Tc” is defined as follows:

Definition 19 Let a real-time task be 7; € TK of 2 with the following characteris-
tics (Ri, Pi, Ci, Du), then the corresponding component “Tc” is described by the
following triplet: Tc = (PTPN, PI, PO), where:

— The main characteristics of PTPN are:

- P: {P uncreateds) period» Paeadlines Pereateds PpreviosRessorce> Pactivateds Pdisableds
P, ready PGetProcs Pinexecutions Pmakers P stopwatchCi» P, stopwatchDu s Psuccessor
Pierminated, P Release}

= T : {Tereations Tperioda Tyeadlines Tactivation> TExecutions Tincrementing» TteleaseProc>
Tendcis TendDuration}

- Tf(Tcreation) = RI;

Tf(Tperiod) =P
Tf(Tincrcmenting) =1
AZS T\{Tcreation, Tperiod, Tincrementing} < Tf (=0

— PI = { Puncreateds PpreviosRessorces PGetProc}» 1S @ finite set of places defining the input
interfaces for the Tc component.

— PO = {Pacadline Prerminateds Psuccessor, PRelease} 15 the finite set of output places of
the “Tc” component. The places Pierminated and Pgeadline describe the scheduling
of the task: either well organized or committing a temporary mistake. The places
Pready, PGetProc, and PRrelease are reserved for modeling the occupation and liber-
ation of the processor. The places PpreviousResource aNd Pgyccessor present the com-
munication between tasks.

The “Tc” component is the PTPN model, and then it disposes of the characteris-
tics matrices of PTPN (B, F, Pr). In order to simplify the presentation of matrices
(B and F'), we adopt the organization of the places and transitions presented in the P
and T sets. We point out the following invariants:

- VteTApe PO= B(p,t)=0
- VteTApePI=F(p,t)=0
- VteTApeP, B(p,t)=0« F(t,p)=0.

@ Springer

Compositional specification of real time embedded systems

N N
Uncreated Y K(%)eadline
Creation [Ri]
Tdeadline
A
Created
Previos
Ressource 1
Ready
; Activation .
ctivated
inExecutio
n GetPRoc
incrementini
StopWatch
Ci
3.
Du
¥ ¥ endDuratio
n
| L 7]
|
R,
| r———-
| TTTT T 4 Terminated
| T
| | o Successor

.

Fig. 5 PTPN component for describing a task

6.2 PTPN processor component

The second most important ERTS component is the execution resource. In our study,
we shed the light on the processor resources in order to execute the system tasks.
With PTPN, each resource is modeled by a simple place. The marking of the place
describes the state of the resource. The presence of a mark indicates that the resource
is free and ready to execute a task as shown in Fig. 6. The absence of the mark indi-
cates that the resource is occupied by a system task £2. The number of the processor
resources is described by the Proc set of the system.

@ Springer

A. Mahfoudhi et al.

Fig. 6 Processor component

Free Occupied
Processor Processor
Fig. 7 Communication
Task/Processor PiReady
Task T]
T4Taking
P,Release__P1GetProC
() |
-/ Prio(T+,Proc1)
T4Releasing ——
Proc1
L]
P,Ready . A
rio(T,,Proc1)
Task T,
P,Release P.GetProc
N T,Taking

T,Releasing ——

7 Modeling of the communications between PTPN components

The scheduling analysis modeling requires that the modeling of the behavior of the
system is described through the communication between the various components of
an RTS. We distinguish two major types of communication: the Task/Processor com-
munication and the Task/task communication.

7.1 Modeling of the communication Task/Processor

The analysis of scheduling is applied for a distribution of the tasks according to
processors. The distribution is a description of the processors allocations by all
the tasks. It is defined by the Alloc function of the system §2. The communication
Task/Processor respects the proposed allocation. It is presented through both events:
the occupation and liberation of the processor resources. During the modeling, both
events are symbolized by two transitions “Taking” and “Releasing” associated with
each task.

Figure 7 describes the allocation of a processor “Procl” to two tasks “Task T1”
and “Task T2.” The occupation events of “Procl” by “T1” and “T2” are modeled
consecutively with the transitions “T1Taking”, “T2Taking.” Both tasks are ready to
execution. Such a state is described by the presence of a token in the output place
“PiReady” for each: “Task T1” and “Task T2.” The place “Procl” contains a token,
both occupation transitions are enabled.

The place “Procl” is a common resource for both transitions “P1Taking” and
“P2Taking.” The priorities of these two transitions with regard to “Procl” are the

@ Springer

Compositional specification of real time embedded systems

task priorities “Task T1” and “Task T2” pertaining to the processor. The task priori-
ties are defined by the Prio function of §2. The priorities with PTPN are placed on the
input arcs to the occupation transition. The firing of the most prior transition allows
the consumption of the token from the place “Proc1” and the production of a token
in the input place “PGetProc.”

No sooner does the output place “PRelease” indicate the presence of a token, then
the transition “TRelease” is enabled. The firing allows the liberation of the processor
by putting a token in the place “Procl.”

7.2 Communication between tasks with PTPN components

Most of ERTS frequently require data transmission between the tasks. Precedence
constraint is dealt with to indicate any communication between tasks. We suppose
that the size of the buffer used for the communication is infinite. This constraint
allows the input task to send the information as soon as it finishes all or a part of its
activity without the risk of waiting for the buffer liberation or information destruction.
As a consequence, the emitting task is not going to exceed its term because of the
communication. Thus, a condition necessary for the scheduling can be revealing.
Two tasks which precede the output task must have the necessary information before
its term.

In the present study, the periods of the input and output tasks are not identical: it is
the case of the constraints of generalized precedence [16]. We adopt an RM modifica-
tion in order to organize this type of tasks. Such a modification consists in allocating
more elevated priorities to input tasks than output ones. For the independent tasks, the
priorities are attributed according to the ordinary RM. The relations of precedence are
described by the Rg function defined in the system £2. The start set of R, describes
the input tasks, and the end set describes the output ones. The function R;! which
is the opposite of R; is the set of the output toward the input tasks. We highlight the
following invariants for any ¢ € TK:

— If T; is an input task, then R (T;) # @
— If T; is an output task, then R (T}) # @.

As mentioned before, each component “Tc” has an input place ‘“PreviousResource”
and an output place “Successor” preserved for the communication with the other
tasks. When the input place is marked, then the component receives all the necessary
information and becomes ready to be activated. The marking of the output place indi-
cates that the constituent finishes a part of or all the activity and becomes ready to emit
the information to the receiving components. The sending and receiving events are
modeled by associated transitions “Send” and “Receive” for each constituents “Tc.”
Figure 8 describes the PTPN modeling with one emitting component “TaskE” and
two receiving components “TaskC1” and “TaskC2.” The transition “TESend” is the
transfer transition associated with transmitting components. The output place “Psuc-
cessor” of the emitting component dispose of a token, then “TESend” is sensitized.
The firing allows the placement of a token in the places “TE2TC1,” “TE2TC2,” and
“WakeTE”. The marking of “WakeTi” indicates that the task Ti has finished an ac-
tivity and becomes ready to finish the following. The place “Ti2Tj” designates the

@ Springer

A. Mahfoudhi et al.

Previous
Ressorce

Taskg

Successor

TeReceive

Previous
Ressorce

Previous
Ressorce

Taskc,
Successor 7~ \éuccessor
Tc1Receive m .
\ _J Tc2Receive A4
[0] V¥ TciSend [0 Vv TcSend

WakeT¢, WakeTc,

Fig. 8 Communication between Task components

information to be sent by the input task Ti to the output Tj. The transition of the re-
ception of information “Receive” is valid only when the corresponding place “Wake”
and the places of the received information are marked. For the input tasks, the vali-
dation of the transition “Receive” necessitates the marking of the place “Wake.” We
have supposed that the duration of the sending and that of receiving are negligible
and that is why the transitions do not take time for firing.

8 Computational model of PTPN components

The graphic modeling of a real-time system has become an easy activity thanks to the
structuring. The new modeling considers only the behavior of the system while the
internal behavior of every component does not emerge. The structuring also appears
in the matrix presentation of the model. Each PTPN matrix must be well organized
respecting the new constituents which are created. In the following section, we pro-
pose an approach of construction and organization of three matrices of the PTPN: B,
F, and Pr. The strategy of construction is based on the following four stages:

1. Determine the size of each matrix

2. Fill in the components (Tc, Processor) in the matrices
3. Initialize the matrices by the allocations Task/Processor
4. Initialize the matrices by the precedence between tasks.

@ Springer

Compositional specification of real time embedded systems

The matrix structuring allows the clear legibility of the model matrices. Therefore,
the reverse passage from the mathematical representation of the model to the graphic
one has become easier.

8.1 The dimensions of the matrices

The dimensions of the PTPN matrices depend on the number of tasks, and the re-
lations of precedence between them. The Backward and Forward matrices have the
same dimension: “nbPlaces, nbTrans.” The matrix of priority Pr is the transposed
dimension of the Pre: “nbTrans, nbPlaces” with:

— nbPlaces: the number of places that constitutes PTPN model of £2
— nbTrans: the number of model transitions.

The number of places is determined by the following rule:
nbPlaces = [nbPlacest. x size(TK)] + size(Proc) + nbRes, with:

— nbPlacest.: the number of the places of a single component “Tc”
— size(T K): the number of the system tasks £2
— size(Proc): the number of the processors of £2
— nbRes: the number of the places that present the transferred resources of the input
to output tasks and the resources “Wake.” It is determined as follows: nbRes =
size(TK;) + Y325 size (R, (TK), with:
— size(TK;) designates the sum of the resources “Wake” which is equal to the task
number.
— size(Ry(TK;)) is the sum of the dimensions of the arrival set of Rg for each input
task which designates the number of the transfer places.

The number of the model transitions is the sum of: the transitions of all the tasks,
the transitions of communication Task/Processor and transitions of communication
Task/Task. It is determined by:

nbTrans = [nbTranstc X size(TK)] + nbTranstp + nbTranstr, with

— nbTranstc: the number of the transitions of a component “Tc”

— nbTranstr: the number of the transfer transitions between the components. Each
component is associated with a couple of transitions: send and receive, where the
following rule: nbTranstr = 2 x size(TK)

— nbTranstp: the number of the transitions responsible for the occupation and liber-
ation of the processors and tasks. nbTranstp = 2 x size(TK).

8.2 Filling of the matrices by PTPN components
For the RTS modeling with component-based PTPN, we offer the standard structure

for the matrices. The B and F' matrices are described by the following format:

— On the lines:
— the places of the B and F matrices of each component “Tc”
— the processors component
— The transfer resources

@ Springer

A. Mahfoudhi et al.

— On the columns:
— the transitions B and F matrices of each “Tc”
— The transitions of the occupation and liberation of processors. The transitions
which are associated with the task of 7K are placed in front of that of 7K», etc.

The Pr matrix is the transposed format of the Pre matrix; the lines of Pre are the
columns of the Pr. Following the formats of each matrix, we fill in the matrices of
each component “Tc” in the section reserved to the system matrices.

8.3 Initialization of the communications Tasks/Processors

The initialization of the allocations of the processors by the tasks in the matrices
consists in initializing the events of occupation and liberation. We propose the rules
responsible for this initialization for each matrix. VTK; € TK, YProc; € Proc,

— the matrix B is expressed by:
if Alloc(TK;) = Proc;
B(Procj, (TTaking)i) =1
< B(TKi(PReady), (TTaking)i) =1, with
B(TK; (PRrelease) (TReleasing)i) =1

— (Truaking)i: the transition of the occupation associated with the component “Tci”
which describes the task TK;
TK; (Pready): the output place of “Tci,” responsible for the processor demand
— (TReleasing)i : the transition of liberation associated with the component “Tci”
TK; (PRrelease): the output place of “Tci” used to launch the liberation of the
processor
— the F matrix is illustrated by:

if Alloc(TK;) = Proc;

F(TK; (PGetproc)» (TReleasing)i) =1
F(Procj, (Treleasing)i) = 1

with TK; (Pgetproc) the input place of “Tci” which describes the processor resource

occupied by the task TK;
— While identifying the Pr matrix, we initialize that of the priority system of the

tasks running on processors as they are described by the Prio function of 2

if Alloc(TK;) = Proc;

Pr((Traking)i » Proc) = Prio(TK;, Proc;)
< Pr((TTaking)i’ TKi(PReady)) =1
Pr((TReleasing)iy TK; (Prelease)) =1
For both “PReady” and “PReleasing” input places, they do not have several shared
transitions. It is enough to allocate the default priority “1” to them.

8.4 Initializing the matrices by the precedence between tasks

The communication between tasks is initialized in the matrices with the same method
illustrated in the previous subsection. VIK;, TK; € TK

— the matrix B is expressed by:

@ Springer

Compositional specification of real time embedded systems

if Ry(TK;) = TK
B(TKi(PSuccessor)7 (Tsend)i) =1

< B((Pwake)i> (TReceive)i) =1, with
B(TiZTj, (TReceive)j) =1

— (Tgenq);: the transition for sending information to the receiving task
— TK; (Psyccessor): the output place of “Tci,” responsible for the communication
with tasks
— (TReceive) j: the transition associated with “Tcj” that receives information from
the sender component
— T;2T;: the place that models the information sent by “Tci” to “Tcj” component.
— (Pwake)i: the place associated with “Tci” component to indicate that the task is
ready for achieving execution time during the new period
— the F matrix is illustrated by:
if Ry(TK;) =TK;
- { F(T:2T}, (Tsena)i) = 1
F(TK Jj (PpreviousResource» (TReceive) j) =1
with TK j (PpreviousResource) 18 the input place of the receiver component “Tci”
which describes the presence of all necessary resources for the wake-up
— Pris identified as:
if Alloc(TK;) = Proc;
Pr((Tsend)i, TK; (Psuccessor)) = 1
< Pr((Treceive)i> (Pwake)i) =1
Pr((Treceive) j» Ti2Tj) = 1.

9 Tools and experiments

This section introduces PTPNS (Priority Time Petri Nets for Scheduling analysis)
which is the tool we have implemented to concretize our proposed formalism. The
implementation uses the Graphical Modeling Framework (GMF). We subsequently
present an example that illustrates how PTPNS is used to test the schedulability of a
set of tasks.

9.1 Tooling support

The implemented tool takes the form of a Petri Net editor and an executer model
of the modeled net. Indeed, the developed editor for our PTPN relies on the GMF
founded on Eclipse Modeling Framework (EMF). Besides, the definition of the PTPN
Meta Model represents the starting point of the editor’s generation process. As shown
in Fig. 9, the regular Petri Nets Meta Model is extended with the priority attribute
linked to the InputArc entity. Thus, the production of an editor plug-in allows the
interactive edition of the PTPN (create drag, drop, grab, or delete a component). The
created models are checked through a set of constraints expressed with the Object
Constraint Language (OCL) [8]. The validation doubles through the verification dur-
ing and after constructing the model.

It is obvious that the created model is built around a drawing composed of places,
transitions, and arcs. In fact, we need to easily extract the existing data from the editor.

@ Springer

A. Mahfoudhi et al.

1 PTPN -containsTransitions
@ -name >
-containsPlace 1
containsinPutArcs 1 1 -containsOutPutArcs
Place Transition
-name name
—>i-capacity Te
-nbOfToken
/N
-InputArcFromPlace -OutputArcFromTransition
InputArc
- OutputArc
-weigth -
_priority -weigth
-InputArcToTransition
-OutputArcToPlace

Fig. 9 PTPN Meta Model

Fortunately, the created model can also be serialized to generate an XML (Extensible
Markup Language) or XMI (XML Metadata Interchange) file. The generated file
conforms to the PTPN Meta Model and presents the entry port point of the executer.
Due to the structure of the editor output, the properties of the modeled net are easily
interpreted.

The verification framework is sufficiently flexible and expressive to support mod-
ule inclusion and extension. The use of the editor tool makes it easier and faster to
create PTPN models. Despite the representation of PTPN elements provided by the
editor, the palette is equipped with PTPN components in order to facilitate the illus-
tration of complex tasks and computing resources. So, it is sufficient for the developer
to select the structured PTPN class from the palette with the communication means.

Compared to the existing Time Petri Nets simulators such as ROMEO [7] and
TINA [4], the impetus of our tool are the integration of the priority concept and its
structured input/output files and Petri components which guarantee interaction with
the existing PN simulators and Eclipse features.

If we are to situate our extension with regard to the existing tools, we note the
following distinctions:

— Contrary to Cheddar tools [22], Mast [10], Times [1], which cannot cover all the
possible states of the system, PTPN starts from an initial state to succeed in deter-
mining the error source if it occurs.

@ Springer

Compositional specification of real time embedded systems

Table 1 Tasks’ characteristics

of the experiment Id_Task R; C; deadline Period Duration
T1 1 1 3 3 3
T2 0 2 5 5 4
T3 0 2 6 6 2
T4 0 2 5 5 4

— Pertaining to other extensions presented in Sect. 2, PTPN offers a strategy which
accelerates the marking and avoids the combinatorial explosion in front of a large
number of states.

9.2 Case study

In the present section, we introduce the technique of how PTPN Components solve
the scheduling analysis problems of the real-time systems. It is through a case study
that our PTPN extension and the PTPNS tool are brought to the light.

In fact, we present a generic experiment which consists of a nonschedulable sys-
tem. In the latter, we establish the way how the PTPNS supplies a description of
the temporal fault to help the designers in refining the partitioning space Sw/Hw. It
should be born in mind that due to space limitation, we present a pedagogical exper-
iment.

The case study deals with four tasks running on two processors. Using Defini-
tion 18, the specifications of the task characteristics (Table 1) as well as the allocation
of the processors by the tasks are described as follows.

TK ={T1, T2, T3, T4}

Proc={P1, P2}

Ry (T1)={T3} Alloc(T1)=P1 Prio(T1,P1)=6
R(T2)=0© Alloc(T2)=P1 Prio(T2,P1)=5
Ry(T3)={T4} Alloc(T3)=P2 Prio(T3,P2)=4
R,(T4) =0 Alloc(T4) = P2 Prio(T4, P2) =2

The first stage consists in modeling each component of §2 with the PTPNS tool.
The result is a PTPN model composed of a set of PTPN components: Task and
Processor, and the relation between them (Fig. 10). As for the second step, it consists
in placing the marks on PTPN constituents: a mark in each constituent “Processor:
P1, P2,” a mark in the places “Uncreated” of the components “T1, T2, T3, T4” and a
mark in the places “PreviousResource” of the components “T1, T2, T3,”.

The following stage is the transformation of the model from the graphic shape
towards its arithmetical shape (Sect. 8). This action assured by the PTPNS tool is
essential for the execution of the model.

Let us recall that the strength of our PTPN extension is its capacity to determine
step by step the valid scheduling sequence. In fact, the execution of the model with
PTPNS allows the construction of the valid sequence. If the construction is well es-
tablished, then the system is well scheduled, otherwise when the sequence encounters
a marking, then the system is considered as non-schedulable. Moreover, the schedul-
ing sequence supplied by PTPNS is optimal because PTPN supports the optimal RM
strategy.

@ Springer

A. Mahfoudhi et al.

O-O

Previous
Ressorce

[0]

Successor

Q-0

Previous

[0] Ressorce

Successor Release

Previous
Ressorce

Successor Release

Previous
Ressorce

Successor Release

Fig. 10 PTPN components in the case study

For a better presentation, we have detailed the execution of the model (Fig. 10) in
Table 2. Three columns are represented; the first “step” is the number of the steps in
the scheduling, which corresponds to a state in the states graph explained previously.
The first step starts with “step=0." The second column is “time”; it is the number of
ticks of the global clock of the PTPN model. The last column “Ft,” represents the
high-priority and valid transitions in each step of scheduling.

The execution process of the model starts at 0 with the initial marking M. These
two parameters present the necessary entries to launch the PFM machine. Such ma-
chine determines the high-priority and valid transitions in the column Ft,: Transition-
name (component-name). It is the case of “step0,” in which the column Ft; presents
“Creating(T1, T2, T3, T4).” The simultaneous firing of this set of events gives birth
to a new marking and a new step “step2.”

What is worthy to note is that step “step28” presents two events “Period(T4)” and
“IncrementingStopWatch(T4).” This indicates that the period T4 is provoked while
the work of the last period is not achieved. The firing and the passage to the step
“step29” brings about a new marking which replies to the event “deadline(T4).” The
firing of this event implies the blocking of the execution, signaling a temporal fault
(deadline).

The PTPNS tool is not sufficient to indicate a temporal fault but also supplies the
combination cause of this fault to the designer. As in the present study, the PTPNS
indicates that the partition (T3, T4) on P2 is a combination to be neglected in the
future iterations of the partitioning.

@ Springer

Compositional specification of real time embedded systems

Table 2 Model execution related to the case study

Step Time Fig Step Time Fig
0 0 Creating(T2, T3, T4) 15 2 Executing(T3)
1 0 Activating(T2) 16 3 Incrementing StopWatch(T2, T3)
2 0 TakingProc(T?2) 17 3 ReleaseProc(T3), endCi(T2)
30 Executing(T2) 18 3 Releasing(T2, T3), send(T2)
4 1 Incrementing StopWatch(T?2), 19 3 TakingProc(T3), Receive(T2)
Creating(T1)
5 1 ReleaseProc(T2), 20 3 Executing(T3)
Activating(T1)
6 1 Releasing(T2) 21 4 Incrementing StopWatch(T3), Period(T1)
7 1 TakingProc(T1) 22 4 endCi(T3), Activating(T1)
8§ 1 Executing(T1) 23 4 Releasing(T3), send(T3), TakingProc(T1)
9 2 Incrementing StopWatch(T1) 24 4 Receive(T4), Execution(T1)
10 2 endCi(T1) 25 4 Activating(T4)
11 2 Releasing(T1), send(T1) 26 4 TakingProc(T4),
12 2 TakingProc(T2), Receive(T3,T1) 27 4 Executing(T4)
13 2 Executing(T2), Activating(T3) 28 5 Incrementing StopWatch(T1, T4),

Period(T2, T4)
14 2 TakingProc(T3) 29 5 endCi(T1), Activating(T2), ReleaseProc(T4),
deadline(T4)

10 Conclusion

Priority Time Petri Nets represent a powerful formalism for the scheduling analysis of
real-time systems running on multiple processors, including periodic, dependant, and
preemptive tasks with determinist strategy. The originality of the PTPN semantics is
the attribution of a priority to transitions in order to avoid conflicts. Besides, the use
of PTPN, as it is, leads to huge and sophisticated nets to be analyzed. That is why, we
have realized a hierarchical composition allowing the considerable reduction of the
size and complexity of the nets and facilitating their analysis. Rather than presenting
a solution for the confusion problems, PTPN Firing Machine accelerates the PTPN
evolution by applying temporal and priority filtering. In a regular PN, the firing of a
transition requires identifying the new vector of fireable transitions. However, with
PFM, this vector is established only after the firing of the old one. It is also guided
by the priorities. Consequently, starting from a marking M, the PFM simultaneously
fires valid transitions having the highest priority and returns the new marking M’.

In future research, we are interested in including performance analysis in the
verification of ERTS and planning the integration of tasks with variable execution
times. Indeed, we intend to incorporate PTPN in a Model Driven Engineering (MDE)
process [6]. The transformation from annotated analysis models to a formal model
allows the validation of the specific properties. In particular, we are interested in
translating Unified modeling Language (UML) diagrams annotated with the profile
modeling and Analysis of Real-Time Embedded systems (MARTE) [9] into PTPN

@ Springer

A. Mahfoudhi et al.

model to analyse system schedulability. The PTPNS tools taking the form of a plug-
in could easily exchange data with UML Eclipse editors.

References

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

. Amnell T, Fersman E, Mokrushin L, Pettersson P, Wang Yi (2002) Times—a tool for modelling and

implementation of embedded systems. In: TACAS ’02: proceedings of the 8th international confer-
ence on tools and algorithms for the construction and analysis of systems, London, UK. Springer,
Berlin, pp 460-464

. Berthomieu B, Diaz M (1991) Modeling and verification of time dependent systems using time Petri

Nets. IEEE Trans Softw Eng 17(3):259-273

. Berthomieu B, Peres F, Vernadat F (2006) Bridging the gap between timed automata and bounded

time Petri Nets. In: FORMATS, pp 82-97

. Berthomieu B, Vernadat F (2006) Time Petri Nets analysis with tina. In: QEST, pp 123-124
. Chen L, Shao Z, Fan G, Ma H (2008) A Petri Net based method for analyzing schedulability of

distributed real-time embedded systems. J Comput 3(12). doi:10.4304/jcp.3.12.35-42

. Douglas CS (2006) Model-driven engineering. IEEE Comput 39(2):25-31. doi:10.1109/MC.2006.58
. Gardey G, Lime D, Magnin M, Roux OH (2005) Romeo: a tool for analyzing time Petri Nets. In:

CAV, pp 418-423

. Object Management Group (2003) UML 2.0 OCL specification. OMG adopted specification ptc/03-

10-14. Object Management Group, October

. Object OMG Management Group (2008) A UML profile for MARTE: modeling and analysis of real-

time embedded systems, Beta 2, ptc/2008-06-09. Object Management Group, June

. Gonzalez Harbour M, Gutierrez Garciia JJ, Palencia Gutierrez JC, Drake Moyano JM (2001) Mast:

modeling and analysis suite for real time applications. In: Euromicro conference on real-time systems.
p 0125

Lime D, Roux OH (2004) A translation based method for the timed analysis of scheduling extended
time Petri Nets. In: RTSS ’04: proceedings of the 25th IEEE international real-time systems sympo-
sium, Washington, DC, USA. IEEE Computer Society, Los Alamitos, pp 187-196

Lime D, Roux OH (2009) Formal verification of real-time systems with preemptive scheduling. Real-
Time Syst 41(2):118-151

Liu CL, Layland JW (1973) Scheduling algorithms for multiprogramming in a hard-real-time envi-
ronment.] ACM 20(1):46-61

Merlin PM (1974) A study of the recoverability of computing systems. PhD Thesis, Univ California,
Irvine. Available from Ann Arbor: Univ Microfilms, No. 75-11026

Murata T (1989) Petri Nets: properties, analysis and applications. Proc IEEE 77(4):541-580

Pailler S, Geniet AC (2004) Off-line scheduling of real-time applications with variable duration tasks.
In: 7th workshop on discrete events systems, September, pp 373-378

Petri CA (1962) Fundamentals of a theory of asynchronous information flow. In: IFIP congress, pp
386-390

Ramchandani C (1974) Analysis of asynchronous concurrent systems by timed Petri Nets. Technical
report, Cambridge, MA, USA

Robert PH, Juanole G (2000) Modélisation et vérification de politiques d’ordonnancement de tiches
temps-réel. In: 8¢me colloque Francophone sur 1’ingénierie des protocoles-CFIP’2000, 17-20 Octo-
ber, pp 167-182.

Roux OH, Déplanche AM (2002) A t-time Petri net extension for real time-task scheduling modeling.
Eur J Autom (JESA) 36(7):973-987

Sha L, Abdelzaher T, Arzen KE, Cervin A, Baker T, Burns A, Buttazzo G, Caccamo M, Lehoczky
J, Aloysious KM (2004) Real time scheduling theory: a historical perspective. Real-Time Syst J
28(2/3):101-155

Singhoff F, Legrand J, Nana LT, Marcé L (2004) Cheddar: a flexible real time scheduling framework.
ACM Ada Lett J 24(4):1-8

Xu D, He X, Deng Y (2002) Compositional schedulability analysis of real-time systems using time
Petri Nets. IEEE Trans Softw Eng 28:984-996

@ Springer

http://dx.doi.org/10.4304/jcp.3.12.35-42
http://dx.doi.org/10.1109/MC.2006.58

	Compositional specification of real time embedded systems by priority time Petri Nets
	Abstract
	Introduction
	Related work
	Preliminaries
	Background for Petri Nets and Time Petri Nets
	Petri Nets in objects
	Discussion

	Priority Time Petri Net: PTPN
	PTPN elements
	PTPN state space

	Model construction
	Task creation and activation with PTPN
	Task execution

	Local PTPN components for scheduling analysis specification
	Task behavior encapsulation
	PTPN processor component

	Modeling of the communications between PTPN components
	Modeling of the communication Task/Processor
	Communication between tasks with PTPN components

	Computational model of PTPN components
	The dimensions of the matrices
	Filling of the matrices by PTPN components
	Initialization of the communications Tasks/Processors
	Initializing the matrices by the precedence between tasks

	Tools and experiments
	Tooling support
	Case study

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

