
E C O L E
P O L Y T E C H N I Q U E

D E T U N I S I E

MEMOIRE DE MASTERE SERC

Option: Communication et électronique

Réalisé par

Mouna BAKLOUTI

Etude des modèles haut niveau d’architectures
logicielles/matérielles pour la conception et
l’évaluation des systèmes multiprocesseurs

monopuces

Préparé au: Laboratoire TIMA – Groupe SLS

Jury: M. Adel GHAZEL – Maître de Conférences à SUPCOM (Président)
 M. Abderrazek JEMAI – Maître-assistant à l’INSAT (Membre)
 M. Adel BENZINA – Maître-assistant à l’EPT (Encadrant)
 M. Ahmed Amine JERRAYA – Directeur de Recherche TIMA (Invité)

Année universitaire 2006/2007

EPT TIMA

Mémoire de Mastère - 2-

A ma mère et A ma mère et A ma mère et A ma mère et mmmmon on on on p p p pèreèreèreère,,,,

A mes deux sœurs,A mes deux sœurs,A mes deux sœurs,A mes deux sœurs,
A tous ceux qui me sont chers.A tous ceux qui me sont chers.A tous ceux qui me sont chers.A tous ceux qui me sont chers.

EPT TIMA

Mémoire de Mastère - 3-

RemerciementsRemerciementsRemerciementsRemerciements

Au terme de ce travail, je tiens tout d’abord à remercier

chaleureusement les membres du jury: Mr. Adel GHAZEL, Maître de

conférences à SUPCOM, de m’avoir fait l’honneur de présider le jury de mon

mémoire de mastère, Mr. Abderrazek JEMAI, Maître-assistant à l’INSAT,

d’avoir participé au jury et Mr Adel BENZINA, Maître-assistant à l’Ecole

Polytechnique de Tunisie, qui m’a encadré tout au long de ce mémoire.

Je voudrais adresser de même mes sincères remerciements à mes deux

autres encadrants: Mr Ahmed Amine JERRAYA, directeur de recherche au

CNRS et qui était responsable du groupe SLS du laboratoire TIMA, de

m’avoir accueilli dans le groupe et d’avoir encadré ce travail de mastère et Mr

Aimen BOUCHHIMA, Docteur en Post-Doc au laboratoire TIMA, de m’avoir

guidé et orienté dans mon travail, je les remercie aussi pour leurs conseils

pertinents.

J’exprime finalement ma gratitude à tous ceux qui m’ont aidé et soutenu

durant ce stage de recherche; et j’exprime ma profonde reconnaissance à tous

mes collègues et à tous les membres de l’équipe SLS pour leur active

collaboration et pour leur sympathie.

EPT TIMA

Mémoire de Mastère - 4-

RRRRéééésumsumsumsuméééé

Dans les systèmes embarqués, le logiciel prend une place de plus en plus

importante, et sa complexité augmente d’autant. Ces systèmes étant très

largement utilisés dans les applications récentes, il est important de pouvoir les

développer rapidement.

L’accroissement de la complexité de ces systèmes fait de la maîtrise de leurs

conceptions un défi à relever par les concepteurs.

En effet, la tendance à améliorer la productivité et réduire le temps de mise sur

le marché (time-to-market), fait que le niveau transfert de registres (RTL)
devient insatisfaisant pour la conception et le flot de vérification.

Pour dépasser ce défi, les nouvelles méthodes de conception sont basées sur des

concepts d’abstraction de haut niveau. Une voie pour surmonter la complexité

consiste donc à élever le plus possible le niveau d’abstraction des descriptions

des systèmes à concevoir, à savoir le niveau de modélisation transactionnel

(TLM).

Dans ce travail, nous proposons d’étendre le niveau TLM — vu comme le haut

niveau d’abstraction du niveau RTL — pour faciliter la conception et la

validation du logiciel embarqué.

Nous visons à présenter les nouveaux concepts du TLM conçu pour le logiciel

(SW TLMSW TLMSW TLMSW TLM) permettant le raffinement de la communication logicielle.

La méthodologie proposée permet aux concepteurs de décider conjointement à

propos de l’architecture logicielle ainsi que matérielle, afin d’assurer une

performance maximale dans leurs conceptions. Ainsi, l’hétérogénéité des

systèmes multiprocesseurs monopuces serait considérée plus efficacement de

point de vue communication.

Le premier chapitre de ce document présentera brièvement notre travail.

Le deuxième chapitre abordera quelques généralités sur la conception des

systèmes multiprocesseurs monopuces et présentera le flot de conception et de

validation des systèmes hétérogènes monopuces proposé par le groupe SLS sur

lequel nous avons travaillé.

Plus spécifiquement, le niveau auquel nous nous sommes intéressés est le

niveau Architecture Virtuelle qui sera décrit dans le troisième chapitre. A ce

stade, un nouveau flot de conception sera présenté parallèlement à la

EPT TIMA

Mémoire de Mastère - 5-

description de la nouvelle méthodologie SW TLM. Son implémentation ainsi

que ses différents concepts de base seront détaillés dans le chapitre d’après.

Le cinquième chapitre présentera la validation de ces concepts sur l’application

MJPEG. Le dernier chapitre conclura et soulignera des perspectives de ce

travail.

Mots clésMots clésMots clésMots clés
Systèmes multiprocesseurs monopuces, logiciel embarqué, flot de conception,

niveaux d’abstraction, Architecture Virtuelle, niveau de modélisation

transactionnel TLM, SW TLM.

EPT TIMA

Mémoire de Mastère - 6-

AbstractAbstractAbstractAbstract

Embedded software takes an important place in embedded systems and its

complexity increases more and more. These systems are largely used in recent

applications so it is important to be able to develop them quickly.

With the increasing complexity of embedded systems, mastering their designs

is a challenge faced by the designers.

Indeed, the tendency to improve the productivity and to reduce the time to

market makes Register Transfer Level (RTL) insufficient for the design and

verification flow.

To deal with this challenge, the new design methods are based on high-level

abstraction concepts. So, one way to overcome complexity consists at raising

the abstraction level when designing embedded systems; the transactional level

modeling TLM is emerging.

In this work, we propose to extend TLM approach — initially intended as a

higher level abstraction of RTL hardware design — to cope with embedded

software (SW) design and validation. We aim at introducing new SW TLM

concepts which will enable refinement of communication at the SW side.

The proposed methodology allows system designers to decide about HW and

SW communication architecture jointly, so as to ensure maximum performance

efficiency for their designs. As such, multiprocessor systems on chip (MPSoC)

heterogeneity would be addressed more efficiently from communication

viewpoint.

The first chapter will briefly present our work. The second chapter will give a

general overview of MPSoC design flow and will present the design and

validation flow proposed by the SLS group. More specifically, we concentrate

on Virtual Architecture level which will be described in the third chapter. At

this stage, a typical design flow involving the VA level will be presented and

the new SW TLM methodology will be described. Its implementation as well

as its basic concepts will be detailed in the following chapter.

The fifth chapter will present the validation of these concepts on an MJPEG

application. The final chapter will conclude and give prospects to this work.

EPT TIMA

Mémoire de Mastère - 7-

Key wordsKey wordsKey wordsKey words
MPSoC, embedded software design, design flow, abstraction levels, Virtual

Architecture, Transaction Level Modeling, SW TLM.

EPT TIMA

Mémoire de Mastère - 8-

Table des matiTable des matiTable des matiTable des matièèèèresresresres

Chapitre Chapitre Chapitre Chapitre 1111
Introduction Introduction Introduction Introduction 11111111
1.1 Contexte: les systèmes multiprocesseurs monopuces 11
1.2 Problématique: la complexité et les difficultés de la conception
des systèmes MPSoC .. 13
1.3 Objectifs et solutions proposées par le groupe TIMA-SLS 14
1.4 Contributions .. 17
1.5 Plan de ce document ... 17

Chapitre Chapitre Chapitre Chapitre 2222
Conception des systConception des systConception des systConception des systèèèèmes multiprocesseurs monopucesmes multiprocesseurs monopucesmes multiprocesseurs monopucesmes multiprocesseurs monopuces 19191919
2.1 Introduction... 19
2.2 Architectures logicielles/matérielles des systèmes multiprocesseurs
monopuces... 19
2.2.1 Architectures matérielles... 20
2.2.2 Architectures logicielles... 21
 2.2.2.1 La couche applicative .. 21
 2.2.2.2 La couche Système d’exploitation-Communication 21
 2.2.2.3 La couche abstraction du matériel (HAL)........................... 21
2.3 Niveaux de modélisation ... 24
2.3.1 Niveau RTL .. 25
2.3.2 Niveau TLM.. 25
2.4 Discontinuités du flot classique ... 26
2.5 Nouveau flot de conception proposé dans le groupe TIMA-SLS 27
2.5.1 Présentation du flot de conception du groupe SLS............... 28
2.5.2 Description des niveaux intermédiaires du flot..................... 28
2.6 Conclusion ... 30

Chapitre Chapitre Chapitre Chapitre 3333
Niveau ANiveau ANiveau ANiveau Architecture Virtuellerchitecture Virtuellerchitecture Virtuellerchitecture Virtuelle 31313131
3.1 Introduction... 31
3.2 Définition du niveau Architecture Virtuelle................................ 31
3.3 Vue d’ensemble d’un système au niveau V.A............................. 35
3.4 Concepts de base du TLM pour le matériel................................ 38
3.4.1 Méthodologie TLM.. 38
3.4.2 Les niveaux TLM PV et PVT .. 40
3.5 Concepts de base du TLM pour le logiciel.................................. 42
3.5.1 Description des composants SW TLM.................................. 42
3.5.2 Structure du SW TLM.. 43
3.6 Conclusion ... 44

EPT TIMA

Mémoire de Mastère - 9-

Chapitre Chapitre Chapitre Chapitre 4444
ImplImplImplImpléééémentation (SW TLM)mentation (SW TLM)mentation (SW TLM)mentation (SW TLM) 46464646
4.1 Introduction... 46
4.2 Choix du langage... 46
4.3 Implémentation du TLM pour le logiciel (SW TLM)................. 47
4.3.1 Hiérarchie du SW TLM .. 47
4.3.2 Les interfaces de base.. 49
4.4 Conclusion ... 54

Chapitre Chapitre Chapitre Chapitre 5555
Etude de cas: Application du SW TLM sur lEtude de cas: Application du SW TLM sur lEtude de cas: Application du SW TLM sur lEtude de cas: Application du SW TLM sur l’application MJPEGapplication MJPEGapplication MJPEGapplication MJPEG 55555555
5.1 Introduction... 55
5.2 Description de l’application MJPEG .. 55
5.2.1 L’application MJPEG ... 55
5.2.2 Partitionnement logiciel/matériel ... 57
5.3 Architecture de l’application MJPEG au niveau V.A 57
5.4 Analyse expérimentale... 61
5.5 Conclusion ... 64

Chapitre Chapitre Chapitre Chapitre 6666
ConclusionConclusionConclusionConclusion 65656565

GlossaireGlossaireGlossaireGlossaire 66667777

RRRRééééfffféééérencesrencesrencesrences 66669999

EPT TIMA

Mémoire de Mastère - 10-

ListeListeListeListe des figures des figures des figures des figures

1.1 Répartition du nombre et du type de processeurs dans les
systèmes actuels.. 12
1.2 Niveaux de validation de l’interface logicielle/matérielle............ 15
1.3 Flot de conception proposé par le groupe SLS............................ 16

2.1 Architectures matérielles ... 20
2.2 Architecture logicielle .. 21
2.3 Etapes et modèle d’un flot de conception classique 26
2.4 Flot de conception détaillé proposé par le groupe TIMA-SLS.... 28

3.1 Modèle de simulation au niveau V. A... 32
3.2 Niveau Architecture Virtuelle ... 33
3.3 Flot de conception typique comportant le niveau V.A............... 34
3.4 Modèle conceptuel de l’Architecture Virtuelle 36
3.5 Architecture TLM ... 40
3.6 Les couches TLM .. 40
3.7 Les composants SW TLM ... 42
3.8 Architecture en couches de la communication logicielle 44

4.1 Les couches du SW TLM .. 48
4.2 Hiérarchie de classe du bus logiciel ... 53

5.1 Graphe de tâches de l’application MJPEG................................. 56
5.2 Partitionnement logiciel/matériel de l’application MJPEG........ 57
5.3 Modèle MJPEG au niveau Architecture Virtuelle 59

Liste des tableauxListe des tableauxListe des tableauxListe des tableaux

5.1 Résultats comparatifs de la simulation aux différents niveaux
d’abstraction ... 62

EPT TIMA

Mémoire de Mastère - 11-

Chapitre Chapitre Chapitre Chapitre 1111

IntroductionIntroductionIntroductionIntroduction

Ce chapitre a pour but de situer le travail de ce mémoire. Pour ce faire, il

définit dans une première section les systèmes multiprocesseurs monopuces.

Dans la deuxième section, la problématique est exposée. Dans la troisième

section, sont présentés les objectifs à atteindre ainsi que les solutions apportées

par le groupe SLS pour faire face à ces problèmes.

Notre contribution apportée par ce mémoire sera détaillée dans la section

suivante. Enfin, le plan du document sera détaillé.

1111....1111 Contexte: les systèmes multiprocesseurs monopuceContexte: les systèmes multiprocesseurs monopuceContexte: les systèmes multiprocesseurs monopuceContexte: les systèmes multiprocesseurs monopucessss

Ce travail s’inscrit dans le domaine de la conception des systèmes embarqués

multiprocesseurs monopuces, plus communément appelés MPSoC1.

Les progrès technologiques constants en terme d’intégration sur silicium ont

permis de concevoir des systèmes sur puces de plus en plus complexes afin de

répondre à une demande forte du marché pour des applications telles que les

systèmes multimédia, la téléphonie mobile ou encore les applications de jeux

vidéo. On a ainsi vu naître une nouvelle catégorie de systèmes ces dernières

années, incluant un ou plusieurs processeurs, des composants dédiés et des

modules d’entrée-sortie, le tout sur une seule puce. Ces systèmes sont appelés

Systèmes sur Puce, ou System-on-a-Chip (SoC) en anglais. Une grande partie
de ces systèmes consistent en l’intégration sur une même puce de plusieurs

processeurs, DSP, IP matériel, mémoires, bus partagés, etc. On parle alors de

systèmes multiprocesseurs monopuces (MPSoC). Ces systèmes sont réalisés en

interconnectant des noeuds de calcul avec un réseau de communication.

Pour faire face à la complexité de tels systèmes, des méthodes de conception

permettant le découplage de la communication et du calcul ont été proposées

[14] [27]. La communication prend d’ailleurs une place de plus en plus

importante dans la conception de tels systèmes [16].

La conception des systèmes sur puce doit faire face à de nombreuses

contraintes de performance, de consommation et de coût, pour lesquelles

1 Multi Processor System on Chip

EPT TIMA

Mémoire de Mastère - 12-

actuellement, seules des plateformes spécifiques2 à chaque application peuvent

répondre [1].

De plus, l’augmentation des performances par la fréquence ou par les

techniques « classiques » (pipeline, prédiction de branchement,...) ne sont plus

significatives en terme de performance et induisent une consommation

inacceptable [24]. Une solution pour répondre aux problèmes de performance et

de consommation consiste à augmenter le parallélisme dans les systèmes par

l’intégration de plusieurs processeurs de type hétérogènes3 afin de cibler au

mieux les applications.

En 2001, les systèmes de prévisions stratégiques du rapport ITRS [12]

prévoyaient que 70% des ASIC (Application Specific Integrated Circuit)
comporteraient au moins un processeur embarqué à partir de l’année 2005.

Aujourd'hui, les SoC peuvent intégrer de nombreux processeurs et cette

tendance est confirmée par le rapport ITRS 2005 [13].

Les figures 1.1(a) et 1.1(b) tirées de [15] montrent que près d’un système sur

deux est un système multiprocesseur et que pour une partie importante d’entre

eux il s’agit de processeurs hétérogènes.

(a) Type de processeur

(b) Nombre de processeurs

Figure 1.1 - Répartition du nombre et du type de processeurs dans les systèmes actuels

Il est prévu que ces systèmes monopuces soient les principaux vecteurs

d’orientation de toute l’industrie des semi-conducteurs. Il est donc crucial de

maîtriser la conception de tels systèmes tout en respectant les contraintes de

mise sur le marché et les objectifs de qualité.

Le grand défi en ce moment pour les ingénieurs est de réussir à maîtriser la

complexité lors de la conception de ces systèmes et d’arriver à une conception

2 Par rapport aux plateformes à usage générale
3 Processeurs à usage général, processeurs de traitement de signal, ...

EPT TIMA

Mémoire de Mastère - 13-

rapide des systèmes monopuces sous de fortes contraintes de qualité et de

temps de développement.

Pour dépasser ce défi, les nouvelles méthodes de conception sont basées sur des

concepts d’abstraction de haut niveau.

1111....2222 ProblématiqueProblématiqueProblématiqueProblématique: la complexité et les difficultés de la : la complexité et les difficultés de la : la complexité et les difficultés de la : la complexité et les difficultés de la
conception des systèmes MPSoCconception des systèmes MPSoCconception des systèmes MPSoCconception des systèmes MPSoC

Habituellement, les flots de conception des systèmes embarqués utilisent

principalement le modèle RTL (Register Transfer Level) pour modéliser le

système au niveau des transferts de registres.

Ainsi, à ce niveau d’abstraction, nous devons modéliser tous les signaux

passant entre les différentes entités de simulation. Ce niveau est temporisé au

cycle d’horloge près. C’est pourquoi les simulations matérielles effectuées au

niveau RTL sont relativement longues, ce qui peut allonger le temps de

conception du système.

En plus, un modèle global d’une architecture classique logicielle/matérielle est

conventionnellement décrit au niveau RTL/ISA4. A ce niveau, le logiciel n’est

autre qu’une suite d’instructions binaires placée dans une zone mémoire. Le

matériel est décrit en utilisant un langage de description de matériel (HDL5).

Ceci inclut l’architecture locale du nœud logiciel (processeur, mémoire,

périphériques, etc.) mais aussi les autres parties du système. A ce niveau le

processeur est considéré comme l’interface ultime entre le logiciel et le matériel.

Il fournit d’un côté au programmeur une vision au niveau ISA de la machine.

De l’autre côté, il interagit avec le reste des composants de l’architecture

matérielle via des signaux physiques (bus d’adresses, bus de données, signaux

de contrôle, signaux d’interruptions, etc.) Cette vision de l’architecture n’est

donc valable qu’une fois les deux parties logicielle et matérielle entièrement

conçues, c’est-à-dire vers la fin du cycle de conception.

Vu le niveau d’abstraction employé, la vitesse de simulation reste très réduite

et constitue ainsi une barrière empêchant l’exploration et la validation des

applications les plus exigeantes.

De même, nous notons l’absence de méthodologie et d’outils permettant une

transition non brutale de la spécification initiale à l’architecture finale.

4 Instruction Set Architecture
5 Hardware Description language

EPT TIMA

Mémoire de Mastère - 14-

Pour faire face à ces défis, la modélisation au niveau transactionnel (TLM) a

été récemment favorisée pour la conception matérielle parallèlement à une

proposition de nouveau flot de conception graduel.

En effet, une solution suggérée est l’augmentation du niveau d’abstraction des

modèles pour améliorer la productivité.

Bien que l’ultime objectif du TLM est de permettre le développement tôt du

logiciel embarqué ainsi que de paralléliser le développement du matériel et du

logiciel dans le cycle de conception des systèmes sur puce, aucune modélisation

TLM n’a été définie pour le logiciel.

Dans les applications TLM classiques, le logiciel est considéré au niveau

fonctionnel ou bien complètement raffiné et simulé à un très bas niveau

d’abstraction sur un simulateur de jeux d’instructions (ISS: Instruction Set
Simulator) concurremment avec des simulations matérielles, au niveau

transaction ou au niveau cycle.

De même, l’évaluation des sous systèmes logiciels embarqués, tôt dans les

étapes de conception n’est plus faisable en employant les approches

traditionnelles de simulation, précises au niveau cycle. Le problème vient de la

vitesse lente de simulation de l’ISS.

Pour une simulation plus rapide, nous avons pensé à un niveau transactionnel

pour le logiciel similaire à celui pour le matériel, ceci sera considéré à un haut

niveau d’abstraction. D’où les composants aussi bien logiciels que matériels

seront modélisés avec un modèle unique afin d’aborder la conception du

système dans une seule et même approche cohérente.

1111....3333 Objectifs et sObjectifs et sObjectifs et sObjectifs et solutions proposéeolutions proposéeolutions proposéeolutions proposées par le groupe s par le groupe s par le groupe s par le groupe
TIMATIMATIMATIMA----SLS SLS SLS SLS

Le groupe SLS s’est focalisé sur la conception conjointe du logiciel et du

matériel afin de résoudre les problèmes soulevés dans les paragraphes

précédents. Cette conception se base sur un raffinement graduel à différents

niveaux d’abstraction.

La Figure 1.2 montre les deux niveaux intermédiaires proposés dans le flot de

conception des SoC à savoir Virtual Architecture (niveau OS du côté logiciel)
et Transaction Accurate (niveau HAL du côté logiciel).

EPT TIMA

Mémoire de Mastère - 15-

Les traits continus forts correspondent au cas classiques de co-simulation6

logicielle/matérielle tels que proposés par les approches conventionnelles.

Remarquons que ces approches se basent exclusivement sur le niveau ISA du

côté du logiciel. L’utilisation des niveaux TLM pour le matériel est assez

récente. Historiquement c’est le niveau RTL qui était utilisé comme niveau de

référence pour la co-simulation logicielle/matérielle à côté du niveau ISA.

Figure 1.2 — Niveaux de validation de l’interface logicielle/matérielle

L’utilisation d’un modèle à base d’ISS pour la co-simulation

logicielle/matérielle présente toujours l’inconvénient d’intervenir tard dans le

cycle de conception, c’est à dire une fois l’architecture logicielle et matérielle

du système est fixée et complètement développée. Le besoin croissant de

pouvoir effectuer la validation et l’exploration des choix architecturaux plus

tôt dans le cycle de conception, a récemment poussé vers la mise au point

d’approches qualifiées de « systèmes » -ou encore de « haut niveau »-

permettant la co-simulation d’un système logiciel/matériel tôt dans le cycle de

conception.

Donc, pour remédier à la discontinuité observée dans les flots classiques de

conception et de validation des systèmes MPSoC, le groupe SLS a introduit les

concepts de Virtual Architecture et de Transaction Accurate comme étant des

étapes intermédiaires dans le flot de conception permettant la validation, par

co-simulation globale, des choix architecturaux résultant du raffinement

graduel du système.

Pour bénéficier de l’avantage d’une simulation rapide à ces niveaux

intermédiaires, nous utilisons l’exécution native comme mode d’exécution du

logiciel embarqué.

6 Simuler conjointement les diverses parties d’un système hétérogène

TLM
message

TLM
transaction

RTL

Fonctionnel

OS

HAL

ISA

Matériel logiciel

Fonctionnel

TLM
message

TLM
transaction

RTL

Fonctionnel

OS

HAL

ISA

Matériel logiciel

Fonctionnel

EPT TIMA

Mémoire de Mastère - 16-

La Figure 1.3 donne une vision simplifiée du flot de conception proposé par le

groupe SLS :

Figure 1.3 — Flot de conception proposé par le groupe SLS

Ce flot débute au niveau fonctionnel après que le partitionnement

logiciel/matériel ait été décidé. Il se termine au niveau micro-architecture

(RTL), où une étape classique de compilation et de synthèse logique permet

d’aboutir à la réalisation finale du système. C’est un flot descendant qui

permet de simuler à tous les niveaux et éventuellement de revenir en arrière à

chaque étape.

Dans ce flot, l’architecture virtuelle résulte d’une première étape de

partitionnement de la spécification fonctionnelle initiale. Le partitionnement

sépare les parties qui seront implémentées de façon matérielle de celles qui

seront implémentées de façon logicielle.

La deuxième étape du flot correspond au raffinement de l’architecture virtuelle

en utilisant un modèle plus détaillé de l’architecture: Transaction Accurate.
Cette étape est caractérisée par la spécification de la nature du protocole de

communication entre les sous-systèmes ainsi que du modèle abstrait de

l’architecture locale au niveau de chaque sous-système.

SystemC
(fonctionnel)

partitionnement

SystemC
(arch. virtuelle)

Application

SystemC
(prototype

virtuel)

Application

SystemC
(micro-

architecture)

Raffinement
arch globale

Raffinement
arch locale

OS

Application

OS

HAL

API OS

API HAL

Cosimulation

Cosimulation

Cosimulation

SystemC
(fonctionnel)

partitionnement

SystemC
(arch. virtuelle)

Application

SystemC

(Transaction
Accurate)

Application

SystemC
(micro-

architecture)

Raffinement
arch globale

Raffinement
arch locale

OS

Application

OS

HAL

API OS

API HAL

CosimulationCosimulation

CosimulationCosimulation

CosimulationCosimulation

SystemC
(fonctionnel)

partitionnement

SystemC
(arch. virtuelle)

Application

SystemC
(prototype

virtuel)

Application

SystemC
(micro-

architecture)

Raffinement
arch globale

Raffinement
arch locale

OS

Application

OS

HAL

API OS

API HAL

CosimulationCosimulation

CosimulationCosimulation

CosimulationCosimulation

SystemC
(fonctionnel)

partitionnement

SystemC
(arch. virtuelle)

Application

SystemC

(Transaction
Accurate)

Application

SystemC
(micro-

architecture)

Raffinement
arch globale

Raffinement
arch locale

OS

Application

OS

HAL

API OS

API HAL

CosimulationCosimulation

CosimulationCosimulation

CosimulationCosimulation

EPT TIMA

Mémoire de Mastère - 17-

Le groupe SLS s’est intéressé aussi à la génération automatique des interfaces

logicielles/matérielles.

1111....4444 CCCContributionontributionontributionontributionssss

Durant ce travail, nous avons contribué à la définition des niveaux de

conception intermédiaires notamment Virtual Architecture et Transaction
Accurate proposés par le groupe TIMA-SLS.

Plus précisément, nos travaux au niveau T.A [20] consistaient à prouver

l’intérêt et la faisabilité d’une estimation de performance des systèmes en

utilisant ce modèle haut niveau de l’architecture logicielle/matérielle.

Nous avons aussi essayé d’adapter le niveau T.A au niveau TLM de ST-

Microelectronics.

Nos travaux au niveau V.A qui est un niveau plus abstrait que T.A consistent

à valider l’application logicielle sur un modèle de simulation du système

d’exploitation et de l’architecture. En effet, nous avons proposé un modèle

d’extension pour le niveau V.A.

Nous voulons pour cela étendre le niveau TLM pour supporter non seulement

la partie matérielle mais également la conception et la validation du logiciel

embarqué.

La contribution attendue est de proposer alors une méthode permettant

d’unifier la présentation du logiciel embarqué. Fort de ce contexte unifié de

modélisation, la conception du logiciel embarqué et de l’architecture sous

jacente pourra alors se dérouler en parallèle et d’une manière interactive.

Nous proposons par la suite un modèle transactionnel pour le logiciel embarqué

au niveau V.A basé sur TLM OSCI7. Les propriétés de ce modèle permettent

d’unifier la représentation des composants logiciels et matériels.

L’objectif général à terme étant de développer un environnement complet de

simulation d’architectures MPSoC au niveau TLM, basé sur SystemC.

1111....5555 PPPPlan de ce documentlan de ce documentlan de ce documentlan de ce document

Ce document est organisé en six chapitres dont cette introduction.

7 Open SystemC Initiative

EPT TIMA

Mémoire de Mastère - 18-

Le second chapitre est dédié à la conception des systèmes MPSoC et pause de

manière plus précise la problématique et les objectifs de ce travail.

Le chapitre trois définit le niveau d’abstraction intermédiaire: Architecture

Virtuelle et présente alors un flot de conception typique introduisant ce niveau.

A ce stade, nous expliquons le raffinement de la communication logicielle et

nous définissons la terminologie TLM pour le logiciel « SW TLMSW TLMSW TLMSW TLM ».

Le chapitre quatre détaille différents aspects nécessaires pour l’implémentation

du SW TLM.

Une application de l’approche est ensuite présentée dans le chapitre cinq.

Finalement, le dernier chapitre conclut ce document et propose quelques

perspectives potentielles à ce travail.

EPT TIMA

Mémoire de Mastère - 19-

Chapitre Chapitre Chapitre Chapitre 2222

Conception des sysConception des sysConception des sysConception des systtttèèèèmes multiprocesseurs mes multiprocesseurs mes multiprocesseurs mes multiprocesseurs
monopucemonopucemonopucemonopucessss

2222....1111 Introduction Introduction Introduction Introduction

Ce chapitre a pour objet de donner un aperçu de la problématique de la

conception des systèmes MPSoC en examinant les flots de conception

classiques. Il introduit ensuite le flot de conception proposé par le groupe

TIMA SLS.

La première section décrit les architectures logicielles et matérielles des

systèmes multiprocesseurs monopuces. Puis, la section suivante introduit les

niveaux de modélisation notamment RTL et TLM.

2222....2222 ArchiteArchiteArchiteArchitecturescturescturesctures logicielles/matérielles des sys logicielles/matérielles des sys logicielles/matérielles des sys logicielles/matérielles des systèmes tèmes tèmes tèmes
multiprocesseurs monopucemultiprocesseurs monopucemultiprocesseurs monopucemultiprocesseurs monopucessss

Avant de détailler la conception des systèmes multiprocesseurs monopuces, il

est nécessaire de dresser un bref aperçu des architectures multiprocesseurs.

En effet, il existe principalement deux types d’organisations pour les

architectures des systèmes Multiprocesseurs [8]:

• Mémoire partagée: Dans ce type d’organisation, l’architecture matérielle

est en général composée de plusieurs processeurs identiques.

L’application Multithread repose sur une seule pile logicielle. La

communication entre les différents processeurs s’effectue par une

mémoire partagée globale.

• Passage de messages: Cette organisation repose sur plusieurs piles

logicielles s’exécutant sur des sous systèmes hétérogènes, aussi bien en

terme de processeurs, qu’en terme d’entrées/sorties. La communication

entre les sous-systèmes est réalisée par passage de messages.

Afin d’intégrer un plus grand nombre de processeurs, les architectures MPSoC

hétérogènes combinent généralement ces deux modèles [22]. Les futurs MPSoC

hétérogènes seront composés de plusieurs sous-systèmes également hétérogènes,

chacun pouvant contenir un nombre important de processeurs identiques

exécutant une seule pile logicielle [2].

EPT TIMA

Mémoire de Mastère - 20-

2.2.1 Architectures matérielles
L’architecture matérielle des systèmes multiprocesseurs monopuces peut être

représentée d’une manière générale par un ensemble d’unités d’exécution

pouvant être logicielles ou matérielles connectées sur un réseau de

communication (Figure 2.1(a)). On parlera de nœud logiciel ou de nœud

matériel.

L’architecture matérielle des systèmes MPSoC peut être décomposée en quatre

blocs de base: (1) processeur ou sous-système processeur pour exécuter le

logiciel, (2) modules mémoires ou unités de stockage de données, (3) sous-

système de calcul composé de matériel spécifique et (4) un réseau

d’interconnexion. Il y a eu un développement et une sophistication continus de

chacun de ces blocs de base, mais c’est surtout leur arrangement qui différencie

un système MPSoC d’un autre.

Un problème important auquel font face ces architectures concerne la

communication qui désormais constitue un goulet d’étranglement vu la

quantité importante d’informations qui doit être échangée entre les différents

composants de l’architecture.

La communication peut être assurée par des réseaux de communication

complexes (bus hiérarchiques, bus avec protocole TDMA, connexion point à

point, structure en anneau et même des réseaux de communication par

paquets). On trouve aussi les réseaux de communication sur puce (NoC de

l’anglais Network on Chip) qui constituent une alternative radicale aux bus

partagés.

L’architecture matérielle d’un nœud logiciel (Figure 2.1 (b)), appelée sous-

système processeur, est composée d’un ou plusieurs processeurs identiques ainsi

que des composants périphériques nécessaires pour leur interfaçage ou pour

l’accélération de performance.

Nœud
Matériel

Interface réseau

Nœud
Logiciel

Interface réseau

Nœud
Logiciel

Interface réseau

Réseau de communication

Nœud
Matériel

Interface réseau

Nœud
Logiciel

Interface réseau

Nœud
Logiciel

Interface réseau

Réseau de communication

CPUCPUCPU CPUCPUMem
DMA

bridge Interface
réseau

Accélérateur
matériel

CPUCPUCPU CPUCPUMem
DMA

bridge Interface
réseau

Accélérateur
matériel

 (a) Architecture à réseau sur puce (b) Architecture matérielle d’un nœud logiciel

Figure 2.1 - Architectures matérielles

EPT TIMA

Mémoire de Mastère - 21-

2.2.2 Architectures logicielles
Parallèlement à l’évolution des architectures matérielles des systèmes

monopuces, le logiciel embarqué est passé du simple programme séquentiel,

souvent développé en langage assembleur, à un système concurrent

implémentant un comportement complexe et bénéficiant d’une architecture à

part entière.

Comme dans la plupart des architectures logicielles actuelles, la pile logicielle

utilisée est organisée en couches pour des raisons de standardisation et de

réutilisation.

Figure 2.2 — Architecture logicielle

Chaque couche fournit à la couche supérieure une interface de programmation

propre (API8).

2222....2222....2222....1111 La couche applicative La couche applicative La couche applicative La couche applicative
La couche applicative constitue la partie fonctionnelle du logiciel embarqué. En

effet, le programme applicatif se compose d’un ensemble de tâches

communicantes, réalisant le comportement de l’application tel que décrit dans

la spécification fonctionnelle.

Cette couche est utilisée par le concepteur du logiciel pour représenter son

application sans se préoccuper de l’architecture matérielle.

Généralement Multithread, elle est implémentée sur une API de modèle de

programmation parallèle, permettant d’abstraire les détails de l’architecture

logicielle et matérielle sous-jacentes. Cette séparation est nécessaire pour le

développement du logiciel et du matériel de manière concurrente.

La couche API représente les appels système de haut niveau invoqués par les

tâches logicielles. Ainsi, à ce niveau de description, n’existent que des

informations liées aux traitements à réaliser.

8 Application Programming Interface

HAL

OS COM

HAL

OS COM

Application

HAL

OS COM

HAL

OS COM

Application API OS

API HAL

HAL

OS COM

HAL

OS COM

Application

HAL

OS COM

HAL

OS COM

Application

HAL

OS COM

HAL

OS COM

Application

HAL

OS COM

HAL

OS COM

Application API OS

API HAL

EPT TIMA

Mémoire de Mastère - 22-

2222....2222....2222....2222 La couche Système d’exploitationLa couche Système d’exploitationLa couche Système d’exploitationLa couche Système d’exploitation ---- Communi Communi Communi Communicationcationcationcation
Cette couche permet de gérer localement les ressources disponibles. Ceci inclut

par exemple la gestion des tâches, la communication inter tâches et la

communication externe, l’ordonnancement (Scheduling), etc.
Dans les systèmes embarqués, le système d’exploitation (SE ou OS9) est vu
comme l’entité logicielle qui permet l’accès au matériel en coopération avec le

logiciel applicatif. Son rôle principal est de multiplexer l’accès à des ressources

limitées en fournissant une abstraction adéquate de ces ressources, tout en

garantissant une certaine qualité de service.

L’usage de systèmes d’exploitation est devenu nécessaire dans les systèmes

embarqués, du fait de la complexité croissante de ces systèmes, de la présence

de fortes contraintes temps réel, de la limitation des ressources disponibles,

tant en mémoire qu’en énergie disponible et donc en puissance de calcul, mais

également de la pression exercée par le marché sur ces produits. En effet, le

temps de développement doit être raisonnable, afin de limiter le temps de mise

sur le marché, et ainsi d’assurer le succès du produit. Parmi les exemples des

systèmes d’exploitation embarqués nous citons: QNX, eCos, RTLinux,

VxWorks, etc.

Brièvement, les fonctions de base d’un système d’exploitation sont:

– gestion de tâches et ordonnancement;

– services d’interruption;

– communication inter tâches et synchronisation;

– gestion de mémoire.

Dans notre travail, nous utilisons un modèle de simulation d’OS fait par

l’équipe TIMA-SLS.

Ce modèle se compose de :

APIAPIAPIAPI OS OS OS OS: regroupe tous les services représentant l’API du système

d’exploitation utilisable par l’application logicielle. Cette famille contient trois

sous familles:

– IO (Input/Output): regroupe tous les services liés aux communications

utilisables par l’application logicielle (par exemple le tube (pipe));
– Synchronisation: regroupe tous les services liés aux synchronisations

utilisables par l’application logicielle (par exemple les sémaphores);

– Autres services de haut niveau.

9 Operating System

EPT TIMA

Mémoire de Mastère - 23-

Noyau (Noyau (Noyau (Noyau (KernelKernelKernelKernel)))): regroupe tous les services concernant le noyau du système

d’exploitation. Il contient les sous familles suivantes:

– L’amorce (Boot): regroupe tous les services liés au démarrage du système

d’exploitation. Cette sous-famille initialise les registres des processeurs, la

table des vecteurs d’interruptions, les espaces de piles, l’espace d’adressage,

etc. Elle charge le noyau en mémoire;

– Changement de contexte (Cxt): regroupe tous les services liés à la gestion
des contextes associés aux tâches. Les éléments fournissant ces services sont

toujours spécifiques au processeur cible;

– Ordonnanceur (Scheduler): regroupe tous les services liés à

l’ordonnancement des tâches. Pour cela il utilise un algorithme de gestion,

généralement par priorité ou tourniquet10, et gère l’ordre d’exécution des

tâches (par exemple la mise en sommeil ou le réveil d’une tâche);

– Tâche (Task): regroupe tous les services liés à la gestion des tâches. En
pratique, cette famille de services fait le lien entre les autres sous-familles de

la famille Noyau (Kernel). Elle décrit la structure de la tâche et contient les
tables de tâches.

SynchronisationSynchronisationSynchronisationSynchronisation: regroupe tous les services liés aux mécanismes de

synchronisation internes au système d’exploitation. Le partage des ressources

sur différentes entités concurrentes (par exemple tâches de l’application)

impose une politique de protection qui permet d’assurer la cohérence de

l’information contenue dans ces ressources.

Parmi les primitives de synchronisation nous notons : Wait pour attendre un
signal par exemple et Notify pour en générer un, Block met la tâche courante

dans l’état endormi et la place dans une file d’attente, Unblock réveille une des
tâches endormies dans une file d’attente, etc.

Pour fonctionner, cet élément a besoin des services du Noyau.

Interrupt: Interrupt: Interrupt: Interrupt: regroupe tous les services liés aux interruptions (par exemple la

gestion des fonctions d’interruption, ou des appels système). Ces services ont

besoin des primitives de synchronisation.

10 Chaque processus dispose d’un quantum de temps pendant lequel il peut s’exécuter, puis c’est au
tour du suivant, en anglais Round Robin.

EPT TIMA

Mémoire de Mastère - 24-

Dans cette même couche nous trouvons la partie COM qui gère principalement

la communication de l’application avec le matériel. Ceci est assuré par les

pilotes de périphériques.

Un pilote de périphérique fournit un accès aux E/S et sert à les gérer.

2222....2222....2222....3333 La coucheLa coucheLa coucheLa couche abstraction du matériel (abstraction du matériel (abstraction du matériel (abstraction du matériel (HALHALHALHAL))))
Classiquement, le logiciel embarqué est développé à un niveau d’abstraction

très bas en utilisant souvent le langage assembleur. Pour ce faire, les

programmeurs sont supposés avoir une connaissance très poussée de

l’architecture matérielle sous-jacente dans ses moindres détails. D’un point de

vue du logiciel, cette dépendance étroite vis-à-vis de l’architecture matérielle

présente plusieurs inconvénients: tout d’abord, ceci implique un long cycle

séquentiel de conception, puisque les programmeurs sont obligés d’attendre

qu’une architecture matérielle complète soit disponible.

Cette situation s’aggrave encore plus si des modifications à l’architecture

initiale s’avèrent nécessaires, entraînant la re-conception d’une majeure partie

du logiciel. Ensuite, ceci rend le processus de validation et de débogage du

logiciel fastidieux et induit des erreurs à cause de dépendances matérielles

subtiles. Enfin, à cause de ces mêmes dépendances, la réutilisation de

composants logiciels préconçus se trouve considérablement limitée.

La notion de couche d’abstraction du matériel (HAL11) est introduite pour

palier les inconvénients d’une telle dépendance bas niveau de l’architecture

matérielle [3].

Cette couche permet l’accès structuré aux ressources; et aussi de cacher les

détails bas niveau de l’architecture matérielle. En effet, la couche HAL est une

couche logicielle fine qui est supposée fournir une abstraction de l’accès aux

ressources matérielles de l’architecture.

2222....3333 Niveaux de modélisationNiveaux de modélisationNiveaux de modélisationNiveaux de modélisation

L’étude des niveaux d’abstraction de la communication dans les langages de

description du matériel n’est pas nouvelle. Dans cette section, nous nous

intéressons aux deux niveaux RTL et TLM.

11 Hardware Abstraction Layer

EPT TIMA

Mémoire de Mastère - 25-

2.3.1 Niveau RTL
Le niveau RTL est probablement le niveau d’abstraction le plus utilisé pour la

modélisation des systèmes matériels [23].

Le niveau RTL est clairement identifié. A ce niveau de conception, la

communication interne et externe des composants matériels est réalisée par des

fils et des bus physiques. Les données intervenant dans une communication

sont sous une forme logique, c’est-à-dire qu’elles sont présentées par des

vecteurs de bits.

Dans une communication au niveau RTL, le temps est une grandeur réelle,

arbitraire et discrète. La granularité de l’unité de temps est le cycle d’horloge

et les primitives de communication sont des lectures et écritures sur des ports

et l’attente d’un nouveau cycle d’horloge. Ce niveau d’abstraction est supporté

dans la majorité des langages HDL12 en particulier dans VHDL, Verilog et

SystemC.

Cependant, ce niveau est de plus en plus considéré comme trop détaillé en

approche système. D’une part, il nécessite un travail important pour le décrire

complètement, d’autre part son utilisation pour des vérifications par simulation

conduit à des temps excessifs.

L’introduction d’un niveau plus abstrait que RTL s’avère nécessaire: il s’agit

du niveau TLM.

2.3.2 Niveau TLM
Les modèles transactionnels ont été introduits pour augmenter la productivité

des concepteurs de systèmes sur puce. Il s’agit d’un nouveau niveau

d’abstraction, plus haut que le niveau RTL qui constitue le point d’entrée des

outils de synthèse.

TLM (Transaction Level Model) est progressivement adopté par les industriels

pour modéliser rapidement et simuler à grande vitesse les architectures de

systèmes sur puce (SoC), dans le but notamment de permettre le

développement du logiciel embarqué avant de disposer de la description

synthétisable complète du matériel, et de procéder à des analyses

d’architectures très tôt dans le cycle de conception, ce qui n’était pas possible

au niveau RTL, du fait de la lenteur des simulations et de la complexité des

modèles manipulés.

12 Hardware Description Language

EPT TIMA

Mémoire de Mastère - 26-

TLM utilise une approche à base de composants, dans laquelle les blocs

matériels sont des modules communicants par le biais des transactions, ou les

détails inutiles de communication sont omis. Par suite, il permet d’accélérer la

simulation et explorer les alternatives d’implémentation tôt dans le cycle de

conception (tel que la topologie du bus, les priorités du bus, l’optimisation de

la taille de la mémoire, etc.) [17].

TLM sera plus détaillé dans le chapitre trois.

2222....4444 Discontinuités du flot classiqueDiscontinuités du flot classiqueDiscontinuités du flot classiqueDiscontinuités du flot classique

La Figure 2.3 représente un flot de conception classique pour les systèmes

embarqués monopuces.

Un tel flot est caractérisé par une séparation franche et prématurée entre la

conception de la partie matérielle et de la partie logicielle.

Ce flot débute par une spécification fonctionnelle de l’application dans des

langages haut niveaux, généralement exécutables, tels que SystemC [26] ou

Simulink [21].

Figure 2.3 — Etapes et modèle d’un flot de conception classique

La seconde étape consiste à répartir les différentes tâches entre le matériel et le

logiciel séparant ainsi la conception du système en deux parties complètement

autonomes: une dédiée à l’architecture matérielle et l’autre au logiciel

embarqué qui va s’exécuter sur cette architecture. L’intégration permettra

finalement de regrouper à nouveau les deux parties afin d’obtenir un modèle

bas niveau où le matériel est décrit en RTL et le logiciel au niveau instruction

binaire.

Software Sub -System

Software
Thread 1

Software

Thread 1
Software
Thread 1

Software

Thread 1

HardwareHardware

Software Sub -System

Software
Thread 1

Software

Thread 1
Software
Thread 1

Software

Thread 1

Hardware

Software Sub -System

Software
Thread 1

Software

Thread 1
Software
Thread 1

Software

Thread 1

HardwareHardware

Software Sub -System

Software
Thread 1

Software

Thread 1
Software
Thread 1

Software

Thread 1

HardwareHardware

Binary

SW Appli
Posix OS

HAL

ISS

FIFO

IT Ctrl

MEM

HW

VCI bus

Binary

SW Appli
Posix OS

HAL

ISS

FIFO

IT Ctrl

MEM

HW

VCI bus

Spécification
fonctionnelle

Spécification
fonctionnelle

Partition

nement

Partition

nement

Conception logicielleConception logicielle

Conception matérielleConception matérielle

IntégrationIntégration ISA/RTLISA/RTL

GAPGAP

Séparation totale Séparation totale

entre logiciel et entre logiciel et marérielmatériel

Cycle de correction

Software Sub -System

Software
Thread 1

Software

Thread 1
Software
Thread 1

Software

Thread 1

HardwareHardware

Software Sub -System

Software
Thread 1

Software

Thread 1
Software
Thread 1

Software

Thread 1

Hardware

Software Sub -System

Software
Thread 1

Software

Thread 1
Software
Thread 1

Software

Thread 1

HardwareHardware

Software Sub -System

Software
Thread 1

Software

Thread 1
Software
Thread 1

Software

Thread 1

HardwareHardware

Binary

SW Appli
Posix OS

HAL

ISS

FIFO

IT Ctrl

MEM

HW

VCI bus

Binary

SW Appli
Posix OS

HAL

ISS

FIFO

IT Ctrl

MEM

HW

VCI bus

Spécification
fonctionnelle

Spécification
fonctionnelle

Partition

nement

Partition

nement

Conception logicielleConception logicielle

Conception matérielleConception matérielle

IntégrationIntégration ISA/RTLISA/RTL

GAPGAP

Séparation totale Séparation totale

entre logiciel et entre logiciel et marérielmarériel

Cycle de correction

Hardware

Binary

SW Appli
Posix OS

HAL

ISS

FIFO

IT Ctrl

MEM

HW

VCI bus

Binary

SW Appli
Posix OS

HAL

ISS

FIFO

IT Ctrl

MEM

HW

VCI bus

Spécification
fonctionnelle

Spécification
fonctionnelle

Partition

nement

Partition

nement

Conception logicielleConception logicielle

Conception matérielleConception matérielle

IntégrationIntégration ISA/RTLISA/RTL

GAPGAP

Séparation totale Séparation totale

entre logiciel et entre logiciel et marérielmarériel

Cycle de correction

Niveau Système

Software Sub -System

Software
Thread 1

Software

Thread 1
Software
Thread 1

Software

Thread 1

HardwareHardware

Software Sub -System

Software
Thread 1

Software

Thread 1
Software
Thread 1

Software

Thread 1

HardwareHardware

Software Sub -System

Software
Thread 1

Software

Thread 1
Software
Thread 1

Software

Thread 1

HardwareHardware

Software Sub -System

Software
Thread 1

Software

Thread 1
Software
Thread 1

Software

Thread 1

HardwareHardware

Binary

SW Appli
Posix OS

HAL

ISS

FIFO

IT Ctrl

MEM

HW

VCI bus

Binary

SW Appli
Posix OS

HAL

ISS

FIFO

IT Ctrl

MEM

HW

VCI bus

Spécification
fonctionnelle

Spécification
fonctionnelle

Partition

nement

Partition

nement

Conception logicielleConception logicielle

Conception matérielleConception matérielle

IntégrationIntégration ISA/RTLISA/RTL

GAPGAP

Séparation totale Séparation totale

entre logiciel et entre logiciel et marérielmatériel

Cycle de correction

System.Level.

Niveau Prototype Virtuel

Virtual Prototype

Software Sub -System

Software
Thread 1

Software

Thread 1
Software
Thread 1

Software

Thread 1

HardwareHardware

Software Sub -System

Software
Thread 1

Software

Thread 1
Software
Thread 1

Software

Thread 1

Hardware

Software Sub -System

Software
Thread 1

Software

Thread 1
Software
Thread 1

Software

Thread 1

HardwareHardware

Software Sub -System

Software
Thread 1

Software

Thread 1
Software
Thread 1

Software

Thread 1

Hardware

Software Sub -System

Software
Thread 1

Software

Thread 1
Software
Thread 1

Software

Thread 1

HardwareHardware

Software Sub -System

Software
Thread 1

Software

Thread 1
Software
Thread 1

Software

Thread 1

HardwareHardware

Software Sub -System

Software
Thread 1

Software

Thread 1
Software
Thread 1

Software

Thread 1

HardwareHardware

Software Sub -System

Software
Thread 1

Software

Thread 1
Software
Thread 1

Software

Thread 1

HardwareHardware

Binary

SW Appli
Posix OS

HAL

ISS

FIFO

IT Ctrl

MEM

HW

VCI bus

Binary

SW Appli
Posix OS

HAL

ISS

FIFO

IT Ctrl

MEM

HW

VCI bus

Spécification
fonctionnelle

Spécification
fonctionnelle

Partition

nement

Partition

nement

Conception logicielleConception logicielle

Conception matérielleConception matérielle

IntégrationIntégration ISA/RTLISA/RTL

GAPGAP

Séparation totale Séparation totale

entre logiciel et entre logiciel et marérielmatériel

Cycle de correction

Software Sub -System

Software
Thread 1

Software

Thread 1
Software
Thread 1

Software

Thread 1

HardwareHardware

Software Sub -System

Software
Thread 1

Software

Thread 1
Software
Thread 1

Software

Thread 1

Hardware

Software Sub -System

Software
Thread 1

Software

Thread 1
Software
Thread 1

Software

Thread 1

HardwareHardware

Software Sub -System

Software
Thread 1

Software

Thread 1
Software
Thread 1

Software

Thread 1

HardwareHardware

Binary

SW Appli
Posix OS

HAL

ISS

FIFO

IT Ctrl

MEM

HW

VCI bus

Binary

SW Appli
Posix OS

HAL

ISS

FIFO

IT Ctrl

MEM

HW

VCI bus

Spécification
fonctionnelle

Spécification
fonctionnelle

Partition

nement

Partition

nement

Conception logicielleConception logicielle

Conception matérielleConception matérielle

IntégrationIntégration ISA/RTLISA/RTL

GAPGAP

Séparation totale Séparation totale

entre logiciel et entre logiciel et marérielmarériel

Cycle de correction

Hardware

Binary

SW Appli
Posix OS

HAL

ISS

FIFO

IT Ctrl

MEM

HW

VCI bus

Binary

SW Appli
Posix OS

HAL

ISS

FIFO

IT Ctrl

MEM

HW

VCI bus

Spécification
fonctionnelle

Spécification
fonctionnelle

Partition

nement

Partition

nement

Conception logicielleConception logicielle

Conception matérielleConception matérielle

IntégrationIntégration ISA/RTLISA/RTL

GAPGAP

Séparation totale Séparation totale

entre logiciel et entre logiciel et marérielmarériel

Cycle de correction

Niveau Système

Software Sub -System

Software
Thread 1

Software

Thread 1
Software
Thread 1

Software

Thread 1

HardwareHardware

Software Sub -System

Software
Thread 1

Software

Thread 1
Software
Thread 1

Software

Thread 1

HardwareHardware

Software Sub -System

Software
Thread 1

Software

Thread 1
Software
Thread 1

Software

Thread 1

HardwareHardware

Software Sub -System

Software
Thread 1

Software

Thread 1
Software
Thread 1

Software

Thread 1

HardwareHardware

Binary

SW Appli
Posix OS

HAL

ISS

FIFO

IT Ctrl

MEM

HW

VCI bus

Binary

SW Appli
Posix OS

HAL

ISS

FIFO

IT Ctrl

MEM

HW

VCI bus

Spécification
fonctionnelle

Spécification
fonctionnelle

Partition

nement

Partition

nement

Conception logicielleConception logicielle

Conception matérielleConception matérielle

IntégrationIntégration ISA/RTLISA/RTL

GAPGAP

Séparation totale Séparation totale

entre logiciel et entre logiciel et marérielmatériel

Cycle de correction

System.Level.

Niveau Prototype Virtuel

Virtual Prototype

EPT TIMA

Mémoire de Mastère - 27-

Dans un tel flot il peut être difficile de développer complètement le logiciel

sans que le matériel soit défini. C’est pour cela que son développement devait

souvent attendre que la partie matérielle soit décrite pour être achevé.

2222....5555 Nouveau flot de conception proposé danNouveau flot de conception proposé danNouveau flot de conception proposé danNouveau flot de conception proposé dans le groupe s le groupe s le groupe s le groupe
TIMATIMATIMATIMA----SLSSLSSLSSLS

L’approche de conception vue précédemment est caractérisée par une

discontinuité qui marque le passage de la spécification initiale à

l’implémentation finale. Elle constitue comme nous l’avons souligné un

handicap dans ce flot classique. Cette discontinuité verticale se traduit

également par une autre discontinuité horizontale qui tend à séparer la

description du système en deux parties complètement indépendantes, une

logicielle et l’autre matérielle qui sont alors conçues et raffinées

individuellement d’une manière séparée.

Pour résoudre ce problème, il est clair qu’il faut introduire, dans le flot de

raffinement de l’architecture, des étapes supplémentaires permettant

l’interaction entre logiciel et matériel.

2.5.1 Présentation du flot de conception du groupe SLS
La Figure 2.4 présente la solution apportée par le groupe SLS pour palier aux

discontinuités des flots de conception classiques.

Le principe de base de cette approche est de considérer la conception de

l’interface logicielle/matérielle comme étant une branche complète du flot.

Cette externalisation apporte une solution à la discontinuité entre les niveaux
d’abstraction sous réserve de la disponibilité de modèles exécutables de

l’interface, permettant ainsi de simuler le système complet durant toutes les

étapes de la conception conjointe.

La discontinuité dans la conception conjointe du logiciel et du matériel est

naturellement solutionnée par cette approche où la conception de l’interface

logicielle/matérielle est traitée dans sa globalité.

EPT TIMA

Mémoire de Mastère - 28-

Figure 2.4 - Flot de conception détaillé proposé par le groupe TIMA-SLS

2.5.2 Description des niveaux intermédiaires du flot
En plus des deux niveaux déjà existants dans le flot précédent (System Level
et Virtual Prototype), deux niveaux intermédiaires ont été ajoutés : Virtual
Architecture Level et Transaction Accurate Level. Ils seront décrits brièvement

dans les paragraphes suivants.

� Niveau Virtual Architecture

L’architecture virtuelle résulte d’une première étape de partitionnement de la

spécification fonctionnelle initiale. Le partitionnement sépare les parties qui

seront implémentées de façon matérielle de celles qui seront implémentées de

façon logicielle.

Ce modèle permet d’abstraire tout le logiciel dépendant du matériel, le ou les

processeurs et le sous-système processeur. Le modèle de programmation sur

lequel peut s’appuyer le concepteur de la partie logicielle est une API de HDS
(Hardware Dependent Software), similaire à celle d’un OS, plus des primitives

de communication haut niveau.

A ce stade, l’architecture matérielle est globalement décomposée en sous

systèmes, sans pour autant exiger que l’architecture matérielle soit raffinée.

Au niveau de l’architecture virtuelle, le concepteur ne dispose pas d’assez

d’informations sur l’architecture matérielle cible.

L’objectif de ce modèle est d’apporter aux concepteurs une première estimation

plus ou moins grossière des performances en fonction des choix faits sur le

système d’exploitation et les primitives de communication haut niveau (gestion

des tâches logicielles par exemple).

Cycles de correction

API HDS

Interface HW

HDS Spécifique

HAL Spécifique

ISS + SS CPU

API HAL

API HDS

Interface HW

HDS Spécifique

API HAL

Modèle interface
HW/SW T.A.

API HDS

Interface HW

Modèle interface
HW/SW

Abstraite

Partition
nement

Partition
nement

Partition
nement

Partition
nement

Partition
nement

Partition
nement

Spécif.
Fonct.

Spécif.
Fonct.

Conception logicielleConception logicielle

vers
back-end

Virtual Architecture
V.A.

Transaction Accurate
T.A.

Virtual Prototype
V.P.

Systeme Level
S.L.

Conception matérielleConception matérielle

Cycles de correction

API HDS

Interface HW

HDS Spécifique

HAL Spécifique

ISS + SS CPU

API HAL

API HDS

Interface HW

HDS Spécifique

HAL Spécifique

ISS + SS CPU

API HAL

API HDS

Interface HW

HDS Spécifique

API HAL

Modèle interface
HW/SW T.A.

API HDS

Interface HW

HDS Spécifique

API HAL

Modèle interface
HW/SW T.A.

API HDS

Interface HW

Modèle interface
HW/SW

Abstraite

API HDS

Interface HW

Modèle interface
HW/SW

Abstraite

Partition
nement

Partition
nement

Partition
nement

Partition
nement

Partition
nement

Partition
nement

Spécif.
Fonct.

Spécif.
Fonct.

Conception logicielleConception logicielle

vers
back-end

Virtual Architecture
V.A.

Transaction Accurate
T.A.

Virtual Prototype
V.P.

Systeme Level
S.L.

Conception matérielleConception matérielle

EPT TIMA

Mémoire de Mastère - 29-

� Niveau Transaction Accurate

Au niveau Transaction Accurate, la couche logicielle supérieure du modèle
précédent est supposée raffinée. On considère donc que le HDS ne fait plus

partie du modèle mais de l’application que l’on veut valider.

Cette étape est caractérisée par la spécification de la nature du protocole de

communication entre les sous systèmes ainsi que du modèle abstrait de

l’architecture locale au niveau de chaque sous système.

Pour un sous système logiciel, ceci correspond à une vision au niveau HAL de

la machine d’exécution.

Les communications à ce niveau se font avec des adresses spécifiques par des

primitives de type read/write. La gestion des ressources matérielles comme

l’accès aux différents périphériques partagés ou encore aux processeurs sont

modélisés.

L’objectif à ce niveau est d’apporter une plus grande précision quant à

l’estimation des performances afin de pouvoir valider les décisions de

conception prises en amont de manière plus précise.

Dans les deux niveaux Virtual Architecture et Transaction Accurate, nous
utilisons l’exécution native comme mode d’exécution du logiciel embarqué afin

de bénéficier de l’avantage d’une simulation rapide à ces niveaux

intermédiaires.

L’exécution native signifie que le logiciel embarqué est compilé pour le

processeur de la machine hôte (machine sur laquelle se déroule la simulation)

et est exécuté par cette machine. Ceci est à mettre en opposition avec la

compilation croisée (cross compilation) pour le processeur cible et

l’interprétation des instructions binaires via le simulateur du processeur.

� Niveau Virtual Prototype

A ce niveau, l’architecture logicielle/matérielle est décrite au niveau ISA/RTL.

Le logiciel n’est autre qu’une suite d’instructions binaires placée dans une zone

mémoire.

Le matériel est décrit en utilisant un langage de description de matériel (HDL).
Ceci inclut l’architecture locale du nœud logiciel (processeur(s), mémoire(s),

périphériques, etc.) mais aussi les autres parties du système.

A ce niveau, les deux parties logicielle et matérielle sont entièrement conçues.

EPT TIMA

Mémoire de Mastère - 30-

Ici, nous utilisons un modèle de simulation classique qui considère que

l’architecture du système est complètement raffinée et connue dans ses

moindres détails. Ainsi, le logiciel embarqué doit être entièrement développé

avant d’être compilé par le (les) processeur(s) cible(s). L’image binaire obtenue

est alors prise en charge par des simulateurs de processeurs qui interprètent

séquentiellement les instructions et interagissent avec un modèle entièrement

raffiné de l’architecture matérielle.

2222....6666 Conclusion Conclusion Conclusion Conclusion

Ce chapitre a été dédié à la description des systèmes qui font l’objet de ce

mémoire, à savoir les systèmes multiprocesseurs monopuces. L’architecture de

tels systèmes a été analysée, mettant l’accent sur la complexité aussi bien des

parties logicielles que matérielles de ces architectures.

Face à cette complexité, les flots classiques ne semblent pas apporter une

solution efficace qui facilite l’exploration et la validation de ces architectures

en vue de maîtriser les coûts inhérents à leurs développements. L’approche

proposée par le groupe TIMA-SLS propose des modèles de représentation

intermédiaires permettant un raffinement graduel des systèmes

logiciels/matériels.

Notre travail cible les méthodes et techniques de conception de systèmes. Dans

ce travail, nous nous sommes concentrés sur un niveau d’abstraction supérieur

dans le flot de conception des systèmes monopuces, nommé Architecture

Virtuelle, qui sera décrit dans le chapitre suivant.

EPT TIMA

Mémoire de Mastère - 31-

Chapitre Chapitre Chapitre Chapitre 3333

Niveau Architecture Virtuelle Niveau Architecture Virtuelle Niveau Architecture Virtuelle Niveau Architecture Virtuelle

3333....1111 IntroductionIntroductionIntroductionIntroduction

Les systèmes embarqués peuvent inclure plusieurs processeurs, qui exécutent

des instructions spécifiques implémentées en logiciel pour des besoins de

flexibilité. On estime que dans un futur proche, la complexité du code logiciel

sera supérieure à celle de la partie matérielle et demandera par conséquent

plusieurs hommes-années de durée de conception. Le logiciel ne pourra donc

plus être développé en langage assembleur et une approche de conception à un

niveau d’abstraction plus élevé est requise.

Dans ce chapitre, nous décrivons le niveau d’abstraction intermédiaire appelé

Architecture Virtuelle sur le quel nous avons travaillé.

Pour aborder la conception du système dans une seule et même approche

cohérente, les composants aussi bien logiciels que matériels sont modélisés avec

un modèle unique. La méthodologie proposée dans le cadre de ce mémoire pour

présenter un modèle de simulation du logiciel embarqué à un haut niveau

d’abstraction sera alors exposée. Elle se base sur le niveau TLM.

Nous rappelons dans un premier lieu les principes de base de la méthodologie

TLM pour le matériel. Dans un deuxième lieu, nous introduisons les concepts

du niveau SW TLM; niveau TLM pour modéliser le logiciel embarqué.

3333....2222 Définition duDéfinition duDéfinition duDéfinition du niveau Architecture Virtuelle niveau Architecture Virtuelle niveau Architecture Virtuelle niveau Architecture Virtuelle

Le niveau Architecture Virtuelle est appelé encore niveau système

d’exploitation.

Le rôle de ce niveau est de palier aux imperfections et limites de ressources de

l’architecture matérielle en implémentant un certain nombre de politiques pour

la gestion de ces ressources limitées. Un exemple de gestionnaire de ressources

est l’Ordonnanceur qui permet de multiplexer une ressource « rare » sur

l’ensemble des tâches logicielles actives à un instant donné.

Le modèle de simulation à ce niveau peut être vu comme suit (Figure 3.1):

EPT TIMA

Mémoire de Mastère - 32-

Figure 3.1 — Modèle de simulation au niveau V.A

Ce niveau d’abstraction décrit l’architecture du système mais en ne se

préoccupant que des objets fonctionnels pour l’application du système, c’est à

dire en excluant complètement tous les détails liés à la réalisation. Le système

est réalisé sous la forme de composants pouvant implémenter un ensemble de

tâches logicielles ou une fonction matérielle mais sans aucune caractéristique

précise pour le type du composant ou de sa structure interne.

La description du système au niveau Architecture Virtuelle est un ensemble de

tels composants travaillant concurremment qui communiquent par des canaux

de communication abstraits. Ces canaux seront détaillés plus tard.

Les canaux de communication utilisent des primitives transactionnelles définies

par la norme TLM [5], pour représenter seulement le transfert ou le processus

de synchronisation de données entre les composants sans aucune information

sur l’implémentation du protocole de communication.

Le modèle du système au niveau V.A —niveau transactionnel- est toutefois

exploitable en utilisant des outils et des méthodes pour l’analyse de

performances. Ils explorent les différentes solutions possibles pour le

partitionnement des tâches afin de définir une architecture optimale du

système.

La Figure 3.2 montre les différents niveaux d’abstraction des deux parties

matérielle et logicielle. Les lignes interrompues joignant un niveau

d’abstraction donné du matériel avec un autre niveau du logiciel définit des

niveaux d’intégration possibles permettant la conception et la simulation des

systèmes logiciels/matériels.

{Services }

{Ports }

Matériel

Modèle de
Simulation

Application Politique
de gestion

de l’application

Politique
de gestion

des ressources

Spécification

de ressources

{Services }

{Ports }

Matériel

Modèle de
Simulation

Application Politique
de gestion

de l’application

Politique
de gestion

des ressources

Spécification

de ressources

EPT TIMA

Mémoire de Mastère - 33-

En toute rigueur, au niveau fonctionnel, la notion de logiciel/matériel ne doit

pas exister, car il s’agit d’une notion relative à l’implémentation. Cependant,

pour la clarté de la représentation, nous dupliquons le niveau fonctionnel d’un

côté comme de l’autre dans la figure [3].

Dans ce travail, nous nous intéressons par un nouveau niveau intermédiaire

d’intégration Architecture Virtuelle (en anglais Virtual Architecture V.A). Il
associe HW TLM à un niveau équivalent pour le logiciel qu’on appelle SW
TLM.

Figure 3.2 — Niveau Architecture Virtuelle

Le niveau SW TLM correspond à une abstraction du niveau bas classique pour

le logiciel (ISA). Au niveau SW TLM le logiciel est décrit comme un ensemble

d’objets communicants ensemble et qui sont gérés par un environnement

d’exécution correspondant au système d’exploitation.

La définition du niveau SW TLM est largement inspirée des recherches

récentes sur la conception du logiciel embarqué. En effet, beaucoup de

recherches se sont concentrées sur l’abstraction du niveau classique de

modélisation RTL utilisé en tant que modèle d’intégration logiciel/matériel. La

plupart de ces travaux ont adressé le côté matériel ou le côté logiciel du

problème, mais aucun d’eux n’a fourni un modèle flexible et unifié de la

plateforme logicielle/matérielle à un niveau d’abstraction plus élevé.

Du côté matériel, le niveau de modélisation transactionnel (TLM) a été

identifié en tant que candidat approprié pour l’abstraction du niveau RTL.

Dans tous ces travaux, le logiciel est considéré à un bas niveau d’abstraction

ou simplement au niveau fonctionnel.

HW SW

FFonctionnel

SW TLMTLM

RTL ISA

HW SW

Fonctionnel

SW TLMTLM

RTL ISA

Architecture Virtuelle

HW SW

FFonctionnel

SW TLMTLM

RTL ISA

HW SW

Fonctionnel

SW TLMTLM

RTL ISA

Architecture Virtuelle

EPT TIMA

Mémoire de Mastère - 34-

Du côté logiciel, beaucoup de travaux [4] [9] s’étaient concentrés sur la

génération automatique des systèmes d’exploitation temps réel et du code pour

le logiciel embarqué. Cependant, dans les travaux [4] et [9], l’interaction du

modèle de simulation du système d’exploitation avec le matériel n’est pas

clairement expliquée. De même dans [27], un raffinement logiciel/matériel a été

proposé cependant ce travail se base sur un modèle fixe de l’interface

matérielle.

La principale contribution de ce travail est de formaliser ces efforts, en

utilisant le niveau TLM pour définir une plateforme de modélisation TLM

pour le matériel et le logiciel. Ceci permet le développement d’un modèle unifié

pour l’interface logicielle/matérielle pour faire face aux discontinuités de

conception entre le matériel et le logiciel et permettre l’exploration rapide et

efficace de l’espace des solutions architecturales.

Figure 3.3 — Flot de conception typique comportant le niveau V.A

Spécification

partitionnement

Architecture Système

Conception
logicielle

Conception
matérielle

SW TLM HW TLM

Intégration TLM

Architecture Virtuelle

Conception
logicielle

Conception
matérielle

SW ISA HW RTL

Intégration RTL

Architecture RTL

Simulation/
Exploration

Étapes/modèles de conception

Spécification

partitionnement

Architecture Système

Conception
logicielle

Conception
matérielle

SW TLM HW TLM

Intégration TLM

Architecture Virtuelle

Conception
logicielle

Conception
matérielle

SW ISA HW RTL

Intégration RTL

Architecture RTL

Simulation/
Exploration

Étapes/modèles de conception

Spécification

partitionnement

Architecture Système

Conception
logicielle

Conception
matérielle

SW TLM HW TLM

Intégration TLM

Architecture Virtuelle

Conception
logicielle

Conception
matérielle

SW ISA HW RTL

Intégration RTL

Architecture RTL

Simulation/
Exploration

Étapes/modèles de conception

EPT TIMA

Mémoire de Mastère - 35-

La Figure 3.3 présente un flot de conception typique comportant le niveau

V.A. Comme les flots de conception classiques, le flot proposé part d’une

spécification (non exécutable) qui subit une première étape de partitionnement

permettant le raffinement du logiciel et du matériel.

Dans la figure, le résultat de cette étape s’appelle «Architecture Système».

Ceci correspond à une forme exécutable de la spécification (en utilisant

SystemC par exemple) où des annotations sont simplement introduites pour

distinguer les parties de l’application qui vont être mappées en matériel ou en

logiciel respectivement. Le résultat final du flot est une architecture RTL qui

peut servir comme entrée des outils conventionnels de synthèse physique.

Cependant contrairement aux flots de conception classiques, le flot proposé

présente une étape intermédiaire de conception basée sur le concept V.A.

L’architecture virtuelle résulte de l’intégration des parties logicielles et

matérielles raffinées jusqu’au niveau TLM.

Au niveau V.A, le logiciel est modélisé au niveau OS comme un ensemble

d’objets SW TLM qui coexistent et interagissent avec le reste des composants

HW TLM.

Cette étape intermédiaire du flot permet de:

• palier aux discontinuités des flots de conception classiques et remédier aux

problèmes liés à l’intégration tardive des architectures logicielles et

matérielles d’un système MPSoC en proposant un niveau intermédiaire

pour l’intégration logicielle/matérielle permettant une conception

logicielle/matérielle graduelle;

• rompre la longue boucle d’exploration qui sépare classiquement le niveau

système du niveau RTL final. Ceci facilite une exploration d’architecture

rapide et efficace bénéficiant de la rapidité de simulation du TLM

comparé à RTL.

3333....3333 VuVuVuVueeee d’ensemble d’un système au nive d’ensemble d’un système au nive d’ensemble d’un système au nive d’ensemble d’un système au niveau Vau Vau Vau V....AAAA

La Figure 3.4 donne une vue d’ensemble d’un modèle conceptuel de l’interface

logicielle/matérielle au niveau d’abstraction intermédiaire V.A. Les parties

grises de la figure correspondent aux objets conventionnels du HW TLM.

Dans cette figure, l’exemple de conception est construit autour d’une

architecture hiérarchique de bus composée d’un bus système au quel est

connecté un bus CPU local via un pont (en anglais bridge).

EPT TIMA

Mémoire de Mastère - 36-

A la différence de la conception TLM conventionnelle, le logiciel n’est ni

exécuté sur un simulateur de jeux d’instructions, ni entièrement abstrait au

niveau fonctionnel. Au niveau V.A le logiciel est modélisé au niveau OS comme

un ensemble d’objets qui co-existent et interagissent avec le reste des

composants HW TLM.

Figure 3.4 — Modèle conceptuel de l’Architecture Virtuelle

Dans une description SW TLM, nous identifions principalement trois couches

conceptuelles :

• La couche Programme (Program layer) qui correspond au logiciel conçu
par des programmeurs de logiciel. Ceci se compose des tâches de l’application

ainsi que des pilotes de périphériques qui permettent la communication

extérieure avec le matériel.

• La couche de gestion des ressources (resource management layer)
correspond à ce qu’on appelle le bus logiciel (SW bus). Cette entité abstrait
le vrai système d’exploitation et permet la coordination et l’arbitrage des

composants. Cette couche gère de même la communication entre les

différents composants logiciels.

La communication logicielle est abstraite au niveau service. En effet, la
communication est représentée comme une combinaison de requêtes et de

services. Les différents modules communiquent par des requêtes de services,

Ressources Virtuelles

Gestionnaire
de ressources

Programme

Ressources matérielles

Task Task

Logic
memory

BFM

bridgeLocal
memory

IT Ctrl

IP1
Shared

memory
IP2

Driver

SW BUS

CPU BUS

SYSTEM BUS

PU

Task Task

Logical

memory BFM

bridgeLocal
memory

IT Ctrl

IP1
Shared

memory
IP2

Driver

SW BUS

CPU BUS

SYSTEM BUS

PU

Task Task

Logic
memory

BFM

bridgeLocal
memory

IT Ctrl

IP1
Shared

memory
IP2

Driver

SW BUS

CPU BUS

SYSTEM BUS

PU

Tâche Tâche

Mémoire

logique BFM

pontMémoire
locale

IT Ctrl

IP1
Mémoire

partagée
IP2

Pilote de

BUS LOGICIEL

BUS CPU

BUS Système

PU

périphérique

Ressources Virtuelles

Gestionnaire
de ressources

Programme

Ressources matérielles

Task Task

Logic
memory

BFM

bridgeLocal
memory

IT Ctrl

IP1
Shared

memory
IP2

Driver

SW BUS

CPU BUS

SYSTEM BUS

PU

Task Task

Logical

memory BFM

bridgeLocal
memory

IT Ctrl

IP1
Shared

memory
IP2

Driver

SW BUS

CPU BUS

SYSTEM BUS

PU

Task Task

Logic
memory

BFM

bridgeLocal
memory

IT Ctrl

IP1
Shared

memory
IP2

Driver

SW BUS

CPU BUS

SYSTEM BUS

PU

Tâche Tâche

Mémoire

logique BFM

pontMémoire
locale

IT Ctrl

IP1
Mémoire

partagée
IP2

Pilote de

BUS LOGICIEL

BUS CPU

BUS Système

PU

périphérique

EPT TIMA

Mémoire de Mastère - 37-

via le bus logiciel qui garantit le routage et la synchronisation des

connexions établies.

Les services offerts par le bus logiciel dépendent largement du système

d’exploitation. On peut classer certains services dans des catégories tels que

les services de communication et de synchronisation inter tâches, les services

de communication externes via les pilotes de périphériques et les services

d’allocation des ressources.

• La couche des ressources virtuelles (virtual resource layer) qui spécifie,
d’un point de vue programmeur, quel type de ressources disponibles dans le

sous système logiciel (le nœud logiciel de la Figure 2.1).

Cette couche fournit une abstraction de l’ensemble des ressources

disponibles au niveau du nœud logiciel. En effet, l’application dispose d’un

certain nombre de tâches qui vont être exécutées sur différentes ressources

de calcul (Processing Elements), elles ont besoin pour cela d’allouer les
ressources de stockage nécessaires à leur exécution. Les mémoires sont utiles

pour la mémorisation des données ou des instructions, et sont aussi un

passage fréquent pour les communications.

Dans notre cas, nous distinguons deux types de ressources virtuelles :

mémoire logique et unité virtuelle de traitement (Processing Unit).

Un objet important qui pourrait être qualifié comme un objet TLM hybride

logiciel/matériel est le modèle fonctionnel du bus (en anglais BFM: Bus
Functional Model). Un BFM est un pont spécial qui permet de relier le bus

logiciel avec le bus matériel (le bus CPU). Son rôle principal est de transmettre

les accès externes du logiciel au matériel. Il est également responsable de

transférer les interruptions matérielles venant du côté matériel aux composants

appropriés du côté logiciel.

Cette description a nécessité une bonne compréhension du niveau

transactionnel d’un point de vue théorique.

Dans les sections suivantes, nous rappelons donc les concepts de base pour le

HW TLM ensuite ceux pour le SW TLM sont décrits et leur application pour

le raffinement du logiciel est expliquée.

EPT TIMA

Mémoire de Mastère - 38-

3333....4444 CCCConceptonceptonceptoncepts de base dus de base dus de base dus de base du TLM pour le TLM pour le TLM pour le TLM pour le matérielmatérielmatérielmatériel

Dans cette section, la méthodologie conventionnelle HW TLM est présentée.

Nous cherchons à donner de même un aperçu sur la structure TLM et nous

décrivons brièvement les niveaux TLM.

3.4.1 Méthodologie TLM
TLM est un niveau plus abstrait que RTL. Ceci est dû à la réduction de la

quantité de détails que le concepteur doit manipuler facilitant donc la

modélisation.

Ce niveau, moins détaillé que le niveau RTL, représente uniquement ce qui se

passe au niveau système, en terme d’échange de données et de synchronisation

système, sans se soucier de la micro-architecture des blocs.

TLM est décrit et expliqué par beaucoup de travaux [6] [7] [10]. Il est construit

comme un niveau élevé d’API qui définit comment les composants matériels

communiquent entre eux.

Un modèle TLM se base uniquement sur des appels de fonctions et des

transferts de paquets de données. L’idée est de représenter au plus près

l’intention du concepteur quant au comportement global du circuit, sans

rentrer dans les détails de la description des signaux réalisés au niveau RTL.

L’objectif de ce niveau est de développer du logiciel embarqué et de faire des

études d’architectures à un haut niveau d’abstraction. Il permet de même

d’accélérer le temps de simulation.

L’API OSCI TLM est construite comme un ensemble d’interfaces qui

définissent comment les modules communiquent entre eux.

En effet, l’interface de protocole définit la sémantique pour transférer une

transaction entre deux points différents d’un même système tel que tac_if,
basic_if, synchro_if, etc.
TLM définit un ensemble d’interfaces génériques et réutilisables

(bloquantes/non bloquantes, unidirectionnelles/bidirectionnelles) par une

approche en couches tel que tlm_transport_if<req,resp>, tlm_put_if<req>,
tlm_get_if<req>, etc. (voir Figure 3.5):

• Couche Utilisateur (User layer) :
Dans le jargon TLM, cette interface s’appelle en anglais « convenience
interface ». Elle se compose typiquement de méthodes qui donnent un sens aux

EPT TIMA

Mémoire de Mastère - 39-

utilisateurs du protocole en question par exemple read, write, burst read et
burst write. L’utilisateur va utiliser les ports initiateurs qui fournissent les
moyens d’implémenter ces interfaces et définit des modules cibles (target) qui
héritent de ces interfaces [6]. Les transactions sont envoyées par le module

initiateur par le biais de initiator_port et sont reçues et traitées par le module

target selon l’implémentation de l’utilisateur.

Ces implémentations sont visibles au module target grâce à sc_export de
SystemC qui est reliée au module target et qui donne accès à ces

implémentations.

A ce niveau, la couche protocole est transparente pour l’utilisateur.

• Couche Protocole (Protocol layer) :
La couche protocole se compose de [6] :

- classes de requête et de réponse qui encapsulent le protocole.

Principalement ceci correspond à la définition d’échange des transactions

(l’information à échanger entre l’initiateur et le target: adresse, données,

statut, longueur, etc.);

- port initiateur qui hérite de sc_port ;

- classe slave_base qui implémente les interfaces TLM.

Le module target doit hériter de la classe slave_base.
L’utilisateur pourra après utiliser les classes initiator_port et slave_base. Il
faut noter que ce mécanisme de communication est efficace de point de vue

temps d’exécution. En effet grâce à la liaison «port-to-export» (introduite par
SystemC-2.1.v1) l’appel à l’API du protocole résulte à l’exécution de

l’implémentation dans le côté du target mais dans le même contexte du

thread13 initiateur. Ainsi, la communication entre un maître et un esclave

n’implique pas un changement de contexte (context switch) (coûteux en
temps de simulation).

• Couche Transport (Transport layer):
La couche Transport forme la couche de base pour la couche protocole et la

couche utilisateur. Elle donne l’accès aux interfaces TLM virtuelles par la

liaison SystemC sc_port à sc_export, à savoir initiator_port à target_port.
L’interface TLM hérite de la classe sc_interface de SystemC. Elle sert comme

une base commune pour faciliter l’interopérabilité de divers modèles TLM

définis par différentes compagnies.

13 Processus léger

EPT TIMA

Mémoire de Mastère - 40-

Figure 3.5 — Architecture TLM [6]

La société ST-Microelectronics; qui a adopté le niveau TLM dans la

conception; a construit un ensemble de protocoles qui sont conformes à OSCI

TLM à savoir les protocoles TAC et Synchro.

TAC acronyme de Transaction Accurate Communication est construit sur la
base du standard TLM OSCI. Il se base sur l’interface tlm_transport_if
(interface bloquante bidirectionnelle) qui comporte la requête et la réponse

dans un même transfert TAC, status fait aussi partie d’une réponse TAC.
Le protocole Synchro est construit sur la base de l’interface put de TLM et

représente la synchronisation entre plusieurs composants. Il se base sur

l’interface tlm_blocking_put_if (interface bloquante unidirectionnelle).

3.4.2 Les niveaux TLM PV et PVT
Il existe de nombreuses variantes dans le niveau d’abstraction TLM.

Néanmoins, nous pouvons distinguer deux grands types de modèles TLM (voir

Figure 3.6) tels que définis dans la littérature.

Figure 3.6 — Les couches TLM

TLM OSCI
Couche Transport

bloquant/non bloquant

unidirectionnel/bidirectionnel

Modèle de routeur générique
e.g. TAC, SYNCHRO

Modèle de routeur spécifique
e.g. ST BUS, AMBA

PV

PVT

basé sur

TLM OSCI
Couche Transport

bloquant/non bloquant

unidirectionnel/bidirectionnel

Modèle de routeur générique
e.g. TAC, SYNCHRO

Modèle de routeur spécifique
e.g. ST BUS, AMBA

PV

PVT

basé sur

Master Slave

Initiator_port Slave_base

sc_port sc_export

User

Layer

Protocol

Layer

Transport

Layer

read()
write()

transport()

Convenience
interface

tlm
interface

Convenience
interface

tlm
interface

Master Slave

Initiator_port Slave_base

sc_port sc_export

User

Layer

Protocol

Layer

Transport

Layer

read()
write()

transport()

Convenience
interface

tlm
interface

Convenience
interface

tlm
interface

EPT TIMA

Mémoire de Mastère - 41-

Le premier, appelé « Programmer View » (PV), est une représentation
purement fonctionnelle du circuit sans référence à aucune notion temporelle. A

ce niveau, le modèle contient toutes les informations nécessaires (et pas plus)

pour que les équipes de développement logiciel puissent travailler, c’est-à-dire

faire tourner le logiciel embarqué final, système d’exploitation compris. Le

protocole utilisé à ce niveau est générique (tel est l’exemple de TAC) et la

synchronisation reflète la dépendance causale entre les différentes unités de

calcul et n’est pas basée sur les contraintes de temps.

Le second type, appelé « Programmer View + Timing » (PVT), intègre des
informations sur les délais (timing) qui permettent notamment de travailler sur

l’analyse des performances du circuit, sans trop pénaliser les temps de

simulation.

Une plateforme au niveau PVT est une plateforme au niveau PV avec son

inter connecteur non temporisé, à qui on a ajouté un modèle temporisé du bus

qui correspond à un bus spécifique (par exemple STBus, AMBA).
Dans une plateforme PVT, on a les différents composants PV individuels (PV
IP14) et leurs modules temporisés correspondants; un ou plusieurs routeurs non

temporisés et leurs correspondants temporisés, par exemple TAC router et
STbus router en se référant à la plateforme PVT de ST. Dans une plateforme

PVT, l’annotation du temps est effectuée dans le module temporisé de chaque

composant et dans le routeur temporisé qui simule les délais de transfert pour

chaque transaction.

TLM rapproche l’écart entre les modèles fonctionnels de spécifications et les

implémentations RTL par une amélioration progressive de l’infrastructure de

communication matérielle.

Du côté logiciel, peu de recherches ont abordé la communication logicielle à un

niveau conforme à TLM. Le flot de développement logiciel passe brusquement

d’un modèle fonctionnel au niveau d’abstraction le plus bas.

D’où le but des chapitres suivants est d’introduire le nouveau concept TLM

destiné pour le développement logiciel. Notre méthodologie raffine le logiciel

embarqué au niveau Architecture Virtuelle.

14 Intellectual Property

EPT TIMA

Mémoire de Mastère - 42-

3333....5555 CCCConceptonceptonceptoncepts de base dus de base dus de base dus de base du TLM pour le TLM pour le TLM pour le TLM pour le logiciellogiciellogiciellogiciel

Dans cette section, nous présentons l’environnement de conception dans lequel

nous avons développé et validé notre méthodologie TLM. Nous allons tout

d’abord exposer les concepts de base. Ensuite, nous donnerons une brève

présentation de la constitution du niveau SW TLM.

3.5.1 Description des composants SW TLM
La Figure 3.7 illustre les différents composants SW TLM.

Dans une plateforme SW TLM il y a des modules qui requièrent des services

(initiateurs en anglais initiator), d’autres qui fournissent ces services (cibles en
anglais target). Ils communiquent en envoyant des requêtes et réponses de part

et d’autre. Ces modules sont des composants logiciels qui peuvent être classés

comme suit :

• composants de l’application (par exemple tâche applicative);

• ressources abstraites;

• pilotes de périphériques;

• bus logiciel.

Les tâches logicielles peuvent communiquer entre elles ou avec des tâches

matérielles. Elles appellent les services du système d’exploitation et les services

de communication et peuvent être des modules maîtres ou esclaves.

Figure 3.7 — Les composants SW TLM

PU

SW BUS

Drivers

Logical

memory

Map file

Target portInitiator port

BFM

Tasks

PU

BUS Logiciel

Pilotes

Mémoire

logique

Identification

Target portInitiator port

BFM

Tâche

PU

SW BUS

Drivers

Logical

memory

Map file

Target portInitiator port

BFM

Tasks

PU

BUS Logiciel

Pilotes

Mémoire

logique

Identification

Target portInitiator port

BFM

Tâche

EPT TIMA

Mémoire de Mastère - 43-

Les ressources abstraites se composent des mémoires logiques et des unités de

traitement (en anglais Processing units).
Dans le processus de raffinement de la communication, les zones de stockage

matérielles apparaissent dans l’architecture matérielle. Ces zones sont

partagées et permettent l’échange de données. Elles pourraient être mappées

aux mémoires matérielles locales ou externes.

Au niveau application, le programmeur n’est pas censé savoir le mapping

matériel. C’est pourquoi, il adresse habituellement la mémoire logique. Le

processus de raffinement est alors responsable de mapper ces adresses logiques

une fois que l’architecture est fixe.

Les unités de traitement sont des composants virtuels responsables de

l’exécution du logiciel embarqué. Ils appellent le service d’initialisation (BOOT
service).
Les pilotes de périphériques permettent aux composants de l’application de

réagir avec les périphériques matériels. Les pilotes TLM adressent une ou

plusieurs mémoires logiques qui connaissent le mapping de la mémoire

physique. Ils ont besoin également des services du système d’exploitation pour

accéder aux périphériques matériels correspondants.

Le bus logiciel est le conducteur de tout le nœud logiciel. Il pourrait être défini

comme étant le chemin logique qui sert des tâches logicielles multiples ou des

unités logicielles de calcul et de communication à travers un modèle d’OS. Son

rôle principal est:

• assurer l’ordonnancement des tâches et le partage du temps;

• intercepter les transactions logiques et les traiter;

• acheminer ces transactions logiques au BFM.

Le bus logiciel a deux mécanismes importants à savoir routage et arbitrage. Le

premier est responsable d’acheminer les transactions aux différents modules

logiciels, tandis que le deuxième résout les requêtes concurrentes de services.

Dans la section suivante, nous allons décrire la structure du niveau SW TLM.

3.5.2 Structure du SW TLM
Comme dans le HW TLM, nous définissons un mécanisme de passage de

transactions dans l’architecture de communication logicielle. Cette architecture

serait structurée autour de différentes couches (voir la Figure 3.8):

EPT TIMA

Mémoire de Mastère - 44-

• Couche Application « Application layer »:
Cette couche peut être définie comme la couche de calcul. En effet, elle se

compose des tâches de l’application. À ce niveau, nous supposons que le

programmeur n’a aucune idée sur l’architecture de communication. Au niveau

de cette couche, l’application requiert des services d’OS et des services de

communication.

• Couche de pilote « communication driver layer »:
Cette couche inclut les pilotes TLM et les mémoires logiques. Ces deux genres

d’éléments SW TLM coopèrent — par la communication logique avec la couche

du bus logiciel — pour contrôler le processus de communication. En fait, chaque

pilote TLM adresserait une ou plusieurs mémoires logiques.

Cette couche est également responsable de répondre aux demandes

d’interruptions destinées à la couche application.

• Couche du bus logiciel « SW BUS layer»:
Elle est le conducteur de tout le nœud logiciel. Elle abstrait le système

d’exploitation.

Généralement un système d’exploitation peut être vu comme un ensemble de

couches de services: une couche API, une couche des services de base du

système d’exploitation et une couche d’abstraction du matériel.

• Couche du bus matériel « HW BUS layer»:
C’est le bus physique, le réseau de communication matérielle. Il peut être un

bus CPU local ou un bus système.

Figure 3.8 — Architecture en couches de la communication logicielle

3333....6666 ConclusionConclusionConclusionConclusion

Dans ce chapitre, nous avons défini le niveau Architecture Virtuelle, un niveau

qui abstrait le système d’exploitation ainsi que l’architecture matérielle.

Couche Application Couche de pilote

Couche SW BUS

Couche HW BUS

Appel de service SE

Communication

physique

Couche Application Couche de pilote

Couche SW BUS

Couche HW BUS

Appel de service SE

Communication

physique

EPT TIMA

Mémoire de Mastère - 45-

Puis, dans un deuxième temps, nous avons présenté la méthodologie SW TLM

conçue pour unifier la modélisation du logiciel embarqué au niveau V.A.

EPT TIMA

Mémoire de Mastère - 46-

Chapitre Chapitre Chapitre Chapitre 4444

ImplImplImplImpléééémentation (SW TLM)mentation (SW TLM)mentation (SW TLM)mentation (SW TLM)

4444....1111 Introduction Introduction Introduction Introduction

Cette partie du rapport expose l’implémentation du SW TLM. En premier

lieu, elle présente la hiérarchie du SW TLM. En second lieu, elle décrit ses

différentes interfaces de base.

4444....2222 Choix du langageChoix du langageChoix du langageChoix du langage

Le choix de travailler avec un langage de conception au niveau système

(SLDL : System Level Design Language) (tel que SystemC ou SpecC) est
important pour assurer la portabilité du modèle.

La description des fonctionnalités du modèle doit être donc faite dans un

langage de description de haut niveau. Ceci permet de valider rapidement le

modèle et de profiter d’un environnement de simulation efficace. Pour cela

nous avons utilisé la bibliothèque SystemC.

Elle permet de profiter des mécanismes d’héritage ou de polymorphisme du

C++ pour décrire des ensembles hiérarchiques [18]. Par ailleurs, cette solution

offre la possibilité de simuler conjointement des parties logicielles et

matérielles. Ceci se révèle très utile dans notre cas puisque le système complet

est composé d’éléments hétérogènes logiciels et matériels.

Plus particulièrement, SystemC est considéré d’un point de vue industriel un

standard pour la modélisation TLM et la conception au niveau système et à la

co-simulation des systèmes logiciels/matériels.

En bref, SystemC est un langage et un noyau de simulation basés sur C++ qui

permet la représentation des composants logiciels et matériels et des

communications à différents niveaux d’abstraction. Il permet la modélisation

et la simulation de systèmes logiciels/matériels globalement synchrones, ou

asynchrones avec un modèle à événements. Il convient pour l’augmentation de

la complexité de conception des systèmes, en fournissant un modèle exécutable

tôt dans le cycle de conception.

EPT TIMA

Mémoire de Mastère - 47-

Un modèle SystemC est composé des éléments suivants :

• Modules: un module (sc_module) est l’élément de base SystemC qui

permet d’encapsuler une description matérielle. Les modules

communiquent avec d’autres modules à travers des ports. D’une manière

générale, un module peut contenir un ou plusieurs processus

implémentant le comportement de celui-ci.

• Processus: les processus sont utilisés pour décrire le comportement d’un

composant. Ils s’exécutent de manière concurrente dans l’environnement

SystemC.

• Ports: un port (sc_port) est le moyen utilisé en SystemC pour permettre
à un module d’accéder à l’environnement extérieur. Les ports

représentent les points d’entrées/sorties des modules.

• Interfaces: une interface (sc_interface) permet de déclarer une méthode

qui sera implémentée par un canal (ou un module à partir de SystemC

2.1) et qui sera accessible via un port.

• Canaux: en général, les canaux SystemC (sc_channel) sont utilisés pour
implémenter le comportement d’une fonction déclarée par une interface.

• Export: disponible à partir de la version 2.1 de SystemC, un export

(sc_export) permet de rendre accessible une interface implémentée par

un module.

4444....3333 Implémentation duImplémentation duImplémentation duImplémentation du TLM pour le TLM pour le TLM pour le TLM pour le logiciel (SW TLM)logiciel (SW TLM)logiciel (SW TLM)logiciel (SW TLM)

4.3.1 Hiérarchie du SW TLM
Comme HW TLM, SW TLM se divise en différentes couches comme le montre

la Figure 4.1:

EPT TIMA

Mémoire de Mastère - 48-

Figure 4.1 — Les couches du SW TLM

Au niveau service, les interfaces des modules sont composées de ports d’accès

au bus logiciel. Ces ports fournissent des services de type synchrone ou

asynchrone et les opérations sur les ports sont des requêtes et des services. Les

tâches élémentaires sont des processus qui interagissent avec l’environnement

via des requêtes et des services.

La couche de service (Service layer) est construite comme un ensemble

d’interfaces qui définissent comment les modules communiquent. En effet,

l’interface protocole définit la sémantique de transfert d’un service entre deux

modules différents.

Les interfaces SW TLM (synchrones/asynchrones) spécifient les services de

communication et sont basées sur la couche transport du TLM OSCI.

Les transactions synchrones se font séquentiellement, chaque transaction

devant être terminée avant que la prochaine ne s’exécute.

En mode asynchrone la main est immédiatement rendue à l’initiateur, ainsi les

appels normalement bloquants sont traités parallèlement.

Toutes les interfaces héritent du sc_interface. Quand un service passe de
l’initiateur au target il est appelé « service_requis » et quand il passe du
target à l’initiateur il est appelé « service_fourni ».

SW TLM PV est construit en se basant sur SW TLM plus particulièrement

sur la couche service. Au niveau PV, nous n’avons aucune vraie notion sur le

temps et l’arbitrage des transactions est générique. En effet, l’arbitrage du bus

est le mécanisme qui alloue le contrôle du bus aux dispositifs qui le demandent,

évitant tout conflit.

Couche Service
Synchrone/asynchrone

RPC

PV
Arbitrage générique

PVT
Arbitrage spécifique

basé sur

TLM OSCI Couche Transport
Bloquant/non bloquant

Unidirectionnel/bidirectionnel

PV
Modèle de bus générique

PVT
Modèle de bus spécifique

HW TLM SW TLM

Couche Service
Synchrone/asynchrone

RPC

PV
Arbitrage générique

PVT
Arbitrage spécifique

basé sur

TLM OSCI Couche Transport
Bloquant/non bloquant

Unidirectionnel/bidirectionnel

PV
Modèle de bus générique

PVT
Modèle de bus spécifique

HW TLM SW TLM

EPT TIMA

Mémoire de Mastère - 49-

PVT est un modèle qui inclut le niveau PV et une spécification de l’arbitrage.

PVT ajoute des informations de temps sur chaque traitement ou transfert de

données. Pour le bus logiciel le timing doit tenir compte du nombre de

transferts ainsi que l’arbitrage entre les différents composants logiciels.

Après avoir mis en évidence la hiérarchie du SW TLM, nous introduisons ses

différentes interfaces de base ci après.

4.3.2 Les interfaces de base
SW TLM est construit en se basant sur les interfaces tlm_blocking_put_if et
tlm_blocking_get_if du TLM OSCI.

Put et Get sont utilisés pour assurer les transferts de données mais dans notre
cas nous les adoptons pour supporter les requêtes et réponses de services.

SW TLM définit la couche Service qui implémente le protocole RPC (Remote
Procedure Call).
Le modèle RPC est un modèle de communication par invocation à distance se

basant sur l’appel des services distants. Nous pouvons trouver deux types de

RPC: synchrone et asynchrone.

– Modèle RPC synchrone: dans ce modèle l’initiateur est bloqué en attente

d’une réponse du target. Ce modèle est facile à comprendre. De plus, il

permet la détection des erreurs facilement, d’autant plus qu’il n’est pas

nécessaire de stocker l’information.

– Modèle RPC asynchrone: dans ce modèle l’initiateur n’est pas bloqué, mais

il existe un test continu sur la réponse du target.

L’interface sw_tlm_service_if est implémentée comme le montre l’extrait de

code ci-dessous :

//bidirectional blocking interfaces

template<typename SERVICE_CALL, typename RSP>

class sw_tlm_service_if :public virtual sc_interface

 {

 public:

 virtual RSP service (const SERVICE_CALL&) = 0;

 };

La classe sat_service_call décrit l’information envoyée par le module initiateur

au module target. Cette classe définit la première partie du protocole

sw_tlm_sat. Elle est utilisée comme un paramètre SERVICE_CALL pour la

classe sw_tlm_service_if.

EPT TIMA

Mémoire de Mastère - 50-

De la même manière, la classe sat_response décrit l’information retournée par
le module target, comportant sat_status, au module initiateur. Cette classe

définit la seconde partie du protocole sw_tlm_sat. Elle est utilisée comme un

paramètre RSP pour la classe sw_tlm_service_if.
SW TLM PV est basé sur la couche Service. Il implémente le protocole SAT
(Service Accurate Transaction).
L’interface du protocole SAT, sat_if, est définie avec une méthode virtuelle
CALL et sat_status comme étant la valeur de retour de la fonction de

l’interface du protocole SAT.

#ifndef _SAT_IF_H_

#define _SAT_IF_H_

/*--------------------

 * Includes

 --------------------/

#include “sat_protocol.h”

…

//---

/// Class sat_if: sw_tlm_sat protocol layer convenience function definition

//---

template<typename ID, typename DATA>

class sat_if {

 public:

 //-----------------------------------

 /* \brief Call access convenience API (implemented in

 * sat_initiator_port and sat slaves).

 */

 virtual sat_status CALL (const ID& id,

 DATA& data,

 sat_error_reason& error_reason,

 const unsigned int service_id = NO_SERVICE,

 …

) = 0;

 …

 };

}

#endif /* _SAT_IF_H_ */

La classe sat_error_reason est un message de caractères encapsulant la raison

de l’erreur (du target à l’initiateur) en cas d’échec d’une requête.

Le paramètre service_id représente le service appelé, il est défini dans le fichier
« sat_protocol.h » comme suit :
/** \defgroup service_id_values Predefined service_id values

*@{

**/

EPT TIMA

Mémoire de Mastère - 51-

static const unsigned int NO_SERVICE = 0xffffffff;

static const unsigned int REGISTER_TASK = 0x1;

static const unsigned int MUTEX_INIT = 0x2;

static const unsigned int MUTEX_LOCK = 0x3;

static const unsigned int MUTEX_UNLOCK = 0x4;

…

/* @ */

La classe sat_status est le statut d’une transaction SAT. Elle définit le statut
d’une requête d’un initiateur avec le protocole sw_tlm_sat. La valeur de
statut est fixée par le target (esclave ou routeur) et utilisée par les initiateurs
en cas de besoin.

La classe sat_initiator_port modélise le port initiateur construit en se basant
sur l’interface sw_tlm_service_if en se basant de même sur le protocole SAT.
L’initiateur appelle un service du target et reçoit une valeur de retour pour

indiquer si le service a été fourni ou non. Par exemple, la tâche lance un appel

de service « CALL » comme suit :

void task()

{

 …

 status=initiator_port.CALL (id, data, error_reason, SERVICE, params);

 …

}

« params » sont des variables qui dépendent du type de service appelé par

l’initiateur. Les services peuvent être lire (read), écrire (write) ou les autres
services du système d’exploitation.

Deux exemples d’extraits de code applicatif sont montrés ci après:

void threadDemux()

{…

 sat_status status;

 sat_error_reason error_reason;

 unsigned long size = 1;

 int data;

 …

 status=initiator_port.CALL (os_id, data, error_reason, PIPE_WRITE,

 dv_cmd, cmd, size);

 …

}

EPT TIMA

Mémoire de Mastère - 52-

void application_init()

{

 …

 sat_status status;

 sat_error_reason error_reason;

 int length = 64;

 int size = 256;

 int irq = 2;

 int prio = 20;

 char t = ‘1’;

 …

 status=initiator_port.CALL (os_id, length, error_reason, PIPE_INIT,

 dv_data, base_dv_data);

 …

 status=initiator_port.CALL (base_qz_data, size, error_reason, FIFO_INIT,

 qz_data, irq);

 …

 status=initiator_port.CALL (os_id, prio, error_reason, REGISTER_TASK,

 threadDemux, t);

 …

}

A la couche basse « SW bus layer », le bus logiciel est implémenté comme un

« sw_router » qui est responsable de relier les différentes requêtes de services
provenant de différents initiateurs vers les targets correspondants.
On peut distinguer deux situations :

• Si le service est un service d’OS (par exemple communication inter

tâches), il sera directement fourni par le bus logiciel lui même;

• Sinon (par exemple service de communication avec l’extérieur), le bus

logiciel détermine le target approprié fournissant le service demandé

(exemple: pilote de périphérique) à l’initiateur appelant.

Le bus logiciel hérite de la classe rtos_base [27] comme le montre le code ci-

après. Par conséquent, son instanciation dans le nœud logiciel donne accès au

modèle de simulation du système d’exploitation.

template <typename ID, typename DATA>

class sw_router :

 public rtos_base,

 public sc_module,

 public virtual sw_tlm_service_if<

 sat_service_call<ID, DATA>,

 sat_response<DATA>

 >,

 public sw_tlm_router_base<ID, sw_tlm_service_if<

 sat_service_call<ID, DATA>,

 sat_response<DATA>

 >,

 0>

EPT TIMA

Mémoire de Mastère - 53-

Il est à noter que la classe de base rtos_base fournit des fonctionnalités
suffisantes et génériques nécessaires pour construire des modèles de simulation

de systèmes d’exploitation. Chaque implémentation d’un modèle d’OS héritera

alors ces fonctionnalités de base afin de construire ses spécificités.

Le bus logiciel hérite également du sw_tlm_router_base pour acheminer les

services vers les différents composants logiciels.

La figure 4.2 montre la hiérarchie de classe de notre bus logiciel en utilisant

une notation basée sur le formalisme UML.

Figure 4.2 — Hiérarchie de classe du bus logiciel

Le bus logiciel est relié au bus matériel par l’intermédiaire du BFM comme

suit :

• un port initiateur (initiator_port) qui représente le port CPU. Ce port
initie des transactions SAT au bus matériel (bus CPU local ou bus

système);

• un target_port qui représente le port d’interruption. Ce port sert à servir
les interruptions provenant de l’extérieur du nœud logiciel.

Ainsi, le rôle du BFM est de traduire des transactions logiques aux

transactions physiques et de les amener à la couche physique du bus matériel

(physical HW BUS layer).
Le bus logiciel se sert d’un fichier d’identificateurs de services (Identification
map file) permettant de rendre compte du composant logiciel fournisseur du

service.

SW BUS

rtos_base

hérite de

sc_module

sw_tlm_service_if <sat_service_call<ID,DATA>,sat_response<DATA> >

sw_tlm_router_base <ID,sw_tlm_service_if<sat_service_call
< ID,DATA>,sat_response<DATA> >,0>

EPT TIMA

Mémoire de Mastère - 54-

Une transaction initiée par un pilote TLM par exemple résulte à un accès

READ/WRITE selon l’identificateur de service demandé à travers le port

target correspondant de la mémoire logique (identifié grâce au map file).
Toutes ces méthodes et classes forment la base du SW TLM. Sur la base de ce

simple mécanisme de services nous pouvons établir des modèles logiciels et des

routeurs génériques.

Les interfaces du SW TLM sont facilement comprises et efficaces.

Les utilisateurs peuvent concevoir leurs propres composants logiciels mettant

en application quelques ou toutes ces interfaces, ou ils peuvent les implémenter

directement dans le target en utilisant sc_export. La fonction service en
particulier sera souvent directement implémentée dans le target.

4444....4444 ConclusionConclusionConclusionConclusion

Ce chapitre a décrit la structure et les interfaces du SW TLM. Ce niveau est

facilement compris et utilisable. Cependant, pour pouvoir tester l’efficacité de

ce modèle, nous l’avons appliqué sur un exemple de système multiprocesseur à

savoir l’application MJPEG.

EPT TIMA

Mémoire de Mastère - 55-

Chapitre Chapitre Chapitre Chapitre 5555

EEEEtude de catude de catude de catude de cas: Application du SW s: Application du SW s: Application du SW s: Application du SW TLM sur TLM sur TLM sur TLM sur
llll’application application application application MJPEGMJPEGMJPEGMJPEG

5555....1111 Introduction Introduction Introduction Introduction

Ce chapitre présente l’étude de cas réalisée pour illustrer l’utilisation du SW

TLM défini tout au long de ce travail.

La structure de ce chapitre se décompose en trois sections. La première section

décrit l’application sur laquelle a été appliqué SW TLM à savoir l’application

MJPEG. Dans la deuxième section, nous détaillons l’utilisation du SW TLM

pour la modélisation du logiciel embarqué au niveau V.A. Enfin la dernière

section évalue les résultats obtenus.

Nous cherchons à montrer que le modèle adopté permet une modélisation

rapide et qu’il offre de la flexibilité.

5555....2222 Description de l’application MJPEGDescription de l’application MJPEGDescription de l’application MJPEGDescription de l’application MJPEG

5.2.1 L’application MJPEG
La Figure 5.1 montre un graphe de tâches de l’application MJPEG qui est un

décodeur d’images vidéo JPEG15. C’est en fait une application logicielle multi-

thread réalisant le décodage d’un flux d’images JPEG.

Cette application est modélisée comme un ensemble de tâches parallèles

communiquant à travers des canaux point à point de type FIFO.

Les arcs en gras représentent le flux de décompression, et les arcs en pointillés

représentent les paramètres de configuration qui sont des variables globales de

la configuration initiale [11].

15 Joint Photographic Experts Group

EPT TIMA

Mémoire de Mastère - 56-

 TG: Traffic Generator IQ: Inverse Quantization

 DEMUX: Demuxer ZZ: ZigZag scan

 VLD: Variable Length Decoding LIBU: LINE BUILDER

 IDCT: Inverse Discrete Cosine Transform RAMDAC: Random Access Memory

 Digital-to-Analog Converter

Figure 5.1 — Graphe de tâches de l’application MJPEG

Le périphérique d’entrée est un générateur de trafic noté TG, et le

périphérique de sortie est un convertisseur vidéo noté RAMDAC.

Cette application lit un flux d’images JPEG 64x64 et produit un flux de pixels

dans l’ordre des lignes pour affichage.

Le décodage d’une image nécessite 6 étapes [11]:

- DEMUX analyse le flux fournit par le périphérique d’entrée pour en extraire

la taille de l’image, les tables de Huffman et les tables de quantification. Ces

informations sont usuellement stockées dans des variables globales. Les

données de l’image compressée sont lues par paquet et rangées dans un

tampon.

- Le décodeur de Huffman, VLD, décompresse ce tampon et met le résultat

dans un deuxième tampon.

- ZZ réorganise le tampon suivant l’ordre zigzag et produit son résultat dans

un troisième tampon.

- IQ effectue la quantification inverse du tampon précédent pour le mettre

dans un nouveau tampon.

- IDCT exécute une transformé discrète inverse en cosinus du tampon fournit

par IQ dans un nouveau tampon.

- LIBU stocke les blocs (8x8) issus de IQ dans un sixième tampon dont la

largeur en bit correspond à la taille de l’image. Une fois les lignes disponibles,

elles sont émises vers le périphérique de sortie.

TG DEMUX VLD

LIBU ZZIDCT

IQ

RAMDAC

(données)

(commande)

(tables de huffman)

(tables de quantification)

(taille
de l’image)

(pixels)

TG DEMUX VLD

LIBU ZZIDCT

IQ

RAMDAC

(données)

(commande)

(tables de huffman)

(tables de quantification)

(taille
de l’image)

(pixels)

EPT TIMA

Mémoire de Mastère - 57-

5.2.2 Partitionnement logiciel/matériel
Nous avons procédé à un partitionnement logiciel/matériel de l’application

MJPEG. Elle sera alors constituée de deux noeuds logiciels et deux nœuds

matériels à savoir le générateur de trafic TG, qui écrit le flux MJPEG

compressé en mémoire, et le coprocesseur RAMDAC qui lit les images

décompressées en mémoire et les envoie vers le terminal VIDEO. Les deux

nœuds logiciels comportent arbitrairement chacun trois tâches logicielles.

Modélisé au niveau Architecture Virtuelle, le système se présente comme suit:

Figure 5.2 — Partitionnement logiciel/matériel de l’application MJPEG

Avec la méthodologie SW TLM, nous avons procédé à la co-simulation

logicielle/matérielle de l’application MJPEG.

Nous limitons notre étude au niveau PV.

Les objectifs à atteindre, lors de l’utilisation de la méthodologie SW TLM, sont

multiples:

– utiliser la méthodologie dans le but de montrer sa validité;

– montrer la flexibilité et la rapidité de la méthodologie;

– tester le bon fonctionnement des divers composants.

5555....3333 AAAArchitecture de l’application MJPEG au niveau Vrchitecture de l’application MJPEG au niveau Vrchitecture de l’application MJPEG au niveau Vrchitecture de l’application MJPEG au niveau V....AAAA

Dans notre modèle, nous disposons de deux blocs matériels : TG et RAMDAC,

deux modules logiciels mappés à deux processeurs ARM7 (chaque nœud

logiciel se compose de trois tâches), une mémoire, un contrôleur de FIFO et un

module « Interrupt SW » qui gère les interruptions entre les modules logiciels.

Modèle Sim
CPU SS

OS
Comm

SW1

OS
Comm

SW2

Bus système

Mémoire
FIFO

HW1

HW2

Flux
MJPEG

VLDDemux IQ ZZ
Line

Builder

TG

Ramdac
SW_intr

IDCT

Modèle Sim
CPU SS

Modèle Sim
CPU SS

OS
Comm

SW1

OS
Comm

SW2

Bus système

Mémoire Contrôleur

FIFO

HW1

HW2

Terminal VIDEO

VLDDemux IQ ZZ
Line

Builder

TG

Ramdac
SW_intr

IDCT

Modèle Sim
CPU SS

Modèle Sim
CPU SS

OS
Comm

SW1

OS
Comm

SW2

Bus système

Mémoire
FIFO

HW1

HW2

Flux
MJPEG

VLDDemux IQ ZZ
Line

Builder

TG

Ramdac
SW_intr

IDCT

Modèle Sim
CPU SS

Modèle Sim
CPU SS

OS
Comm

SW1

OS
Comm

SW2

Bus système

Mémoire Contrôleur

FIFO

HW1

HW2

Terminal VIDEO

VLDDemux IQ ZZ
Line

Builder

TG

Ramdac
SW_intr

IDCT

Modèle Sim
CPU SS

EPT TIMA

Mémoire de Mastère - 58-

Ces composants sont connectés par l’intermédiaire du bus système (voir Figure

5.2).

En utilisant la présentation TLM et en détaillant l’architecture du sous

système CPU, le modèle sera présenté par la Figure 5.3.

Dans notre cas, nous avons seulement besoin de pilotes de FIFO pour la

communication. Le pilote FIFO est un composant esclave/maître. Dans ce cas,

il fournit une simple API à l’application plus spécifiquement les services Read
et Write :

• w_fifo_drv : contrôle l’accès d’écriture dans une FIFO;

• r_fifo_drv : utilisé quand l’application logicielle procède à un accès en
lecture.

Pour synchroniser les tâches logicielles des différents nœuds pour des accès en

lecture et écriture bloquants, un contrôleur de FIFO intervient pour débloquer

la tâche bloquée. Par suite, si une tâche logicielle est bloquée dans un accès

parce que la FIFO est vide ou pleine, elle doit attendre une interruption

matérielle pour pouvoir accéder à la FIFO. Cette interruption est capturée par

le port interrupt_port.
D’une part, w_fifo_drv doit envoyer une interruption quand la FIFO ou il va
écrire est initialement pleine. Cela va réveiller les lectures bloquées. Pour

assurer ceci, w_fifo_drv écrit dans une adresse particulière du contrôleur de
FIFO.

En outre, les pilotes de FIFO tiennent des informations sur l’état de FIFO

modélisée comme une FIFO circulaire, à savoir :

- read_index: pointeur de lecture;

- write_index: pointeur d’écriture;

- full: indique si la FIFO est pleine;

- buffer: pointe à la base de la FIFO.
En fait, ces informations sont présentées comme étant des adresses dans

l’espace d’adressage de la mémoire logique.

EPT TIMA

Mémoire de Mastère - 59-

Figure 5.3 — Modèle MJPEG au niveau Architecture Virtuelle

Le code suivant illustre une partie de l’implémentation d’un accès en écriture

par w_fifo_drv:

sat_status FIFO_DRIVER::w_fifo_drv(drv_fifo_t * drv, void *buf, unsigned

long size)

{

sat_status status;

sat_error_reason error_reason;

int full, data, temp_wi;

…

//waiting if fifo full

status= initiator_port.CALL(drv->full, full, error_reason, READ);

if (full) {

 …

 status= initiator_port.CALL(os_id, data, error_reason,

 SIGNAL_SLEEP, drv->sig_r);

 …

 }

//prepare and send write transaction

status=initiator_port.CALL(drv->wi, temp_wi, error_reason, READ);

status=initiator_port.CALL(drv->buffer+temp_wi, data, error_reason,

 WRITE);

…

TG
CPU

subsystem1
RAMDAC

Memory FIFO_CTR

CPU
subsystem2

SYSTEM BUS

INTR_SW

SW BUS

FIFO_IN
Driver

Logical
memory

Identification
Map file

CPU BUS
Local

memory

DEM

BFM

VLD IQ
FIFO_OUT

Driver

PU PULogical
memory

Local
timer

TG
Sous système

CPU1 RAMDAC

Mémoire FIFO_CTR

Sous système

CPU2

BUS système

INTR_SW

BUS Logiciel

FIFO_IN

Pilote

Mémoire
logique

Map file

BUS CPU
Mémoire

locale

Sous système CPU

DEM

BFM

Port matériel

VLD IQ FIFO_OUT
Pilote

PU PUMémoire
logique

Port logiciel

Timer
local

TG
CPU

subsystem1
RAMDAC

Memory FIFO_CTR

CPU
subsystem2

SYSTEM BUS

INTR_SW

SW BUS

FIFO_IN
Driver

Logical
memory

Identification
Map file

CPU BUS
Local

memory

DEM

BFM

VLD IQ
FIFO_OUT

Driver

PU PULogical
memory

Local
timer

TG
Sous système

CPU1 RAMDAC

Mémoire FIFO_CTR

Sous système

CPU2

BUS système

INTR_SW

BUS Logiciel

FIFO_IN

Pilote

Mémoire
logique

Map file

BUS CPU
Mémoire

locale

Sous système CPU

DEM

BFM

Port matériel

VLD IQ FIFO_OUT
Pilote

PU PUMémoire
logique

Port logiciel

Timer
local

EPT TIMA

Mémoire de Mastère - 60-

Le routage des services entre les différents composants est facilité par le fichier

d’identificateurs de services (Identification map file) qui contient en fait
l’identificateur du module fournisseur de service.

Un aperçu de ce fichier est présenté ci-dessous :

;-----------------------------|-------------|---------

; slave_name.port_name |Services id| Size

;-----------------------------|-------------|---------

TOP.MEMORY.target_port 0x10000000 0x4000

TOP.FIFO_DRIVER.target_port 0x10010000 Ox4

TOP.BFM.target_port 0x10010010 Ox4

…

Au niveau « top level » nous trouvons l’instanciation des divers composants

logiciels et nous définissons leur connexion:

#ifndef _TOP_H_

#define _TOP_H_

/*-------------------------------

 * Includes

 ------------------------------/

 #include “systemc.h”

 …

 #include “sw_router.h”

 #include “sat_memory.h”

 #include “drv_fifo.h”

 …

{

 …

 //----------------------------------

 // Components

 //----------------------------------

 //Channel

 sw_router<int,int> * SW_ROUTER;

 //Memory

 sat_memory<int,int> * LOGICAL_MEMORY ;

 // Fifo Driver

 fifo_drv * FIFO_DRIVER;

 //BFM

 sw_hw_bridge<int> * BFM;

 …

 // Memory instantiation

 LOGICAL_MEMORY = new sat_memory<int,int>(“LOGICAL_MEMORY”,0x4000);

EPT TIMA

Mémoire de Mastère - 61-

 //Channel instantiation

 SW_ROUTER = new sw_router<int,int>(“SW_ROUTER”);

//Binding

SW_ROUTER->initiator_port(FIFO_DRIVER->target_port);

SW_ROUTER->initiator_port(BFM->target_port);

 …

FIFO_DRIVER->initiator_port(SW_ROUTER->target_port);

 …

} ;

#endif /* _TOP_H_ */

5555....4444 AnalyseAnalyseAnalyseAnalyse expérimentaexpérimentaexpérimentaexpérimentalelelele

Pour valider notre méthodologie, nous l’avons appliqué sur l’exemple MJPEG.

Dans cette section, nous allons alors analyser les résultats que nous avons

obtenus. Ces résultats nous permettent d’effectuer des analyses non seulement

quantitatives, mais aussi qualitatives. Nous démontrons la validité de notre

méthodologie. Ensuite nous présentons ses avantages. Les difficultés ainsi

quelques limitations seront développées en dernier.

Réduction du tempsRéduction du tempsRéduction du tempsRéduction du temps de lade lade lade la phase de phase de phase de phase de modélisationmodélisationmodélisationmodélisation

Nous avons appliqué notre méthodologie à cet exemple. L’effort de

modélisation de la spécification a été faible. L’écriture d’une telle spécification

est facile et rapide.

Cette méthodologie nous a offert un format clair pour bien décrire le logiciel.

Par contre, sa conception est une tâche laborieuse et a nécessité un temps

considérable (environ 5 semaines). Cette difficulté est notamment due à

l’étendue des connaissances que requiert la conception: bonne connaissance du

niveau TLM, du flot de conception des systèmes multiprocesseurs monopuces,

de la structure et des fonctionnalités des systèmes d’exploitation embarqués,

des protocoles de communication, etc.

ValidationValidationValidationValidation

Cette expérimentation nous a permis de valider les concepts et la méthodologie

que nous avons proposés et qui ont requis un travail important. La

méthodologie a été appliquée avec succès sur l’application MJPEG.

Les résultats expérimentaux obtenus nous ont permis alors d’analyser l’intérêt

de l’approche proposée, notamment en termes de vitesse et de précision de la

EPT TIMA

Mémoire de Mastère - 62-

simulation. En effet, après utilisation le niveau s’avère rapide et il simplifie le

travail du concepteur en faisant abstraction du logiciel et du matériel.

Le tableau ci-après résume les résultats de simulation des trois niveaux

d’abstraction : niveau fonctionnel, niveau V.A et niveau RTL:

Tableau 5.1 — Résultats comparatifs de la simulation aux différents niveaux d’abstraction

Niveau Niveau Niveau Niveau
d’abstractiond’abstractiond’abstractiond’abstraction

Temps Temps Temps Temps
d’exécution d’exécution d’exécution d’exécution

Temps de Temps de Temps de Temps de
simulationsimulationsimulationsimulation

PrécisionPrécisionPrécisionPrécision

VitesseVitesseVitesseVitesse

Fonctionnel -- < 1 ms 0% ~ 106

Architecture
Virtuelle 0.90 s 20 s 77% ~ 1260

RTL 0.73s ~ 7 h 100% --

Ces résultats correspondent à la simulation de 25 images. Nous avons utilisé

des processeurs ARM7TDMI cadencés à 40 Mhz.

La deuxième colonne du tableau montre le temps d’exécution qui représente le

temps « SystemC » consommé par les différents CPU afin de traiter une

seconde de séquences vidéo. Le temps de simulation correspond au temps

utilisé par la machine hôte pour achever la simulation. Les deux dernières

colonnes sont reliées à la précision ainsi qu’à la vitesse de simulation.

Les résultats obtenus montrent que la simulation au niveau Architecture

Virtuelle permet une accélération considérable par rapport à une simulation au

niveau RTL (plus de 3 ordres de grandeur). De même, la précision de la

simulation du système entier est considérablement améliorée sans pour autant

atteindre la précision absolue d’un modèle cycle à base d’ISS (~20% d’erreur).
L’erreur introduite au niveau V.A est due notamment à l’inexactitude de

l’estimation du temps d’exécution du logiciel et au niveau de la modélisation

de l’interface logicielle/matérielle sans oublier que nous nous plaçons à un

niveau d’abstraction élevé ce qui nous mène à tolérer une certaine erreur. D’où

le niveau VA permet d’atteindre une précision comparable à celle obtenue au

niveau cycle précis.

En utilisant cette méthode nous pouvons aussi démarrer très en amont le

développement des logiciels embarqués sur un modèle représentatif du circuit

final, tout en bénéficiant d’une vitesse de simulation importante plus rapide

qu’au niveau RTL.

Donc les résultats obtenus montrent une vitesse de simulation considérable

comparée avec une simulation classique basée sur ISS et une précision

EPT TIMA

Mémoire de Mastère - 63-

raisonnable qui sont des critères clés pour une exploration d’architectures à un

niveau d’abstraction élevé.

Un autre avantage de cette méthode est la simplicité de l’utilisation du modèle

de simulation ce qui rend l’exploration des différents choix architecturaux

facile tôt dans le cycle de conception. En effet, pour modéliser le logiciel

embarqué un utilisateur pourra facilement manipuler le niveau SW TLM.

Pour implémenter un module master il doit avoir un port initiateur. Pour
rendre un module utilisateur un sat slave, il doit hériter de sat_slave_base et
implémenter alors l’interface SAT.

Les appels de services ont lieu quand un module master appelle l’une des
méthodes de l’interface SAT à travers son port initiateur. Selon la méthode

appelée, le port initiateur crée une requête et la transfère au port target en

utilisant l’interface service de la couche Service. La partie slave_base du target
décode la requête et appelle alors la méthode sat_if appropriée.
Pour le routage entre les composants maître et esclave nous utilisons un bus

logiciel « sw_router ». Il conduit les transactions au target correspondant en
suivant le service demandé.

LimitationsLimitationsLimitationsLimitations

Comme toute nouvelle approche, il y a toujours quelques difficultés et quelques

limitations. Nous allons en citer celles qui nous semblent les plus importantes.

En effet, le bus logiciel abstrait un système d’exploitation générique et donc au

cas ou l’application nécessite un système d’exploitation spécifique nous devons

intervenir dans l’implémentation du sw_router afin de supporter tous les
services et les particularités de l’OS requis par l’application. Par ailleurs, les

fonctionnalités requises pour les systèmes d’exploitations embarqués sont d’une

grande variété, notamment pour les communications. Il est donc nécessaire que

ceux derniers puissent supporter cette variété, et ils doivent donc disposer de

très nombreuses parties spécifiques. C’est un obstacle à l’idée de

standardisation générale des systèmes d’exploitation embarqués: en effet, à

moins d’avoir un jeu de fonctionnalités disproportionné capable de fournir des

fonctions optimales pour chaque cas, il est souvent nécessaire d’ajouter des

fonctions spécifiques au système pour qu’il puisse fonctionner avec une

architecture particulière [19].

De même chaque pilote TLM représente un élément qui fournit des services et

requiert des services fournis par d’autres éléments. Pour cette raison, l’ajout

EPT TIMA

Mémoire de Mastère - 64-

d’un nouveau pilote nécessite la définition de ses relations avec les autres

éléments déjà existants. La description doit aussi définir les services fournis et

requis par l’élément ajouté, les paramètres d’appel de chaque méthode du

pilote et les liens vers les sources d’implémentation.

Toutes ces difficultés sont superficielles. Ainsi, l’expérimentation a confirmé la

faisabilité de l’approche proposée.

5555....5555 ConclusionConclusionConclusionConclusion

Nous avons développé et illustré les possibilités d’une nouvelle méthodologie

pour modéliser le logiciel embarqué en se basant sur TLM.

L’expérimentation de la méthode a montré tout d’abord sa faisabilité. Ensuite,

elle a permis de mettre en évidence la simplicité de développement du logiciel

embarqué à un haut niveau d’abstraction. Cette méthodologie est alors efficace

et permet de fournir une présentation unifiée de tout le système.

Le chapitre suivant conclut ce document en donnant un bilan du travail

effectué et les perspectives envisageables au terme de cette recherche.

EPT TIMA

Mémoire de Mastère - 65-

Chapitre Chapitre Chapitre Chapitre 6666

ConclusionConclusionConclusionConclusion

Les systèmes embarqués sont présents dans des applications de plus en plus

nombreuses. Récemment la demande pour ces systèmes et le nombre des

fonctionnalités souhaitées s’est fortement accrue tandis que les délais de

conception requis diminuent. Des architectures multiprocesseurs hétérogènes

semblent devenir la clé pour que les systèmes embarqués puissent supporter

cette complexité. En parallèle, l’intégration a fait de grands progrès.

Cependant, les concepteurs n’arrivent plus à concevoir de tels circuits dans des

délais raisonnables: ils manquent de méthodologies et d’outils; par ailleurs la

vérification de ces systèmes devient de plus en plus complexe.

Aussi est-il important de fournir les méthodologies et les outils qui faciliteront

et accéléreront la conception des systèmes monopuces. Pour ce faire, un flot de

conception descendant est proposé par le groupe TIMA-SLS. De même, le

besoin d’une méthodologie de conception basée sur une approche plus abstraite

pour la conception des systèmes MPSoC est bien ressenti par le monde

industriel et celui de la recherche. Dans cette optique, l’utilisation d’un modèle

de représentation unifié est requise d’où une méthodologie pour la modélisation

du logiciel embarqué est proposée.

Dans ce document, nous avons présenté les systèmes multiprocesseurs

monopuces ainsi que les défis de conception de ces systèmes. A la lumière de

ces défis, nous avons entrepris une étude des solutions proposées pour leur faire

face.

Nous avons présenté après les architectures logicielles et matérielles des

systèmes multiprocesseurs monopuces. Les niveaux de modélisation RTL ainsi

que TLM ont été décrit. Ensuite, les flots de conception classiques ont été

étudiés. Nous comprenons alors dans quelle mesure ceux-ci ne répondent pas

aux besoins des futurs systèmes embarqués. Une nouvelle approche de

conception plus appropriée, élaborée au groupe SLS, a été donc présentée.

Cette approche se base sur un raffinement de l’architecture

logicielle/matérielle.

Le niveau d’abstraction intermédiaire dans ce flot de conception à savoir le

niveau Architecture Virtuelle a été ensuite décrit tout en présentant un

EPT TIMA

Mémoire de Mastère - 66-

nouveau niveau de modélisation pour le logiciel embarqué qui est SW TLM

ainsi que ses différents concepts de base. Nous avons exposé finalement

l’application des concepts proposés sur l’application MJPEG. Cette expérience

a montré l’intérêt d’une telle approche d’un point de vue pratique.

Ainsi, ce travail inaugure un axe de recherche important.

En effet, notre approche de la modélisation du logiciel embarqué offre de

nouvelles perspectives et repousse encore les limites des flots de conception

classiques.

Grâce à la méthodologie SW TLM, le matériel ainsi que le logiciel sont conçus

parallèlement au niveau TLM permettant l’accélération de la simulation et

l’exploration d’architectures tôt dans le cycle de conception.

Une perspective envisageable en prolongement direct de ce mémoire concerne

la définition du SW TLM au niveau PVT. Un futur travail serait aussi de

développer un outil automatique de génération de code pour les pilotes de

communication en se basant sur les concepts du SW TLM. L’automatisation

est une perspective très importante pour pleinement exploiter la méthodologie

proposée et réduire le temps total de conception d’un système MPSoC.

Sans doute, les objectifs importants de conception sont de fixer les demandes

de performance, de pouvoir comparer différents alternatives et de choisir celle

qui respecte le mieux ces demandes. Il est naturel d’associer une phase

d’évaluation des performances avec chaque étape de conception pour choisir la

réalisation optimale.

Une perspective de ce travail serait alors l’exploration de l’architecture du bus

logiciel, permettant d’offrir une bonne efficacité pour la réalisation du système

d’exploitation embarqué, facteur critique dans les MPSoC actuels.

EPT TIMA

Mémoire de Mastère - 67-

GlossaireGlossaireGlossaireGlossaire

– APIAPIAPIAPI : Application Programming Interface, ensemble de routines
 standard destinées à faciliter au programmeur le développement
 d’applications.

– ASICASICASICASIC : Application Specific Integrated Circuit, circuit intégré développé
 spécifiquement pour une application.

– BFMBFMBFMBFM : Bus Functional Model, interface pour la simulation permettant
 de transformer les accès mémoire fonctionnels en des accès
 mémoires cycle-près.

– CPUCPUCPUCPU : Central Processor Unit, partie principale d’un système, réservée
 aux traitements.

– FIFOFIFOFIFOFIFO : First In First Out, classe de protocole de communication qui
 assure que les premières données envoyées sont les premières
 données reçues.

– HALHALHALHAL : Hardware Abstraction Layer, la couche basse de l’organisation
 du logiciel fournissant les pilotes et les contrôleurs pour la gestion
 de la communication.

– IPIPIPIP : Intellectual Property, élément (logiciel ou matériel) dont le
 fonctionnement est connu et documenté, mais dont la structure
 interne est inconnue.

– IPCIPCIPCIPC : Inter-Process Communication (communication interprocessus),
 ensemble de fonctions de communications inter-processus. Les
 IPC fournissent des services de mémoire partagée, sémaphores et
 messagerie.

– ISAISAISAISA : Instruction Set Architecture, niveau d’abstraction pour le logiciel
 simulant l’architecture du jeu des instructions, avec la précision
 du cycle d’horloge.

– ISSISSISSISS : Instruction Set Simulator, outil qui s’exécute sur la machine hôte
 et qui émule la fonctionnalité d’un processeur.

– MPSoCMPSoCMPSoCMPSoC : Multi Processor System on Chip, système monopuce — circuit
 intégrant sur une même puce différents composants fonctionnels
 (mémoires, processeurs, etc.).

EPT TIMA

Mémoire de Mastère - 68-

– RTLRTLRTLRTL : Register Transfer Level, niveau d’abstraction pour la
 spécification des systèmes.

– SoCSoCSoCSoC : System on Chip, système monopuce, circuit intégrant sur une
 même puce différents composants fonctionnels (mémoires,
 processeurs, etc.).

EPT TIMA

Mémoire de Mastère - 69-

RRRRééééfffféééérences rences rences rences

[1] A. A. Jerraya « Long Terme Trends for Embedded System Design » CEPA
2 Workshop — Digital Platforms for Defence, Bruxel, Belgique, Mars 15-16,
2005

[2] A. A. Jerraya. « Programming Models and Hw-Sw Interfaces Abstraction
for Multiprocessor SoC ». DAC, Juillet 2006.

[3] A. Bouchhima: Modélisation du logiciel embarqué à différents niveaux
d’abstraction en vue de la validation et la synthèse des systèmes monopuces.
Rapport de thèse, TIMA, Mai 2006.

[4] A. Gerstlauer, H. Yu et D. Gajski. RTOS Modeling for System Level
Design. Proc. Of Design, Automation & Test in Europe, Mars 2003.

[5] A. Haverinen, M. Leclercq, N. Weyrich, et D. Wingard, « SystemCTM based
SoC Communication Modeling for the OCPTM Protocol », OSCI Technical
Paper, Octobre dans www.systemc.org, 2002.

[6] A. Rose, S. Swan, J. Pierce, JM. Fermendez, "Transaction Level Modeling
in SystemC", Disponible sur le site: Open SystemC Initiative:
http://www.systemc.org, consulté le 11/10/06.

[7] B. Vanthournout. Transactional level as the new design and verification
abstraction above RTL. Coware Inc, Leuven, Belgium, 2003.

[8] D. Culler, J.P. Singh, et A.Gupta. « Parallel Computer Architecture: A
Hardware/Software Approach ». The Morgan Kaufmann series in Computer
Architecture and Design, Août 1998.

[9] D. Desmet, D. Verkest et H. De Man. Operating System based Software
Generation for Systems-on-Chip. Proc. Design Automation Conference, Juin
2000.

[10] F. Ghenassia. Transaction Level Modeling with SystemC: TLM Concepts
and Applications for Embedded Systems. Springer, Novembre 2005.

[11] I. Augé, F. Pétrot, R. Buchmann, F. Donnet, P. Gomez, et E. Faure.
« Disydent: un environnement pour la conception de systèmes numériques
synchrones ». Premier congrès international de Signaux Circuits et Systèmes
(SCS’04), pp. 72-77, Monastir, Tunisie, Mars 2004.

EPT TIMA

Mémoire de Mastère - 70-

[12] ITRS. « International Technology Roadmap for Semiconductors:
Design ». 2001. Disponible sur le site http:// www.itrs.net/ Links /2001ITRS
/Design.pdf, consulté le 20/12/06.

[13] ITRS. « International Technology Roadmap for Semiconductors: System
Drivers ». 2005. Disponible sur le site http:// www.itrs.net/ Links/ 2005ITRS/
SysDrivers2005.pdf, consulté le 20/12/06.

[14] J. A. Rowson, A. S.-Vincentelli : Interface-Based Design. DAC 1997.

[15] J. Turley. « Survey says: software tools more important than chips ».
Embedded Systems Design Journal, novembre 2005.

[16] L. Benini, G. De Micheli: Networks on Chips: A New SoC Paradigm.
IEEE Computer, vol. 35, Janvier 2002.

[17] L. Cai et D. Gajski. Transaction Level Modeling in System Level Design.
CEC Technical Report 03-10, Mars 28, 2003.

[18] L. Charest, E. M. Aboulhamid, et A. Tsikhanovish. Designing with
SystemC: Multiparadigm modeling and simulation performance evaluation.
Dans International HDL Conference, San Jose, USA, Mars 2002.

[19] L. Gauthier: Génération de système d’exploitation pour le ciblage de
logiciel multitâche sur des architectures multiprocesseurs hétérogènes dans le
cadre des systèmes embarqués spécifiques. Rapport de thèse, TIMA, Décembre
2001.

[20] M. Baklouti: Performance estimation based on a high level abstraction
model of MPSoC Hardware/Software architecture. Mémoire de mastère, TIMA
et EPT, Juin 2006.

[21] MathWorks. «The Mathworks — Simulink — Simulation and Model-Based
Design», disponible sur le site http://www.mathworks.com/ products/
simulink/, consulté le 17/02/07.

[22] P. Paulin, C. Pilkington, M. Langevin, E. Bensoudane, D. Lyonnard, O.
Benny, B. Lavigueur, D. Lo, G. Beltrame, V. Gagne, G. Nicolescu. « Parallel
Programming Models for a Multi-Processor SoC Platform Applied to
Networking and Multimedia ». IEEE Transactions on Very Large Scale
Integration (VLSI) Journal, 2006.

[23] R. K. Gupta, D. Gajski, R. Allen, Y. Trivedi. “Opportunities and pitfalls
in HDL-based system design”. Dans les actes de ICCD 1996.

EPT TIMA

Mémoire de Mastère - 71-

[24] Samuel K. MOORE. « Winner multimedia monster » IEEE Spectrum
journal, pages 18—21, Janvier 2006.

[25] S. Wang, S. Malik, et R. A. Bergamaschi, Modeling and Integration of
Peripheral Devices in Embedded Systems. Dans les actes de Design
Automation and Test in Europe (DATE'03). Mars 2003.

[26] SystemC 2.1, disponible sur le site http://www.systemc.org/ consulté le
22/10/06.

[27] W. Cesario and all: Component-Based Design Approach for Multicore
SoCs. DAC 2002.

