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RRRRéééésumsumsumsuméééé    
 
Dans les systèmes embarqués, le logiciel prend une place de plus en plus 

importante, et sa complexité augmente d’autant. Ces systèmes étant très 

largement utilisés dans les applications récentes, il est important de pouvoir les 

développer rapidement.  

L’accroissement de la complexité de ces systèmes fait de la maîtrise de leurs 

conceptions un défi à relever par les concepteurs. 

En effet, la tendance à améliorer la productivité et réduire le temps de mise sur 

le marché (time-to-market), fait que le niveau transfert de registres (RTL) 
devient insatisfaisant pour la conception et le flot de vérification. 

Pour dépasser ce défi, les nouvelles méthodes de conception sont basées sur des 

concepts d’abstraction de haut niveau. Une voie pour surmonter la complexité 

consiste donc à élever le plus possible le niveau d’abstraction des descriptions 

des systèmes à concevoir, à savoir le niveau de modélisation transactionnel 

(TLM). 

 

Dans ce travail, nous proposons d’étendre le niveau TLM — vu comme le haut 

niveau d’abstraction du niveau RTL — pour faciliter la conception et la 

validation du logiciel embarqué. 

Nous visons à présenter les nouveaux concepts du TLM conçu pour le logiciel 

(SW TLMSW TLMSW TLMSW TLM) permettant le raffinement de la communication logicielle. 

La méthodologie proposée permet aux concepteurs de décider conjointement à 

propos de l’architecture logicielle ainsi que matérielle, afin d’assurer une 

performance maximale dans leurs conceptions. Ainsi, l’hétérogénéité des 

systèmes multiprocesseurs monopuces serait considérée plus efficacement de 

point de vue communication. 

 

Le premier chapitre de ce document présentera brièvement notre travail. 

Le deuxième chapitre abordera quelques généralités sur la conception des 

systèmes multiprocesseurs monopuces et présentera le flot de conception et de 

validation des systèmes hétérogènes monopuces proposé par le groupe SLS sur 

lequel nous avons travaillé. 

Plus spécifiquement, le niveau auquel nous nous sommes intéressés est le 

niveau Architecture Virtuelle qui sera décrit dans le troisième chapitre. A ce 

stade, un nouveau flot de conception sera présenté parallèlement à la 
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description de la nouvelle méthodologie SW TLM. Son implémentation ainsi 

que ses différents concepts de base seront détaillés dans le chapitre d’après. 

Le cinquième chapitre présentera la validation de ces concepts sur l’application 

MJPEG. Le dernier chapitre conclura et soulignera des perspectives de ce 

travail. 

 

Mots clésMots clésMots clésMots clés    
Systèmes multiprocesseurs monopuces, logiciel embarqué, flot de conception, 

niveaux d’abstraction, Architecture Virtuelle, niveau de modélisation 

transactionnel TLM, SW TLM. 
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AbstractAbstractAbstractAbstract    
 

Embedded software takes an important place in embedded systems and its 

complexity increases more and more. These systems are largely used in recent 

applications so it is important to be able to develop them quickly. 

With the increasing complexity of embedded systems, mastering their designs 

is a challenge faced by the designers. 

Indeed, the tendency to improve the productivity and to reduce the time to 

market makes Register Transfer Level (RTL) insufficient for the design and 

verification flow.  

To deal with this challenge, the new design methods are based on high-level 

abstraction concepts. So, one way to overcome complexity consists at raising 

the abstraction level when designing embedded systems; the transactional level 

modeling TLM is emerging. 

 

In this work, we propose to extend TLM approach — initially intended as a 

higher level abstraction of RTL hardware design — to cope with embedded 

software (SW) design and validation. We aim at introducing new SW TLM 

concepts which will enable refinement of communication at the SW side. 

The proposed methodology allows system designers to decide about HW and 

SW communication architecture jointly, so as to ensure maximum performance 

efficiency for their designs. As such, multiprocessor systems on chip (MPSoC) 

heterogeneity would be addressed more efficiently from communication 

viewpoint.   

 

The first chapter will briefly present our work. The second chapter will give a 

general overview of MPSoC design flow and will present the design and 

validation flow proposed by the SLS group. More specifically, we concentrate 

on Virtual Architecture level which will be described in the third chapter. At 

this stage, a typical design flow involving the VA level will be presented and 

the new SW TLM methodology will be described. Its implementation as well 

as its basic concepts will be detailed in the following chapter.  

The fifth chapter will present the validation of these concepts on an MJPEG 

application. The final chapter will conclude and give prospects to this work.  
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Chapitre Chapitre Chapitre Chapitre 1111     

IntroductionIntroductionIntroductionIntroduction    
 
Ce chapitre a pour but de situer le travail de ce mémoire. Pour ce faire, il 

définit dans une première section les systèmes multiprocesseurs monopuces. 

Dans la deuxième section,  la problématique est exposée. Dans la troisième 

section, sont présentés les objectifs à atteindre ainsi que les solutions apportées 

par le groupe SLS pour faire face à ces problèmes. 

Notre contribution apportée par ce mémoire sera détaillée dans la section 

suivante. Enfin, le plan du document sera détaillé. 

1111....1111 Contexte: les systèmes multiprocesseurs monopuceContexte: les systèmes multiprocesseurs monopuceContexte: les systèmes multiprocesseurs monopuceContexte: les systèmes multiprocesseurs monopucessss    
 
Ce travail s’inscrit dans le domaine de la conception des systèmes embarqués 

multiprocesseurs monopuces, plus communément appelés MPSoC1. 

Les progrès technologiques constants en terme d’intégration sur silicium ont 

permis de concevoir des systèmes sur puces de plus en plus complexes afin de 

répondre à une demande forte du marché pour des applications telles que les 

systèmes multimédia, la téléphonie mobile ou encore les applications de jeux 

vidéo. On a ainsi vu naître une nouvelle catégorie de systèmes ces dernières 

années, incluant un ou plusieurs processeurs, des composants dédiés et des 

modules d’entrée-sortie, le tout sur une seule puce. Ces systèmes sont appelés 

Systèmes sur Puce, ou System-on-a-Chip (SoC) en anglais. Une grande partie 
de ces systèmes consistent en l’intégration sur une même puce de plusieurs 

processeurs, DSP, IP matériel, mémoires, bus partagés, etc. On parle alors de 

systèmes multiprocesseurs monopuces (MPSoC). Ces systèmes sont réalisés en 

interconnectant des noeuds de calcul avec un réseau de communication.  

 

Pour faire face à la complexité de tels systèmes, des méthodes de conception 

permettant le découplage de la communication et du calcul ont été proposées 

[14] [27]. La communication prend d’ailleurs une place de plus en plus 

importante dans la conception de tels systèmes [16]. 

La conception des systèmes sur puce doit faire face à de nombreuses 

contraintes de performance, de consommation et de coût, pour lesquelles 

                                                
1 Multi Processor System on Chip 



EPT                                                                            TIMA 
 

Mémoire de Mastère                                                                                                              - 12- 

actuellement, seules des plateformes spécifiques2 à chaque application peuvent 

répondre [1].  

De plus, l’augmentation des performances par la fréquence ou par les 

techniques « classiques » (pipeline, prédiction de branchement,...) ne sont plus 

significatives en terme de performance et induisent une consommation 

inacceptable [24]. Une solution pour répondre aux problèmes de performance et 

de consommation consiste à augmenter le parallélisme dans les systèmes par 

l’intégration de plusieurs processeurs de type hétérogènes3 afin de cibler au 

mieux les applications. 

En 2001, les systèmes de prévisions stratégiques du rapport ITRS [12] 

prévoyaient que 70% des ASIC (Application Specific Integrated Circuit)  
comporteraient au moins un processeur embarqué à partir de l’année 2005. 

Aujourd'hui, les SoC peuvent intégrer de nombreux processeurs et cette 

tendance est confirmée par le rapport ITRS 2005 [13].  

Les figures 1.1(a) et 1.1(b) tirées de [15] montrent que près d’un système sur 

deux est un système multiprocesseur et que pour une partie importante d’entre 

eux il s’agit de processeurs hétérogènes. 
 

 
(a) Type de processeur 

 
(b) Nombre de processeurs 

Figure 1.1 - Répartition du nombre et du type de processeurs dans les systèmes actuels 

 
Il est prévu que ces systèmes monopuces soient les principaux vecteurs 

d’orientation de toute l’industrie des semi-conducteurs. Il est donc crucial de 

maîtriser la conception de tels systèmes tout en respectant les contraintes de 

mise sur le marché et les objectifs de qualité. 

Le grand défi en ce moment pour les ingénieurs est de réussir à maîtriser la 

complexité lors de la conception de ces systèmes et d’arriver à une conception 

                                                
2 Par rapport aux plateformes à usage générale 
3 Processeurs à usage général, processeurs de traitement de signal, ... 
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rapide des systèmes monopuces sous de fortes contraintes de qualité et de 

temps de développement.  

Pour dépasser ce défi, les nouvelles méthodes de conception sont basées sur des 

concepts d’abstraction de haut niveau. 

1111....2222 ProblématiqueProblématiqueProblématiqueProblématique: la complexité et les difficultés de la : la complexité et les difficultés de la : la complexité et les difficultés de la : la complexité et les difficultés de la 
conception des systèmes MPSoCconception des systèmes MPSoCconception des systèmes MPSoCconception des systèmes MPSoC    
 
Habituellement, les flots de conception des systèmes embarqués utilisent 

principalement le modèle RTL (Register Transfer Level) pour modéliser le 

système au niveau des transferts de registres. 

Ainsi, à ce niveau d’abstraction, nous devons modéliser tous les signaux 

passant entre les différentes entités de simulation. Ce niveau est temporisé au 

cycle d’horloge près. C’est pourquoi les simulations matérielles effectuées au 

niveau RTL sont relativement longues, ce qui peut allonger le temps de 

conception du système. 

En plus, un modèle global d’une architecture classique logicielle/matérielle est 

conventionnellement décrit au niveau RTL/ISA4. A ce niveau, le logiciel n’est 

autre qu’une suite d’instructions binaires placée dans une zone mémoire. Le 

matériel est décrit en utilisant un langage de description de matériel (HDL5). 

Ceci inclut l’architecture locale du nœud logiciel (processeur, mémoire, 

périphériques, etc.) mais aussi les autres parties du système. A ce niveau le 

processeur est considéré comme l’interface ultime entre le logiciel et le matériel. 

Il fournit d’un côté au programmeur une vision au niveau ISA de la machine. 

De l’autre côté, il interagit avec le reste des composants de l’architecture 

matérielle via des signaux physiques (bus d’adresses, bus de données, signaux 

de contrôle, signaux d’interruptions, etc.) Cette vision de l’architecture n’est 

donc valable qu’une fois les deux parties logicielle et matérielle entièrement 

conçues, c’est-à-dire vers la fin du cycle de conception. 

Vu le niveau d’abstraction employé, la vitesse de simulation reste très réduite 

et constitue ainsi une barrière empêchant l’exploration et la validation des 

applications les plus exigeantes. 

De même, nous notons l’absence de méthodologie et d’outils permettant une 

transition non brutale de la spécification initiale à l’architecture finale. 

                                                
4 Instruction Set Architecture 
5 Hardware Description language 
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Pour faire face à ces défis, la modélisation au niveau transactionnel (TLM) a 

été récemment favorisée pour la conception matérielle parallèlement à une 

proposition de nouveau flot de conception graduel.  

En effet, une solution suggérée est l’augmentation du niveau d’abstraction des 

modèles pour améliorer la productivité. 

Bien que l’ultime objectif du TLM est de permettre le développement tôt du 

logiciel embarqué ainsi que de paralléliser le développement du matériel et du 

logiciel dans le cycle de conception des systèmes sur puce, aucune modélisation 

TLM n’a été définie pour le logiciel.  

Dans les applications TLM classiques, le logiciel est considéré au niveau 

fonctionnel ou bien complètement raffiné et simulé à un très bas niveau 

d’abstraction sur un simulateur de jeux d’instructions (ISS: Instruction Set 
Simulator) concurremment avec des simulations matérielles, au niveau 

transaction ou au niveau cycle. 

De même, l’évaluation des sous systèmes logiciels embarqués, tôt dans les 

étapes de conception n’est plus faisable en employant les approches 

traditionnelles de simulation, précises au niveau cycle. Le problème vient de la 

vitesse lente de simulation de l’ISS.  

Pour une simulation plus rapide, nous avons pensé à un niveau transactionnel 

pour le logiciel similaire à celui pour le matériel, ceci sera considéré à un haut 

niveau d’abstraction. D’où les composants aussi bien logiciels que matériels 

seront modélisés avec un modèle unique afin d’aborder la conception du 

système dans une seule et même approche cohérente. 

1111....3333 Objectifs et sObjectifs et sObjectifs et sObjectifs et solutions proposéeolutions proposéeolutions proposéeolutions proposées par le groupe s par le groupe s par le groupe s par le groupe 
TIMATIMATIMATIMA----SLS SLS SLS SLS     
 
Le groupe SLS s’est focalisé sur la conception conjointe du logiciel et du 

matériel afin de résoudre les problèmes soulevés dans les paragraphes 

précédents. Cette conception se base sur un raffinement graduel à différents 

niveaux d’abstraction. 

La Figure 1.2 montre les deux niveaux intermédiaires proposés dans le flot de 

conception des SoC à savoir Virtual Architecture (niveau OS du côté logiciel) 
et Transaction Accurate (niveau HAL du côté logiciel).   
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Les traits continus forts correspondent au cas classiques de co-simulation6 

logicielle/matérielle tels que proposés par les approches conventionnelles. 

Remarquons que ces approches se basent exclusivement sur le niveau ISA du 

côté du logiciel. L’utilisation des niveaux TLM pour le matériel est assez 

récente. Historiquement c’est le niveau RTL qui était utilisé comme niveau de 

référence pour la co-simulation logicielle/matérielle à côté du niveau ISA. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.2 — Niveaux de validation de l’interface logicielle/matérielle 
 
L’utilisation d’un modèle à base d’ISS pour la co-simulation 

logicielle/matérielle présente toujours l’inconvénient d’intervenir tard dans le 

cycle de conception, c’est à dire une fois l’architecture logicielle et matérielle 

du système est fixée et complètement développée. Le besoin croissant de 

pouvoir effectuer la validation et l’exploration des choix architecturaux plus 

tôt dans le cycle de conception, a récemment poussé vers la mise au point 

d’approches qualifiées de « systèmes » -ou encore de « haut niveau »- 

permettant la co-simulation d’un système logiciel/matériel tôt dans le cycle de 

conception. 

Donc, pour remédier à la discontinuité observée dans les flots classiques de 

conception et de validation des systèmes MPSoC, le groupe SLS a introduit les 

concepts de Virtual Architecture et de Transaction Accurate comme étant des 

étapes intermédiaires dans le flot de conception permettant la validation, par 

co-simulation globale, des choix architecturaux résultant du raffinement 

graduel du système.  

Pour bénéficier de l’avantage d’une simulation rapide à ces niveaux 

intermédiaires, nous utilisons l’exécution native comme mode d’exécution du 

logiciel embarqué. 

                                                
6 Simuler conjointement les diverses parties d’un système hétérogène 
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La Figure 1.3 donne une vision simplifiée du flot de conception proposé par le 

groupe SLS : 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.3 — Flot de conception proposé par le groupe SLS 
 

Ce flot débute au niveau fonctionnel après que le partitionnement 

logiciel/matériel ait été décidé. Il se termine au niveau micro-architecture 

(RTL), où une étape classique de compilation et de synthèse logique permet 

d’aboutir à la réalisation finale du système. C’est un flot descendant qui 

permet de simuler à tous les niveaux et éventuellement de revenir en arrière à 

chaque étape.  

Dans ce flot, l’architecture virtuelle résulte d’une première étape de 

partitionnement de la spécification fonctionnelle initiale. Le partitionnement 

sépare les parties qui seront implémentées de façon matérielle de celles qui 

seront implémentées de façon logicielle. 

La deuxième étape du flot correspond au raffinement de l’architecture virtuelle 

en utilisant un modèle plus détaillé de l’architecture: Transaction Accurate. 
Cette étape est caractérisée par la spécification de la nature du protocole de 

communication entre les sous-systèmes ainsi que du modèle abstrait de 

l’architecture locale au niveau de chaque sous-système. 
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Le groupe SLS s’est intéressé aussi à la génération automatique des interfaces 

logicielles/matérielles. 

1111....4444 CCCContributionontributionontributionontributionssss    
 
Durant ce travail, nous avons contribué à la définition des niveaux de 

conception intermédiaires notamment Virtual Architecture et Transaction 
Accurate proposés par le groupe TIMA-SLS. 

 

Plus précisément, nos travaux au niveau T.A [20] consistaient à prouver 

l’intérêt et la faisabilité d’une estimation de performance des systèmes en 

utilisant ce modèle haut niveau de l’architecture logicielle/matérielle. 

Nous avons aussi essayé d’adapter le niveau T.A au niveau TLM de ST-

Microelectronics. 

 

Nos travaux au niveau V.A qui est un niveau plus abstrait que T.A consistent 

à valider l’application logicielle sur un modèle de simulation du système 

d’exploitation et de l’architecture. En effet, nous avons proposé un modèle 

d’extension pour le niveau V.A. 

Nous voulons pour cela étendre le niveau TLM pour supporter non seulement 

la partie matérielle mais également la conception et la validation du logiciel 

embarqué. 

La contribution attendue est de proposer alors une méthode permettant 

d’unifier la présentation du logiciel embarqué. Fort de ce contexte unifié de 

modélisation, la conception du logiciel embarqué et de l’architecture sous 

jacente pourra alors se dérouler en parallèle et d’une manière interactive. 

Nous proposons par la suite un modèle transactionnel pour le logiciel embarqué 

au niveau V.A basé sur TLM OSCI7. Les propriétés de ce modèle permettent 

d’unifier la représentation des composants logiciels et matériels. 

L’objectif général à terme étant de développer un environnement complet de 

simulation d’architectures MPSoC au niveau TLM, basé sur SystemC. 

1111....5555 PPPPlan de ce documentlan de ce documentlan de ce documentlan de ce document    
 
Ce document est organisé en six chapitres dont cette introduction.  

                                                
7 Open SystemC Initiative 
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Le second chapitre est dédié à la conception des systèmes MPSoC et pause de 

manière plus précise la problématique et les objectifs de ce travail. 

Le chapitre trois définit le niveau d’abstraction intermédiaire: Architecture 

Virtuelle et présente alors un flot de conception typique introduisant ce niveau.  

A ce stade, nous expliquons le raffinement de la communication logicielle et 

nous définissons la terminologie TLM pour le logiciel « SW TLMSW TLMSW TLMSW TLM ». 

Le chapitre quatre détaille différents aspects nécessaires pour l’implémentation 

du SW TLM. 

Une application de l’approche est ensuite présentée dans le chapitre cinq. 

Finalement, le dernier chapitre conclut ce document et propose quelques 

perspectives potentielles à ce travail. 
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Chapitre Chapitre Chapitre Chapitre 2222     

Conception des sysConception des sysConception des sysConception des systtttèèèèmes multiprocesseurs mes multiprocesseurs mes multiprocesseurs mes multiprocesseurs 
monopucemonopucemonopucemonopucessss    

2222....1111 Introduction Introduction Introduction Introduction     
 
Ce chapitre a pour objet de donner un aperçu de la problématique de la 

conception des systèmes MPSoC en examinant les flots de conception 

classiques. Il introduit ensuite le flot de conception proposé par le groupe 

TIMA SLS.   

La première section décrit les architectures logicielles et matérielles des 

systèmes multiprocesseurs monopuces. Puis, la section suivante introduit les 

niveaux de modélisation notamment RTL et TLM.  

2222....2222 ArchiteArchiteArchiteArchitecturescturescturesctures logicielles/matérielles des sys logicielles/matérielles des sys logicielles/matérielles des sys logicielles/matérielles des systèmes tèmes tèmes tèmes 
multiprocesseurs monopucemultiprocesseurs monopucemultiprocesseurs monopucemultiprocesseurs monopucessss    
 
Avant de détailler la conception des systèmes multiprocesseurs monopuces, il 

est nécessaire de dresser un bref aperçu des architectures multiprocesseurs. 

En effet, il existe principalement deux types d’organisations pour les 

architectures des systèmes Multiprocesseurs [8]: 

• Mémoire partagée: Dans ce type d’organisation, l’architecture matérielle 

est en général  composée de plusieurs processeurs identiques. 

L’application Multithread repose sur une seule pile logicielle. La 

communication entre les différents processeurs s’effectue par une 

mémoire partagée globale. 

• Passage de messages: Cette organisation repose sur plusieurs piles 

logicielles s’exécutant sur des sous systèmes hétérogènes, aussi bien en 

terme de processeurs, qu’en terme d’entrées/sorties. La communication 

entre les sous-systèmes est réalisée par passage de messages.  

 

Afin d’intégrer un plus grand nombre de processeurs, les architectures MPSoC 

hétérogènes combinent généralement ces deux modèles [22]. Les futurs MPSoC 

hétérogènes seront composés de plusieurs sous-systèmes également hétérogènes, 

chacun pouvant contenir un nombre important de processeurs identiques 

exécutant une seule pile logicielle [2]. 
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2.2.1 Architectures matérielles 
L’architecture matérielle des systèmes multiprocesseurs monopuces peut être 

représentée d’une manière générale par un ensemble d’unités d’exécution 

pouvant être logicielles ou matérielles connectées sur un réseau de 

communication (Figure 2.1(a)). On parlera de nœud logiciel ou de nœud 

matériel. 

L’architecture matérielle des systèmes MPSoC peut être décomposée en quatre 

blocs de base: (1) processeur ou sous-système processeur pour exécuter le 

logiciel, (2) modules mémoires ou unités de stockage de données, (3) sous-

système de calcul composé de matériel spécifique et (4) un réseau 

d’interconnexion. Il y a eu un développement et une sophistication continus de 

chacun de ces blocs de base, mais c’est surtout leur arrangement qui différencie 

un système MPSoC d’un autre. 

Un problème important auquel font face ces architectures concerne la 

communication qui désormais constitue un goulet d’étranglement vu la 

quantité importante d’informations qui doit être échangée entre les différents 

composants de l’architecture.   

La communication peut être assurée par des réseaux de communication 

complexes (bus hiérarchiques, bus avec protocole TDMA, connexion point à 

point, structure en anneau et même des réseaux de communication par 

paquets). On trouve aussi les réseaux de communication sur puce (NoC de 

l’anglais Network on Chip) qui constituent une alternative radicale aux bus 

partagés. 

L’architecture matérielle d’un nœud logiciel (Figure 2.1 (b)), appelée sous-

système processeur, est composée d’un ou plusieurs processeurs identiques ainsi 

que des composants périphériques nécessaires pour leur interfaçage ou pour 

l’accélération de performance.  
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 (a) Architecture à réseau sur puce (b) Architecture matérielle d’un nœud logiciel 

Figure 2.1 - Architectures matérielles 
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2.2.2 Architectures logicielles 
Parallèlement à l’évolution des architectures matérielles des systèmes 

monopuces, le logiciel embarqué est passé du simple programme séquentiel, 

souvent développé en langage assembleur, à un système concurrent 

implémentant un comportement complexe et bénéficiant d’une architecture à 

part entière. 

Comme dans la plupart des architectures logicielles actuelles, la pile logicielle 

utilisée est organisée en couches pour des raisons de standardisation et de 

réutilisation. 

 
 
 
 
 
 

Figure 2.2 — Architecture logicielle 

 
Chaque couche fournit à la couche supérieure une interface de programmation 

propre (API8). 

2222....2222....2222....1111 La couche applicative La couche applicative La couche applicative La couche applicative     
La couche applicative constitue la partie fonctionnelle du logiciel embarqué. En 

effet, le programme applicatif se compose d’un ensemble de tâches 

communicantes, réalisant le comportement de l’application tel que décrit dans 

la spécification fonctionnelle. 

Cette couche est utilisée par le concepteur du logiciel pour représenter son 

application sans se préoccuper de l’architecture matérielle. 

Généralement Multithread, elle est implémentée sur une API de modèle de 

programmation parallèle, permettant d’abstraire les détails de l’architecture 

logicielle et matérielle sous-jacentes. Cette séparation est nécessaire pour le 

développement du logiciel et du matériel de manière concurrente. 

La couche API représente les appels système de haut niveau invoqués par les 

tâches logicielles. Ainsi, à ce niveau de description, n’existent que des 

informations liées aux traitements à réaliser. 

 

 

                                                
8 Application Programming Interface 
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2222....2222....2222....2222 La couche Système d’exploitationLa couche Système d’exploitationLa couche Système d’exploitationLa couche Système d’exploitation    ---- Communi Communi Communi Communicationcationcationcation    
Cette couche permet de gérer localement les ressources disponibles. Ceci inclut 

par exemple la gestion des tâches, la communication inter tâches et la 

communication externe, l’ordonnancement (Scheduling), etc. 
Dans les systèmes embarqués, le système d’exploitation (SE ou OS9) est vu 
comme l’entité logicielle qui permet l’accès au matériel en coopération avec le 

logiciel applicatif. Son rôle principal est de multiplexer l’accès à des ressources 

limitées en fournissant une abstraction adéquate de ces ressources, tout en 

garantissant une certaine qualité de service.  

L’usage de systèmes d’exploitation est devenu nécessaire dans les systèmes 

embarqués, du fait de la complexité croissante de ces systèmes, de la présence 

de fortes contraintes temps réel, de la limitation des ressources disponibles, 

tant en mémoire qu’en énergie disponible et donc en puissance de calcul, mais 

également de la pression exercée par le marché sur ces produits. En effet, le 

temps de développement doit être raisonnable, afin de limiter le temps de mise 

sur le marché, et ainsi d’assurer le succès du produit. Parmi les exemples des 

systèmes d’exploitation embarqués nous citons: QNX, eCos, RTLinux, 

VxWorks, etc. 

Brièvement, les fonctions de base d’un système d’exploitation sont: 

– gestion de tâches et ordonnancement; 

– services d’interruption; 

– communication inter tâches et synchronisation; 

– gestion de mémoire. 
 
Dans notre travail, nous utilisons un modèle de simulation d’OS fait par 

l’équipe TIMA-SLS. 

Ce modèle se compose de : 

APIAPIAPIAPI OS OS OS OS: regroupe tous les services représentant l’API du système 

d’exploitation utilisable par l’application logicielle. Cette famille contient trois 

sous familles: 

– IO (Input/Output): regroupe tous les services liés aux communications 

utilisables par l’application logicielle (par exemple le tube (pipe)); 
– Synchronisation: regroupe tous les services liés aux synchronisations 

utilisables par l’application logicielle (par exemple les sémaphores); 

– Autres services de haut niveau. 

                                                
9 Operating System 
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Noyau (Noyau (Noyau (Noyau (KernelKernelKernelKernel)))): regroupe tous les services concernant le noyau du système 

d’exploitation. Il contient les sous familles suivantes: 

– L’amorce (Boot): regroupe tous les services liés au démarrage du système 

d’exploitation. Cette sous-famille initialise les registres des processeurs, la 

table des vecteurs d’interruptions, les espaces de piles, l’espace d’adressage, 

etc. Elle charge le noyau en mémoire; 

– Changement de contexte (Cxt): regroupe tous les services liés à la gestion 
des contextes associés aux tâches. Les éléments fournissant ces services sont 

toujours spécifiques au processeur cible; 

– Ordonnanceur (Scheduler): regroupe tous les services liés à 

l’ordonnancement des tâches. Pour cela il utilise un algorithme de gestion, 

généralement par priorité ou tourniquet10, et gère l’ordre d’exécution des 

tâches (par exemple la mise en sommeil ou le réveil d’une tâche); 

– Tâche (Task): regroupe tous les services liés à la gestion des tâches. En 
pratique, cette famille de services fait le lien entre les autres sous-familles de 

la famille Noyau (Kernel). Elle décrit la structure de la tâche et contient les 
tables de tâches. 

 
SynchronisationSynchronisationSynchronisationSynchronisation: regroupe tous les services liés aux mécanismes de 

synchronisation internes au système d’exploitation. Le partage des ressources 

sur différentes entités concurrentes (par exemple tâches de l’application) 

impose une politique de protection qui permet d’assurer la cohérence de 

l’information contenue dans ces ressources. 

Parmi les primitives de synchronisation nous notons : Wait pour attendre un 
signal par exemple et Notify pour en générer un, Block met la tâche courante 

dans l’état endormi et la place dans une file d’attente, Unblock réveille une des 
tâches endormies dans une file d’attente, etc. 

Pour fonctionner, cet élément a besoin des services du Noyau. 
 
Interrupt: Interrupt: Interrupt: Interrupt: regroupe tous les services liés aux interruptions (par exemple la 

gestion des fonctions d’interruption, ou des appels système). Ces services ont 

besoin des primitives de synchronisation. 

 

                                                
10 Chaque processus dispose d’un quantum de temps pendant lequel il peut s’exécuter, puis c’est au 
tour du suivant, en anglais Round Robin. 
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Dans cette même couche nous trouvons la partie COM qui gère principalement 

la communication de l’application avec le matériel. Ceci est assuré par les 

pilotes de périphériques. 

Un pilote de périphérique fournit un accès aux E/S et sert à les gérer.  

2222....2222....2222....3333     La coucheLa coucheLa coucheLa couche abstraction du matériel ( abstraction du matériel ( abstraction du matériel ( abstraction du matériel (HALHALHALHAL))))        
Classiquement, le logiciel embarqué est développé à un niveau d’abstraction 

très bas en utilisant souvent le langage assembleur. Pour ce faire, les 

programmeurs sont supposés avoir une connaissance très poussée de 

l’architecture matérielle sous-jacente dans ses moindres détails. D’un point de 

vue du logiciel, cette dépendance étroite vis-à-vis de l’architecture matérielle 

présente plusieurs inconvénients: tout d’abord, ceci implique un long cycle 

séquentiel de conception, puisque les programmeurs sont obligés d’attendre 

qu’une architecture matérielle complète soit disponible. 

Cette situation s’aggrave encore plus si des modifications à l’architecture 

initiale s’avèrent nécessaires, entraînant la re-conception d’une majeure partie 

du logiciel. Ensuite, ceci rend le processus de validation et de débogage du 

logiciel fastidieux et induit des erreurs à cause de dépendances matérielles 

subtiles. Enfin, à cause de ces mêmes dépendances, la réutilisation de 

composants logiciels préconçus se trouve considérablement limitée. 

La notion de couche d’abstraction du matériel (HAL11) est introduite pour 

palier les inconvénients d’une telle dépendance bas niveau de l’architecture 

matérielle [3]. 

Cette couche permet l’accès structuré aux ressources; et aussi de cacher les 

détails bas niveau de l’architecture matérielle. En effet, la couche HAL est une 

couche logicielle fine qui est supposée fournir une abstraction de l’accès aux 

ressources matérielles de l’architecture.  

2222....3333 Niveaux de modélisationNiveaux de modélisationNiveaux de modélisationNiveaux de modélisation    
 
L’étude des niveaux d’abstraction de la communication dans les langages de 

description du matériel n’est pas nouvelle. Dans cette section, nous nous 

intéressons aux deux niveaux RTL et TLM. 

                                                
11 Hardware Abstraction Layer 
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2.3.1 Niveau RTL 
Le niveau RTL est probablement le niveau d’abstraction le plus utilisé pour la 

modélisation des systèmes matériels [23].  

Le niveau RTL est clairement identifié. A ce niveau de conception, la 

communication interne et externe des composants matériels est réalisée par des 

fils et des bus physiques. Les données intervenant dans une communication 

sont sous une forme logique, c’est-à-dire qu’elles sont présentées par des 

vecteurs de bits.  

Dans une communication au niveau RTL, le temps est une grandeur réelle, 

arbitraire et discrète. La granularité de l’unité de temps est le cycle d’horloge 

et les primitives de communication sont des lectures et écritures sur des ports 

et l’attente d’un nouveau cycle d’horloge. Ce niveau d’abstraction est supporté 

dans la majorité des langages HDL12 en particulier dans VHDL, Verilog et 

SystemC. 

Cependant, ce niveau est de plus en plus considéré comme trop détaillé en 

approche système. D’une part, il nécessite un travail important pour le décrire 

complètement, d’autre part son utilisation pour des vérifications par simulation 

conduit à des temps excessifs. 

L’introduction d’un niveau plus abstrait que RTL s’avère nécessaire: il s’agit 

du niveau TLM. 

2.3.2 Niveau TLM 
Les modèles  transactionnels ont été introduits pour augmenter la productivité 

des concepteurs de systèmes sur puce. Il s’agit d’un nouveau niveau 

d’abstraction, plus haut que le  niveau RTL qui constitue  le point d’entrée des 

outils de synthèse.   

TLM (Transaction Level Model) est progressivement adopté par les industriels 

pour modéliser rapidement et simuler à grande vitesse les architectures de 

systèmes sur puce (SoC), dans le but notamment de permettre le 

développement du logiciel embarqué avant de disposer de la description 

synthétisable complète du matériel, et de procéder à des analyses 

d’architectures très tôt dans le cycle de conception, ce qui n’était pas possible 

au niveau RTL, du fait de la lenteur des simulations et de la complexité des 

modèles manipulés.  

                                                
12 Hardware Description Language  
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TLM utilise une approche à base de composants, dans laquelle les blocs 

matériels sont des modules communicants par le biais des transactions, ou les 

détails inutiles de communication sont omis. Par suite, il permet d’accélérer la 

simulation et explorer les alternatives d’implémentation tôt dans le cycle de 

conception (tel que la topologie du bus, les priorités du bus, l’optimisation de 

la taille de la mémoire, etc.) [17].  

TLM sera plus détaillé dans le chapitre trois. 

2222....4444 Discontinuités du flot classiqueDiscontinuités du flot classiqueDiscontinuités du flot classiqueDiscontinuités du flot classique    
 
La Figure 2.3 représente un flot de conception classique pour les systèmes 

embarqués monopuces.  

Un tel flot est caractérisé par une séparation franche et prématurée entre la 

conception de la partie matérielle et de la partie logicielle. 

Ce flot débute par une spécification fonctionnelle de l’application dans des 

langages haut niveaux, généralement exécutables, tels que SystemC [26] ou 

Simulink [21]. 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

Figure 2.3 — Etapes et modèle d’un flot de conception classique 

La seconde étape consiste à répartir les différentes tâches entre le matériel et le 

logiciel séparant ainsi la conception du système en deux parties complètement 

autonomes: une dédiée à l’architecture matérielle et l’autre au logiciel 

embarqué qui va s’exécuter sur cette architecture. L’intégration permettra 

finalement de regrouper à nouveau les deux parties afin d’obtenir un modèle 

bas niveau où le matériel est décrit en RTL et le logiciel au niveau instruction 

binaire. 
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Dans un tel flot il peut être difficile de développer complètement le logiciel 

sans que le matériel soit défini. C’est pour cela que son développement devait 

souvent attendre que la partie matérielle soit décrite pour être achevé. 

2222....5555 Nouveau flot de conception proposé danNouveau flot de conception proposé danNouveau flot de conception proposé danNouveau flot de conception proposé dans le groupe s le groupe s le groupe s le groupe 
TIMATIMATIMATIMA----SLSSLSSLSSLS    
 
L’approche de conception vue précédemment est caractérisée par une 

discontinuité qui marque le passage de la spécification initiale à 

l’implémentation finale. Elle constitue comme nous l’avons souligné un 

handicap dans ce flot classique. Cette discontinuité verticale se traduit 

également par une autre discontinuité horizontale qui tend à séparer la 

description du système en deux parties complètement indépendantes, une 

logicielle et l’autre matérielle qui sont alors conçues et raffinées 

individuellement d’une manière séparée. 

Pour résoudre ce problème, il est clair qu’il faut introduire, dans le flot de 

raffinement de l’architecture, des étapes supplémentaires permettant 

l’interaction entre logiciel et matériel. 

2.5.1 Présentation du flot de conception du groupe SLS 
La Figure 2.4 présente la solution apportée par le groupe SLS pour palier aux 

discontinuités des flots de conception classiques. 

Le principe de base de cette approche est de considérer la conception de 

l’interface logicielle/matérielle comme étant une branche complète du flot. 

Cette externalisation apporte une solution à la discontinuité entre les niveaux 
d’abstraction sous réserve de la disponibilité de modèles exécutables de 

l’interface, permettant ainsi de simuler le système complet durant toutes les 

étapes de la conception conjointe. 

La discontinuité dans la conception conjointe du logiciel et du matériel est 

naturellement solutionnée par cette approche où la conception de l’interface 

logicielle/matérielle est traitée dans sa globalité. 
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Figure 2.4 - Flot de conception détaillé proposé par le groupe TIMA-SLS 

2.5.2 Description des niveaux intermédiaires du flot 
En plus des deux niveaux déjà existants dans le flot précédent (System Level 
et Virtual Prototype), deux niveaux intermédiaires ont été ajoutés : Virtual 
Architecture Level et Transaction Accurate Level. Ils seront décrits brièvement 

dans les paragraphes suivants. 
 

� Niveau Virtual Architecture 
 
L’architecture virtuelle résulte d’une première étape de partitionnement de la 

spécification fonctionnelle initiale. Le partitionnement sépare les parties qui 

seront implémentées de façon matérielle de celles qui seront implémentées de 

façon logicielle. 

Ce modèle permet d’abstraire tout le logiciel dépendant du matériel, le ou les 

processeurs et le sous-système processeur. Le modèle de programmation sur 

lequel peut s’appuyer le concepteur de la partie logicielle est une API de HDS 
(Hardware Dependent Software), similaire à celle d’un OS, plus des primitives 

de communication haut niveau. 

A ce stade, l’architecture matérielle est globalement décomposée en sous 

systèmes, sans pour autant exiger que l’architecture matérielle soit raffinée. 

Au niveau de l’architecture virtuelle, le concepteur ne dispose pas d’assez 

d’informations sur l’architecture matérielle cible. 

L’objectif de ce modèle est d’apporter aux concepteurs une première estimation 

plus ou moins grossière des performances en fonction des choix faits sur le 

système d’exploitation et les primitives de communication haut niveau (gestion 

des tâches logicielles par exemple). 
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� Niveau Transaction  Accurate 
 
Au niveau Transaction Accurate, la couche logicielle supérieure du modèle 
précédent est supposée raffinée. On considère donc que le HDS ne fait plus 

partie du modèle mais de l’application que l’on veut valider. 

Cette étape est caractérisée par la spécification de la nature du protocole de 

communication entre les sous systèmes ainsi que du modèle abstrait de 

l’architecture locale au niveau de chaque sous système. 

Pour un sous système logiciel, ceci correspond à une vision au niveau HAL de 

la machine d’exécution. 

Les communications à ce niveau se font avec des adresses spécifiques par des 

primitives de type read/write. La gestion des ressources matérielles comme 

l’accès aux différents périphériques partagés ou encore aux processeurs sont 

modélisés. 

L’objectif à ce niveau est d’apporter une plus grande précision quant à 

l’estimation des performances afin de pouvoir valider les décisions de 

conception prises en amont de manière plus précise. 

 

Dans les deux niveaux Virtual Architecture et Transaction Accurate, nous 
utilisons l’exécution native comme mode d’exécution du logiciel embarqué afin 

de bénéficier de l’avantage d’une simulation rapide à ces niveaux 

intermédiaires. 

L’exécution native signifie que le logiciel embarqué est compilé pour le 

processeur de la machine hôte (machine sur laquelle se déroule la simulation) 

et est exécuté par cette machine. Ceci est à mettre en opposition avec la 

compilation croisée (cross compilation) pour le processeur cible et 

l’interprétation des instructions binaires via le simulateur du processeur. 
 

� Niveau Virtual Prototype 
 
A ce niveau, l’architecture logicielle/matérielle est décrite au niveau ISA/RTL.  

Le logiciel n’est autre qu’une suite d’instructions binaires placée dans une zone 

mémoire. 

Le matériel est décrit en utilisant un langage de description de matériel (HDL). 
Ceci inclut l’architecture locale du nœud logiciel (processeur(s), mémoire(s), 

périphériques, etc.) mais aussi les autres parties du système. 

A ce niveau, les deux parties logicielle et matérielle sont entièrement conçues. 
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Ici, nous utilisons un modèle de simulation classique qui considère que 

l’architecture du système est complètement raffinée et connue dans ses 

moindres détails. Ainsi, le logiciel embarqué doit être entièrement développé 

avant d’être compilé par le (les) processeur(s) cible(s). L’image binaire obtenue 

est alors prise en charge par des simulateurs de processeurs qui interprètent 

séquentiellement les instructions et interagissent avec un modèle entièrement 

raffiné de l’architecture matérielle. 

2222....6666 Conclusion Conclusion Conclusion Conclusion     
 
Ce chapitre a été dédié à la description des systèmes qui font l’objet de ce 

mémoire, à savoir les systèmes multiprocesseurs monopuces. L’architecture de 

tels systèmes a été analysée, mettant l’accent sur la complexité aussi bien des 

parties logicielles que matérielles de ces architectures. 

Face à cette complexité, les flots classiques ne semblent pas apporter une 

solution efficace qui facilite l’exploration et la validation de ces architectures 

en vue de maîtriser les coûts inhérents à leurs développements. L’approche 

proposée par le groupe TIMA-SLS propose des modèles de représentation 

intermédiaires permettant un raffinement graduel des systèmes 

logiciels/matériels. 

Notre travail cible les méthodes et techniques de conception de systèmes. Dans 

ce travail, nous nous sommes concentrés sur un niveau d’abstraction supérieur 

dans le flot de conception des systèmes monopuces, nommé Architecture 

Virtuelle, qui sera décrit dans le chapitre suivant. 
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Chapitre Chapitre Chapitre Chapitre 3333  

Niveau Architecture Virtuelle Niveau Architecture Virtuelle Niveau Architecture Virtuelle Niveau Architecture Virtuelle     

3333....1111 IntroductionIntroductionIntroductionIntroduction    
 
Les systèmes embarqués peuvent inclure plusieurs processeurs, qui exécutent 

des instructions spécifiques implémentées en logiciel pour des besoins de 

flexibilité. On estime que dans un futur proche, la complexité du code logiciel 

sera supérieure à celle de la partie matérielle et demandera par conséquent 

plusieurs hommes-années de durée de conception. Le logiciel ne pourra donc 

plus être développé en langage assembleur et une approche de conception à un 

niveau d’abstraction plus élevé est requise. 

 

Dans ce chapitre, nous décrivons le niveau d’abstraction intermédiaire appelé 

Architecture Virtuelle sur le quel nous avons travaillé. 

Pour aborder la conception du système dans une seule et même approche 

cohérente, les composants aussi bien logiciels que matériels sont modélisés avec 

un modèle unique. La méthodologie proposée dans le cadre de ce mémoire pour 

présenter un modèle de simulation du logiciel embarqué à un haut niveau 

d’abstraction sera alors exposée. Elle se base sur le niveau TLM. 

Nous  rappelons dans un premier lieu les principes de base de la méthodologie 

TLM pour le matériel. Dans un deuxième lieu, nous introduisons les concepts 

du niveau SW TLM; niveau TLM pour modéliser le logiciel embarqué. 

3333....2222 Définition duDéfinition duDéfinition duDéfinition du niveau Architecture Virtuelle niveau Architecture Virtuelle niveau Architecture Virtuelle niveau Architecture Virtuelle    
 

Le niveau Architecture Virtuelle est appelé encore niveau système 

d’exploitation.  

Le rôle de ce niveau est de palier aux imperfections et limites de ressources de 

l’architecture matérielle en implémentant un certain nombre de politiques pour 

la gestion de ces ressources limitées. Un exemple de gestionnaire de ressources 

est l’Ordonnanceur qui permet de multiplexer une ressource « rare » sur 

l’ensemble des tâches logicielles actives à un instant donné.   

Le modèle de simulation à ce niveau peut être vu comme suit (Figure 3.1): 
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Figure 3.1 — Modèle de simulation au niveau V.A 
 
Ce niveau d’abstraction décrit l’architecture du système mais en ne se 

préoccupant que des objets fonctionnels pour l’application du système, c’est à 

dire en excluant complètement tous les détails liés à la réalisation. Le système 

est réalisé sous la forme de composants pouvant implémenter un ensemble de 

tâches logicielles ou une fonction matérielle mais sans aucune caractéristique 

précise pour le type du composant ou de sa structure interne. 

La description du système au niveau Architecture Virtuelle est un ensemble de 

tels composants travaillant concurremment qui communiquent par des canaux 

de communication abstraits. Ces canaux seront détaillés plus tard. 

Les canaux de communication utilisent des primitives transactionnelles définies 

par la norme TLM [5], pour représenter seulement le transfert ou le processus 

de synchronisation de données entre les composants sans aucune information 

sur l’implémentation du protocole de communication. 

Le modèle du système au niveau V.A —niveau transactionnel- est toutefois 

exploitable en utilisant des outils et des méthodes pour l’analyse de 

performances. Ils explorent les différentes solutions possibles pour le 

partitionnement des tâches afin de définir une architecture optimale du 

système. 

 

La Figure 3.2 montre les différents niveaux d’abstraction des deux parties 

matérielle et logicielle. Les lignes interrompues joignant un niveau 

d’abstraction donné du matériel avec un autre niveau du logiciel définit des 

niveaux d’intégration possibles permettant la conception et la simulation des 

systèmes logiciels/matériels. 
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En toute rigueur, au niveau fonctionnel, la notion de logiciel/matériel ne doit 

pas exister, car il s’agit d’une notion relative à l’implémentation. Cependant, 

pour la clarté de la représentation, nous dupliquons le niveau fonctionnel d’un 

côté comme de l’autre dans la figure [3].  

Dans ce travail, nous nous intéressons par un nouveau niveau intermédiaire 

d’intégration Architecture Virtuelle (en anglais Virtual Architecture V.A). Il 
associe HW TLM à un niveau équivalent pour le logiciel qu’on appelle SW 
TLM.  
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 3.2 — Niveau Architecture Virtuelle 

 

Le niveau SW TLM correspond à une abstraction du niveau bas classique pour 

le logiciel (ISA). Au niveau SW TLM le logiciel est décrit comme un ensemble 

d’objets communicants ensemble et qui sont gérés par un environnement 

d’exécution correspondant au système d’exploitation.  

La définition du niveau SW TLM est largement inspirée des recherches 

récentes sur la conception du logiciel embarqué. En effet, beaucoup de 

recherches se sont concentrées sur l’abstraction du niveau classique de 

modélisation RTL utilisé en tant que modèle d’intégration logiciel/matériel. La 

plupart de ces travaux ont adressé le côté matériel ou le côté logiciel du 

problème, mais aucun d’eux n’a fourni un modèle flexible et unifié de la 

plateforme logicielle/matérielle à un niveau d’abstraction plus élevé. 

Du côté matériel, le niveau de modélisation transactionnel (TLM) a été 

identifié en tant que candidat approprié pour l’abstraction du niveau RTL. 

Dans tous ces travaux, le logiciel est considéré à un bas niveau d’abstraction 

ou simplement au niveau fonctionnel. 
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Du côté logiciel, beaucoup de travaux [4] [9] s’étaient concentrés sur la 

génération automatique des systèmes d’exploitation temps réel et du code pour 

le logiciel embarqué. Cependant, dans  les travaux [4] et [9], l’interaction du 

modèle de simulation du système d’exploitation avec le matériel n’est pas 

clairement expliquée. De même dans [27], un raffinement logiciel/matériel a été 

proposé cependant ce travail se base sur un modèle fixe de l’interface 

matérielle. 

 

La principale contribution de ce travail est de formaliser ces efforts, en 

utilisant le niveau TLM pour définir une plateforme de modélisation TLM 

pour le matériel et le logiciel. Ceci permet le développement d’un modèle unifié 

pour l’interface logicielle/matérielle pour faire face aux discontinuités de 

conception entre le matériel et le logiciel et permettre l’exploration rapide et 

efficace de l’espace des solutions architecturales. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 — Flot de conception typique comportant le niveau V.A  
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La Figure 3.3 présente un flot de conception typique comportant le niveau 

V.A. Comme les flots de conception classiques, le flot proposé part d’une 

spécification (non exécutable) qui subit une première étape de partitionnement 

permettant le raffinement du logiciel et du matériel.   

Dans la figure, le résultat de cette étape s’appelle «Architecture Système». 

Ceci correspond à une forme exécutable de la spécification (en utilisant 

SystemC par exemple) où des annotations sont simplement introduites pour 

distinguer les parties de l’application qui vont être mappées en matériel ou en 

logiciel respectivement. Le résultat final du flot est une architecture RTL qui 

peut servir comme entrée des outils conventionnels de synthèse physique.  

Cependant contrairement aux flots de conception classiques, le flot proposé 

présente une étape intermédiaire de conception basée sur le concept V.A. 

L’architecture virtuelle résulte de l’intégration des parties logicielles et 

matérielles raffinées jusqu’au niveau TLM.  

Au niveau V.A, le logiciel est modélisé au niveau OS comme un ensemble 

d’objets SW TLM qui coexistent et interagissent avec le reste des composants 

HW TLM. 

Cette étape intermédiaire du flot permet de: 

• palier aux discontinuités des flots de conception classiques et remédier aux 

problèmes liés à l’intégration tardive des architectures logicielles et 

matérielles d’un système MPSoC en proposant un niveau intermédiaire 

pour l’intégration logicielle/matérielle permettant une conception 

logicielle/matérielle graduelle; 

• rompre la longue boucle d’exploration qui sépare classiquement le niveau 

système du niveau RTL final. Ceci facilite une exploration d’architecture 

rapide et efficace bénéficiant de la rapidité de simulation du TLM 

comparé à RTL. 

3333....3333 VuVuVuVueeee d’ensemble d’un système au nive d’ensemble d’un système au nive d’ensemble d’un système au nive d’ensemble d’un système au niveau Vau Vau Vau V....AAAA    
 
La Figure 3.4 donne une vue d’ensemble d’un modèle conceptuel de l’interface 

logicielle/matérielle au niveau d’abstraction intermédiaire V.A. Les parties 

grises de la figure correspondent aux objets conventionnels du HW TLM. 

Dans cette figure, l’exemple de conception est construit autour d’une 

architecture hiérarchique de bus composée d’un bus système au quel est 

connecté un bus CPU local via un pont (en anglais bridge). 
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A la différence de la conception TLM conventionnelle, le logiciel n’est ni 

exécuté sur un simulateur de jeux d’instructions, ni entièrement abstrait au 

niveau fonctionnel. Au niveau V.A le logiciel est modélisé au niveau OS comme 

un ensemble d’objets qui co-existent et interagissent avec le reste des 

composants HW TLM. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.4 — Modèle conceptuel de l’Architecture Virtuelle 

  
Dans une description SW TLM, nous identifions principalement trois couches 

conceptuelles : 

• La couche Programme (Program layer) qui correspond au logiciel conçu 
par des programmeurs de logiciel. Ceci se compose des tâches de l’application 

ainsi que des pilotes de périphériques qui permettent la communication 

extérieure avec le matériel. 
 
• La couche de gestion des ressources (resource management layer)   
correspond à ce qu’on appelle le bus logiciel (SW bus). Cette entité abstrait 
le vrai système d’exploitation et permet la coordination et l’arbitrage des 

composants. Cette couche gère de même la communication entre les 

différents composants logiciels. 

La communication logicielle est abstraite au niveau service. En effet, la 
communication est représentée comme une combinaison de requêtes et de 

services. Les différents modules communiquent par des requêtes de services, 
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via le bus logiciel qui garantit le routage et la synchronisation des 

connexions établies.  

Les services offerts par le bus logiciel dépendent largement du système 

d’exploitation. On peut classer certains services dans des catégories tels que 

les services de communication et de synchronisation inter tâches, les services 

de communication externes via les pilotes de périphériques et les services 

d’allocation des ressources. 
 
• La couche des ressources virtuelles (virtual resource layer) qui spécifie,   
d’un point de vue programmeur, quel type de ressources disponibles dans le 

sous système logiciel (le nœud logiciel de la Figure 2.1).  

Cette couche fournit une abstraction de l’ensemble des ressources 

disponibles au niveau du nœud logiciel. En effet, l’application dispose d’un 

certain nombre de tâches qui vont être exécutées sur différentes ressources 

de calcul (Processing Elements), elles ont besoin pour cela d’allouer les 
ressources de stockage nécessaires à leur exécution. Les mémoires sont utiles 

pour la mémorisation des données ou des instructions, et sont aussi un 

passage fréquent pour les communications. 

Dans notre cas, nous distinguons deux types de ressources virtuelles : 

mémoire logique et unité virtuelle de traitement (Processing Unit). 
 
Un objet important qui pourrait être qualifié comme un objet TLM hybride 

logiciel/matériel est le modèle fonctionnel du bus (en anglais BFM: Bus 
Functional Model). Un BFM est un pont spécial qui permet de relier le bus 

logiciel avec le bus matériel (le bus CPU). Son rôle principal est de transmettre 

les accès externes du logiciel au matériel. Il est également responsable de 

transférer les interruptions matérielles venant du côté matériel aux composants 

appropriés du côté logiciel. 

 

Cette description a nécessité une bonne compréhension du niveau 

transactionnel d’un point de vue théorique.  

Dans les sections suivantes, nous rappelons donc les concepts de base pour le 

HW TLM ensuite ceux pour le SW TLM sont décrits et leur application pour 

le raffinement du logiciel est expliquée. 
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3333....4444 CCCConceptonceptonceptoncepts de base dus de base dus de base dus de base du TLM pour le  TLM pour le  TLM pour le  TLM pour le matérielmatérielmatérielmatériel    
 
Dans cette section, la méthodologie conventionnelle HW TLM est présentée. 

Nous cherchons à donner de même un aperçu sur la structure TLM et nous 

décrivons brièvement les niveaux TLM. 

3.4.1 Méthodologie TLM 
TLM est un niveau plus abstrait que RTL. Ceci est dû à la réduction de la 

quantité de détails que le concepteur doit manipuler facilitant donc la 

modélisation. 

Ce niveau, moins détaillé que le niveau RTL, représente uniquement ce qui se 

passe au niveau système, en terme d’échange de données et de synchronisation 

système, sans se soucier de la micro-architecture des blocs. 

TLM est décrit et expliqué par beaucoup de travaux [6] [7] [10]. Il est construit 

comme un niveau élevé d’API qui définit comment les composants matériels 

communiquent entre eux. 

Un modèle TLM se base uniquement sur des appels de fonctions et des 

transferts de paquets de données. L’idée est de représenter au plus près 

l’intention du concepteur quant au comportement global du circuit, sans 

rentrer dans les détails de la description des signaux réalisés au niveau RTL. 

L’objectif de ce niveau est de développer du logiciel embarqué et de faire des 

études d’architectures à un haut niveau d’abstraction. Il permet de même 

d’accélérer le temps de simulation. 

L’API OSCI TLM est construite comme un ensemble d’interfaces qui 

définissent comment les modules communiquent entre eux. 

En effet, l’interface de protocole définit la sémantique pour transférer une 

transaction entre deux points différents d’un même système tel que tac_if, 
basic_if, synchro_if, etc. 
TLM définit un ensemble d’interfaces génériques et réutilisables 

(bloquantes/non bloquantes, unidirectionnelles/bidirectionnelles) par une 

approche en couches tel que tlm_transport_if<req,resp>, tlm_put_if<req>, 
tlm_get_if<req>, etc. (voir Figure 3.5):  
 

• Couche Utilisateur (User layer) : 
Dans le jargon TLM, cette interface s’appelle en anglais « convenience 
interface ». Elle se compose typiquement de méthodes qui donnent un sens aux 
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utilisateurs du protocole en question par exemple read, write, burst read et 
burst write. L’utilisateur va utiliser les ports initiateurs qui fournissent les 
moyens d’implémenter ces interfaces et définit des modules cibles (target) qui 
héritent de ces interfaces [6]. Les transactions sont envoyées par le module 

initiateur par le biais de initiator_port et sont reçues et traitées par le module 

target selon l’implémentation de l’utilisateur. 

Ces implémentations sont visibles au module target grâce à sc_export de 
SystemC qui est reliée au module target et qui donne accès à ces 

implémentations. 

A ce niveau, la couche protocole est transparente pour l’utilisateur. 

• Couche Protocole (Protocol layer) : 
La couche protocole se compose de [6] : 

- classes de requête et de réponse qui encapsulent le protocole. 

Principalement ceci correspond à la définition d’échange des transactions 

(l’information à échanger entre l’initiateur et le target: adresse, données, 

statut, longueur, etc.); 

- port initiateur qui hérite de sc_port ; 

- classe slave_base qui implémente les interfaces TLM.  

Le module target doit hériter de la classe slave_base. 
L’utilisateur pourra après utiliser les classes initiator_port et slave_base. Il   
faut noter que ce mécanisme de communication est efficace de point de vue  

temps d’exécution. En effet grâce à la liaison «port-to-export» (introduite par  
SystemC-2.1.v1) l’appel à l’API du protocole résulte à l’exécution de  

l’implémentation dans le côté du target mais dans le même contexte du  

thread13 initiateur. Ainsi, la communication entre un maître et un esclave  

n’implique pas un  changement de contexte (context switch) (coûteux en   
temps de simulation). 

• Couche Transport (Transport layer): 
La couche Transport forme la couche de base pour la couche protocole et la 

couche utilisateur. Elle donne l’accès aux interfaces TLM virtuelles par la 

liaison SystemC sc_port à sc_export, à savoir initiator_port à target_port. 
L’interface TLM hérite de la classe sc_interface de SystemC. Elle sert comme 

une base commune pour faciliter l’interopérabilité de divers modèles TLM 

définis par différentes compagnies.  

                                                
13 Processus léger 
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Figure 3.5 — Architecture TLM [6] 

La société ST-Microelectronics; qui a adopté le niveau TLM dans la 

conception; a construit un ensemble de protocoles qui sont conformes à OSCI 

TLM à savoir les protocoles TAC et Synchro. 

TAC acronyme de Transaction Accurate Communication est construit sur la 
base du standard TLM OSCI. Il se base sur l’interface tlm_transport_if 
(interface bloquante bidirectionnelle) qui comporte la requête et la réponse 

dans un même transfert TAC, status fait aussi partie d’une réponse TAC. 
Le protocole Synchro est construit sur la base de l’interface put de TLM et 

représente la synchronisation entre plusieurs composants. Il se base sur 

l’interface tlm_blocking_put_if (interface bloquante unidirectionnelle). 

3.4.2 Les niveaux TLM PV et PVT  
Il existe de nombreuses variantes dans le niveau d’abstraction TLM. 

Néanmoins, nous pouvons distinguer deux grands types de modèles TLM (voir 

Figure 3.6) tels que définis dans la littérature. 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 3.6 — Les couches TLM 
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Le premier, appelé « Programmer View » (PV), est une représentation 
purement fonctionnelle du circuit sans référence à aucune notion temporelle. A 

ce niveau, le modèle contient toutes les informations nécessaires (et pas plus) 

pour que les équipes de développement logiciel puissent travailler, c’est-à-dire 

faire tourner le logiciel embarqué final, système d’exploitation compris. Le 

protocole utilisé à ce niveau est générique (tel est l’exemple de TAC) et la 

synchronisation reflète la dépendance causale entre les différentes unités de 

calcul et n’est pas basée sur les contraintes de temps. 

Le second type, appelé « Programmer View + Timing » (PVT), intègre des 
informations sur les délais (timing) qui permettent notamment de travailler sur 

l’analyse des performances du circuit, sans trop pénaliser les temps de 

simulation.  

Une plateforme au niveau PVT est une plateforme au niveau PV avec son 

inter connecteur non temporisé, à qui on a ajouté un modèle temporisé du bus 

qui correspond à un bus spécifique (par exemple STBus, AMBA). 
Dans une plateforme PVT, on a les différents composants PV individuels (PV 
IP14) et leurs modules temporisés correspondants; un ou plusieurs routeurs non 

temporisés et leurs correspondants temporisés, par exemple TAC router et 
STbus router en se référant à la plateforme PVT de ST. Dans une plateforme 

PVT, l’annotation du temps est effectuée dans le module temporisé de chaque 

composant et dans le routeur temporisé qui simule les délais de transfert pour 

chaque transaction. 
 
TLM rapproche l’écart entre les modèles fonctionnels de spécifications et les 

implémentations RTL par une amélioration progressive de l’infrastructure de 

communication matérielle. 

Du côté logiciel, peu de recherches ont abordé la communication logicielle à un 

niveau conforme à TLM. Le flot de développement logiciel passe brusquement 

d’un modèle fonctionnel au niveau d’abstraction le plus bas. 

D’où le but des chapitres suivants est d’introduire le nouveau concept TLM 

destiné pour le développement logiciel. Notre méthodologie raffine le logiciel 

embarqué au niveau Architecture Virtuelle. 

 

                                                
14 Intellectual Property 
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3333....5555 CCCConceptonceptonceptoncepts de base dus de base dus de base dus de base du TLM pour le  TLM pour le  TLM pour le  TLM pour le logiciellogiciellogiciellogiciel    
 
Dans cette section, nous présentons l’environnement de conception dans lequel 

nous avons développé et validé notre méthodologie TLM. Nous allons tout 

d’abord exposer les concepts de base. Ensuite, nous donnerons une brève 

présentation de la constitution du niveau SW TLM.  

3.5.1 Description des composants SW TLM 
La Figure 3.7 illustre les différents composants SW TLM. 

Dans une plateforme SW TLM il y a des modules qui requièrent des services 

(initiateurs en anglais initiator), d’autres qui fournissent ces services (cibles en 
anglais target). Ils communiquent en envoyant des requêtes et réponses de part 

et d’autre. Ces modules sont des composants logiciels qui peuvent être classés 

comme suit : 

• composants de l’application (par exemple tâche applicative); 

• ressources abstraites; 

• pilotes de périphériques; 

• bus logiciel. 
 
Les tâches logicielles peuvent communiquer entre elles ou avec des tâches 

matérielles. Elles appellent les services du système d’exploitation et les services 

de communication et peuvent être des modules maîtres ou esclaves. 
 
 

 
 
 

 
 
 
 
 

 
 

 

 

 

 

Figure 3.7 — Les composants SW TLM 
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Les ressources abstraites se composent des mémoires logiques et des unités de 

traitement (en anglais Processing units).  
Dans le processus de raffinement de la communication, les zones de stockage 

matérielles apparaissent dans l’architecture matérielle. Ces zones sont 

partagées et permettent l’échange de données. Elles pourraient être mappées 

aux mémoires matérielles locales ou externes. 

Au niveau application, le programmeur n’est pas censé savoir le mapping 

matériel. C’est pourquoi, il adresse habituellement la mémoire logique. Le 

processus de raffinement est alors responsable de mapper ces adresses logiques 

une fois que l’architecture est fixe. 

Les unités de traitement sont des composants virtuels responsables de 

l’exécution du logiciel embarqué. Ils appellent le service d’initialisation (BOOT 
service). 
Les pilotes de périphériques permettent aux composants de l’application de 

réagir avec les périphériques matériels. Les pilotes TLM adressent une ou 

plusieurs mémoires logiques qui connaissent le mapping de la mémoire 

physique. Ils ont besoin également des services du système d’exploitation pour 

accéder aux périphériques matériels correspondants.  

Le bus logiciel est le conducteur de tout le nœud logiciel. Il pourrait être défini 

comme étant le chemin logique qui sert des tâches logicielles multiples ou des 

unités logicielles de calcul et de communication à travers un modèle d’OS. Son 

rôle principal est: 

• assurer l’ordonnancement des tâches et le partage du temps; 

• intercepter les transactions logiques et les traiter; 

• acheminer ces transactions logiques au BFM. 

Le bus logiciel a deux mécanismes importants à savoir routage et arbitrage. Le 

premier est responsable d’acheminer les transactions aux différents modules 

logiciels, tandis que le deuxième résout les requêtes concurrentes de services. 

Dans la section suivante, nous allons décrire la structure du niveau SW TLM. 

3.5.2 Structure du SW TLM 
Comme dans le HW TLM, nous définissons un mécanisme de passage de 

transactions dans l’architecture de communication logicielle. Cette architecture 

serait structurée autour de différentes couches (voir la Figure 3.8): 
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• Couche Application « Application layer »: 
Cette couche peut être définie comme la couche de calcul. En effet, elle se 

compose des tâches de l’application. À ce niveau, nous supposons que le 

programmeur n’a aucune idée sur l’architecture de communication. Au niveau 

de cette couche, l’application requiert des services d’OS et des services de 

communication. 

• Couche de pilote « communication driver layer »: 
Cette couche inclut les pilotes TLM et les mémoires logiques. Ces deux genres 

d’éléments SW TLM coopèrent — par la communication logique avec la couche 

du bus logiciel — pour contrôler le processus de communication. En fait, chaque 

pilote TLM adresserait une ou plusieurs mémoires logiques. 

Cette couche est également responsable de répondre aux demandes 

d’interruptions destinées à la couche application. 

• Couche du bus logiciel « SW BUS layer»: 
Elle est le conducteur de tout le nœud logiciel. Elle abstrait le système 

d’exploitation. 

Généralement un système d’exploitation peut être vu comme un ensemble de 

couches de services: une couche API, une couche des services de base du 

système d’exploitation et une couche d’abstraction du matériel. 

• Couche du bus matériel « HW BUS layer»: 
C’est le bus physique, le réseau de communication matérielle. Il peut être un 

bus CPU local ou un bus système.  
 

 
 

 

 

 

 

 

Figure 3.8 — Architecture en couches de la communication logicielle 

3333....6666 ConclusionConclusionConclusionConclusion    
 
Dans ce chapitre, nous avons défini le niveau Architecture Virtuelle, un niveau 

qui abstrait le système d’exploitation ainsi que l’architecture matérielle. 
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Puis, dans un deuxième temps, nous avons présenté la méthodologie SW TLM 

conçue pour unifier la modélisation du logiciel embarqué au niveau V.A. 
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Chapitre Chapitre Chapitre Chapitre 4444     

ImplImplImplImpléééémentation (SW TLM)mentation (SW TLM)mentation (SW TLM)mentation (SW TLM)    
 

4444....1111 Introduction Introduction Introduction Introduction     
 
Cette partie du rapport expose l’implémentation du SW TLM. En premier 

lieu, elle présente la hiérarchie du SW TLM. En second lieu, elle décrit ses 

différentes interfaces de base. 

4444....2222 Choix du langageChoix du langageChoix du langageChoix du langage    
 
Le choix de travailler avec un langage de conception au niveau système 

(SLDL : System Level Design Language) (tel que SystemC ou SpecC) est 
important pour assurer la portabilité du modèle. 

La description des fonctionnalités du modèle doit être donc faite dans un 

langage de description de haut niveau. Ceci permet de valider rapidement le 

modèle et de profiter d’un environnement de simulation efficace. Pour cela 

nous avons utilisé la bibliothèque SystemC. 

Elle permet de profiter des mécanismes d’héritage ou de polymorphisme du 

C++ pour décrire des ensembles hiérarchiques [18]. Par ailleurs, cette solution 

offre la possibilité de simuler conjointement des parties logicielles et 

matérielles. Ceci se révèle très utile dans notre cas puisque le système complet 

est composé d’éléments hétérogènes logiciels et matériels. 

Plus particulièrement, SystemC est considéré d’un point de vue industriel un 

standard pour la modélisation TLM et la conception au niveau système et à la 

co-simulation des systèmes logiciels/matériels. 

En bref, SystemC est un langage et un noyau de simulation basés sur C++ qui 

permet la représentation des composants logiciels et matériels et des 

communications à différents niveaux d’abstraction. Il  permet la modélisation 

et la simulation de systèmes logiciels/matériels globalement synchrones, ou 

asynchrones avec un modèle à événements. Il convient pour l’augmentation de 

la complexité de conception des systèmes, en fournissant un modèle exécutable 

tôt dans le cycle de conception. 
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Un modèle SystemC est composé des éléments suivants : 

• Modules: un module (sc_module) est l’élément de base SystemC qui 

permet d’encapsuler une description matérielle. Les modules 

communiquent avec d’autres modules à travers des ports. D’une manière 

générale, un module peut contenir un ou plusieurs processus 

implémentant le comportement de celui-ci. 

• Processus: les processus sont utilisés pour décrire le comportement d’un 

composant. Ils s’exécutent de manière concurrente dans l’environnement 

SystemC. 

• Ports: un port (sc_port) est le moyen utilisé en SystemC pour permettre 
à un module d’accéder à l’environnement extérieur. Les ports 

représentent les points d’entrées/sorties des modules. 

• Interfaces: une interface (sc_interface) permet de déclarer une méthode 

qui sera implémentée par un canal (ou un module à partir de SystemC 

2.1) et qui sera accessible via un port. 

• Canaux: en général, les canaux SystemC (sc_channel) sont utilisés pour 
implémenter le comportement d’une fonction déclarée par une interface. 

• Export: disponible à partir de la version 2.1 de SystemC, un export 

(sc_export) permet de rendre accessible une interface implémentée par 

un module.      

4444....3333 Implémentation duImplémentation duImplémentation duImplémentation du TLM pour le  TLM pour le  TLM pour le  TLM pour le logiciel (SW TLM)logiciel (SW TLM)logiciel (SW TLM)logiciel (SW TLM)    

4.3.1 Hiérarchie du SW TLM 
Comme HW TLM, SW TLM se divise en différentes couches comme le montre 

la Figure 4.1: 
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Figure 4.1 — Les couches du SW TLM 

Au niveau service, les interfaces des modules sont composées de ports d’accès 

au bus logiciel. Ces ports fournissent des services de type synchrone ou 

asynchrone et les opérations sur les ports sont des requêtes et des services. Les 

tâches élémentaires sont des processus qui interagissent avec l’environnement 

via des requêtes et des services.  

La couche de service (Service layer) est construite comme un ensemble 

d’interfaces qui définissent comment les modules communiquent. En effet, 

l’interface protocole définit la sémantique de transfert d’un service entre deux 

modules différents. 

Les interfaces SW TLM (synchrones/asynchrones) spécifient les services de 

communication et sont basées sur la couche transport du TLM OSCI. 

Les transactions synchrones se font séquentiellement, chaque transaction 

devant être terminée avant que la prochaine ne s’exécute. 

En mode asynchrone la main est immédiatement rendue à l’initiateur, ainsi les 

appels normalement bloquants sont traités parallèlement. 

Toutes les interfaces héritent du sc_interface. Quand un service passe de 
l’initiateur au target il est appelé « service_requis » et quand il passe du 
target à l’initiateur il est appelé « service_fourni ». 

SW TLM PV est construit en se basant sur SW TLM plus particulièrement 

sur la couche service. Au niveau PV, nous n’avons aucune vraie notion sur le 

temps et l’arbitrage des transactions est générique. En effet, l’arbitrage du bus 

est le mécanisme qui alloue le contrôle du bus aux dispositifs qui le demandent, 

évitant tout conflit. 
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PVT est un modèle qui inclut le niveau PV et une spécification de l’arbitrage. 

PVT ajoute des informations de temps sur chaque traitement ou transfert de 

données. Pour le bus logiciel le timing doit tenir compte du nombre de 

transferts ainsi que l’arbitrage entre les différents composants logiciels. 
 
Après avoir mis en évidence la hiérarchie du SW TLM, nous introduisons ses 

différentes interfaces de base ci après. 

4.3.2 Les interfaces de base 
SW TLM est construit en se basant sur les interfaces tlm_blocking_put_if et 
tlm_blocking_get_if du TLM OSCI. 

Put et Get sont utilisés pour assurer les transferts de données mais dans notre 
cas nous les adoptons pour supporter les requêtes et réponses de services. 

SW TLM définit la couche Service qui implémente le protocole RPC (Remote 
Procedure Call). 
Le modèle RPC est un modèle de communication par invocation à distance se 

basant sur l’appel des services distants. Nous pouvons trouver deux types de 

RPC: synchrone et asynchrone. 

– Modèle RPC synchrone: dans ce modèle l’initiateur est bloqué en attente 

d’une réponse du target. Ce modèle est facile à comprendre. De plus, il 

permet la détection des erreurs facilement, d’autant plus qu’il n’est pas 

nécessaire de stocker l’information. 

– Modèle RPC asynchrone: dans ce modèle l’initiateur n’est pas bloqué, mais 

il existe un test continu sur la réponse du target. 

L’interface sw_tlm_service_if est implémentée comme le montre l’extrait de 

code ci-dessous : 
 

//bidirectional blocking interfaces 

template<typename SERVICE_CALL, typename RSP>  

class sw_tlm_service_if :public virtual sc_interface 

 {  

   public: 

     virtual RSP service (const SERVICE_CALL&) = 0; 

 }; 

 
La classe sat_service_call décrit l’information envoyée par le module initiateur 

au module target. Cette classe définit la première partie du protocole 

sw_tlm_sat. Elle est utilisée comme un paramètre SERVICE_CALL pour la 

classe sw_tlm_service_if. 
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De la même manière, la classe sat_response décrit l’information retournée par 
le module target, comportant sat_status, au module initiateur. Cette classe 

définit la seconde partie du protocole sw_tlm_sat. Elle est utilisée comme un 

paramètre RSP pour la classe sw_tlm_service_if. 
SW TLM PV est basé sur la couche Service. Il implémente le protocole SAT 
(Service Accurate Transaction). 
L’interface du protocole SAT, sat_if, est définie avec une méthode virtuelle 
CALL et sat_status comme étant la valeur de retour de la fonction de 

l’interface du protocole SAT. 
 
#ifndef _SAT_IF_H_ 

#define _SAT_IF_H_ 

 

/*-------------------- 

 * Includes 

 *--------------------*/ 

#include “sat_protocol.h” 

 

… 

 

//--------------------------------------------------------------- 

/// Class sat_if: sw_tlm_sat protocol layer convenience function definition 

//--------------------------------------------------------------- 

template<typename ID, typename DATA> 

class sat_if { 

 

   public:  

     //----------------------------------- 

     /* \brief Call access convenience API (implemented in                   

      *  sat_initiator_port and sat slaves). 

      */ 

       

     virtual sat_status CALL (const ID& id,          

                         DATA& data, 

                              sat_error_reason& error_reason, 

                              const unsigned int service_id = NO_SERVICE, 

                              …  

                              ) = 0; 

 … 

   };  

} 

 

#endif /* _SAT_IF_H_ */ 

 
La classe sat_error_reason est un message de caractères encapsulant la raison 

de l’erreur (du target à l’initiateur) en cas d’échec d’une requête.  

Le paramètre service_id représente le service appelé, il est défini dans le fichier 
« sat_protocol.h » comme suit : 
/** \defgroup service_id_values Predefined service_id values 

*@{ 

**/ 
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static const unsigned int NO_SERVICE = 0xffffffff; 

static const unsigned int REGISTER_TASK = 0x1; 

static const unsigned int MUTEX_INIT = 0x2; 

static const unsigned int MUTEX_LOCK = 0x3; 

static const unsigned int MUTEX_UNLOCK = 0x4; 

… 

/* @ */ 

 

La classe sat_status est le statut d’une transaction SAT. Elle définit le statut 
d’une requête d’un initiateur avec le protocole sw_tlm_sat. La valeur de 
statut est fixée par le target (esclave ou routeur) et utilisée par les initiateurs 
en cas de besoin. 

La classe sat_initiator_port modélise le port initiateur construit en se basant 
sur l’interface sw_tlm_service_if en se basant de même sur le protocole SAT. 
L’initiateur appelle un service du target et reçoit une valeur de retour pour 

indiquer si le service  a été fourni ou non. Par exemple, la tâche lance un appel 

de service « CALL » comme suit : 
 

void task() 

{ 

  … 

  status=initiator_port.CALL (id, data, error_reason, SERVICE, params); 

  … 

} 

 

« params » sont des variables qui dépendent du type de service appelé par 

l’initiateur. Les services peuvent être lire (read), écrire (write) ou les autres 
services du système d’exploitation. 

Deux exemples d’extraits de code applicatif sont  montrés ci après: 

 
void threadDemux() 

{… 

  sat_status status; 

  sat_error_reason error_reason; 

  unsigned long size = 1; 

  int data; 

  … 

  status=initiator_port.CALL (os_id, data, error_reason, PIPE_WRITE, 

                              dv_cmd, cmd, size); 

 … 

} 
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void application_init() 

{ 

  … 

  sat_status status; 

  sat_error_reason error_reason; 

  int length = 64; 

  int size = 256; 

  int irq = 2; 

  int prio = 20; 

  char t = ‘1’; 

  … 

  status=initiator_port.CALL (os_id, length, error_reason, PIPE_INIT, 

                              dv_data, base_dv_data); 

 … 

 

  status=initiator_port.CALL (base_qz_data, size, error_reason, FIFO_INIT, 

                              qz_data, irq); 

  … 

  status=initiator_port.CALL (os_id, prio, error_reason, REGISTER_TASK, 

                              threadDemux, t); 

  … 

} 

 

A la couche basse « SW bus layer », le bus logiciel est implémenté comme un 

« sw_router » qui est responsable de relier les différentes requêtes de services 
provenant de différents initiateurs vers les targets correspondants. 
On peut distinguer deux situations : 

• Si le service est un service d’OS (par exemple communication inter 

tâches), il sera directement fourni par le bus logiciel lui même; 

• Sinon (par exemple service de communication avec l’extérieur), le bus 

logiciel détermine le target approprié fournissant le service demandé 

(exemple: pilote de périphérique) à l’initiateur appelant. 

 

Le bus logiciel hérite de la classe rtos_base [27] comme le montre le code ci-

après. Par conséquent, son instanciation dans le nœud logiciel donne accès au 

modèle de simulation du système d’exploitation. 
 
template <typename ID, typename DATA> 

class sw_router :  

  public rtos_base,  

  public sc_module,  

  public virtual sw_tlm_service_if< 

                      sat_service_call<ID, DATA>,                                          

                      sat_response<DATA>  

                                  >,       

  public sw_tlm_router_base<ID, sw_tlm_service_if<         

                                    sat_service_call<ID, DATA>,         

                                    sat_response<DATA>  

                                                 >,  

                           0>  
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Il est à noter que la classe de base rtos_base fournit des fonctionnalités 
suffisantes et génériques nécessaires pour construire des modèles de simulation 

de systèmes d’exploitation. Chaque implémentation d’un modèle d’OS héritera 

alors ces fonctionnalités de base afin de construire ses spécificités. 

Le bus logiciel hérite également du sw_tlm_router_base pour acheminer les 

services vers les différents composants logiciels. 

La figure 4.2 montre la hiérarchie de classe de notre bus logiciel en utilisant 

une notation basée sur le formalisme UML. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

Figure 4.2 — Hiérarchie de classe du bus logiciel 

Le bus logiciel est relié au bus matériel par l’intermédiaire du BFM comme 

suit : 

• un port initiateur (initiator_port) qui représente le port CPU. Ce port 
initie des transactions SAT au bus matériel (bus CPU local ou bus 

système); 

• un target_port qui représente le port d’interruption. Ce port sert à servir 
les interruptions provenant de l’extérieur du nœud logiciel. 

Ainsi, le rôle du BFM est de traduire des transactions logiques aux 

transactions physiques et de les amener à la couche physique du bus matériel 

(physical HW BUS layer). 
Le bus logiciel se sert d’un fichier d’identificateurs de services (Identification 
map file) permettant de rendre compte du composant logiciel fournisseur du 

service. 
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Une transaction initiée par un pilote TLM par exemple résulte à un accès 

READ/WRITE selon l’identificateur de service demandé à travers le port 

target correspondant de la mémoire logique (identifié grâce au map file). 
Toutes ces méthodes et classes forment la base du SW TLM. Sur la base de ce 

simple mécanisme de services nous pouvons établir des modèles logiciels et des 

routeurs génériques.  

Les interfaces du SW TLM sont facilement comprises et efficaces. 

Les utilisateurs peuvent concevoir leurs propres composants logiciels mettant 

en application quelques ou toutes ces interfaces, ou ils peuvent les implémenter 

directement dans le target en utilisant sc_export. La fonction service en 
particulier sera souvent directement implémentée dans le target. 

4444....4444 ConclusionConclusionConclusionConclusion    
 
Ce chapitre a décrit la structure et les interfaces du SW TLM. Ce niveau est 

facilement compris et utilisable. Cependant, pour pouvoir tester l’efficacité de 

ce modèle, nous l’avons appliqué sur un exemple de système multiprocesseur à 

savoir l’application MJPEG.  
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Chapitre Chapitre Chapitre Chapitre 5555     

EEEEtude de catude de catude de catude de cas: Application du SW s: Application du SW s: Application du SW s: Application du SW TLM sur TLM sur TLM sur TLM sur 
llll’application application application application MJPEGMJPEGMJPEGMJPEG    
 

5555....1111 Introduction Introduction Introduction Introduction     
 
Ce chapitre présente l’étude de cas réalisée pour illustrer l’utilisation du SW 

TLM défini tout au long de ce travail. 

La structure de ce chapitre se décompose en trois sections. La première section 

décrit l’application sur laquelle a été appliqué SW TLM à savoir l’application 

MJPEG. Dans la deuxième section, nous détaillons l’utilisation du SW TLM 

pour la modélisation du logiciel embarqué au niveau V.A. Enfin la dernière 

section évalue les résultats obtenus. 

Nous cherchons à montrer que le modèle adopté permet une modélisation 

rapide et qu’il offre de la flexibilité. 

5555....2222 Description de l’application MJPEGDescription de l’application MJPEGDescription de l’application MJPEGDescription de l’application MJPEG    

5.2.1 L’application MJPEG 
La Figure 5.1 montre un graphe de tâches de l’application MJPEG qui est un 

décodeur d’images vidéo JPEG15. C’est en fait une application logicielle multi-

thread réalisant le décodage d’un flux d’images JPEG. 

Cette application est modélisée comme un ensemble de tâches parallèles 

communiquant à travers des canaux point à point de type FIFO. 

Les arcs en gras représentent le flux de décompression, et les arcs en pointillés 

représentent les paramètres de configuration qui sont des variables globales de 

la configuration initiale [11]. 
 
 
 

 
 

        

          

 

 

                                                
15 Joint Photographic Experts Group 
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          TG: Traffic Generator                                                IQ: Inverse Quantization 

          DEMUX: Demuxer                                                    ZZ: ZigZag scan 

          VLD: Variable Length Decoding                              LIBU: LINE BUILDER 

          IDCT: Inverse Discrete Cosine Transform              RAMDAC: Random Access Memory                                                                        

                                                                                                       Digital-to-Analog Converter 

Figure 5.1 — Graphe de tâches de l’application MJPEG 

Le périphérique d’entrée est un générateur de trafic noté TG, et le 

périphérique de sortie est un convertisseur vidéo noté RAMDAC. 

Cette application lit un flux d’images JPEG 64x64 et produit un flux de pixels 

dans l’ordre des lignes pour affichage. 

Le décodage d’une image nécessite 6 étapes [11]: 

- DEMUX analyse le flux fournit par le périphérique d’entrée pour en extraire 

la taille de l’image, les tables de Huffman et les tables de quantification. Ces 

informations sont usuellement stockées dans des variables globales. Les 

données de l’image compressée sont lues par paquet et rangées dans un 

tampon. 

- Le décodeur de Huffman, VLD, décompresse ce tampon et met le résultat 

dans un deuxième tampon. 

- ZZ réorganise le tampon suivant l’ordre zigzag et produit son résultat dans 

un troisième tampon. 

- IQ effectue la quantification inverse du tampon précédent pour le mettre 

dans un nouveau tampon. 

- IDCT exécute une transformé discrète inverse en cosinus du tampon fournit 

par IQ dans un nouveau tampon. 

- LIBU stocke les blocs (8x8) issus de IQ dans un sixième tampon dont la 

largeur en bit correspond à la taille de l’image. Une fois les lignes disponibles, 

elles sont émises vers le périphérique de sortie. 
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5.2.2 Partitionnement logiciel/matériel 
Nous avons procédé à un partitionnement logiciel/matériel de l’application 

MJPEG. Elle sera alors constituée de deux noeuds logiciels et deux nœuds 

matériels à savoir le générateur de trafic TG, qui écrit le flux MJPEG 

compressé en mémoire, et le coprocesseur RAMDAC qui lit les images 

décompressées en mémoire et les envoie vers le terminal VIDEO. Les deux 

nœuds logiciels comportent arbitrairement chacun trois tâches logicielles. 

Modélisé au niveau Architecture Virtuelle, le système se présente comme suit: 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.2 — Partitionnement logiciel/matériel de l’application MJPEG 

Avec la méthodologie SW TLM, nous avons procédé à la co-simulation 

logicielle/matérielle de l’application MJPEG. 

Nous limitons notre étude au niveau PV. 

Les objectifs à atteindre, lors de l’utilisation de la méthodologie SW TLM, sont 

multiples: 

– utiliser la méthodologie dans le but de montrer sa validité; 

– montrer la flexibilité et la rapidité de la méthodologie; 

– tester le bon fonctionnement des divers composants. 

5555....3333 AAAArchitecture de l’application MJPEG au niveau Vrchitecture de l’application MJPEG au niveau Vrchitecture de l’application MJPEG au niveau Vrchitecture de l’application MJPEG au niveau V....AAAA    
 
Dans notre modèle, nous disposons de deux blocs matériels : TG et RAMDAC, 

deux modules logiciels mappés à deux processeurs ARM7 (chaque nœud 

logiciel se compose de trois tâches), une mémoire, un contrôleur de FIFO et un 

module « Interrupt SW » qui gère les interruptions entre les modules logiciels. 
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Ces composants sont connectés par l’intermédiaire du bus système (voir Figure 

5.2).  

 

En utilisant la présentation TLM et en détaillant l’architecture du sous 

système CPU, le modèle sera présenté par la Figure 5.3.  

Dans notre cas, nous avons seulement besoin de pilotes de FIFO pour la 

communication. Le pilote FIFO est un composant esclave/maître. Dans ce cas, 

il fournit une simple API à l’application plus spécifiquement les services Read 
et Write : 

• w_fifo_drv : contrôle l’accès d’écriture dans une FIFO; 

• r_fifo_drv : utilisé quand l’application logicielle procède à un accès en 
lecture. 

 

Pour synchroniser les tâches logicielles des différents nœuds pour des accès en 

lecture et écriture bloquants, un contrôleur de FIFO intervient pour débloquer 

la tâche bloquée. Par suite, si une tâche logicielle est bloquée dans un accès 

parce que la FIFO est vide ou pleine, elle doit attendre une interruption 

matérielle pour pouvoir accéder à la FIFO. Cette interruption est capturée par 

le port interrupt_port. 
D’une part, w_fifo_drv doit envoyer une interruption quand la FIFO ou il va 
écrire est initialement pleine. Cela va réveiller les lectures bloquées. Pour 

assurer ceci, w_fifo_drv écrit dans une adresse particulière du contrôleur de 
FIFO. 

En outre, les pilotes de FIFO tiennent des informations sur l’état de FIFO 

modélisée comme une FIFO circulaire, à savoir : 

- read_index: pointeur de lecture; 

- write_index: pointeur d’écriture; 

- full: indique si la FIFO est pleine; 

- buffer: pointe à la base de la FIFO. 
En fait, ces informations sont présentées comme étant des adresses dans 

l’espace d’adressage de la mémoire logique. 

 

 

 

 
 



EPT                                                                            TIMA 
 

Mémoire de Mastère                                                                                                              - 59- 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

Figure 5.3 — Modèle MJPEG au niveau Architecture Virtuelle 

 
Le code suivant illustre une partie de l’implémentation d’un accès en écriture 

par w_fifo_drv: 
 

sat_status FIFO_DRIVER::w_fifo_drv(drv_fifo_t * drv, void *buf, unsigned 

long size)  

{  

sat_status status; 

sat_error_reason error_reason; 

int full, data, temp_wi;  

 

… 

//waiting if fifo full 

status= initiator_port.CALL(drv->full, full, error_reason, READ);  

 

if (full) { 

           … 

          status= initiator_port.CALL(os_id, data, error_reason,      

                                      SIGNAL_SLEEP, drv->sig_r);  

          … 

          } 

 

//prepare and send write transaction 

status=initiator_port.CALL(drv->wi, temp_wi, error_reason, READ);  

status=initiator_port.CALL(drv->buffer+temp_wi, data, error_reason,   

                           WRITE);  

… 
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Le routage des services entre les différents composants est facilité par le fichier 

d’identificateurs de services (Identification map file) qui contient en fait 
l’identificateur du module fournisseur de service. 

Un aperçu de ce fichier est présenté ci-dessous : 
 

;-----------------------------|-------------|--------- 

; slave_name.port_name     |Services id|      Size 

;-----------------------------|-------------|--------- 

 

TOP.MEMORY.target_port   0x10000000  0x4000 

 

TOP.FIFO_DRIVER.target_port   0x10010000  Ox4 

 

TOP.BFM.target_port         0x10010010  Ox4 

 

… 

 

 
Au niveau « top level » nous trouvons l’instanciation des divers composants 

logiciels et nous définissons leur connexion: 
 
#ifndef _TOP_H_ 

#define _TOP_H_ 

 

 

/*------------------------------- 

 * Includes 

 *------------------------------*/ 

  #include “systemc.h” 

  … 

  #include “sw_router.h” 

  #include “sat_memory.h” 

  #include “drv_fifo.h” 

  … 

{   

   … 

 

  //---------------------------------- 

  // Components 

  //---------------------------------- 

 

  //Channel 

   sw_router<int,int> * SW_ROUTER; 

   

  //Memory 

  sat_memory<int,int> * LOGICAL_MEMORY ; 

   

  // Fifo Driver 

  fifo_drv * FIFO_DRIVER; 

 

  //BFM 

  sw_hw_bridge<int> * BFM; 

 

   … 

  // Memory instantiation 

  LOGICAL_MEMORY = new sat_memory<int,int>(“LOGICAL_MEMORY”,0x4000); 
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 //Channel instantiation 

  SW_ROUTER = new sw_router<int,int>(“SW_ROUTER”); 

 

//Binding 

 

SW_ROUTER->initiator_port(FIFO_DRIVER->target_port); 

SW_ROUTER->initiator_port(BFM->target_port); 

 … 

FIFO_DRIVER->initiator_port(SW_ROUTER->target_port); 

   … 

} ; 

 

#endif  /* _TOP_H_  */ 

 

5555....4444 AnalyseAnalyseAnalyseAnalyse    expérimentaexpérimentaexpérimentaexpérimentalelelele    
 
Pour valider notre méthodologie, nous l’avons appliqué sur l’exemple MJPEG. 

Dans cette section, nous allons alors analyser les résultats que nous avons 

obtenus. Ces résultats nous permettent d’effectuer des analyses non seulement 

quantitatives, mais aussi qualitatives. Nous démontrons la validité de notre 

méthodologie. Ensuite nous présentons ses avantages. Les difficultés ainsi 

quelques limitations seront développées en dernier. 

    

Réduction du tempsRéduction du tempsRéduction du tempsRéduction du temps    de lade lade lade la phase de  phase de  phase de  phase de modélisationmodélisationmodélisationmodélisation    

Nous avons appliqué notre méthodologie à cet exemple. L’effort de 

modélisation de la spécification a été faible. L’écriture d’une telle spécification 

est facile et rapide. 

Cette méthodologie nous a offert un format clair pour bien décrire le logiciel. 

Par contre, sa conception est une tâche laborieuse et a nécessité un temps 

considérable (environ 5 semaines). Cette difficulté est notamment due à 

l’étendue des connaissances que requiert la conception: bonne connaissance du 

niveau TLM, du flot de conception des systèmes multiprocesseurs monopuces, 

de la structure et des fonctionnalités des systèmes d’exploitation embarqués, 

des protocoles de communication, etc. 
 
ValidationValidationValidationValidation    

Cette expérimentation nous a permis de valider les concepts et la méthodologie 

que nous avons proposés et qui ont requis un travail important. La 

méthodologie a été appliquée avec succès sur l’application MJPEG. 

Les résultats expérimentaux obtenus nous ont permis alors d’analyser l’intérêt 

de l’approche proposée, notamment en termes de vitesse et de précision de la 
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simulation. En effet, après utilisation le niveau s’avère rapide et il simplifie le 

travail du concepteur en faisant abstraction du logiciel et du matériel. 

Le tableau ci-après résume les résultats de simulation des trois niveaux 

d’abstraction : niveau fonctionnel, niveau V.A et niveau RTL: 
 

Tableau 5.1 — Résultats comparatifs de la simulation aux différents niveaux d’abstraction 

Niveau Niveau Niveau Niveau 
d’abstractiond’abstractiond’abstractiond’abstraction    

Temps Temps Temps Temps 
d’exécution d’exécution d’exécution d’exécution     

Temps de Temps de Temps de Temps de 
simulationsimulationsimulationsimulation    

PrécisionPrécisionPrécisionPrécision    
 

VitesseVitesseVitesseVitesse    
 

Fonctionnel -- < 1 ms 0% ~ 106 

Architecture 
Virtuelle 0.90 s 20 s 77% ~ 1260 

RTL 0.73s ~ 7 h 100% -- 

 

Ces résultats correspondent à la simulation de 25 images. Nous avons utilisé 

des processeurs ARM7TDMI cadencés à 40 Mhz. 

La deuxième colonne du tableau montre le temps d’exécution qui représente le 

temps « SystemC » consommé par les différents CPU afin de traiter une 

seconde de séquences vidéo. Le temps de simulation correspond au temps 

utilisé par la machine hôte pour achever la simulation. Les deux dernières 

colonnes sont reliées à la précision ainsi qu’à la vitesse de simulation.  

Les résultats obtenus montrent que la simulation au niveau Architecture 

Virtuelle permet une accélération considérable par rapport à une simulation au 

niveau RTL (plus de 3 ordres de grandeur). De même, la précision de la 

simulation du système entier est considérablement améliorée sans pour autant 

atteindre la précision absolue d’un modèle cycle à base d’ISS (~20% d’erreur). 
L’erreur introduite au niveau V.A est due notamment à l’inexactitude de 

l’estimation du temps d’exécution du logiciel et au niveau de la modélisation 

de l’interface logicielle/matérielle sans oublier que nous nous plaçons à un 

niveau d’abstraction élevé ce qui nous mène à tolérer une certaine erreur. D’où 

le niveau VA permet d’atteindre une précision comparable à celle obtenue au 

niveau cycle précis.    

En utilisant cette méthode nous pouvons aussi démarrer très en amont le 

développement des logiciels embarqués sur un modèle représentatif du circuit 

final, tout en bénéficiant d’une vitesse de simulation importante plus rapide 

qu’au niveau RTL. 

Donc les résultats obtenus montrent une vitesse de simulation considérable 

comparée avec une simulation classique basée sur ISS et une précision 
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raisonnable qui sont des critères clés pour une exploration d’architectures à un 

niveau d’abstraction élevé. 

Un autre avantage de cette méthode est la simplicité de l’utilisation du modèle 

de simulation ce qui rend l’exploration des différents choix architecturaux 

facile tôt dans le cycle de conception. En effet, pour modéliser le logiciel 

embarqué un utilisateur pourra facilement manipuler le niveau SW TLM.  

Pour implémenter un module master il doit avoir un port initiateur. Pour 
rendre un module utilisateur un sat slave, il doit hériter de sat_slave_base et 
implémenter alors l’interface SAT. 

Les appels de services ont lieu quand un module master appelle l’une des 
méthodes de l’interface SAT à travers son port initiateur. Selon la méthode 

appelée, le port initiateur crée une requête et la transfère au port target en 

utilisant l’interface service de la couche Service. La partie slave_base du target 
décode la requête et appelle alors la méthode sat_if appropriée.  
Pour le routage entre les composants maître et esclave nous utilisons un bus 

logiciel « sw_router ». Il conduit les transactions au target correspondant en 
suivant le service demandé. 
 
LimitationsLimitationsLimitationsLimitations    

Comme toute nouvelle approche, il y a toujours quelques difficultés et quelques 

limitations. Nous allons en citer celles qui nous semblent les plus importantes. 

En effet, le bus logiciel abstrait un système d’exploitation générique et donc au 

cas ou l’application nécessite un système d’exploitation spécifique nous devons 

intervenir dans l’implémentation du sw_router afin de supporter tous les 
services et les particularités de l’OS requis par l’application. Par ailleurs, les 

fonctionnalités requises pour les systèmes d’exploitations embarqués sont d’une 

grande variété, notamment pour les communications. Il est donc nécessaire que 

ceux derniers puissent supporter cette variété, et ils doivent donc disposer de 

très nombreuses parties spécifiques. C’est un obstacle à l’idée de 

standardisation générale des systèmes d’exploitation embarqués: en effet, à 

moins d’avoir un jeu de fonctionnalités disproportionné capable de fournir des 

fonctions optimales pour chaque cas, il est souvent nécessaire d’ajouter des 

fonctions spécifiques au système pour qu’il puisse fonctionner avec une 

architecture particulière [19]. 

De même chaque pilote TLM représente un élément qui fournit des services et 

requiert des services fournis par d’autres éléments. Pour cette raison, l’ajout 
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d’un nouveau pilote nécessite la définition de ses relations avec les autres 

éléments déjà existants. La description doit aussi définir les services fournis et 

requis par l’élément ajouté, les paramètres d’appel de chaque méthode du 

pilote et les liens vers les sources d’implémentation. 

Toutes ces difficultés sont superficielles. Ainsi, l’expérimentation a confirmé la 

faisabilité de l’approche proposée. 

5555....5555 ConclusionConclusionConclusionConclusion    
 
Nous avons développé et illustré les possibilités d’une nouvelle méthodologie 

pour modéliser le logiciel embarqué en se basant sur TLM. 

L’expérimentation de la méthode a montré tout d’abord sa faisabilité. Ensuite, 

elle a permis de mettre en évidence la simplicité de développement du logiciel 

embarqué à un haut niveau d’abstraction. Cette méthodologie est alors efficace 

et permet de fournir une présentation unifiée de tout le système. 

Le chapitre suivant conclut ce document en donnant un bilan du travail 

effectué et les perspectives envisageables au terme de cette recherche. 
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Chapitre Chapitre Chapitre Chapitre 6666  

ConclusionConclusionConclusionConclusion    
 
Les systèmes embarqués sont présents dans des applications de plus en plus 

nombreuses. Récemment la demande pour ces systèmes et le nombre des 

fonctionnalités souhaitées s’est fortement accrue tandis que les délais de 

conception requis diminuent. Des architectures multiprocesseurs hétérogènes 

semblent devenir la clé pour que les systèmes embarqués puissent supporter 

cette complexité. En parallèle, l’intégration a fait de grands progrès. 

Cependant, les concepteurs n’arrivent plus à concevoir de tels circuits dans des 

délais raisonnables: ils manquent de méthodologies et d’outils; par ailleurs la 

vérification de ces systèmes devient de plus en plus complexe.  

Aussi est-il important de fournir les méthodologies et les outils qui faciliteront 

et accéléreront la conception des systèmes monopuces. Pour ce faire, un flot de 

conception descendant est proposé par le groupe TIMA-SLS. De même, le 

besoin d’une méthodologie de conception basée sur une approche plus abstraite 

pour la conception des systèmes MPSoC est bien ressenti par le monde 

industriel et celui de la recherche. Dans cette optique, l’utilisation d’un modèle 

de représentation unifié est requise d’où une méthodologie pour la modélisation 

du logiciel embarqué est proposée.  

 

Dans ce document, nous avons présenté les systèmes multiprocesseurs 

monopuces ainsi que les défis de conception de ces systèmes. A la lumière de 

ces défis, nous avons entrepris une étude des solutions proposées pour leur faire 

face. 

Nous avons présenté après les architectures logicielles et matérielles des 

systèmes multiprocesseurs monopuces. Les niveaux de modélisation RTL ainsi 

que TLM ont été décrit. Ensuite, les flots de conception classiques ont été 

étudiés. Nous comprenons alors dans quelle mesure ceux-ci ne répondent pas 

aux besoins des futurs systèmes embarqués. Une nouvelle approche de 

conception plus appropriée, élaborée au groupe SLS, a été donc présentée. 

Cette approche se base sur un raffinement de l’architecture 

logicielle/matérielle. 

Le niveau d’abstraction intermédiaire dans ce flot de conception à savoir le 

niveau Architecture Virtuelle a été ensuite décrit tout en présentant un 
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nouveau niveau de modélisation pour le logiciel embarqué qui est SW TLM 

ainsi que ses différents concepts de base. Nous avons exposé finalement 

l’application des concepts proposés sur l’application MJPEG. Cette expérience 

a montré l’intérêt d’une telle approche d’un point de vue pratique. 

 

Ainsi, ce travail inaugure un axe de recherche important.  

En effet, notre approche de la modélisation du logiciel embarqué offre de 

nouvelles perspectives et repousse encore les limites des flots de conception 

classiques. 

Grâce à la méthodologie SW TLM, le matériel ainsi que le logiciel sont conçus 

parallèlement au niveau TLM permettant l’accélération de la simulation et 

l’exploration d’architectures tôt dans le cycle de conception.  

Une perspective envisageable en prolongement direct de ce mémoire concerne 

la définition du SW TLM au niveau PVT. Un futur travail serait aussi de 

développer un outil automatique de génération de code pour les pilotes de 

communication en se basant sur les concepts du SW TLM. L’automatisation 

est une perspective très importante pour pleinement exploiter la méthodologie 

proposée et réduire le temps total de conception d’un système MPSoC. 

 

Sans doute, les objectifs importants de conception sont de fixer les demandes 

de performance, de pouvoir comparer différents alternatives et de choisir celle 

qui respecte le mieux ces demandes. Il est naturel d’associer une phase 

d’évaluation des performances avec chaque étape de conception pour choisir la 

réalisation optimale. 

Une perspective de ce travail serait alors l’exploration de l’architecture du bus 

logiciel, permettant d’offrir une bonne efficacité pour la réalisation du système 

d’exploitation embarqué, facteur critique dans les MPSoC actuels. 
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GlossaireGlossaireGlossaireGlossaire    
 
 
– APIAPIAPIAPI    : Application Programming Interface, ensemble de routines   
                  standard destinées à faciliter au programmeur le développement   
                  d’applications. 
 
– ASICASICASICASIC    : Application Specific Integrated Circuit, circuit intégré développé  
                                                                        spécifiquement pour une application. 
 
– BFMBFMBFMBFM    : Bus Functional Model, interface pour la simulation permettant  
                  de transformer les accès mémoire fonctionnels en des accès  
                  mémoires cycle-près. 
 
– CPUCPUCPUCPU        : Central Processor Unit, partie principale d’un système, réservée  
                                                                        aux traitements.    
 
– FIFOFIFOFIFOFIFO    : First In First Out, classe de protocole de communication qui  
                  assure que les premières données envoyées sont les premières  
                  données reçues. 
 
– HALHALHALHAL    : Hardware Abstraction Layer, la couche basse de l’organisation  
                                                                        du logiciel fournissant les pilotes et les contrôleurs pour la gestion  
                  de la communication. 
 
– IPIPIPIP   : Intellectual Property, élément (logiciel ou matériel) dont le  
                                                                        fonctionnement est connu et documenté, mais dont la structure   
                  interne est inconnue. 
 
– IPCIPCIPCIPC    : Inter-Process Communication (communication interprocessus),  
                                                                        ensemble de fonctions de communications inter-processus. Les  
                  IPC fournissent des services de mémoire partagée, sémaphores et  
                  messagerie. 
 
– ISAISAISAISA    : Instruction Set Architecture, niveau d’abstraction pour le logiciel  
                                                                        simulant l’architecture du jeu des instructions, avec la précision  
                  du cycle d’horloge.  
 
– ISSISSISSISS  : Instruction Set Simulator, outil qui s’exécute sur la machine hôte              
                                                                        et qui émule la fonctionnalité d’un processeur. 
 
– MPSoCMPSoCMPSoCMPSoC     : Multi Processor System on Chip, système monopuce — circuit  
                                                                            intégrant sur une même puce différents composants fonctionnels   
                   (mémoires, processeurs, etc.). 
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– RTLRTLRTLRTL   : Register Transfer Level, niveau d’abstraction pour la   
                                                                            spécification des systèmes. 
 
– SoCSoCSoCSoC   : System on Chip, système monopuce, circuit intégrant sur une  
                                                                            même puce différents composants fonctionnels (mémoires,  
                   processeurs, etc.). 
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