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Abstract. In the context of Wireless Sensor Networks (WSNs), the ability to detect an intrusion event is
the most desired characteristic. Due to the randomness in nodes scheduling algorithm and sensor deploy-
ment, probabilistic techniques are used to analyze the detection properties of WSNs. However traditional
probabilistic analysis techniques, such as simulation and model checking, do not ensure accurate results,
which is a severe limitation considering the mission-critical nature of most of the WSNs. In this paper, we
overcome these limitations by using higher-order-logic theorem proving to formally analyze the detection
properties of randomly-deployed WSNs using the randomized scheduling of nodes. Based on the probability
theory, available in the HOL theorem prover, we first formally reason about the intrusion period of any
occurring event. This characteristic is then built upon to develop the fundamental formalizations of the key
detection metrics: the detection probability and the detection delay. For illustration purposes, we formally
analyze the detection performance of a WSN deployed for border security monitoring.

Keywords: Theorem proving, Wireless sensor networks, Scheduling, Performance analysis, Detection prob-
ability, Detection delay.

1. Introduction

Wireless Sensor Networks (WSNs) [YMG08] guarantee a continuous and automated monitoring of a given
field without any human presence. This distinguishing feature is attained trough deploying a collection of
battery-powered and wirelessly-connected miniature devices over the area of interest. The main task of such
devices is to take measurements of the surrounding environment, to a base station to perform a centralized
decision mechanism. Nowadays, wireless sensor networks are extensively being deployed in a wide range

Correspondence and offprint requests to: M. Elleuch. e-mail: melleuch@ece.concordia.ca



2 M. Elleuch et al.

of real-world applications, such as home automation, detection of natural disasters, biological attacks and
military tracking.

Since nodes are usually stand-alone and battery powered, extending the network lifetime is very critical
[YMG08]. Therefore, the k-set randomized nodes scheduling [JS07, LC08, LWXS06, XCW+10] is commonly
applied to preserve energy. The main idea of such approach is to randomly organize the nodes into alterna-
tively working sub-networks. Hence, during a given time slot, only the nodes belonging to the current active
sub-network are powered up and may report an occurring event while all the other nodes are inactive and
thus contribute to the power saving of the overall system.

In general, a wireless sensor network is expected to always report occurring events at any point of the
monitored area to a base station with a short delay. This feature determines the detection abilities of the
whole network and is measured through two key performance attributes: the detection probability and the
detection delay. More specifically, the detection probability is the probability of detecting an occurring event
within the monitored area [XCW+10]. Due to the randomness in the nodes scheduling approach coupled with
the unpredictable deployment of sensors, the detection characteristic cannot be usually ensured. Indeed, there
is a possibility that an occurring event may not be detected if there are no nodes deployed in its surrounding
area or the deployed nodes are inactive, due to random scheduling. Such situations will also lead to an infinite
detection delay which is not desired at all. However, in most WSN applications, the network has to react
according to intrusions detection. For example, in a WSN deployed for forest fire detection, the outbreak of a
fire should be simultaneously reported with the highest probability and the minimum delay, in order to alert
the user. Consequently, missing an intrusion event can be really disastrous in the context of mission-critical
WSN applications. Thus, probabilistic techniques are used to judge the detection properties of WSNs with
the goal to maximize the probability of detection and minimize the detection delay.

Traditionally, paper-and-pencil proof based probabilistic techniques have been used to analyze the perfor-
mance of random scheduling for WSNs [LWXS06, LC08]. Simulation, using the Monte Carlo method [Mac98],
is then used to validate the analytical results, which can be error-prone. Due to the inherent incompleteness
of simulation coupled with the rounding errors of computer arithmetics, such results cannot be considered
as 100% accurate, which is a serious limitation for mission-critical WSNs.

Formal methods [Abr09] can overcome the limitations of simulation and have been used to validate a
wide range of hardware and software systems. Such methods enhance the analysis reliability using rigorous
mathematical techniques to model and verify the given system. Formal methods have also been explored for
analyzing WSNs but most of the existing work is focused on analyzing their functional aspects only. However,
given the wide application of WSNs in safety and mission-critical domains, there is a dire need to accurately
assess their performance as well. With this motivation, this paper provides a formal approach for an accurate
performance analysis of the probabilistic detection properties of WSNs using the k-set randomized scheduling.

We primarily build upon the recently developed probability theory available in the HOL theorem prover
[Mha12], to formally analyze the detection properties of the k-set randomized scheduling algorithm. The
choice of using higher-order-logic allows us to model any system including its random and unpredictable
components [Mha12]. In [EHTA11], we presented the HOL formalization of the coverage property in WSNs.
The efficiency of our higher-order-logic developments have been shown on a real-world WSN application for
forest fire detection [EHTA13]. In this paper, we provide a development regarding detection properties in
WSN, which include the detection probability and the detection delay. The practical effectiveness of the
developed formalizations is illustrated through formally analyzing the asymptotic detection behavior of a
real-world WSN for border surveillance. Thanks to the proposed approach, this is the first time, to the best
of our knowledge, that the performance analysis of this kind of a WSN application is analyzed in a complete
formal manner.

The rest of this paper is organized as follows: Section 2 reviews related work on the validation of WSN
algorithms. We briefly present, in Section 3, the main HOL requirements that we build upon in this work.
The k-set randomized scheduling algorithm is introduced in this section as well. In Section 4, we describe our
higher-order-logic formalizations of the key detection properties: the detection probability and the detection
delay. The practical effectiveness of these formal results is illustrated, in Section 5, through a WSN application
for border monitoring security. Section 6 is devoted to discuss the main results of our work. Finally, Section
7 concludes the paper.
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2. Related Work

Due to its wide applicability, the random scheduling algorithm has been analyzed using various approaches
in the open literature. Paper-and-pencil analysis is indeed the most commonly used approach for the per-
formance analysis of this algorithm. In such analysis, a mathematical model is built by first identifying the
required random variables and the corresponding performance attributes. Then, a rigorous analysis based on
the theoretical foundations of probability is done. In order to validate the theoretical analysis, simulations
are done using the Monte Carlo method [Mac98].

In [XCW+10, LWXS06], a variant of the random scheduling algorithm is analyzed using a mathematical
model. Evaluations are done using a Java simulator by setting the monitored region to 200m×200m, the
detection range to 10m, and the subsets to 6.

In [XZP+09], theoretical analysis is conducted to validate the coverage performance of randomized
scheduling in the context of an hybrid surveillance framework for environmental monitoring. Results are
validated through simulation on a circular surface of a radius R = 10000, where up to n = 2000 nodes are
uniformly deployed.

Due to the inherent nature of simulation coupled with the usage of computer arithmetic, these proba-
bilistic analysis results cannot be termed as 100% accurate. Moreover, the analysis results are not generic,
i.e., they are specific to a region, range and number of subsets.

Most of the existing literature in the formal analysis of WSNs utilizes traditional model checking [CGP00]
to validate many aspects of WSNs. In [OT07], the authors performed the formal analysis of the Optimal
Geographical Density Control algorithm (OGDC) in the RT-Maude rewriting tool [RTM] by verifying the
network coverage intensity and lifetime. In [HRZ08], model checking is used to verify WSNs security aspects
in the SLEDE framework. Similarly, a model checking based framework, called NesC@PAT [ZSL+11], is also
used for verifying WSNs implementations in NesC.

In addition to its accuracy, the main advantage of model checking is its mechanization. However, model
checking also suffers from some major shortcomings, like the common problem of state-space explosion
[CGP00], where the size of the state-based model increases exponentially as the complexity of the given
WSN grows. Such problems have been noticed in most of the works [HRZ08, ZSL+11]. For example, in
[ZSL+11], it is reported that over 1 million states are generated in order to verify a single property. Moreover,
in [HRZ08], additional temporal abstractions and some parameters reduction have been applied to enhance
the scalability of the analysis. Finally, the mentioned works do not allow capturing randomness of WSNs
into account, which is a strict limitation since most of the WSN algorithms are probabilistic. The authors
of [OT07] have besides suggested the use of PMaude [AMS06] to enhance their probabilistic analysis.

Probabilistic model checking [RKNP04] has also been successfully used for the probabilistic functional
analysis of wireless systems. Probabilistic model checking has the same principles as traditional model check-
ing: the mathematical model of the probabilistic system is exhaustively tested to check if it meets a set of
probabilistic properties. The probabilistic model checker PRISM [PRI] has been used quite frequently for the
verification of Medium Access Control (MAC) protocols for WSNs [FHM07, Fru06, ZBA10]. Nevertheless,
the accuracy of probabilistic model checking is very limited when reasoning about statistical properties. For
example, in [ZBA10], the expected values of latency and energy have been verified by running several exper-
iments. The obtained results were hence specific to the chosen configurations and can never be considered
as generic.

Besides model checking, higher-order-logic theorem proving [GM93] has also been used for analyzing WSN
algorithms. In [BMP09], a WSN algorithm is formally modelled, within the PVS system, by utilizing a library
of mathematically specified sub-blocks, like the nodes, the network structure, communication primitives and
protocols. Furthermore, the resulted framework is enriched by some theories expressing probabilistic scenarios
like nodes mobility and link quality changes. The feasibility of this framework is illustrated by manually
analyzing the trace execution of the Surge algorithm [BMP08], and formally verifying the correctness of the
message delivery for the reverse path forwarding algorithm [BMP09]. Nevertheless, the randomness here is
modeled by using a pseudo-random generator, which compromises the accuracy of the analysis results.

While most of the previous works on the formal analysis of WSNs have clearly recognized their inherent
modelling limits regarding the probabilistic feature, we used the probabilistic analysis foundations available
in the HOL theorem prover to formally verify the coverage performance properties of the k-set randomized
algorithm in [EHTA11]. The results have been found to be absolutely accurate since a measure theoretic
probability theory is used to analyze the WSN algorithm within the sound core of a theorem prover. In
[EHTA13], we demonstrated the practical effectiveness of these results on a real-world WSN application for



4 M. Elleuch et al.

Table 1. HOL Symbols

HOL Symbol Standard Symbol Meaning

∧ and Logical and

SUC n n+ 1 Successor of n

count n {m|m < n} Set of all m strictly less than n

PREIMAGE f s {x|f x ∈ s} The inverse image of the subset s

{x|P (x)} {λx.P (x)} The set of all x that satisfy the condition P

forest fire detection. Nevertheless, the network coverage reflects the detection characteristics of the network
only in the case of long events. In the current paper, we are interested in formally analyzing the detection
characteristics of wireless sensor networks using the k-set randomized scheduling for any kind of events.

3. Preliminaries

In this section, we first give an overview of the HOL theorem prover and the main required notations. Then,
we briefly present the probability theory to conduct the probabilistic analysis in the HOL theorem prover.
Some probability formalization results that we developed in HOL, are also provided in this section. The
description of the k-set randomized scheduling algorithm is finally introduced to facilitate the understanding
of the rest of the paper.

3.1. HOL Theorem Prover

The HOL theorem prover [HOL] is a proof assistant of higher-order logic. The verification approach of HOL
is composed of three main steps: describing the system to be verified in higher-order logic, formalizing the
properties of interest as proof goals of higher-order-logic and finally verifying these goals as theorems within
HOL. Furthermore, the HOL theorem prover includes a very rich library of theories. A theory can be defined
as a set of pre-verified theorems for a given domain, function or operation. When needed, a HOL theory can be
loaded and used, which greatly aids the verification process. Additionally, users may be assisted by automatic
proof procedures [GM93], which are a collection of steps in a single command. Despite the existence of all
these theories and automatic procedures, most of the time, proofs in HOL are interactive and require the
intervention of user. Various proof techniques, such as rewriting, simplification, specialization, generalization
and mathematical induction, are available in HOL to aid the verification process. Table 1 summarizes some
of the HOL symbols used in this paper and their corresponding mathematical interpretation [GM93].

3.2. Probabilistic Analysis in HOL

Several works on the higher-order-logic formalization of probability theory exist in the open literature, (See
e.g. [Hur02, Les07, Has08, APM09, HH11, Mha12]). In this work, we utilize the recently developed and
most generic probability theory developed by Mhamdi [Mha12], within the HOL theorem prover. Unlike
[HT08, HT07, HAA+09], such formalization has the merit of generalizing the previous HOL formalization of
measure theory by including a Borel space [Bog06]. Through defining the extended real numbers in HOL, he
formalized measure, Lebesgue, probability and information theories. Thus, the formalization of probability
theory in HOL is based on the Kolmogorov axiomatic definition of probability. Such formalization has
distinctly the advantage to provide a unified framework for discrete and continuous probability measures. In
what follows, we give an overview of the foundational formalizations of the HOL probability theory.

A probability measure P is basically a measure function on the sample space Ω and an event is a
measurable set within the set F of events, which are subsets of Ω. Thus, (Ω, F, P ) is a probability space iff
it is a measure space and P (Ω) = 1. A real random variable is specified in HOL in the following definition
using the HOL function real random variable.
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Definition 3.1.

` ∀X p. real random variable X p = prob space p ∧
∀x ∈ p space p ⇒ X x 6= NegInf ∧ X x 6= PosInf) ∧
X ∈ measurable (p space p,events p) Borel.

whereX designates the random variable which is by definition a real-valued measurable function (measurable)
on a given probability space p (prob space) [MHT10]. A measurable function satisfies the condition that
the inverse image of a measurable set is also measurable. The functions (p space p) and (events p) are
the definitions of the sample space Ω and the set of events F , respectively. The HOL symbols NegInf
and PosInf , used in the above definition, are the higher-order-logic formalizations of negative infinity or
positive infinity, whereas Borel is the HOL definition of the Borel sigma algebra. Mathematically, a Borel
sigma algebra on a given space A is the smallest sigma algebra generated by the open sets of A [Bog06].

The probability distribution of a random variable is specified as the function that accepts a random
variable X and a set s and returns the probability of the event {X ∈ s}. It has been formalized in HOL
[MHT11] in Definition 3.2.

Definition 3.2.

` ∀X p. distribution p X = (λs. prob p (PREIMAGE X s ∩ p space p)).

The expectation of a random variable X is defined in HOL as its Lebesgue integral with respect to the
probability measure p [MHT11].

E[X] =

∫
Ω

Xdp. (1)

The conditional probability has been also formalized in HOL [Liu13] according to the following mathe-
matical definition.

Pr(A | B) =
Pr(A ∩B)

Pr(B)
. (2)

where A and B are two events of the set F of events.
Accordingly, the following useful results have been formally verified in HOL [Liu13].

• If the events A and B are independent such that (Pr(B) 6= 0) , then

Pr(A | B) = Pr(A). (3)

• The conditional probability of the event (A ∪B), given the event C is

Pr(A ∪B | C) = Pr(A | C) + Pr(B | C)− Pr(A ∩B | C). (4)

• If A and B are disjoint, then the above equation becomes

Pr(A ∪B | C) = Pr(A | C) + Pr(B | C). (5)

• The conditional probability of the event (A ∩B) given the event C is

Pr(A ∩B | C) = Pr(A | B ∩ C)× Pr(B | C). (6)

• Given that {Bi, i ∈ s}, is a finite partition of the entire sample space Ω, the law of total probability states
that

Pr(A) =
∑
i∈s

Pr(A | Bi)× Pr(Bi). (7)

The above equation has been formalized in HOL as follows.
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Theorem 3.1.

` ∀p B A s. (prob space p) ∧ FINITE s ∧ (A ∈ events p) ∧
(∀x. x ∈ s ⇒ B x ∈ events p) ∧
(∀a b. a ∈ s ∧ b ∈ s ∧ (a 6= b) ⇒ DISJOINT (B a) (B b)) ∧
(BIGUNION (IMAGE B s) = p space p)
⇒ (prob p A =

∑
s (λi. (prob p (B i)) × (cond prob p A (B i)))).

where

– The assumption (∀x. x ∈ s ⇒ B x ∈ events p) specifies a finite partition (FINITE s) of the
whole outcome space Ω, i.e., a collection of events, which is pairwise disjoint (∀a b. a ∈ s ∧ b ∈ s
∧ (a 6= b) ⇒ DISJOINT (B a) (B b)), and whose union is Ω (BIGUNION (IMAGE B s) = p space p).

– cond prob is the HOL formalization of the conditional probability.

Based on the above probability formalizations, we develop in HOL further mathematical notions required
for the work described in this paper.

• Conditional independence: Two events A and B are conditionally independent given the event C, iff:

Pr(A ∩B | C) = Pr(A | C)× Pr(B | C). (8)

• The conditional independence is also equivalent to

Pr(A | B ∩ C) = Pr(A | C). (9)

• Discrete conditional expectation: The conditional expectation of the discrete random variable X given
the event (Y = y), denoted by E(X | Y = y), is the expected value of X with respect to its conditional
probability distribution, and is mathematically specified as follows

E(X | Y = y) =
∑
x

x× Pr(X = x | Y = y). (10)

The concept of conditional expectation can be also extended to multiple events. In the current work, we
will basically require the conditional expectation of X given two events, i.e., E(X | Y = y, Z = z), which
is mathematically defined as

E(X | Y = y, Z = z) =
∑
x

x× Pr(X = x | Y = y ∩ Z = z). (11)

where Z is a discrete random variable. Definition 3.3 gives the higher-order-logic formalization of the
conditional expectation E(X | Y = y, Z = z).

Definition 3.3.

` ∀X Y Z y z p sx. cond expec 2 X Y Z y z p sx =∑
space sx (λx. x × Normal (cond prob p (PREIMAGE X {x} ∩ p space p) (PREIMAGE Y {y} ∩

p space p ∩ (PREIMAGE Z {z} ∩ p space p)))).

where the HOL function Normal is used to convert a real value to its corresponding value in an extended
real. Based on the above definition, we can easily verify, in HOL, that E(X | Y = y) = E(X | Y =
y,1Ω = 1), where 1Ω is the indicator function on the probability space Ω.

• The conditional expectation of a function of a random variable is formally verified in HOL as

E(g(X) | Y = y) =
∑
x

g(x)× Pr(X = x | Y = y) (12)

• The law of total expectation: By analogy to the law of total probability (Equation (7)), we formally verify
that

E(X) =
∑
y

E(X | Y = y)× Pr(Y = y) (13)
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Fig. 1. An example of the k-set randomized scheduling for 8 nodes and 2 subsets.

3.3. The k-set Randomized Scheduling Algorithm

The k-set randomized scheduling has been separately proposed by [AGP04] and [Liu04]. The main idea
of this algorithm can be summarized as follows. Consider a WSN that is formed by randomly deploying n
sensor nodes over a two-dimensional field of interest. Every sensor can only sense the environment and detect
events within its circular sensing area. During the initialization phase, the k-set randomized scheduling is
run on every node as follows. Each node starts by randomly picking a number ranging from 0 to (k − 1).
We designate the selected number by i. Now, the node is assigned to the sub-network i, denoted by Si, and
will be turned on only within the working time slot Ti of that subset. During the other time slots, it will
be in the idle state. Hence, during the time slot Ti, only the nodes belonging to the subset Si will be active
and can detect an occurring event. The scheduling algorithm terminates by creating k disjoint sub-networks
that work independently and alternatively so that the energy over the whole network can be preserved.
Intuitively, when the wireless sensor network is quite dense, each subset alone can cover most of the area.
Finally, it is important to note that each node joins a single subset with the same probability

(
1
k

)
since

nodes are uniformly and independently deployed over the area of interest.
For illustration purposes, Fig. 1 shows how the k-set randomized scheduling algorithm splits arbitrarily a

small WSN of eight sensor nodes to two sub-networks. The eight nodes, randomly deployed in the monitored
region, are identified by IDs ranging from 0 to 7. The two sub-networks are denoted S0 and S1. Each node
randomly chooses a number 0 or 1 in order to be assigned to one of these two sub-networks. Suppose that
nodes 0; 2; 5, select the number 0 and join the subset S0 and nodes 1; 3; 4; 6; 7, choose the number 1 and
join the subset S1. These two sub-networks will work alternatively, i.e., when the nodes 0; 2; 5, with sensing
ranges denoted by the solid circles, are active, the nodes 1; 3; 4; 6; 7, illustrated by the dashed circles, will
be idle and vice-versa.

4. Formalization of the Detection Properties

In a wireless sensor network, an occurring event of any length is expected to be detected with a given
probability by one or more active nodes within a given delay. The detection behavior of the network is
hence a key feature whose performance is measured through two widely used metrics which are the detection
probability and the detection delay [YMG08]. In this section, we first formally reason about some properties
related to the intrusion period of any occurring event. Next, we exploit this analysis to develop the higher-
order-logic formalization of the main detection metrics in WSNs using the k-set randomized scheduling.
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Fig. 2. Detection Analysis [XCW+10].

4.1. Formalization of the Intrusion Period

According to the description of the k-set randomized algorithm, given in Section 3, the k formed sub-
sets of nodes {Si, 1 ≤ i ≤ k} are disjoint and work alternatively within their scheduling time cycles/slots
{T i, 1 ≤ i ≤ k}. In a wireless sensor network, an event, e.g., the outbreak of a fire in a forest, happens ran-
domly at any time. The duration of this event, denoted L, will obviously overlap with a number of scheduling
cycles T (see Fig. 2). We are interested in formally verifying the average number of overlapping cycles with
an intrusion period L.

According to the analysis done in [XCW+10], the number of overlapping cycles with an intrusion event
depends mainly on s, which is the remainder of the intrusion period L in terms of the number of slots T . Let
t0 be any reference time and tz the beginning of the intrusion event. Fig. 2 shows how the interval [t0, t0 +T ]
is split into two regions according to s. Hence, if tz belongs to the interval

• [t0, t0 + (1− s)× T ], then L overlaps
⌈
L
T

⌉
with the probability (1− s).

• ]t0 + (1− s)× T, T [, then L overlaps
(⌈

L
T

⌉
+ 1
)

with the probability s.

More specifically, by expressing L in terms of T , the variable s has been defined by the following equation
[XCW+10].

s =
L

T
+ 1−

⌈
L

T

⌉
(14)

As an example, let us take an intrusion event which lasts for a duration L = 2.8T , as illustrated in Fig.
2. Hence, L overlaps either

⌈
L
T

⌉
=
⌈

2.8T
T

⌉
= 3 cycles with the probability (1− s = 0.2), or 4 cycles with the

probability (s = 0.8).
We can now formalize in higher-order logic the average number of overlapping cycles with an intrusion

period L. For this purpose, we proceed by first formally specifying the corresponding random variable which
describes the number of overlapping cycles within an intrusion period L. Based on the above description,
we model this behavior by a random variable denoted by IT . This random variable can be characterized
in higher-order logic by the following predicate intr distr rv that accepts five parameters: IT : a random
variable that returns an extended real number, p: the probability space, s: the variable specified in Equation
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(14), L: the length of the intrusion period, and Ts: the length of a time slot. Please note that for the sake
of simplicity, we take s as a separate variable, although it depends only on L and Ts.

Definition 4.1.

` ∀IT p s (L:real) (Ts:real). intr distr rv IT p s L Ts =
(real random variable IT p) ∧
(IMAGE IT (p space p) = {

⌈
L
Ts

⌉
;
⌈

L
Ts

⌉
+ 1}) ∧

(distribution p IT {
⌈

L
Ts

⌉
} = 1 - s).

The definition above specifies IT as a real random variable on the probability space p such that the image
of IT on (p space p) is in {

⌈
L
Ts

⌉
;
⌈

L
Ts

⌉
+ 1}, and its probability distribution over {

⌈
L
Ts

⌉
} is (1− s).

Next, we formally verify, in Theorem 4.1, the average number of overlapping cycles with an intrusion
period L, which is the expectation of the random variable IT .

Theorem 4.1.

` ∀IT p s L Ts. (0 < Ts) ∧ (0 < L) ∧ (intr distr rv IT p s L Ts)
⇒ (expectation p IT = Normal( L

Ts
+ 1))).

where the function expectation, used in the above theorem, designates the higher-order-logic formalization
of the expectation of a random variable that returns an extended real, whereas, the HOL function Normal is
used to convert a real value to its corresponding value in an extended real. The proof of Theorem 4.1 is based
on the verification of the probability distribution on {

⌈
L
Ts

⌉
} and {

(⌈
L
Ts

⌉
+ 1
)
}, along with some analysis on

extended real.

4.2. Formalization of the Detection Probability

The probability of detecting an intrusion event (D) is usually specified using the probability of the event “be-
ing unable to detect an intrusion (UD)” [XZSC07, XCW+10]. Thus, using the probability rule of complement,
we have:

Pr(D) = 1− Pr(UD) (15)

The detection performances of a wireless sensor network mainly depends on the number of nodes covering
the occurring events. In [EHTA11], we demonstrated that the number of nodes covering a point where the
intrusion event happens is a Binomial random variable (c) with the following probability.

Pr(c = j) = Cj
n ×

( r
a

)j
×
(

1−
( r
a

))n−j
(16)

where Cj
n is the binomial coefficient indexed by the number j of nodes covering an occurring event and the

total number n of deployed nodes. The parameters r and a, used in Equation (16), are the size of the sensing
area of each sensor and the size of the monitored area, respectively, and

(
r
a

)
is the probability that each

sensor covers a given point. The Binomial random variable with n trials and success probability q =
(
r
a

)
is

specified in the following definition [EHTA11].

Definition 4.2.

` ∀X p q n. binomial distr rv X p q n = (real random variable X p) ∧
(IMAGE X (p space p) = IMAGE (λx.&x) (count (SUC n))) ∧
(∀m. &m IN (IMAGE X (p space p)) ⇒
(distribution p X {&m} = &(binomial n m) × qm × (1− q)(n−m))).

where X is a real random variable defined on the probability space p, and IMAGE (λx.&x) (count (SUC
n)) generates the support of the Binomial, while the operator & allows the conversion of the natural number
m into its extended number counterpart. The function binomial, used in the above definition, is the higher-
order-logic formalization of the binomial coefficient for reals, which we specified in HOL in Definition 4.3.
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Definition 4.3.

` ∀n k. binomial n k = (binomial n 0 = (1:num)) ∧
(binomial 0 (SUC k) = (0:num)) ∧
(binomial (SUC n) (SUC k) = binomial n (SUC k) + binomial n k).

Given that the events {c = j, 0 ≤ j ≤ n} form a partition of the entire sample space (Ω = p space p),
we can establish from Equation (15), using the law of total probability (Equation (7)), that

Pr(D) = 1−
n∑

j=0

Pr(UD | c = j)× Pr(c = j) (17)

where Pr(UD | c = j) is the conditional probability of being unable to detect the intrusion event given that
(c = j).

Based on the analysis done in [XCW+10], we discuss the probability Pr(UD | c = j) according to the
values of j, i.e., the number of sensor nodes covering a point when the intrusion event happens, and L, i.e.,
the intrusion period.

• Case 1. (j = 0) and for any duration L, Pr(UD | c = 0) = 1.
Given that there is 0 covering nodes, it is sure that an intrusion event can never be detected.

• Case 2. {0 < j ≤ n} ∩ {L ≥ (k − 1)× Ts}, Pr(UD | c = j) = 0.
Since there are k working rounds, each of length T , an event lasting more than (k − 1)× T , and having
at least one covering active node (0 < j) will be always detected.

• Case 3. {0 < j ≤ n} ∩ {L < (k − 1)× T )}, Pr(UD | c = j) 6= 0. An event lasting less than (k − 1)× T
with at least one covering active node (0 < j), will be usually detected with a given probability which is
not null.

By extracting the first term (j=0) of the summation in Equation (17), we obtain

Pr(D) = 1− (Pr(UD | c = 0)× Pr(c = 0) +

n∑
j=1

Pr(UD | c = j)× Pr(c = j)) (18)

According to case 1, we have Pr(UD | c = 0) = 1, and we hence can rewrite Equation (18), using
Equation (16), as

Pr(D) = 1− ((1− q)n +

n∑
j=1

Pr(UD | c = j)× Pr(c = j)) (19)

In the following, we are interested in formally verifying the detection probability Pr(D) for occurring
events of any length L. More particularly, we focus on the formalization of the summation term of Equation
(19). For that purpose, we distinguish 2 cases, i.e., {L < (k − 1)× T )} and {L ≥ (k − 1)× T )}.

4.2.1. Detection Probability for Events such that {L < (k − 1)× T )}.

The mathematical model for the performance analysis of the detection probability has directly given the
final result of Equation (19). Only few explanations related to pure mathematical steps can be found in
[XZSC07]. However, in order to achieve accurately the higher-order-logic formalizations of Equation (19),
we require to reason about all the implicit steps related to the probabilistic analysis.

According to the intrusion period analysis, done in Subsection 4.1, we know that the intrusion period L
may overlap either

⌈
L
T

⌉
or (

⌈
L
T

⌉
+ 1) scheduling cycles T . Thus, an intrusion event which lasts L, cannot be

detected either when L overlaps
⌈
L
T

⌉
cycles, or when L overlaps (

⌈
L
T

⌉
+ 1) cycles. Using the following events
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• A12 = The intrusion period L overlaps
⌈
L
T

⌉
cycles.

• A22 = The intrusion period L overlaps (
⌈
L
T

⌉
+ 1) cycles.

It is possible to express the whole event of non-detection, denoted by UD, as follows

UD = UD ∩ (A12 ∪A22) (20)

Now, applying Equations (4) and (6) to Pr(UD | c = j) in Equation (19), along with the fact that the
events A12 and A22 are disjoint, we get the following result.

Pr(UD | c = j) = Pr(UD | A12 ∩ (c = j))× Pr(A12 | c = j) +

Pr(UD | A22 ∩ (c = j))× Pr(A22 | c = j) (21)

Intuitively, for a given intrusion event of length L, the occurrence of the event (A12 = L overlaps
⌈

L
Ts

⌉
cycles),

and the event (c = j) describing that there are j covering nodes, are governed by distinct and noninteracting
physical processes [Fel68]. Hence, the two events turn out to be independent. According to Equation (3),
we get hence Pr(A12 | c = j) = Pr(A12) = Pr(IT =

⌈
L
Ts

⌉
), where IT is the intrusion random variable as

specified in Definition 4.1. Similarly, we obtain Pr(A22 | c = j) = Pr(IT =
⌈

L
Ts

⌉
+ 1). This allows us to

rewrite the RHS of Equation (21) as

Pr(UD | A12 ∩ (c = j))× Pr(A12) + Pr(UD | A22 ∩ (c = j))× Pr(A22) (22)

On the other hand, the event “UD | A12 ∩ (c = j)” indicates the event of “being unable to detect an
intrusion event” given that “the intrusion period L overlaps

⌈
L
Ts

⌉
cycles” and “there are j covering nodes”.

Indeed, if an event, covered with j nodes and overlapping
(
h =

⌈
L
T

⌉)
rounds, is not detected, then it means

that all the j covering nodes miss the h consecutive subsets. In other words, the sequence of h subsets do
not contain covering nodes. Such event is expressed by the following equation.

Bh,c = H1,c ∩H2,c ∩ .. ∩Hi,c ∩ .. ∩Hh,c =

(
h⋂

i=1

Hi,c

)
(23)

where Hi,c is the event that none of the c covering sensor nodes belongs to the working subset i, i.e., Hi,c is
empty, and the set of events {H1,c, H2,c, ...,Hh,c} is mutually independent. We say that a finite set of events
is mutually independent if and only if every event is independent of any intersection of the other events
[Fel68]. The probability of the above event (Equation (23)) has been proved in [EHTA11], to be equal to(
k−h
k

)c
, where k is the number of disjoint subsets.

Accordingly, Equation (19) becomes

Pr(D) = 1− ((1− q)n +

n∑
j=1

[
Pr(A12)× Pr(BdL

T e,j) + Pr(A22)× Pr(BdL
T e+1,j)

]
) (24)

Based on the above reasoning, we successfully verify, in Theorem 4.2, the final expression of the detection
probability Pr(D) for events lasting {L < (k − 1)× T}.

Theorem 4.2.

` ∀p X IT UD rv k q n s L Ts. (prob space p) ∧
(1 < k) ∧ (1 ≤ n) ∧ (0 < q < 1) ∧ (sn covers p X p q n) ∧ (0 < Ts) ∧
(0 < L) ∧ (L < &(k-1)×Ts) ∧ (0 < s < 1) ∧ ((udset n k s L Ts q) ∈ events p) ∧
(intr distr rv IT p s L Ts) ∧ (sbst empty sch rv (UD rv (SUC i)) p k c (SUC i)) ∧
(indep rv p IT X Borel Borel) ∧
(cond prob p (udset n k s L Ts q) (PREIMAGE X {0} ∩ p space p) = 1) ∧
(A12 = PREIMAGE IT {

⌈
L
Ts

⌉
} ∩ p space p) ∧ (A22 = PREIMAGE IT {

⌈
L
Ts

⌉
+ 1} ∩ p space p) ∧
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(Hic = IMAGE (λi. PREIMAGE (UD rv (SUC i)) {1} ∩ p space p)) ∧
(∀x. x ∈ count (SUC n) ⇒
(cond prob p (udset n k s L Ts q) (A12 ∩ (PREIMAGE X {&x} ∩ p space p)) =

prob p
(⋂

(i<d L
Tse)Hic

)
∧

(cond prob p (udset n k s L Ts q) (A22 ∩ (PREIMAGE X {&x} ∩ p space p)) =

prob p
(⋂

(i<d L
Tse+1)Hic

)
))

⇒ (prob p (p space p DIFF (udset n k s L Ts q)) =

1− (1− s)×
(
1− (d L

Tse)
k
× q

)n

− s×
(
1− (d L

Tse+1)
k

× q

)n

).

where

• sn covers p is the Binomial random variable (Definition 4.2).

• intr distr rv is the intrusion random variable (Definition 4.1).

• sbst empty sch rv is the higher-order-logic formalization of an empty sub-network in HOL. We modelled
such behavior by a Bernoulli random variable with success probability

(
1− 1

k

)c
, and the corresponding

HOL function is as follows [EHTA11]
` ∀X p pr. bernoulli distr rv X p pr = (real random variable X p) ∧

(IMAGE X (p space p) = {0;1} ∧
(distribution p X {1} = pr).

• The assumption (indep rv p IT X Borel Borel) ensures the independence between the two random
variables X and IT .

• The HOL function (udset n k s L Ts q) models the main event of non-detection UD, as specified in
Equation (15). This function depends on various design parameters, i.e., n: the number of sensor nodes,
k: the number of sub-networks, L: the intrusion period, Ts: the scheduling time slot, and s: the remainder
of L in terms of Ts.

• The assumption (cond prob p (udset n k s L Ts q) (PREIMAGE X {0} ∩ p space p) = 1) reflects
the first case, discussed at the beginning of this subsection.

• The events A12, A22, and Hic are the HOL formalizations of the same events used throughout our
mathematical reasoning.

• The last assumption is the probability equality discussed just after Equation (22).

• The event ((p space p) DIFF (udset n k s L Ts q)) formalizes the complement event of UD.

The proof of the above theorem is primarily based on the application of the total probability law (Equation
(7)) which further requires the verification of the corresponding assumptions regarding the partition of the
events (Theorem 3.1). Moreover, various conditional probability rules (Equations (3), (4), (5), (6) and (7)),
have been used as well. For that purpose, the proof utilizes the measurability of the different events and the
verification of the probability distributions of the events A21 and A22, and a lot of real analysis. In particular,
a considerable amount of real analysis related to Theorem 4.3 formalizing the Binomial theorem for reals,
and to the summation function has been necessary to achieve this proof.

Theorem 4.3.

` ∀(a:real) (b:real) n. (a + b)n =
∑n

0 (λi. &(binomial n i) × a(n−i) × bi).

4.2.2. Detection Probability for Events such that {L ≥ (k − 1)× T}.

According to the second case, discussed at the beginning of this Subsection, we simply verify that the
detection probability Pr(D) is equal to

Pr(D) = 1− (1− q)n (25)

using Theorem 4.2. Such result is very significant since it illustrates the linking between our coverage for-
malizations, done in [EHTA11], and the new results on the detection probability Pr(D). In general, a point
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in the area is covered if any occurring event at this point can be detected. Such feature is measured through
the network coverage intensity Cn, which determines how well the monitored area is covered [LWXS06].
When an event lasts for a duration (L ≥ than (k − 1) × T ), it means that a full working cycle, lasting
k × T , is spent at least one time, and all the sub-networks {Si, 0 ≤ i ≤ n} have been hence working at least
once. The intuition is that such event is surely detected within one of the working subsets, and its detection
probability is equal to the coverage measurement of the network, when the whole network is assimilated to
one sub-network, i.e, Cn for (k = 1). The above equation formally confirms this intuition, and shows how
the behavior of the detection probability Pr(D) for events lasting (L ≥ (k − 1)× T ) matches the one for
network coverage intensity Cn for (k = 1).

4.3. Formalization of the Average Detection Delay

Within a wireless sensor network, the average detection delay is generally defined as the expectation of the
time elapsed from the occurrence of an intrusion event to the time when this event is detected by some sensor
nodes [XCW+10, LWXS06]. In this part, we target the formal verification of this average detection delay,
denoted by E(D). Mathematically, E(D) is specified as the expectation of the random variable D describing
the detection delay. We suppose that E(D) is finite.

Let DTi the average time that the intrusion is detected in the ith round. For the first round (i = 1), the
delay is obviously zero (DT1 = 0). Since the subsets of nodes are working by rounds (cf. Fig. 2), it is thus
intuitive that the delay for detecting an intrusion depends on the detection round i. In addition, the DTi
values depend also on the starting time, tz, of the intrusion, i.e., A12 and A22. Hence, for the second round
(i = 2), based on Fig. 2, we can find that

• If tz ∈ [t0, t0 + (1− s)× T ], then (DT2 = T − (1−s)×T
2 ).

• If tz ∈ ]t0 + (1− s)× T, T [, then (DT2 = s×T
2 ).

More generally, according to the original specification [XCW+10, LWXS06], if tz ∈ [t0, t0 + (1− s)× T ], i.e.,
given A12, then:

DTi | A12 =

{
0 if i = 1(

(i− 1)− (1−s)
2

)
× T if 1 < i ≤

⌈
L
T

⌉ (26)

However, when tz ∈ ]t0 + (1− s)× T, T [, we have

DTi | A22 =

{
0 if i = 1(
(i− 2) + s

2

)
× T if 1 < i ≤

⌈
L
T

⌉
+ 1

(27)

Note that the notations (DTi | A12) and (DTi | A22) refer to the values taken by the random variable D
given A12 and A22, respectively.

Based on Equations (26) and (27), we notice how the detection delay values depend on the detection
round i. Consider the random variable DRi that describes the detection round. Conditioning on the events
A12 and A22, the values of DRi are

DRi | A12 = {i+ 1|0 ≤ i ≤ ph1− 1} where ph1 = min(k,

⌈
L

T

⌉
) (28)

DRi | A22 = {i+ 1, 0 ≤ i ≤ ph2− 1} where ph2 = min(k,

⌈
L

T

⌉
+ 1) (29)

The minimum values for the variables ph1 and ph2 are considered since we have at most k detection rounds
(cf. Fig. 2). As an example, consider a WSN which is randomly scheduled into (k = 3) sub-networks, and
two intrusion events E1 and E2 whose starting time tz is in [t0, t0 + (1− s)× T ], and lasting (L1 = 1.8× T )
and (L2 = 3.2 × T ), respectively. In the case of event E1,

⌈
L1
T

⌉
= 2, and the possible rounds of detection
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would be i = {1, 2}. For event E2,
⌈
L2
T

⌉
= 4, but the potential detection rounds are i = {1, 2, 3}, i.e., at

most 3 which is equal to k.
According to the two above equations, we formally define a general HOL function that describes the

detection round random variable in Definition 4.4.

Definition 4.4.

` ∀DR p ph. delay rnd rv DR p ph =
(real random variable DR p) ∧
(IMAGE DR (p space p) = IMAGE (λj. &SUC j) (count ph)).

The main expected detection delay E(D) has been formalized in HOL using the function delay wsn,
which is specified as follows

Definition 4.5.

` ∀p D n k q. delay wsn p D n k q = expectation p (D n k q).

where p is the probability space, D is a random variable, n is the number of deployed nodes, k is the number
of disjoint subsets, and q is the probability that each sensor covers a given point. The expected detection
delay E(D) can be mathematically written, using the total expectation law (Equation (13)) and Equation
(16), as

E(D) =

n∑
j=1

E(D | c = j)× Pr(c = j)

=

n∑
j=1

E(D | c = j)× Cj
n ×

( r
a

)j
×
(

1−
( r
a

))n−j
(30)

where E(D | c = j) is the conditional expectation of the real random variable D with respect to the event
(c = j). Notice that the case (c = 0) is not considered in Equation (30). Indeed, if there is no covering node,
then an intrusion can never be detected, and the delay E(D) will be infinite which is not desirable.

In higher-order logic, we model the detection delay behavior, in Definition 4.6, as a real random variable
with a finite image on the space Ω.

Definition 4.6.

` ∀D p. delay rv D p = (real random variable D p) ∧
FINITE (IMAGE D (p space p)).

In the following, we focus on the formal verification of the term E(D | c = j) in Equation (30) for occurring
events of any length L. Based on the definition of conditional expectation (Equation (10)), E(D | c = j) can
be mathematically expressed as

E(D | c = j) =
∑
d

(D = d)× Pr(D = d | c = j) (31)

Applying the total probability law (Equation (7)) on the partition {A12, A22}, and given the independence
of the random variable IT and c (Equation (3)), we can establish, using Equation (6), that

E(D | c = j) = (1− s)×
∑
d

(D = d)× Pr(D = d | A12 ∩ (c = j)) +

s×
∑
d

(D = d)× Pr(D = d | A22 ∩ (c = j))

(32)
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The RHS of Equation (32) can be now rewritten, using the reverse definition of conditional expectation for
two events (Equation (11)), as

(1− s)× E(D | A12, (c = j)) + s× E(D | A22, (c = j)) (33)

Based on the above equation, we can clearly distinguish two distinct conditional expectations given the
events A12 and A22. According to the analysis done at the beginning of this subsection, these conditional
expectations can be established as

E(D | A12, (c = j)) = E(DC1 | c = j) (34)

E(D | A22, (c = j)) = E(DC2 | c = j) (35)

where DC1 and DC2 are the random variables describing the detection delay when (A12 = L overlaps
⌈
L
T

⌉
cycles) and (A22 = L overlaps (

⌈
L
T

⌉
+1) cycles), respectively. More specifically, based on Equations (26) and

(27), DC1 and DC2 can be written as

DC1 = (λx.

(
x− 3

2
+
s

2

)
× T ) ◦DR1 (36)

DC2 = (λx.
(
x− 2 +

s

2

)
× T ) ◦DR2 (37)

where the ◦ operator denotes the function composition, and DR1 and DR2 are the delay round random
variables given A12 and A22, respectively, as described in Equations (28) and (29).

Plugging the above two equations, into Equations (34) and (35), and applying the conditional expectation
of a function of a random variable (Equation (12)), we derive, from Equation (33), that the conditional
expectation of D given (c = j), E(D | c = j), equals

(1− s)×
ph1∑
i=2

(i− 3

2
+
s

2
)× T × Pr(DR1 = i | A12 ∩ (c = j)) +

s×
ph2∑
i=2

(i− 2 +
s

2
)× T × Pr(DR2 = i | A22 ∩ (c = j)) (38)

Now, analyzing the relationship between the random variables, we can establish that DR1 and IT are
conditionally independent given the random variable c. Indeed, in terms of events, the information A12 does
not add anything about (DR1 = i) if we already know that (c = j). Similarly for (DR2 = i) and A22 given
(c = j). Using Equation (8), we can simplify Equation (38) into

E(D | c = j) = (1− s)×
ph1∑
i=2

(i− 3

2
+
s

2
)× T × Pr(DR1 = i | c = j) +

s×
ph2∑
i=2

(i− 2 +
s

2
)× T × Pr(DR2 = i | c = j) (39)

Developing the terms Pr(DR1 = i | c = j) and Pr(DR2 = i | c = j), in the above equation, according to
the definition of conditional probability (Equation (2)) along with Equation (7), we get the following result.
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E(D | c = j) = (1− s)×
ph1∑
i=2

(i− 3
2 + s

2 )× T × Pr((DR1 = i) ∩ (c = j))∑ph1
i=1 Pr((DR1 = i) ∩ (c = j))

+ s×
ph2∑
i=2

(i− 3
2 + s

2 )× T × Pr((DR2 = i) ∩ (c = j))∑ph2
i=1 Pr((DR2 = i) ∩ (c = j))

(40)

We formally verify, in Theorem 4.4, the HOL theorem formalizing Equation (40).

Theorem 4.4.

` ∀p X D n q IT s L Ts DC1 DC2 DR1 DR2 ph1 ph2.
(prob space p) ∧ (events p = POW (p space p)) ∧ (delay rv D p) ∧ (1 < k) ∧
(0 < q < 1) ∧ (0 < L) ∧ (0 < Ts) ∧ (0 < s < 1) ∧ (intr distr rv IT p s L Ts) ∧
(sn covers p X p q n) ∧ (indep rv p IT X Borel Borel) ∧ (1 < ph1) ∧ (1 < ph2) ∧
(delay rnd rv DR1 p ph1) ∧ (delay DC rv DC1 DR1 p 3

2 s Ts) ∧
(delay rnd rv DR2 p ph2) ∧ (delay DC rv DC2 DR2 p 2 s Ts) ∧
(cond indep rv p DR1 IT X Borel Borel Borel) ∧
(cond indep rv p DR2 IT X Borel Borel Borel) ∧
(∀i. (1 ≤ i) ∧ (i < SUC n) ⇒
((cond expec 2 D IT X

⌈
L
T

⌉
(&i) p Dsx = cond expec 2 DC1 IT X

⌈
L
T

⌉
(&i) p DC1sx) ∧

(cond expec 2 D IT X
(⌈

L
T

⌉
+ 1
)
(&i) p Dsx =

cond expec 2 DC2 IT X
(⌈

L
T

⌉
+ 1
)
(&i) p DC2sx)))

⇒ (∀i. (1 ≤ j) ∧ (j < SUC n) ⇒
E(D | c = j) = (1− s)×

∑ph1
i=2

(i− 3
2
+ s

2
)×Ts×Pr((DR1=i)∩(c=j))∑ph1

i=1 Pr((DR1=i)∩(c=j))
+

s×
∑ph2

i=2

(i−2+ s
2
)×Ts×Pr((DR2=i)∩(c=j))∑ph2

i=1 Pr((DR2=i)∩(c=j))
.)

where

• The assumptions (cond indep rv p DR1 IT X Borel Borel Borel) and (cond indep rv p DR2 IT X
Borel Borel Borel) ensure the conditional independence between the different random variables.

• The variables DC1 and DC2, as described in Equations (36) and (37), are characterized through the HOL
function (delay DC rv DC DR p a s Ts) which is defined as follows
` ∀DC DR p a s Ts. delay DC rv DC DR p a s Ts =

(∀x. x ∈ (p space p) ⇒ (0 ≤ DC x)) ∧
(DC = ((λx. (x - a +

(Normal s)
2 )×(Normal Ts))) ◦ DR).

• The variable Dsx = (IMAGE D (p space p), POW (IMAGE D (p space p))), and the same equality ap-
plies to DC1sx and DC2sx for the corresponding variables DC1 and DC2, respectively.

The proof of Theorem 4.4 is quite similar to the proof of Equation (40) from Equation (31). In particular,
the reasoning was primarily based on the specification of the above function (delay DC rv DC DR p a s
Ts) by considering only positive values, given that it describes the detection delay behavior which can never
be negative. In this case, the terms (i− 3

2 + s
2 ) and (i− 2 + s

2 ) can be shown to be equal 0 for (i = 1), and
the correct summation index of the numerator can be hence proved. Moreover, a lot of reasoning associated
with the use of summation including the proof of injectivity for some functions, and real analysis, was also
required.

In Equation (40), the event “(DR1 = i) ∩ (c = j)” indicates that “the intrusion event is detected in the
ith round” and “there are j covering nodes”. Indeed, if an event, covered with j nodes, is detected in the ith

round, then it means that all the j covering nodes miss the (i−1) consecutive subsets, and the first covering
nodes belong to the subset i. Such event is exactly the same as the following event.
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Ai,j =

(i−1)⋂
m=1

Hm,j ∩Hi,j


=
(
Bi−1,j ∩Hi,j

)
(41)

where

• Hm,j and Bi−1,j are the same events used in Equation (23).

• the set of events {Bi−1,j , Hi,j} is mutually independent.

The probability of the above event (Equation (41)) has been already formally verified in [EHTA11], and is

equal to
[(

k−i+1
k

)j − (k−ik

)j]
.

At the end, we establish that the final average detection delay E(D) (Equation (30)) is

E(D) =

n∑
j=1

E(D | c = j)× Cj
n ×

( r
a

)j
×
(

1−
( r
a

))n−j
(42)

where

E(D | c = j) = (1− s)×
ph1∑
i=2

(i− 3
2 + s

2 )× T ×
[(

k−i+1
k

)j − (k−ik

)j]
∑ph1

i=1

(
k−i+1

k

)j − (k−ik

)j
+ s×

ph2∑
i=2

(i− 2 + s
2 )× T ×

[(
k−i+1

k

)j − (k−ik

)j]
∑ph2

i=1

(
k−i+1

k

)j − (k−ik

)j
)

(43)

It is important to note that, for space constraints, the final HOL theorem for the verification of the main
function of the average detection delay delay wsn (Definition 4.5) has been omitted from this paper but an
interested reader can access it from [Ell13].

In this section, we detailed the higher-order-logic formalizations of the detection performances of wireless
sensor networks using the k-set randomized scheduling. The corresponding HOL code is available at [Ell13].
In the next section, we will demonstrate how the resulting universally quantified theorems greatly facilitate
the formal analysis of real-world WSN applications.

5. Formal Analysis of WSN for Border Surveillance

Wireless sensor networks have been widely explored for border monitoring applications [ADB+04]. The
main goal of a WSN deployed for border monitoring is to continuously detect intruding elements with a
high probability and a small delay. These systems are useful for the detection of forces or vehicles in a
military context [Hew01], or the prevention of illegal intrusions of migrants or terrorists along a country
border. In this context, the potential harsh nature of the field of interest makes a random deployment by air-
dropping sensors much more practical. In this section, we are interested in formally analyzing the detection
performances of a wireless sensor network deployed for a border monitoring application [XZP+09, SWV+11].

Due to the safety-critical feature of the target application, the deployed WSN has to remain alive as long
as possible while ensuring an efficient detection. Nevertheless, as stated in [ADB+04], most of the existing
WSNs for border monitoring suffer from lifetime limitations, e.g., a REMBASS sensor node, once deployed,
can be functional for 30 days only [Hew01]. In case of using the WSN to monitor terrorist intrusions along
a mountainous border, it is obviously not required to monitor the whole area at all times. Thus, we can
use the k-set randomized scheduling algorithm to preserve energy in a given border monitoring application
[XZP+09]. In the specified application, the nodes have a sensing area r = 30, and are deployed into an area
of size a = 10000m2, whereas, the success probability q of a sensor covering a point, is q = r

a = 0.28.
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In the previous section, we analyzed the detection probability Pr(D) according to the intrusion length
L by distinguishing 2 cases: {L < (k − 1) × Ts)} and {L ≥ (k − 1) × Ts)}. It is important to note that,
in the current application analysis, we focus on the first case; {L < (k − 1)× Ts)}, which reflects transient
events, that may not be detected, and is thus the most pertinent part of this analysis. For the other case,
i.e., {L ≥ (k−1)×Ts)}, we have already discussed that the detection probability Pr(D) equals the network
coverage, and its asymptotic behavior has been investigated in [EHTA13].

Based on our theoretical development done in the previous section, we now conduct a formal asymp-
totic analysis of the probabilistic detection and delay based on the parameters n and k. For that, we are
going to tackle the generic case and then instantiate it for the given border monitoring application. Hence,
we simply denote (prob p (p space p DIFF (udset n k s L Ts q))) by (Pd wsn p n k s L Ts q) and
(delay wsn p D n k q) as (D wsn p D n k q). In the context of our application, we basically verify two
main properties of interest related to the detection probability of the events of interest and the detection de-
lay. Thus, we easily check in HOL that (prob p (p space p DIFF (udset n k s L Ts (0.28)))) equals

1− (1− s)×

(
1−

(⌈
L
Ts

⌉)
k

× (0.28)

)n

− s×

(
1−

(⌈
L
Ts

⌉
+ 1
)

k
× (0.28)

)n

(44)

and, the expected detection delay, (delay wsn p D n k (0.28)), is

n∑
j=1

E(D | c = j)× Cj
n × (0.28)j × (1− (0.28))n−j (45)

where E(D | c = j) represents the expression specified in Equation (43). Next, we simply denote Equation
(44) and Equation (45), by (Pd surv p n k s L Ts (0.28)) and (D surv p D n k (0.28)), respectively.
It is important to note that, for space constraints, and in all the asymptotic analysis below, we only mention
the main mathematical assumptions related to the used variables in the detection probability and delay.
Whereas, the complete HOL code for these asymptotic analysis can be found in [Ell13].

Hence, we formally verify that the detection probability is an increasing function of n, i.e., a larger n
value leads to a better detection probability.

Lemma 5.1.

` ∀p k q s L Ts. (1 < k) ∧ (0 < s < 1) ∧ (0 < L) ∧ (0 < Ts) ∧ (L < &(k-1)×Ts) ∧
(0 < q < 1) ⇒ (mono incr (λn. Pd wsn p n k s L Ts q))).

where mono incr is the HOL definition of an increasing sequence, which we define as follows.

Definition 5.1.

` ∀f. mono incr f ⇔ ∀n. f n ≤ f (SUC n).

Besides, we formally verify, in Lemma 5.2, that the probability of detecting an intrusion event approaches
1 as the number of deployed nodes becomes very very large.

Lemma 5.2.

` ∀p k q s L Ts. (1 < k) ∧ (0 < s < 1) ∧ (0 < L) ∧ (0 < Ts) ∧ (L < &(k-1)×Ts) ∧
(0 < q < 1) ⇒ lim

n→+∞
(λn. Pd wsn p n k s L Ts q) = 1.

where lim is the HOL formalization of limit for real sequences.
Similarly, it is also very useful to investigate the delay behavior of the randomized scheduling. Thus, we

formally verify, in Lemma 5.3, that the detection delay D wsn starts to be decreasing versus the number
of nodes n from a given range, denoted n0. Consequently, D wsn becomes smaller when a large number of
nodes is deployed. In this case, an intrusion is expected to be detected more quickly, since it is likely that
many more covering nodes are deployed in the surrounding area.

Lemma 5.3.

` ∀p k q s L Ts. (1 < k) ∧ (0 < s < 1) ∧ (0 < L) ∧ (0 < Ts) ∧ (0 < q < 1)
⇒ (mono decr range (λn. (real (D wsn p D n k q))))).
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where the function real is used to convert the detection delay of type extended real to its corresponding
real value, and the HOL function mono decr range is specified in Definition 5.2.

Definition 5.2.

` ∀ f. mono decr range f ⇔ (∃n0. ∀n. n ≥ n0 ⇒ f (SUC n) ≤ f n).

Based on Lemmas 5.1 and 5.2, we establish that any target detection probability Pd wsn can be achieved
by increasing the number of deployed nodes n, for any values of the input variables k, q, s, L, and Ts. More
specifically, these results can be easily verified for the detection probability, Pd surv, in the context of the
given border monitoring application (Lemmas 5.4 and 5.5).

Lemma 5.4.

` ∀p k s L Ts. (1 < k) ∧ (0 < s < 1) ∧ (0 < L) ∧ (0 < Ts) ∧ (L < &(k-1)×Ts)
⇒ (mono incr (λn. Pd surv p n k s L Ts (0.28)))).

Lemma 5.5.

` ∀p k s L Ts. (1 < k) ∧ (0 < s < 1) ∧ (0 < L) ∧ (0 < Ts) ∧ (L < &(k-1)×Ts)
⇒ lim

n→+∞
(λn. Pd surv p n k s L Ts (0.28)) = 1.

In addition, we reconfirm the result of Lemma 5.3 using Lemma 5.6, i.e., increasing the number of
deployed nodes n gives smaller detection delays and thus a better performance of the deployed application.

Lemma 5.6.

` ∀p k s L Ts. (1 < k) ∧ (0 < s < 1) ∧ (0 < L) ∧ (0 < Ts)
⇒ (mono decr range (λn. (real (D surv p D n k (0.28))))).

According to Lemmas 5.1 and 5.3, enhancing the detection capacities of the deployed WSN, is possible
through the deployment of more nodes. However, random deployment is known to be very costly for most
WSN applications. In the context of a WSN using the k-set randomized scheduling, it is usually possible to
improve the whole detection capacity of the network by simply updating the number of disjoint subsets k
by a suitable value.

Based on the parameter k, we perform now an interesting study of the limiting behavior of the detection
performances. First, we formally verify, in Lemma 5.7, that a smaller k value induces a larger detection
probability Pd wsn, i.e., Pd wsn decreases while increasing the value of k.

Lemma 5.7.

` ∀p k q n s L Ts. (1 ≤ n) ∧ (0 < s < 1) ∧ (0 < L) ∧ (0 < Ts) ∧ (0 < q < 1) ∧
(∀k. L < &(SUC k)×Ts) ⇒ (mono decr (λk. Pd wsn p n k s L Ts q)).

where the HOL function mono decr defines a decreasing sequence as follows.

Definition 5.3.

` ∀ f. mono decr f ⇔ ∀n. f (SUC n) ≤ f n.

We formally confirm, in Lemma 5.8, that given a number of nodes n, the detection probability Pd wsn
goes to 0 when k becomes very large.

Lemma 5.8.

` ∀p k q n s L Ts. (1 ≤ n) ∧ (0 < s < 1) ∧ (0 < L) ∧ (0 < Ts) ∧ (0 < q < 1) ∧
(∀k. L < &(SUC k)×Ts) ⇒ lim

k→+∞
(λk. Pd wsn p n k s L Ts q) = 0.

Furthermore, we show, in Lemma 5.9, that the detection delay of the randomized scheduling, D wsn,
increases as the value of k increases. In other words, the detection delay D wsn increases when the WSN is
divided into a quite large number of sub-networks k. Indeed, the allocated time slot for each subset would
be small, so that the active nodes do not have enough time to detect the occurring intrusion.
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Lemma 5.9.

` ∀p q n s L Ts. (1 ≤ n) ∧ (0 < s < 1) ∧ (0 < L) ∧ (0 < Ts) ∧ (0 < q < 1)
⇒ (mono incr (λk. real (D wsn p D n k q))).

It is important to note that the original proof of the above lemma in [XZSC07, XCW+10] was missing a
whole fraction term, which is fortunately positive and thus does not finally affect the validity of the function
monotonicity.

Now, it is possible to confirm, in the following 2 lemmas, the validity of the generic results given in
Lemmas 5.7 and 5.8 for our WSN application.

Lemma 5.10.

` ∀p k n s L Ts. (1 ≤ n) ∧ (0 < s < 1) ∧ (0 < L) ∧ (0 < Ts) ∧ (∀k. L < &(SUC k)×Ts)
⇒ (mono decr (λk. Pd surv p n k s L Ts (0.28))).

Consequently, for the border monitoring application, increasing k surely saves more energy, but a signifi-
cant increase in k may induce several sub-networks, which in turns translates to a poor detection probability
(Lemma 5.11).

Lemma 5.11.

` ∀p k n s L Ts. (1 ≤ n) ∧ (0 < s < 1) ∧ (0 < L) ∧ (0 < Ts) ∧ (∀k. L < &(SUC k)×Ts)
⇒ lim

k→+∞
(λk. Pd surv p n k s L Ts (0.28)) = 0.

Similarly, we check in Lemma 5.12, that a significant increase in k leads to larger detection delays, i.e.,
a poor performance.

Lemma 5.12.

` ∀p n s L Ts. (1 ≤ n) ∧ (0 < s < 1) ∧ (0 < L) ∧ (0 < Ts)
⇒ (mono incr (λk. real (D surv p D n k (0.28)))).

The randomized scheduling is thus a dynamic approach which provides performance adjustments of the
deployed WSN application according to the value of k.

The randomness in the nodes scheduling approach leads to sub-networks of different sizes with respect to
the number of nodes. Obviously, the ideal case arises when the algorithm makes a fair split of the network so
that all the subsets have the same size, i.e., the same number of nodes which we denote by m. The number
of nodes n can be written hence as k×m. In what follows, we closely investigate the asymptotic performance
behavior of the k-set randomized algorithm in the case of a uniform split of the nodes.

In particular, we successfully verify, in Lemma 5.13, the upper limit of the detection probability Pd wsn
when n = k ×m and k goes to infinity.

Lemma 5.13.

` ∀p m q s L Ts. (0 < s < 1) ∧ (0 < L) ∧ (0 < Ts) ∧ (∀k. L < &(SUC k)×Ts) ∧
(0 < q < 1) ⇒ lim

k→+∞
(λk. Pd wsn p (k×m) k s L Ts q) =

1− (1− s)× e−d
L
Ts
e × q× m− s× e−(d L

Ts
e+1) × q× m.

The proof of the above lemma is based on the important mathematical result lim
k→+∞

(1 + x
k
)k = ex, which we

have proved beforehand.
Based on Lemma 5.13, the analysis of the above limit versus various parameters such as the intrusion

period L, and the number of nodes per subset m, is now feasible. We hence verify that when m is very large,
the detection probability will surely approach 1. Such result is considered as a second verification of Lemma
5.2 in the specific case where n = k ×m.

Lemma 5.14.

` ∀p q s L Ts. (0 < s < 1) ∧ (0 < L) ∧ (0 < Ts) ∧ (∀k. L < &(SUC k)×Ts) ∧
(0 < q < 1) ⇒ lim

m→+∞
(λm. lim

k→+∞
(λk. Pd wsn p (k×m) k s L Ts q)) = 1.
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Finally, we show that the above mentioned two results are also valuable for the given application for
border surveillance through a simple instantiation of the input parameter q by its value. The corresponding
HOL analysis is given in the following 2 lemmas.

Lemma 5.15.

` ∀p m s L Ts. (0 < s < 1) ∧ (0 < L) ∧ (0 < Ts) ∧ (∀k. L < &(SUC k)×Ts)
⇒ lim

k→+∞
(λk. Pd surv p (k×m) k s L Ts (0.28)) =

1− (1− s)× e−d
L
Ts
e × (0.28)× m− s× e−(d L

Ts
e+1) × (0.28)× m.

Lemma 5.16.

` ∀p s L Ts. (0 < s < 1) ∧ (0 < L) ∧ (0 < Ts) ∧ (∀k. L < &(SUC k)×Ts)
⇒ lim

m→+∞
(λm. lim

k→+∞
(λk. Pd surv p (k×m) k s L Ts (0.28))) = 1.

Unlike traditional analysis techniques for the validation of a WSN for border surveillance, using the k-set
randomized scheduling algorithm, our approach is much more efficient. Indeed, while paper-and-pencil based
analysis or simulation [XZP+09] cannot guarantee the correctness of the scheduling performance results, the
reported theorems in this paper are absolutely accurate. This distinguishing feature is due to the inherent
soundness of theorem proving and its generic nature, e.g., the detection probability for any given values of
n and k can be computed by instantiating Theorem 4.2 with appropriate values. Contrarily, simulation is
usually restricted to specific network configurations, while probabilistic model checking is frequently using
parameter abstraction in order to cope with the state-space explosion problem. Moreover, for each of the
formally verified theorems, the set of required assumptions is clearly stated so there is no doubt about
missing a critical assumption. Such aspect can never be ensured in simulation and model checking where
many assumptions can be taken into account without explicitly mentioning them.

6. Discussion

In this work, we provided a completely rigourous method for the performance evaluation of the randomized
scheduling algorithm for WSNs through theorem proving. Indeed, the probabilistic feature of the randomized
nodes scheduling algorithm makes its analysis challenging for all possible cases. Since the assignment of the
sensor nodes to the k sub-networks is randomly done, it may happen that some of the sub-networks are
empty. Moreover, due to the random deployment of nodes, the random scheduling can lead to a situation
where certain parts of the area are not monitored at all or simultaneously monitored by many sensors.
Rigorous performance evaluation of such algorithm is a non-trivial task, especially given the non-exhaustive
nature of traditional performance analysis techniques.

Throughout this paper, we developed the formalizations of the detection properties of wireless sensor
networks using the k-set randomized scheduling within the HOL theorem prover. In Section 4, we have
been able to achieve accurate formalizations of the intrusion period of any occurring event, upon which we
have built our formal developments of the detection probability and delay. The practical effectiveness of
these higher-order-logic developments, have been then illustrated, in Section 5, through analyzing a WSN
for border surveillance, using the k-set randomized scheduling algorithm.

Due to the undecidable nature of higher-order logic, the development of the detection properties consumed
approximately about 260 man hours and 2400 lines of code. On the other hand, the formal analysis of our
application took only 400 lines of HOL code for the verification of Lemmas 5.1, 5.2, 5.7 and 5.8. Whereas,
the proofs of the monotonicity of the detection delay versus the two parameters n and k in Lemmas 5.3
and 5.9 have been quite tedious and long, and took at their own 1500 lines of HOL code. Indeed, given
the complexity of the mathematical expressions of the detection delay, the HOL analysis of these 2 lemmas
was requiring a lot of real reasoning on the convergence of series and the properties of infinite sums. More
specifically, to prove lemma 5.3, we have been obliged to consider another mathematical solution since the
initial paper-and-pencil proof [XCW+10] includes some mathematical aspects which were not available in
the HOL theories. In addition, looking for the range from which the detection delay starts to be decreasing
versus n, was somewhere tricky. Regarding the proof of Lemma 5.9, it has been based on computing the
derivative of the corresponding real functions and applying the mean value theorem. Similarly, the proofs
of Lemmas 5.13 and 5.14 have been quite lengthy consuming in total 600 lines of HOL code. Indeed, as
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we previously mentioned, these proofs required the mathematical theorem lim
k→+∞

(1 + x
k
)k = ex, which was

missing in HOL. The latter is based on a lot of real analysis associated to the definition of the exponential
function as a power series and many properties related to the sequences convergence.

Thanks to the sound support of the probability theory [MHT11] available within the HOL theorem prover,
we have been able to provide an accurate formalization of the detection performance of the k-set randomized
scheduling through an appropriate modelling of its inherent randomness. Based on the discussion, given in
Section 2 of this paper, it is clear that other analysis techniques can never have this efficiency. Indeed, previous
simulation works are mainly based on pseudo-random modelling. Similarly, compared to probabilistic model
checkers, a major novelty provided in this paper is the ability to perform formal and accurate reasoning
about statistical properties of the problem. Hence, it was possible to verify the detection delay as a statistical
measure. Moreover, the generic nature of theorem proving and the high expressibility of higher-order logic,
allows us to set up theorems for any values for the number of nodes n, the number of disjoint subsets k, the
success probability q, the intrusion period L, and the scheduling time slot T . Obviously, such generality can
never be achieved by simulation and model checking. Finally, because missing a critical assumption can lead
to verification failure within the theorem prover, the current approach is distinguishable by its completeness
regarding the minimum set of assumptions.

On the other hand, the formal performance analysis of the detection behavior of the border surveillance
application distinctly show the usefulness of the theoretical higher-order-logic developments. Furthermore,
such verification enables reliable asymptotic reasoning of the deployed WSN. For example, the missing term
in the proof of Lemma 5.9 clearly highlights the main strength of formal methods guaranteeing accurate and
complete results. It is also important to note that the presented application is a simple case study illustrating
the feasibility, but these results can be valuable for any other WSN application as well.

The above mentioned additional benefits, associated with the theorem proving approach, are attained at
the cost of the time and effort spent, while formalizing the randomized scheduling algorithm and formally
reasoning about its detection properties, by the user. We believe that the main challenge incurred in our
work was to map a probabilistic model of a real WSN algorithm [XCW+10, LWXS06], which is far from
a pure mathematical problem, into higher-order logic. Indeed, many difficulties were faced in this work.
The mathematical modelling of real-world systems is commonly very intuitive. The initial theoretical model
[XCW+10, LWXS06] hence included many hidden steps with few attached explanations either when consid-
ering the random variables or when applying the probability rules. We have thus to reason correctly about
all missing steps so that we can first understand the flow of the theoretical analysis, and achieve then the
higher-order-logic formalizations of the detection attributes. At this stage, a good background on probability
and a solid knowledge of the WSN context is usually required for a deep understanding of the probabilistic
reasoning. Additionally, the assumptions of the original model are never presented exhaustively, whereas, a
complete set is essential for a successful verification. Nevertheless, the fact that we were building on top of
already verified probability theory related results helped significantly to keep the amount of proof efforts
reasonable.

7. Conclusions

This paper presents an approach for the formal analysis of the detection performances of wireless sensor
networks using the k-set randomized scheduling to preserve energy. In particular, we formalized the notions
of intrusion period, detection probability and delay using the measure theoretic formalization of probabil-
ity theory in the HOL theorem prover. This formalization allows to formally verify the detection related
characteristics of most WSNs using the k-set randomized scheduling. In order to illustrate the practical ef-
fectiveness of our foundational results, we utilize them to perform the formal probabilistic analysis of a WSN
application for border surveillance. The obtained results are exhaustive and completely generic, i.e., valid for
all parameter values; a result which cannot be attained in simulation or probabilistic model checking based
approach. Moreover, unlike most of the existing work that focuses on the validation of the functional aspects
of WSN algorithms, our work is distinguishable by addressing the performance aspects. Finally, the proposed
approach described in this paper can be generalized to tackle the formal analysis of the same randomized
scheduling under other assumptions, or even other probabilistic problems in the WSN context. Indeed, the
presented formalizations can be valuable for formally verify the same algorithm with, for example, a modified
shape of the intrusion object [XZP+09]. In addition, the higher-order-logic formalizations of some common
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random variables such as Bernoulli or Binomial can be very useful for the formal analysis of any probabilistic
analysis problem.

This work lays also an interesting foundation for our future work on the higher-order-logic formalization of
the lifetime properties of WSNs using the k-set randomized scheduling. Similarly, once the formal reasoning
support of the lifetime aspect is developed in the HOL theorem prover, the performance of other interesting
WSN applications, such as underwater monitoring, can also be formally analyzed.
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