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Résumé

Dans les systémes embarqués, le logiciel prend une place de plus en plus
importante, et sa complexité augmente d’autant. Ces systémes étant tres
largement utilisés dans les applications récentes, il est important de pouvoir les
développer rapidement.

L’accroissement de la complexité de ces systémes fait de la maitrise de leurs
conceptions un défi a relever par les concepteurs.

En effet, la tendance a améliorer la productivité et réduire le temps de mise sur
le marché (¢ime-to-market), fait que le niveau transfert de registres (RTL)
devient insatisfaisant pour la conception et le flot de vérification.

Pour dépasser ce défi, les nouvelles méthodes de conception sont basées sur des
concepts d’abstraction de haut niveau. Une voie pour surmonter la complexité
consiste donc a élever le plus possible le niveau d’abstraction des descriptions

des systémes a concevoir, a savoir le niveau de modélisation transactionnel
(TLM).

Dans ce travail, nous proposons d’étendre le niveau TLM — vu comme le haut
niveau d’abstraction du niveau RTL — pour faciliter la conception et la
validation du logiciel embarqué.

Nous visons a présenter les nouveaux concepts du TLM congu pour le logiciel
(SW TLM) permettant le raffinement de la communication logicielle.

La méthodologie proposée permet aux concepteurs de décider conjointement &
propos de l’architecture logicielle ainsi que matérielle, afin d’assurer une
performance maximale dans leurs conceptions. Ainsi, I’hétérogénéité des
systémes multiprocesseurs monopuces serait considérée plus efficacement de

point de vue communication.

Le premier chapitre de ce document présentera briévement notre travail.

Le deuxiéme chapitre abordera quelques généralités sur la conception des
systémes multiprocesseurs monopuces et présentera le flot de conception et de
validation des systémes hétérogénes monopuces proposé par le groupe SLS sur
lequel nous avons travaillé.

Plus spécifiquement, le niveau auquel nous nous sommes intéressés est le
niveau Architecture Virtuelle qui sera décrit dans le troisiéme chapitre. A ce

stade, un nouveau flot de conception sera présenté parallelement a la
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description de la nouvelle méthodologie SW TLM. Son implémentation ainsi
que ses différents concepts de base seront détaillés dans le chapitre d’apres.

Le cinquieéme chapitre présentera la validation de ces concepts sur ’application
MJPEG. Le dernier chapitre conclura et soulignera des perspectives de ce

travail.

Mots clés

Systémes multiprocesseurs monopuces, logiciel embarqué, flot de conception,
niveaux d’abstraction, Architecture Virtuelle, niveau de modélisation
transactionnel TLM, SW TLM.
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Abstract

Embedded software takes an important place in embedded systems and its
complexity increases more and more. These systems are largely used in recent
applications so it is important to be able to develop them quickly.

With the increasing complexity of embedded systems, mastering their designs
is a challenge faced by the designers.

Indeed, the tendency to improve the productivity and to reduce the time to
market makes Register Transfer Level (RTL) insufficient for the design and
verification flow.

To deal with this challenge, the new design methods are based on high-level
abstraction concepts. So, one way to overcome complexity consists at raising
the abstraction level when designing embedded systems; the transactional level

modeling TLM is emerging.

In this work, we propose to extend TLM approach — initially intended as a
higher level abstraction of RTL hardware design — to cope with embedded
software (SW) design and validation. We aim at introducing new SW TLM
concepts which will enable refinement of communication at the SW side.

The proposed methodology allows system designers to decide about HW and
SW communication architecture jointly, so as to ensure maximum performance
efficiency for their designs. As such, multiprocessor systems on chip (MPSoC)
heterogeneity would be addressed more efficiently from communication

viewpoint.

The first chapter will briefly present our work. The second chapter will give a
general overview of MPSoC design flow and will present the design and
validation flow proposed by the SLS group. More specifically, we concentrate
on Virtual Architecture level which will be described in the third chapter. At
this stage, a typical design flow involving the VA level will be presented and
the new SW TLM methodology will be described. Its implementation as well
as its basic concepts will be detailed in the following chapter.

The fifth chapter will present the validation of these concepts on an MJPEG

application. The final chapter will conclude and give prospects to this work.
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Chapitre 1
Introduction

Ce chapitre a pour but de situer le travail de ce mémoire. Pour ce faire, il
définit dans une premiére section les systémes multiprocesseurs monopuces.
Dans la deuxiéme section, la problématique est exposée. Dans la troisiéme
section, sont présentés les objectifs & atteindre ainsi que les solutions apportées
par le groupe SLS pour faire face a ces problémes.

Notre contribution apportée par ce mémoire sera détaillée dans la section

suivante. Enfin, le plan du document sera détaillé.

1.1 Contexte: les systémes multiprocesseurs monopuces

Ce travail s’inscrit dans le domaine de la conception des systémes embarqués
multiprocesseurs monopuces, plus communément appelés AM/PSoC".

Les progrés technologiques constants en terme d’intégration sur silicium ont
permis de concevoir des systémes sur puces de plus en plus complexes afin de
répondre a une demande forte du marché pour des applications telles que les
systemes multimédia, la téléphonie mobile ou encore les applications de jeux
vidéo. On a ainsi vu naitre une nouvelle catégorie de systémes ces derniéres
années, incluant un ou plusieurs processeurs, des composants dédiés et des
modules d’entrée-sortie, le tout sur une seule puce. Ces systémes sont appelés
Systémes sur Puce, ou System-on-a-Chip (SoC) en anglais. Une grande partie
de ces systémes consistent en l'intégration sur une méme puce de plusieurs
processeurs, DSP, IP matériel, mémoires, bus partagés, etc. On parle alors de
systémes multiprocesseurs monopuces (MPSoC). Ces systémes sont réalisés en

interconnectant des noeuds de calcul avec un réseau de communication.

Pour faire face a la complexité de tels systémes, des méthodes de conception
permettant le découplage de la communication et du calcul ont été proposées
[14] [27]. La communication prend d’ailleurs une place de plus en plus
importante dans la conception de tels systemes [16].

La conception des systémes sur puce doit faire face a de nombreuses

contraintes de performance, de consommation et de cott, pour lesquelles

' Multi Processor System on Chip
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actuellement, seules des plateformes spécifiques® & chaque application peuvent
répondre [1].

De plus, laugmentation des performances par la fréquence ou par les
techniques « classiques » (pipeline, prédiction de branchement,...) ne sont plus
significatives en terme de performance et induisent une consommation
inacceptable [24]. Une solution pour répondre aux problémes de performance et
de consommation consiste & augmenter le parallélisme dans les systémes par
I'intégration de plusieurs processeurs de type hétérogénes® afin de cibler au
mieux les applications.

En 2001, les systéemes de prévisions stratégiques du rapport ITRS [12]
prévoyaient que 70% des ASIC (Application Specific Integrated Circuit)
comporteraient au moins un processeur embarqué a partir de ’année 2005.
Aujourd hui, les SoC peuvent intégrer de nombreux processeurs et cette
tendance est confirmée par le rapport ITRS 2005 [13].

Les figures 1.1(a) et 1.1(b) tirées de [15] montrent que prés d’un systéme sur
deux est un systéme multiprocesseur et que pour une partie importante d’entre

eux il s’agit de processeurs hétérogénes.

[ ) [
Multiple identical Single processor
PIOCESSOrs i
2 processors
Multiple different
PIOCESSOrS
3-5 processors
Singhe chip,
SAME processons 6-10 processors
S nglf fhll'.l. Mare than 10
different processors
0% 20% 40%
% % 40% G0%
b) Nombre de processeurs
(a) Type de processeur (b) p

Figure 1.1 - Répartition du nombre et du type de processeurs dans les systémes actuels

Il est prévu que ces systémes monopuces soient les principaux vecteurs
d’orientation de toute l'industrie des semi-conducteurs. Il est donc crucial de
maitriser la conception de tels systémes tout en respectant les contraintes de
mise sur le marché et les objectifs de qualité.

Le grand défi en ce moment pour les ingénieurs est de réussir & maitriser la

complexité lors de la conception de ces systémes et d’arriver & une conception

2 Par rapport aux plateformes 4 usage générale
3 Processeurs a usage général, processeurs de traitement de signal, ...
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rapide des systémes monopuces sous de fortes contraintes de qualité et de
temps de développement.
Pour dépasser ce défi, les nouvelles méthodes de conception sont basées sur des

concepts d’abstraction de haut niveau.

1.2 Problématique: la complexité et les difficultés de la
conception des systémes MPSoC

Habituellement, les flots de conception des systémes embarqués utilisent
principalement le modeéle RTL (Register Transfer Level) pour modéliser le
systéme au niveau des transferts de registres.

Ainsi, a ce niveau d’abstraction, nous devons modéliser tous les signaux
passant entre les différentes entités de simulation. Ce niveau est temporisé au
cycle d’horloge preés. C’est pourquoi les simulations matérielles effectuées au
niveau RTL sont relativement longues, ce qui peut allonger le temps de
conception du systéme.

En plus, un modele global d’une architecture classique logicielle/matérielle est
conventionnellement décrit au niveau RTL/ISA*. A ce niveau, le logiciel n’est
autre qu'une suite d’instructions binaires placée dans une zone mémoire. Le
matériel est décrit en utilisant un langage de description de matériel (HDL’).
Ceci inclut Darchitecture locale du nceud logiciel (processeur, mémoire,
périphériques, etc.) mais aussi les autres parties du systéme. A ce niveau le
processeur est considéré comme l'interface ultime entre le logiciel et le matériel.
Il fournit d’un c6té au programmeur une vision au niveau ISA de la machine.
De Tautre coté, il interagit avec le reste des composants de l'architecture
matérielle via des signaux physiques (bus d’adresses, bus de données, signaux
de controle, signaux d’interruptions, etc.) Cette vision de larchitecture n’est
donc valable qu’une fois les deux parties logicielle et matérielle entiérement
congues, c’est-a-dire vers la fin du cycle de conception.

Vu le niveau d’abstraction employé, la vitesse de simulation reste tres réduite
et constitue ainsi une barriere empéchant l’exploration et la validation des
applications les plus exigeantes.

De méme, nous notons ’absence de méthodologie et d’outils permettant une

transition non brutale de la spécification initiale & I’architecture finale.

Y Instruction Set Architecture
* Hardware Description language
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Pour faire face a ces défis, la modélisation au niveau transactionnel (TLM) a
été récemment favorisée pour la conception matérielle parallelement a une
proposition de nouveau flot de conception graduel.

En effet, une solution suggérée est 'augmentation du niveau d’abstraction des
modeles pour améliorer la productivité.

Bien que l'ultime objectif du TLM est de permettre le développement t6t du
logiciel embarqué ainsi que de paralléliser le développement du matériel et du
logiciel dans le cycle de conception des systémes sur puce, aucune modélisation
TLM n’a été définie pour le logiciel.

Dans les applications TLM classiques, le logiciel est considéré au niveau
fonctionnel ou bien complétement raffiné et simulé & un trés bas niveau
d’abstraction sur un simulateur de jeux d’instructions (ZSS: Instruction Set
Simulator) concurremment avec des simulations matérielles, au niveau
transaction ou au niveau cycle.

De méme, l’évaluation des sous systémes logiciels embarqués, tot dans les
étapes de conception n’est plus faisable en employant les approches
traditionnelles de simulation, précises au niveau cycle. Le probléme vient de la
vitesse lente de simulation de I'ISS.

Pour une simulation plus rapide, nous avons pensé & un niveau transactionnel
pour le logiciel similaire & celui pour le matériel, ceci sera considéré a un haut
niveau d’abstraction. D’ou les composants aussi bien logiciels que matériels
seront modélisés avec un modéle unique afin d’aborder la conception du

systéme dans une seule et méme approche cohérente.

1.3 Objectifs et solutions proposées par le groupe
TIMA-SLS

Le groupe SLS s’est focalis¢ sur la conception conjointe du logiciel et du
matériel afin de résoudre les probléemes soulevés dans les paragraphes
précédents. Cette conception se base sur un raffinement graduel a différents
niveaux d’abstraction.

La Figure 1.2 montre les deux niveaux intermédiaires proposés dans le flot de
conception des SoC & savoir Virtual Architecture (niveau OS du coté logiciel)

et Transaction Accurate (niveau HAL du coté logiciel).
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Les traits continus forts correspondent au cas classiques de co-simulation®
logicielle/matérielle tels que proposés par les approches conventionnelles.
Remarquons que ces approches se basent exclusivement sur le niveau ISA du
coté du logiciel. L’utilisation des niveaux TLM pour le matériel est assez
récente. Historiquement c’est le niveau RTL qui était utilisé comme niveau de

référence pour la co-simulation logicielle/matérielle a coté du niveau ISA.

Matériel logiciel
A A
FonctionnelG=—_ —#——) Fonctionnel
TLM
message o

TLM

transaction HAL

RTL — ISA

Figure 1.2 — Niveaux de validation de linterface logicielle/matérielle

L’utilisation d’'un modeéle & base d’ISS pour la co-simulation
logicielle/matérielle présente toujours l'inconvénient d’intervenir tard dans le
cycle de conception, c’est & dire une fois ’architecture logicielle et matérielle
du systéme est fixée et complétement développée. Le besoin croissant de
pouvoir effectuer la validation et ’exploration des choix architecturaux plus
tot dans le cycle de conception, a récemment poussé vers la mise au point
d’approches qualifiées de « systémes » -ou encore de « haut niveau »-
permettant la co-simulation d’un systéme logiciel/matériel tot dans le cycle de
conception.

Donc, pour remédier & la discontinuité observée dans les flots classiques de
conception et de validation des systéemes MPSoC, le groupe SLS a introduit les
concepts de Virtual Architecture et de Transaction Accurate comme étant des
étapes intermédiaires dans le flot de conception permettant la validation, par
co-simulation globale, des choix architecturaux résultant du raffinement
graduel du systéme.

Pour bénéficier de l'avantage d’une simulation rapide & ces niveaux
intermédiaires, nous utilisons ’exécution native comme mode d’exécution du

logiciel embarqué.

% Simuler conjointement les diverses parties d’un systéme hétérogéne
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La Figure 1.3 donne une vision simplifiée du flot de conception proposé par le

groupe SLS :

SystemC
(fonctionnel)

partitionnement

X . SystemC Application
Cosimulatio (arch. virtuelle) Hﬂﬁi
Raffinement
arch globale

. ) SystemC Application
Cosimulatio (Transaction oS
Accurate)
AP| HAL

Raffinement
arch locale

Application

SystemC
(micro- 0Ss

architecture)
HAL

Cosimulatio

I 11

Figure 1.3 — Flot de conception proposé par le groupe SLS

Ce flot débute au niveau fonctionnel aprés que le partitionnement
logiciel /matériel ait été décidé. Il se termine au niveau micro-architecture
(RTL), ou une étape classique de compilation et de synthése logique permet
d’aboutir a la réalisation finale du systéme. C’est un flot descendant qui
permet de simuler & tous les niveaux et éventuellement de revenir en arriére a
chaque étape.

Dans ce flot, l’architecture virtuelle résulte d’une premiére étape de
partitionnement de la spécification fonctionnelle initiale. Le partitionnement
sépare les parties qui seront implémentées de facon matérielle de celles qui
seront implémentées de fagon logicielle.

La deuxiéme étape du flot correspond au raffinement de I'architecture virtuelle
en utilisant un modele plus détaille de D’architecture: 7ransaction Accurate.
Cette étape est caractérisée par la spécification de la nature du protocole de
communication entre les sous-systémes ainsi que du modeéle abstrait de

I’architecture locale au niveau de chaque sous-systeme.
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Le groupe SLS s’est intéressé aussi a la génération automatique des interfaces

logicielles/matérielles.

1.4 Contributions

Durant ce travail, nous avons contribué a la définition des niveaux de
conception intermédiaires notamment Virtual Architecture et Transaction

Accurate proposés par le groupe TIMA-SLS.

Plus précisément, nos travaux au niveau T.A [20] consistaient & prouver
Iintérét et la faisabilité d’une estimation de performance des systémes en
utilisant ce modéle haut niveau de I’architecture logicielle/matérielle.

Nous avons aussi essayé d’adapter le niveau T.A au niveau TLM de ST-

Microelectronics.

Nos travaux au niveau V.A qui est un niveau plus abstrait que T.A consistent
a valider l'application logicielle sur un modéle de simulation du systéme
d’exploitation et de D’architecture. En effet, nous avons proposé un modéle
d’extension pour le niveau V.A.

Nous voulons pour cela étendre le niveau TLM pour supporter non seulement
la partie matérielle mais également la conception et la validation du logiciel
embarqué.

La contribution attendue est de proposer alors une méthode permettant
d’unifier la présentation du logiciel embarqué. Fort de ce contexte unifié de
modélisation, la conception du logiciel embarqué et de 1’architecture sous
jacente pourra alors se dérouler en parallele et d’une maniére interactive.

Nous proposons par la suite un modele transactionnel pour le logiciel embarqué
au niveau V.A basé sur TLM OSCI’. Les propriétés de ce modeéle permettent
d’unifier la représentation des composants logiciels et matériels.

L’objectif général a terme étant de développer un environnement complet de

simulation d’architectures MPSoC au niveau TLM, basé sur SystemC.

1.5 Plan de ce document

Ce document est organisé en six chapitres dont cette introduction.

" Open System(C Initiative
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Le second chapitre est dédié a la conception des systemes MPSoC et pause de
maniére plus précise la problématique et les objectifs de ce travail.

Le chapitre trois définit le niveau d’abstraction intermédiaire: Architecture
Virtuelle et présente alors un flot de conception typique introduisant ce niveau.
A ce stade, nous expliquons le raffinement de la communication logicielle et
nous définissons la terminologie TLM pour le logiciel « SW TLM ».

Le chapitre quatre détaille différents aspects nécessaires pour I'implémentation
du SW TLM.

Une application de l'approche est ensuite présentée dans le chapitre cing.
Finalement, le dernier chapitre conclut ce document et propose quelques

perspectives potentielles a ce travail.
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Chapitre 2

Conception des systémes multiprocesseurs
mMOoNnopuces

2.1 Introduction

Ce chapitre a pour objet de donner un apercu de la problématique de la
conception des systéemes MPSoC en examinant les flots de conception
classiques. Il introduit ensuite le flot de conception proposé par le groupe
TIMA SLS.

La premiére section décrit les architectures logicielles et matérielles des
systémes multiprocesseurs monopuces. Puis, la section suivante introduit les

niveaux de modélisation notamment RTL et TLM.

2.2 Architectures logicielles/matérielles des systémes
multiprocesseurs monopuces

Avant de détailler la conception des systémes multiprocesseurs monopuces, il
est nécessaire de dresser un bref apercu des architectures multiprocesseurs.

En effet, il existe principalement deux types d’organisations pour les
architectures des systémes Multiprocesseurs [8]:

e Mémoire partagée: Dans ce type d’organisation, I’architecture matérielle
est en général composée de plusieurs processeurs identiques.
L’application Multithread repose sur une seule pile logicielle. La
communication entre les différents processeurs s’effectue par une
mémoire partagée globale.

e Passage de messages: Cette organisation repose sur plusieurs piles
logicielles s’exécutant sur des sous systémes hétérogénes, aussi bien en
terme de processeurs, qu’en terme d’entrées/sorties. La communication

entre les sous-systemes est réalisée par passage de messages.

Afin d’intégrer un plus grand nombre de processeurs, les architectures MPSoC
hétérogénes combinent généralement ces deux modeles [22]. Les futurs MPSoC
hétérogenes seront composés de plusieurs sous-systémes également hétérogenes,
chacun pouvant contenir un nombre important de processeurs identiques

exécutant une seule pile logicielle [2].
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2.2.1 Architectures matérielles

L’architecture matérielle des systémes multiprocesseurs monopuces peut étre
représentée d’une maniére générale par un ensemble d’unités d’exécution
pouvant étre logicielles ou matérielles connectées sur un réseau de
communication (Figure 2.1(a)). On parlera de nceud logiciel ou de noeud
matériel.

L’architecture matérielle des systemes MPSoC peut étre décomposée en quatre
blocs de base: (1) processeur ou sous-systéme processeur pour exécuter le
logiciel, (2) modules mémoires ou unités de stockage de données, (3) sous-
systétme de calcul composé de matériel spécifique et (4) un réseau
d’interconnexion. Il y a eu un développement et une sophistication continus de
chacun de ces blocs de base, mais c’est surtout leur arrangement qui différencie
un systéeme MPSoC d’un autre.

Un probléme important auquel font face ces architectures concerne la
communication qui désormais constitue un goulet d’étranglement vu la
quantité importante d’informations qui doit étre échangée entre les différents
composants de ’architecture.

La communication peut étre assurée par des réseaux de communication
complexes (bus hiérarchiques, bus avec protocole TDMA, connexion point a
point, structure en anneau et méme des réseaux de communication par
paquets). On trouve aussi les réseaux de communication sur puce (NoC de
langlais Network on Chip) qui constituent une alternative radicale aux bus
partageés.

L’architecture matérielle d’un nceud logiciel (Figure 2.1 (b)), appelée sous-
systéme processeur, est composée d’un ou plusieurs processeurs identiques ainsi
que des composants périphériques nécessaires pour leur interfacage ou pour

I’accélération de performance.

Nceud Neceud Noeud
Matériel Logiciel Logiciel CPU Mem DMA
I I
[

Interface réseau| |Interface réseau| |Interface réseau _l I
bridge Interface | | accetérateur
l | réseau matériel

[ Réseau de communication

[

(a) Architecture a réseau sur puce (b) Architecture matérielle d’un nceud logiciel

Figure 2.1 - Architectures matérielles
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2.2.2 Architectures logicielles

Paralléelement & 1’évolution des architectures matérielles des systémes
monopuces, le logiciel embarqué est passé du simple programme séquentiel,
souvent développé en langage assembleur, & un systéme concurrent
implémentant un comportement complexe et bénéficiant d’une architecture a
part entiére.

Comme dans la plupart des architectures logicielles actuelles, la pile logicielle

utilisée est organisée en couches pour des raisons de standardisation et de

réutilisation.
Application API OS
M
08 com API HAL
HAL

Figure 2.2 — Architecture logicielle

Chaque couche fournit a la couche supérieure une interface de programmation
propre (API®).

2.2.2.1 La couche applicative
La couche applicative constitue la partie fonctionnelle du logiciel embarqué. En

effet, le programme applicatif se compose d’un ensemble de taches
communicantes, réalisant le comportement de 'application tel que décrit dans
la spécification fonctionnelle.

Cette couche est utilisée par le concepteur du logiciel pour représenter son
application sans se préoccuper de I’architecture matérielle.

Généralement Multithread, elle est implémentée sur une API de modéle de
programmation parallele, permettant d’abstraire les détails de l'architecture
logicielle et matérielle sous-jacentes. Cette séparation est nécessaire pour le
développement du logiciel et du matériel de maniére concurrente.

La couche API représente les appels systéme de haut niveau invoqués par les
taches logicielles. Ainsi, & ce niveau de description, n’existent que des

informations liées aux traitements a réaliser.

¥ Application Programming Interface
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2.2.2.2 La couche Systéme d’exploitation - Communication
Cette couche permet de gérer localement les ressources disponibles. Ceci inclut

par exemple la gestion des taches, la communication inter téaches et la
communication externe, I’ordonnancement (Scheduling), etc.
Dans les systémes embarqués, le systéme d’exploitation (SE ou OSY) est vu
comme l’entité logicielle qui permet ’acces au matériel en coopération avec le
logiciel applicatif. Son réle principal est de multiplexer 'accés a des ressources
limitées en fournissant une abstraction adéquate de ces ressources, tout en
garantissant une certaine qualité de service.
L’usage de systémes d’exploitation est devenu nécessaire dans les systémes
embarqués, du fait de la complexité croissante de ces systéemes, de la présence
de fortes contraintes temps réel, de la limitation des ressources disponibles,
tant en mémoire qu’en énergie disponible et donc en puissance de calcul, mais
également de la pression exercée par le marché sur ces produits. En effet, le
temps de développement doit étre raisonnable, afin de limiter le temps de mise
sur le marché, et ainsi d’assurer le succés du produit. Parmi les exemples des
systémes d’exploitation embarqués nous citons: QNX, eCos, RTLinux,
VxWorks, etc.
Briéevement, les fonctions de base d’un systéme d’exploitation sont:

- gestion de taches et ordonnancement;

- services d’interruption;

- communication inter tdches et synchronisation;

- gestion de mémoire.

Dans notre travail, nous utilisons un modéle de simulation d’OS fait par

I’équipe TIMA-SLS.

Ce modele se compose de :

API OS: regroupe tous les services représentant I’API du systéeme

d’exploitation utilisable par ’application logicielle. Cette famille contient trois

sous familles:

- 10 (Input/Output): regroupe tous les services liés aux communications
utilisables par 1’application logicielle (par exemple le tube (pipe));

- Synchronisation: regroupe tous les services liés aux synchronisations
utilisables par l’application logicielle (par exemple les sémaphores);

- Autres services de haut niveau.

® Operating System
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Noyau (Kernel): regroupe tous les services concernant le noyau du systéme

d’exploitation. Il contient les sous familles suivantes:

- L’amorce (Boot): regroupe tous les services liés au démarrage du systéme
d’exploitation. Cette sous-famille initialise les registres des processeurs, la
table des vecteurs d’interruptions, les espaces de piles, ’espace d’adressage,
etc. Elle charge le noyau en mémoire;

- Changement de contexte (Cxt): regroupe tous les services liés a la gestion
des contextes associés aux taches. Les éléments fournissant ces services sont
toujours spécifiques au processeur cible;

- Ordonnanceur  (Scheduler): regroupe tous les services lies a
I’ordonnancement des taches. Pour cela il utilise un algorithme de gestion,
généralement par priorité ou tourniquet', et gére l'ordre d’exécution des
taches (par exemple la mise en sommeil ou le réveil d’une tache);

- Tache (7ask): regroupe tous les services liés a la gestion des téaches. En
pratique, cette famille de services fait le lien entre les autres sous-familles de
la famille Noyau (Kernel). Elle décrit la structure de la tache et contient les
tables de taches.

Synchronisation: regroupe tous les services liés aux mécanismes de
synchronisation internes au systéme d’exploitation. Le partage des ressources
sur différentes entités concurrentes (par exemple taches de l’application)
impose une politique de protection qui permet d’assurer la cohérence de
I'information contenue dans ces ressources.

Parmi les primitives de synchronisation nous notons : Wait pour attendre un
signal par exemple et Notify pour en générer un, Block met la tadche courante
dans I’état endormi et la place dans une file d’attente, Unblock réveille une des
taches endormies dans une file d’attente, etc.

Pour fonctionner, cet élément a besoin des services du Noyau.

Interrupt: regroupe tous les services liés aux interruptions (par exemple la
gestion des fonctions d’interruption, ou des appels systéme). Ces services ont

besoin des primitives de synchronisation.

10 Chaque processus dispose d’'un quantum de temps pendant lequel il peut s’exécuter, puis c’est au
tour du suivant, en anglais Round Robin.
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Dans cette méme couche nous trouvons la partie COM qui gére principalement
la communication de l'application avec le matériel. Ceci est assuré par les
pilotes de périphériques.

Un pilote de périphérique fournit un acces aux E/S et sert a les gérer.

2.2.2.3 La couche abstraction du matériel (HAL)

Classiquement, le logiciel embarqué est développé & un niveau d’abstraction
trés bas en utilisant souvent le langage assembleur. Pour ce faire, les
programmeurs sont supposés avoir une connaissance trés poussée de
I’architecture matérielle sous-jacente dans ses moindres détails. D’un point de
vue du logiciel, cette dépendance étroite vis-a-vis de 1’architecture matérielle
présente plusieurs inconvénients: tout d’abord, ceci implique un long cycle
séquentiel de conception, puisque les programmeurs sont obligés d’attendre
qu’'une architecture matérielle complete soit disponible.

Cette situation s’aggrave encore plus si des modifications & D’architecture
initiale s’avérent nécessaires, entrainant la re-conception d’une majeure partie
du logiciel. Ensuite, ceci rend le processus de validation et de débogage du
logiciel fastidieux et induit des erreurs a cause de dépendances matérielles
subtiles. Enfin, & cause de ces mémes dépendances, la réutilisation de
composants logiciels préconcus se trouve considérablement limitée.

La notion de couche d’abstraction du matériel (HAL') est introduite pour
palier les inconvénients d’une telle dépendance bas niveau de l'architecture
matérielle [3].

Cette couche permet l'accés structuré aux ressources; et aussi de cacher les
détails bas niveau de 'architecture matérielle. En effet, la couche HAL est une
couche logicielle fine qui est supposée fournir une abstraction de 1’accés aux

ressources matérielles de ’architecture.

2.3 Niveaux de modélisation

L’étude des niveaux d’abstraction de la communication dans les langages de
description du matériel n’est pas nouvelle. Dans cette section, nous nous

intéressons aux deux niveaux RTL et TLM.

" Hardware Abstraction Layer
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2.3.1 Niveau RTL

Le niveau RTL est probablement le niveau d’abstraction le plus utilisé pour la
modélisation des systémes matériels [23].

Le niveau RTL est clairement identifié. A ce niveau de conception, la
communication interne et externe des composants matériels est réalisée par des
fils et des bus physiques. Les données intervenant dans une communication
sont sous une forme logique, c’est-a-dire qu’elles sont présentées par des
vecteurs de bits.

Dans une communication au niveau RTL, le temps est une grandeur réelle,
arbitraire et discrete. La granularité de 1'unité de temps est le cycle d’horloge
et les primitives de communication sont des lectures et écritures sur des ports
et 'attente d’un nouveau cycle d’horloge. Ce niveau d’abstraction est supporté
dans la majorité des langages HDL' en particulier dans VHDL, Verilog et
SystemC.

Cependant, ce niveau est de plus en plus considéré comme trop détaillé en
approche systéme. D’une part, il nécessite un travail important pour le décrire
complétement, d’autre part son utilisation pour des vérifications par simulation
conduit & des temps excessifs.

L’introduction d’un niveau plus abstrait que RTL s’avére nécessaire: il s’agit
du niveau TLM.

2.3.2 Niveau TLM

Les modeles transactionnels ont été introduits pour augmenter la productivité
des concepteurs de systémes sur puce. Il s’agit d’'un nouveau niveau
d’abstraction, plus haut que le niveau RTL qui constitue le point d’entrée des
outils de synthese.

TLM (Transaction Level Model) est progressivement adopté par les industriels
pour modéliser rapidement et simuler & grande vitesse les architectures de
systémes sur puce (SoC), dans le but notamment de permettre le
développement du logiciel embarqué avant de disposer de la description
synthétisable compléte du matériel, et de procéder & des analyses
d’architectures trés tot dans le cycle de conception, ce qui n’était pas possible
au niveau RTL, du fait de la lenteur des simulations et de la complexité des

modeles manipulés.

2 Hardware Description Language
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TLM utilise une approche & base de composants, dans laquelle les blocs
matériels sont des modules communicants par le biais des transactions, ou les
détails inutiles de communication sont omis. Par suite, il permet d’accélérer la
simulation et explorer les alternatives d’implémentation tot dans le cycle de
conception (tel que la topologie du bus, les priorités du bus, 'optimisation de
la taille de la mémoire, etc.) [17].

TLM sera plus détaillé dans le chapitre trois.

2.4 Discontinuités du flot classique

La Figure 2.3 représente un flot de conception classique pour les systémes
embarqués monopuces.

Un tel flot est caractérisé par une séparation franche et prématurée entre la
conception de la partie matérielle et de la partie logicielle.

Ce flot débute par une spécification fonctionnelle de 'application dans des

langages haut niveaux, généralement exécutables, tels que SystemC [26] ou
Simulink [21].

Binary
Software Sub -System SW _ADDIi
Software HAL
hrd Thread 1
i = g GAP ol
il T
Hardware

HW
E Conception logicielle ﬂ

‘ Séparation totale ]

Partition
nement

Spécification
fonctionnelle

Intégration ISA/RTL

entre logiciel et _matériel

Conception matérielle

%(_/ Cycle de correction N )

Niveau Systeme Niveau Prototype Virtuel
System.Level. Virtual Prototype

Figure 2.3 — Etapes et modéle d’un flot de conception classique
La seconde étape consiste a répartir les différentes taches entre le matériel et le
logiciel séparant ainsi la conception du systéme en deux parties complétement
autonomes: une dédiée a l’architecture matérielle et 'autre au logiciel
embarqué qui va s’exécuter sur cette architecture. L’intégration permettra
finalement de regrouper & nouveau les deux parties afin d’obtenir un modele
bas niveau ol le matériel est décrit en RTL et le logiciel au niveau instruction

binaire.
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Dans un tel flot il peut étre difficile de développer complétement le logiciel
sans que le matériel soit défini. C’est pour cela que son développement devait

souvent attendre que la partie matérielle soit décrite pour étre achevé.

2.5 Nouveau flot de conception proposé dans le groupe
TIMA-SLS

L’approche de conception vue précédemment est caractérisée par une
discontinuité qui marque le passage de la spécification initiale &
I'implémentation finale. Elle constitue comme nous l'avons souligné un
handicap dans ce flot classique. Cette discontinuité verticale se traduit
également par une autre discontinuité horizontale qui tend & séparer la
description du systéme en deux parties complétement indépendantes, une
logicielle et 1’autre matérielle qui sont alors concues et raffinées
individuellement d’une maniére séparée.

Pour résoudre ce probléme, il est clair qu’il faut introduire, dans le flot de
raffinement de Darchitecture, des étapes supplémentaires permettant

I'interaction entre logiciel et matériel.

2.5.1 Présentation du flot de conception du groupe SLS

La Figure 2.4 présente la solution apportée par le groupe SLS pour palier aux
discontinuités des flots de conception classiques.

Le principe de base de cette approche est de considérer la conception de
I'interface logicielle/matérielle comme étant une branche complete du flot.
Cette externalisation apporte une solution a la discontinuité entre les niveaux
d’abstraction sous réserve de la disponibilité de modeéles exécutables de
I'interface, permettant ainsi de simuler le systéme complet durant toutes les
étapes de la conception conjointe.

La discontinuité dans la conception conjointe du logiciel et du matériel est
naturellement solutionnée par cette approche ou la conception de l'interface

logicielle /matérielle est traitée dans sa globalité.
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Conception logicielle

vers

- - Modeéle interface " : Lt
Spécif. Partition HW/SW Partition
Fonct. | "\ nement ; nement )\ [ Modgle interface | _, Partition)_-» HAL Spécifique | (Pack-end
Abstraite ement

HW/SW T.A.

[ |
Conception matérielle

Cycles de correction

Systeme Level Virtual Architecture Transaction Accurate Virtual Prototype
S.L. V.A. T.A. .P.

Figure 2.4 - Flot de conception détaillé proposé par le groupe TIMA-SLS

2.5.2 Description des niveaux intermédiaires du flot

En plus des deux niveaux déja existants dans le flot précédent (System Level
et Virtual Prototype), deux niveaux intermédiaires ont été ajoutés : Virtual
Architecture Level et Transaction Accurate Level. 1ls seront décrits briévement

dans les paragraphes suivants.

< Niveau Virtual Architecture

L’architecture virtuelle résulte d’une premiére étape de partitionnement de la
spécification fonctionnelle initiale. Le partitionnement sépare les parties qui
seront implémentées de facon matérielle de celles qui seront implémentées de
facon logicielle.

Ce modele permet d’abstraire tout le logiciel dépendant du matériel, le ou les
processeurs et le sous-systéme processeur. Le modele de programmation sur
lequel peut s’appuyer le concepteur de la partie logicielle est une API de HDS
(Hardware Dependent Software), similaire & celle d'un OS, plus des primitives
de communication haut niveau.

A ce stade, l'architecture matérielle est globalement décomposée en sous
systémes, sans pour autant exiger que l'architecture matérielle soit raffinée.

Au niveau de l'architecture virtuelle, le concepteur ne dispose pas d’assez
d’informations sur I'architecture matérielle cible.

L’objectif de ce modeéle est d’apporter aux concepteurs une premiére estimation
plus ou moins grossiére des performances en fonction des choix faits sur le
systéme d’exploitation et les primitives de communication haut niveau (gestion

des taches logicielles par exemple).
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< Niveau Transaction Accurate

Au niveau Transaction Accurate, la couche logicielle supérieure du modeéle
précédent est supposée raffinée. On considére donc que le HDS ne fait plus
partie du modele mais de 'application que 1’on veut valider.

Cette étape est caractérisée par la spécification de la nature du protocole de
communication entre les sous systémes ainsi que du modele abstrait de
I’architecture locale au niveau de chaque sous systéme.

Pour un sous systéme logiciel, ceci correspond & une vision au niveau HAL de
la machine d’exécution.

Les communications & ce niveau se font avec des adresses spécifiques par des
primitives de type read/write. La gestion des ressources matérielles comme
lacces aux différents périphériques partagés ou encore aux processeurs sont
modélisés.

L’objectif a ce niveau est d’apporter une plus grande précision quant a
lestimation des performances afin de pouvoir valider les décisions de

conception prises en amont de maniere plus précise.

Dans les deux niveaux Virtual Architecture et Transaction Accurate, nous
utilisons ’exécution native comme mode d’exécution du logiciel embarqué afin
de bénéficier de ID'avantage d'une simulation rapide & ces niveaux
intermédiaires.

L’exécution native signifie que le logiciel embarqué est compilé pour le
processeur de la machine hote (machine sur laquelle se déroule la simulation)
et est exécuté par cette machine. Ceci est & mettre en opposition avec la
compilation croisée (cross compilation) pour le processeur cible et

I'interprétation des instructions binaires via le simulateur du processeur.

9 Niveau Virtual Prototype

A ce niveau, I'architecture logicielle/matérielle est décrite au niveau ISA/RTL.
Le logiciel n’est autre qu'une suite d’instructions binaires placée dans une zone
mémoire.

Le matériel est décrit en utilisant un langage de description de matériel (HDL).
Ceci inclut Darchitecture locale du nceud logiciel (processeur(s), mémoire(s),
périphériques, etc.) mais aussi les autres parties du systéme.

A ce niveau, les deux parties logicielle et matérielle sont entiérement congues.
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Ici, nous utilisons un modeéle de simulation classique qui considére que
I’architecture du systéme est complétement raffinée et connue dans ses
moindres détails. Ainsi, le logiciel embarqué doit étre entiérement développé
avant d’étre compilé par le (les) processeur(s) cible(s). L’image binaire obtenue
est alors prise en charge par des simulateurs de processeurs qui interprétent
séquentiellement les instructions et interagissent avec un modeéle entiérement

raffiné de architecture matérielle.

2.6 Conclusion

Ce chapitre a été dédié a la description des systémes qui font 1’objet de ce
mémoire, & savoir les systémes multiprocesseurs monopuces. L’architecture de
tels systémes a été analysée, mettant ’accent sur la complexité aussi bien des
parties logicielles que matérielles de ces architectures.

Face a cette complexité, les flots classiques ne semblent pas apporter une
solution efficace qui facilite ’exploration et la validation de ces architectures
en vue de maitriser les colits inhérents & leurs développements. L’approche
proposée par le groupe TIMA-SLS propose des modeéles de représentation
intermédiaires  permettant un  raffinement graduel des  systémes
logiciels/matériels.

Notre travail cible les méthodes et techniques de conception de systémes. Dans
ce travail, nous nous sommes concentrés sur un niveau d’abstraction supérieur
dans le flot de conception des systémes monopuces, nommé Architecture

Virtuelle, qui sera décrit dans le chapitre suivant.
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Chapitre 3
Niveau Architecture Virtuelle

3.1 Introduction

Les systéemes embarqués peuvent inclure plusieurs processeurs, qui exécutent
des instructions spécifiques implémentées en logiciel pour des besoins de
flexibilité. On estime que dans un futur proche, la complexité du code logiciel
sera supérieure & celle de la partie matérielle et demandera par conséquent
plusieurs hommes-années de durée de conception. Le logiciel ne pourra donc
plus étre développé en langage assembleur et une approche de conception a un

niveau d’abstraction plus élevé est requise.

Dans ce chapitre, nous décrivons le niveau d’abstraction intermédiaire appelé
Architecture Virtuelle sur le quel nous avons travaillé.

Pour aborder la conception du systéme dans une seule et méme approche
cohérente, les composants aussi bien logiciels que matériels sont modélisés avec
un modele unique. La méthodologie proposée dans le cadre de ce mémoire pour
présenter un modele de simulation du logiciel embarqué & un haut niveau
d’abstraction sera alors exposée. Elle se base sur le niveau TLM.

Nous rappelons dans un premier lieu les principes de base de la méthodologie
TLM pour le matériel. Dans un deuxiéme lieu, nous introduisons les concepts

du niveau SW TLM; niveau TLM pour modéliser le logiciel embarqué.

3.2 Définition du niveau Architecture Virtuelle

Le niveau Architecture Virtuelle est appelé encore mniveau systéme
d’exploitation.

Le role de ce niveau est de palier aux imperfections et limites de ressources de
I’architecture matérielle en implémentant un certain nombre de politiques pour
la gestion de ces ressources limitées. Un exemple de gestionnaire de ressources
est ’Ordonnanceur qui permet de multiplexer une ressource « rare » sur
I’ensemble des taches logicielles actives a un instant donné.

Le modele de simulation & ce niveau peut étre vu comme suit (Figure 3.1):
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Application Politique
- | de gestion
{Services } de l'application
. Politique
Modeéle de de gestion
Simulation des ressources
Spécification
{Ports } L1 de ressources
Matériel

Figure 3.1 — Modéle de simulation au niveau V.A

Ce niveau d’abstraction décrit l’architecture du systéme mais en ne se
préoccupant que des objets fonctionnels pour l'application du systéme, c’est a
dire en excluant completement tous les détails liés a la réalisation. Le systéeme
est réalisé sous la forme de composants pouvant implémenter un ensemble de
taches logicielles ou une fonction matérielle mais sans aucune caractéristique
précise pour le type du composant ou de sa structure interne.

La description du systéme au niveau Architecture Virtuelle est un ensemble de
tels composants travaillant concurremment qui communiquent par des canaux
de communication abstraits. Ces canaux seront détaillés plus tard.

Les canaux de communication utilisent des primitives transactionnelles définies
par la norme TLM [5], pour représenter seulement le transfert ou le processus
de synchronisation de données entre les composants sans aucune information
sur I'implémentation du protocole de communication.

Le modéle du systéme au niveau V.A —niveau transactionnel- est toutefois
exploitable en utilisant des outils et des méthodes pour I'analyse de
performances. Ils explorent les différentes solutions possibles pour le
partitionnement des taches afin de définir une architecture optimale du

systeme.

La Figure 3.2 montre les différents niveaux d’abstraction des deux parties
matérielle et logicielle. Les lignes interrompues joignant wun niveau
d’abstraction donné du matériel avec un autre niveau du logiciel définit des
niveaux d’intégration possibles permettant la conception et la simulation des

systemes logiciels/matériels.
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En toute rigueur, au niveau fonctionnel, la notion de logiciel/matériel ne doit
pas exister, car il s’agit d’'une notion relative & 'implémentation. Cependant,
pour la clarté de la représentation, nous dupliquons le niveau fonctionnel d’un
coté comme de l'autre dans la figure [3].

Dans ce travail, nous nous intéressons par un nouveau niveau intermédiaire
d’intégration Architecture Virtuelle (en anglais Virtual Architecture V.A). 11
associe HW TLM a un niveau équivalent pour le logiciel qu’on appelle SW
TLM.

A A

Fonctionnel [ —— —+— ) Fonctionnel

-
-
s
-
-

Pras
-

Se
~
Ss
~

Se
~
S~
-~

RTLL—— —F—] 1sA

Figure 3.2 — Niveau Architecture Virtuelle

Le niveau SW TLM correspond a une abstraction du niveau bas classique pour
le logiciel (ISA). Au niveau SW TLM le logiciel est décrit comme un ensemble
d’objets communicants ensemble et qui sont gérés par un environnement
d’exécution correspondant au systéme d’exploitation.

La définition du niveau SW TLM est largement inspirée des recherches
récentes sur la conception du logiciel embarqué. En effet, beaucoup de
recherches se sont concentrées sur I’abstraction du niveau classique de
modélisation RTL utilisé en tant que modele d’intégration logiciel/matériel. La
plupart de ces travaux ont adressé le coté matériel ou le coté logiciel du
probléme, mais aucun d’eux n’a fourni un modele flexible et unifi¢ de la
plateforme logicielle/matérielle & un niveau d’abstraction plus élevé.

Du coté matériel, le niveau de modélisation transactionnel (TLM) a été
identifié¢ en tant que candidat approprié pour l'abstraction du niveau RTL.
Dans tous ces travaux, le logiciel est considéré & un bas niveau d’abstraction

ou simplement au niveau fonctionnel.
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Du coté logiciel, beaucoup de travaux [4] [9] s’étaient concentrés sur la
génération automatique des systémes d’exploitation temps réel et du code pour
le logiciel embarqué. Cependant, dans les travaux [4] et [9], I'interaction du
modéle de simulation du systéme d’exploitation avec le matériel n’est pas
clairement expliquée. De méme dans [27], un raffinement logiciel /matériel a été
proposé cependant ce travail se base sur un modele fixe de linterface

matérielle.

La principale contribution de ce travail est de formaliser ces efforts, en
utilisant le niveau TLM pour définir une plateforme de modélisation TLM
pour le matériel et le logiciel. Ceci permet le développement d’un modéle unifié
pour linterface logicielle/matérielle pour faire face aux discontinuités de
conception entre le matériel et le logiciel et permettre l’exploration rapide et

efficace de I’espace des solutions architecturales.

Spécification ¢

partitionnement

. N #
Architecture Systeme |

Conception Conception
logicielle matérielle

[sw TLM| [HW TLM|
Intégration TLMD

.l'/-

Architecture Virtuelle| % .

b |

Conception Conception
logicielle matérielle

= = T o e = = == = = T e o o o e o m o= == == = = = TR L [ PSSP EeS N1 | J VNS

[ swisA | [HW RTL|
Architecture RTL @
" Frapes/moddles de conception | Simulation/

1 Exploration

Figure 3.3 — Flot de conception typique comportant le niveau V.A
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La Figure 3.3 présente un flot de conception typique comportant le niveau
V.A. Comme les flots de conception classiques, le flot proposé part d’une
spécification (non exécutable) qui subit une premiére étape de partitionnement
permettant le raffinement du logiciel et du matériel.

Dans la figure, le résultat de cette étape s’appelle «Architecture Systéme>.
Ceci correspond & une forme exécutable de la spécification (en utilisant
SystemC par exemple) ou des annotations sont simplement introduites pour
distinguer les parties de I'application qui vont étre mappées en matériel ou en
logiciel respectivement. Le résultat final du flot est une architecture RTL qui
peut servir comme entrée des outils conventionnels de synthése physique.
Cependant contrairement aux flots de conception classiques, le flot proposé
présente une étape intermédiaire de conception basée sur le concept V.A.
L’architecture virtuelle résulte de lintégration des parties logicielles et
matérielles raffinées jusqu’au niveau TLM.

Au niveau V.A, le logiciel est modélisé au niveau OS comme un ensemble
d’objets SW TLM qui coexistent et interagissent avec le reste des composants
HW TLM.

Cette étape intermédiaire du flot permet de:

e palier aux discontinuités des flots de conception classiques et remédier aux
problémes liés & l'intégration tardive des architectures logicielles et
matérielles d’'un systéeme MPSoC en proposant un niveau intermédiaire
pour lintégration logicielle/matérielle permettant une conception
logicielle /matérielle graduelle;

e rompre la longue boucle d’exploration qui sépare classiquement le niveau
systéme du niveau RTL final. Ceci facilite une exploration d’architecture
rapide et efficace bénéficiant de la rapidité de simulation du TLM

comparé a RTL.

3.3 Vue d’ensemble d’un systéme au niveau V.A

La Figure 3.4 donne une vue d’ensemble d’'un modéle conceptuel de l'interface
logicielle/matérielle au niveau d’abstraction intermédiaire V.A. Les parties
grises de la figure correspondent aux objets conventionnels du HW TLM.

Dans cette figure, 'exemple de conception est construit autour d’une
architecture hiérarchique de bus composée d’un bus systéme au quel est

connecté un bus CPU local via un pont (en anglais bridge).

Mémoire de Mastere - 35-



EPT TIMA

A la différence de la conception TLM conventionnelle, le logiciel n’est ni
exécuté sur un simulateur de jeux d’instructions, ni entiérement abstrait au
niveau fonctionnel. Au niveau V.A le logiciel est modélisé au niveau OS comme

un ensemble d’objets qui co-existent et interagissent avec le reste des
composants HW TLM.

Tache

. Pilote de
Téche périphérique Programme

i
i

Gestionnaire
| BUS LOGICIEL | de ressources

/- \/
Memowe PU Ressources Virtuelles
logique

g

| BUS CPU | )
—V— v
Mémoire @ IT Ctrl
locale v
| BUS Systéme | > Ressources matérielles

IP1 AR P2
partagée
| )

Figure 3.4 — Modele conceptuel de I’ Architecture Virtuelle

Dans une description SW TLM, nous identifions principalement trois couches
conceptuelles :
e La couche Programme (Program layer) qui correspond au logiciel congu
par des programmeurs de logiciel. Ceci se compose des taches de 'application
ainsi que des pilotes de périphériques qui permettent la communication

extérieure avec le matériel.

e La couche de gestion des ressources (resource management layer)
correspond & ce qu’'on appelle le bus logiciel (ST bus). Cette entité abstrait
le vrai systeme d’exploitation et permet la coordination et ’arbitrage des
composants. Cette couche gére de méme la communication entre les
différents composants logiciels.

La communication logicielle est abstraite au niveau service. En effet, la
communication est représentée comme une combinaison de requétes et de

services. Les différents modules communiquent par des requétes de services,
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via le bus logiciel qui garantit le routage et la synchronisation des
connexions établies.

Les services offerts par le bus logiciel dépendent largement du systéme
d’exploitation. On peut classer certains services dans des catégories tels que
les services de communication et de synchronisation inter taches, les services
de communication externes via les pilotes de périphériques et les services

d’allocation des ressources.

e La couche des ressources virtuelles (virtual resource layer) qui spécifie,
d’un point de vue programmeur, quel type de ressources disponibles dans le
sous systeme logiciel (le nceud logiciel de la Figure 2.1).

Cette couche fournit une abstraction de I’ensemble des ressources
disponibles au niveau du nceud logiciel. En effet, ’application dispose d’'un
certain nombre de taches qui vont étre exécutées sur différentes ressources
de calcul (Processing Elements), elles ont besoin pour cela d’allouer les
ressources de stockage nécessaires a leur exécution. Les mémoires sont utiles
pour la mémorisation des données ou des instructions, et sont aussi un
passage fréquent pour les communications.

Dans notre cas, nous distinguons deux types de ressources virtuelles :

mémoire logique et unité virtuelle de traitement (Processing Unit).

Un objet important qui pourrait étre qualifié comme un objet TLM hybride
logiciel /matériel est le modele fonctionnel du bus (en anglais BFM: Bus
Functional Model). Un BFM est un pont spécial qui permet de relier le bus
logiciel avec le bus matériel (le bus CPU). Son role principal est de transmettre
les acceés externes du logiciel au matériel. Il est également responsable de
transférer les interruptions matérielles venant du c6té matériel aux composants

appropriés du coté logiciel.

Cette description a nécessité une bonne compréhension du niveau
transactionnel d’un point de vue théorique.

Dans les sections suivantes, nous rappelons donc les concepts de base pour le
HW TLM ensuite ceux pour le SW TLM sont décrits et leur application pour

le raffinement du logiciel est expliquée.
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3.4 Concepts de base du TLM pour le matériel

Dans cette section, la méthodologie conventionnelle HW TLM est présentée.
Nous cherchons & donner de méme un apercu sur la structure TLM et nous

décrivons briévement les niveaux TLM.

3.4.1 Méthodologie TLM

TLM est un niveau plus abstrait que RTL. Ceci est da a la réduction de la
quantité de détails que le concepteur doit manipuler facilitant donc Ila
modélisation.

Ce niveau, moins détaillé que le niveau RTL, représente uniquement ce qui se
passe au niveau systéme, en terme d’échange de données et de synchronisation
systéme, sans se soucier de la micro-architecture des blocs.

TLM est décrit et expliqué par beaucoup de travaux [6] [7] [10]. Il est construit
comme un niveau élevé d’API qui définit comment les composants matériels
communiquent entre eux.

Un modéle TLM se base uniquement sur des appels de fonctions et des
transferts de paquets de données. L’idée est de représenter au plus prés
I'intention du concepteur quant au comportement global du circuit, sans
rentrer dans les détails de la description des signaux réalisés au niveau RTL.
L’objectif de ce niveau est de développer du logiciel embarqué et de faire des
études d’architectures & un haut niveau d’abstraction. II permet de méme
d’accélérer le temps de simulation.

L’API OSCI TLM est construite comme un ensemble d’interfaces qui
définissent comment les modules communiquent entre eux.

En effet, 'interface de protocole définit la sémantique pour transférer une
transaction entre deux points différents d’'un méme systéme tel que tac if,
basic _if, synchro _if, etc.

TLM  définit un ensemble d’interfaces génériques et réutilisables
(bloquantes/non  bloquantes, unidirectionnelles/bidirectionnelles) par une
approche en couches tel que t/m transport if<req,resp>, tim put if<req>,
tim_get if<req>, etc. (voir Figure 3.5):

e Couche Utilisateur (User layer) :
Dans le jargon TLM, cette interface s’appelle en anglais « convenience

Interface ». Elle se compose typiquement de méthodes qui donnent un sens aux
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utilisateurs du protocole en question par exemple read, write, burst read et
burst write. L’utilisateur va utiliser les ports initiateurs qui fournissent les
moyens d’implémenter ces interfaces et définit des modules cibles (target) qui
héritent de ces interfaces [6]. Les transactions sont envoyées par le module
initiateur par le biais de initiator port et sont recues et traitées par le module
target selon I'implémentation de I'utilisateur.
Ces implémentations sont visibles au module target grice a sc_ export de
SystemC qui est reliee au module target et qui donne acces a ces
implémentations.
A ce niveau, la couche protocole est transparente pour 'utilisateur.

e Couche Protocole (Protocol layer) :
La couche protocole se compose de [6] :

- classes de requéte et de réponse qui encapsulent le protocole.
Principalement ceci correspond a la définition d’échange des transactions
(Pinformation & échanger entre l'initiateur et le target: adresse, données,
statut, longueur, etc.);

- port initiateur qui hérite de sc_port ;

- classe slave base qui implémente les interfaces TLM.

Le module target doit hériter de la classe slave base.

L’utilisateur pourra aprés utiliser les classes initiator port et slave base. 11
faut noter que ce mécanisme de communication est efficace de point de vue
temps d’exécution. En effet grace a la liaison «port-to-export» (introduite par
SystemC-2.1.v1) I'appel a ’API du protocole résulte a I'exécution de
I'implémentation dans le coté du target mais dans le méme contexte du
thread” initiateur. Ainsi, la communication entre un maitre et un esclave
n’implique pas un changement de contexte (context switch) (coliteux en
temps de simulation).

e Couche Transport (Zransport layer):

La couche Transport forme la couche de base pour la couche protocole et la
couche utilisateur. Elle donne l'accés aux interfaces TLM virtuelles par la
liaison SystemC sc_port & sc_export, & savoir initiator port & target port.

L’interface TLM hérite de la classe sc_interface de SystemC. Elle sert comme
une base commune pour faciliter l'interopérabilité de divers modeéles TLM

définis par différentes compagnies.

3 Processus léger
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Figure 3.5 — Architecture TLM [6]

La société ST-Microelectronics; qui a adopté le niveau TLM dans la
conception; a construit un ensemble de protocoles qui sont conformes a OSCI
TLM a savoir les protocoles TAC et Synchro.

TAC acronyme de Transaction Accurate Communication est construit sur la
base du standard TLM OSCI. Il se base sur linterface ¢/m t¢ransport if
(interface bloquante bidirectionnelle) qui comporte la requéte et la réponse
dans un méme transfert TAC, status fait aussi partie d’une réponse TAC.

Le protocole Synchro est construit sur la base de l'interface put de TLM et
représente la synchronisation entre plusieurs composants. Il se base sur

Vinterface t/m_ blocking put_if (interface bloquante unidirectionnelle).

3.4.2 Les niveaux TLM PV et PVT
Il existe de nombreuses variantes dans le niveau d’abstraction TLM.
Néanmoins, nous pouvons distinguer deux grands types de modeles TLM (voir

Figure 3.6) tels que définis dans la littérature.

Modele de routeur spécifique | py
e.g. ST BUS, AMBA

!

Modele de routeur générique PV
e.g. TAC, SYNCHRO

TLM OSCI
Couche Transport

bloquant/non bloquant
unidirectionnel/bidirectionnel

Figure 3.6 — Les couches TLM
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Le premier, appelé « Programmer View » (PV), est une représentation
purement fonctionnelle du circuit sans référence & aucune notion temporelle. A
ce niveau, le modele contient toutes les informations nécessaires (et pas plus)
pour que les équipes de développement logiciel puissent travailler, c’est-a-dire
faire tourner le logiciel embarqué final, systéme d’exploitation compris. Le
protocole utilisé & ce niveau est générique (tel est I'exemple de TAC) et la
synchronisation reflete la dépendance causale entre les différentes unités de
calcul et n’est pas basée sur les contraintes de temps.

Le second type, appelé « Programmer View + Timing » (PVT), intégre des
informations sur les délais (#/iming) qui permettent notamment de travailler sur
I’analyse des performances du circuit, sans trop pénaliser les temps de
simulation.

Une plateforme au niveau PVT est une plateforme au niveau PV avec son
inter connecteur non temporisé, & qui on a ajouté un modele temporisé du bus
qui correspond a un bus spécifique (par exemple STBus, AMBA).

Dans une plateforme PVT, on a les différents composants PV individuels (PV
IP") et leurs modules temporisés correspondants; un ou plusieurs routeurs non
temporisés et leurs correspondants temporisés, par exemple TAC router et
SThus router en se référant a la plateforme PVT de ST. Dans une plateforme
PVT, 'annotation du temps est effectuée dans le module temporisé de chaque
composant et dans le routeur temporisé qui simule les délais de transfert pour

chaque transaction.

TLM rapproche 'écart entre les modeéles fonctionnels de spécifications et les
implémentations RTL par une amélioration progressive de l'infrastructure de
communication matérielle.

Du coté logiciel, peu de recherches ont abordé la communication logicielle a un
niveau conforme & TLM. Le flot de développement logiciel passe brusquement
d’un modéle fonctionnel au niveau d’abstraction le plus bas.

D’ou le but des chapitres suivants est d’introduire le nouveau concept TLM
destiné pour le développement logiciel. Notre méthodologie raffine le logiciel

embarqué au niveau Architecture Virtuelle.

Y Intellectual Property
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3.5 Concepts de base du TLM pour le logiciel

Dans cette section, nous présentons l’environnement de conception dans lequel
nous avons développé et validé notre méthodologie TLM. Nous allons tout
d’abord exposer les concepts de base. Ensuite, nous donnerons une bréve

présentation de la constitution du niveau SW TLM.

3.5.1 Description des composants SW TLM
La Figure 3.7 illustre les différents composants SW TLM.
Dans une plateforme SW TLM il y a des modules qui requiérent des services
(initiateurs en anglais initiator), d’autres qui fournissent ces services (cibles en
anglais target). Ils communiquent en envoyant des requétes et réponses de part
et d’autre. Ces modules sont des composants logiciels qui peuvent étre classés
comme suit :

e composants de I'application (par exemple tache applicative);

® ressources abstraites;

¢ pilotes de périphériques;

¢ bus logiciel.

Les taches logicielles peuvent communiquer entre elles ou avec des téaches
matérielles. Elles appellent les services du systeme d’exploitation et les services

de communication et peuvent étre des modules maitres ou esclaves.

Tache Pilotes Identification
Map file
N\ /N M
% v
BUS Logiciel

Mémoire M TN
h PU
logique

A4

g Ly

Initiator port Target port

Figure 3.7 — Les composants SW TLM
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Les ressources abstraites se composent des mémoires logiques et des unités de
traitement (en anglais Processing units).
Dans le processus de raffinement de la communication, les zones de stockage
matérielles apparaissent dans I’architecture matérielle. Ces zones sont
partagées et permettent l’échange de données. Elles pourraient étre mappées
aux mémoires matérielles locales ou externes.
Au niveau application, le programmeur n’est pas censé savoir le mapping
matériel. C’est pourquoi, il adresse habituellement la mémoire logique. Le
processus de raffinement est alors responsable de mapper ces adresses logiques
une fois que ’architecture est fixe.
Les unités de traitement sont des composants virtuels responsables de
Pexécution du logiciel embarqué. Ils appellent le service d’initialisation (BOOT
service).
Les pilotes de périphériques permettent aux composants de 'application de
réagir avec les périphériques matériels. Les pilotes TLM adressent une ou
plusieurs mémoires logiques qui connaissent le mapping de la mémoire
physique. Ils ont besoin également des services du systéme d’exploitation pour
accéder aux périphériques matériels correspondants.
Le bus logiciel est le conducteur de tout le nceud logiciel. Il pourrait étre défini
comme étant le chemin logique qui sert des taches logicielles multiples ou des
unités logicielles de calcul et de communication a travers un modele d’OS. Son
role principal est:

e assurer I’ordonnancement des taches et le partage du temps;

¢ intercepter les transactions logiques et les traiter;

® acheminer ces transactions logiques au BF.
Le bus logiciel a deux mécanismes importants & savoir routage et arbitrage. Le
premier est responsable d’acheminer les transactions aux différents modules
logiciels, tandis que le deuxiéme résout les requétes concurrentes de services.

Dans la section suivante, nous allons décrire la structure du niveau SW TLM.

3.5.2 Structure du SW TLM
Comme dans le HW TLM, nous définissons un mécanisme de passage de
transactions dans ’architecture de communication logicielle. Cette architecture

serait structurée autour de différentes couches (voir la Figure 3.8):
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e Couche Application « Application layer »:
Cette couche peut étre définie comme la couche de calcul. En effet, elle se
compose des taches de l'application. A ce niveau, nous supposons que le
programmeur n’a aucune idée sur 'architecture de communication. Au niveau
de cette couche, l'application requiert des services d’OS et des services de
communication.

e Couche de pilote « communication driver layer »:
Cette couche inclut les pilotes TLM et les mémoires logiques. Ces deux genres
d’éléments SW TLM coopérent — par la communication logique avec la couche
du bus logiciel — pour controler le processus de communication. En fait, chaque
pilote TLM adresserait une ou plusieurs mémoires logiques.
Cette couche est également responsable de répondre aux demandes
d’interruptions destinées a la couche application.

e Couche du bus logiciel « SW BUS layer»:
Elle est le conducteur de tout le noeud logiciel. Elle abstrait le systeme
d’exploitation.
Généralement un systéme d’exploitation peut étre vu comme un ensemble de
couches de services: une couche API, une couche des services de base du
systéeme d’exploitation et une couche d’abstraction du matériel.

e Couche du bus matériel « HW BUS layer»:
C’est le bus physique, le réseau de communication matérielle. Il peut étre un

bus CPU local ou un bus systéme.

Couche Application Couche de pilote

Figure 3.8 — Architecture en couches de la communication logicielle
3.6 Conclusion

Dans ce chapitre, nous avons défini le niveau Architecture Virtuelle, un niveau

qui abstrait le systéme d’exploitation ainsi que l'architecture matérielle.
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Puis, dans un deuxiéme temps, nous avons présenté la méthodologie SW TLM

congue pour unifier la modélisation du logiciel embarqué au niveau V.A.
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Chapitre 4
Implémentation (SW TLM)

4.1 Introduction

Cette partie du rapport expose 'implémentation du SW TLM. En premier
lieu, elle présente la hiérarchie du SW TLM. En second lieu, elle décrit ses

différentes interfaces de base.

4.2 Choix du langage

Le choix de travailler avec un langage de conception au niveau systéme
(SLDL : System Level Design Language) (tel que SystemC ou SpecC) est
important pour assurer la portabilité du modeéle.

La description des fonctionnalités du modeéle doit étre donc faite dans un
langage de description de haut niveau. Ceci permet de valider rapidement le
modele et de profiter d’'un environnement de simulation efficace. Pour cela
nous avons utilisé la bibliotheque SystemC.

Elle permet de profiter des mécanismes d’héritage ou de polymorphisme du
C++ pour décrire des ensembles hiérarchiques [18]. Par ailleurs, cette solution
offre la possibilité de simuler conjointement des parties logicielles et
matérielles. Ceci se révele trés utile dans notre cas puisque le systéme complet
est composé d’éléments hétérogenes logiciels et matériels.

Plus particuliéerement, SystemC est considéré d’un point de vue industriel un
standard pour la modélisation TLM et la conception au niveau systeme et a la
co-simulation des systémes logiciels/matériels.

En bref, SystemC est un langage et un noyau de simulation basés sur C++ qui
permet la représentation des composants logiciels et matériels et des
communications & différents niveaux d’abstraction. Il permet la modélisation
et la simulation de systémes logiciels/matériels globalement synchrones, ou
asynchrones avec un modeéle a événements. Il convient pour ’augmentation de
la complexité de conception des systémes, en fournissant un modele exécutable

tot dans le cycle de conception.
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Un modéle SystemC est composé des éléments suivants :

e Modules: un module (sc_module) est 1'élément de base SystemC qui
permet  d’encapsuler une description matérielle. Les modules
communiquent avec d’autres modules a travers des ports. D’une maniére
générale, un module peut contenir un ou plusieurs processus
implémentant le comportement de celui-ci.

® Processus: les processus sont utilisés pour décrire le comportement d’un
composant. Ils s’exécutent de maniére concurrente dans ’environnement
SystemC.

e Ports: un port (sc_port) est le moyen utilisé en SystemC pour permettre
a un module d’accéder a l'environnement extérieur. Les ports
représentent les points d’entrées/sorties des modules.

e Interfaces: une interface (sc_interface) permet de déclarer une méthode
qui sera implémentée par un canal (ou un module & partir de SystemC
2.1) et qui sera accessible via un port.

e Canaux: en général, les canaux SystemC (sc_ channel) sont utilisés pour
implémenter le comportement d’une fonction déclarée par une interface.

e Export: disponible a partir de la version 2.1 de SystemC, un export
(sc_export) permet de rendre accessible une interface implémentée par

un module.

4.3 Implémentation du TLM pour le logiciel (SW TLM)

4.3.1 Hiérarchie du SW TLM
Comme HW TLM, SW TLM se divise en différentes couches comme le montre
la Figure 4.1:
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HW TLM 5 SWTLM
PVT : PVT
Modele de bus spécifique E Arbitrage spécifique
l i i l basé sur i
PV ; PV b '
Modele de bus générique| ! Arbitrage générique
E Couche Service
E Synchrone/asynchrone
: RPC
Y l

TLM OSCI Couche Transport
Bloquant/non bloquant
Unidirectionnel/bidirectionnel

Figure 4.1 — Les couches du SW TLM
Au niveau service, les interfaces des modules sont composées de ports d’acces
au bus logiciel. Ces ports fournissent des services de type synchrone ou
asynchrone et les opérations sur les ports sont des requétes et des services. Les
taches élémentaires sont des processus qui interagissent avec l’environnement
via des requétes et des services.
La couche de service (Service layer) est construite comme un ensemble
d’interfaces qui définissent comment les modules communiquent. En effet,
I'interface protocole définit la sémantique de transfert d’un service entre deux
modules différents.
Les interfaces SW TLM (synchrones/asynchrones) spécifient les services de
communication et sont basées sur la couche transport du TLM OSCI.
Les transactions synchrones se font séquentiellement, chaque transaction
devant étre terminée avant que la prochaine ne s’exécute.
FEn mode asynchrone la main est immédiatement rendue a l'initiateur, ainsi les
appels normalement bloquants sont traités parallelement.
Toutes les interfaces héritent du sc interface. Quand un service passe de
I'initiateur au target il est appelé « service requis » et quand il passe du
target a l'initiateur il est appelé « service fourni ».
SW TLM PV est construit en se basant sur SW TLM plus particuliérement
sur la couche service. Au niveau PV, nous n’avons aucune vraie notion sur le
temps et 'arbitrage des transactions est générique. En effet, 'arbitrage du bus
est le mécanisme qui alloue le controle du bus aux dispositifs qui le demandent,

évitant tout conflit.
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PVT est un modeéle qui inclut le niveau PV et une spécification de I’arbitrage.
PVT ajoute des informations de temps sur chaque traitement ou transfert de
données. Pour le bus logiciel le timing doit tenir compte du nombre de

transferts ainsi que l'arbitrage entre les différents composants logiciels.

Aprés avoir mis en évidence la hiérarchie du SW TLM, nous introduisons ses

différentes interfaces de base ci aprés.

4.3.2 Les interfaces de base

SW TLM est construit en se basant sur les interfaces ¢/m blocking put if et

tIm blocking get ifdu TLM OSCI.

Put et Get sont utilisés pour assurer les transferts de données mais dans notre

cas nous les adoptons pour supporter les requétes et réponses de services.

SW TLM définit la couche Service qui implémente le protocole RPC' (Remote

Procedure Call).

Le modéle RPC est un modeéle de communication par invocation a distance se

basant sur l'appel des services distants. Nous pouvons trouver deux types de

RPC: synchrone et asynchrone.

- Modele RPC synchrone: dans ce modeéle I'initiateur est bloqué en attente
d’une réponse du target. Ce modeéle est facile & comprendre. De plus, il
permet la détection des erreurs facilement, d’autant plus qu’il n’est pas
nécessaire de stocker I'information.

- Modele RPC asynchrone: dans ce modeéle I'initiateur n’est pas bloqué, mais
il existe un test continu sur la réponse du target.

L’interface sw_¢/m_service if est implémentée comme le montre 'extrait de

code ci-dessous :

//bidirectional blocking interfaces
template<typename SERVICE_CALL, typename RSP>
class sw_tlm_service_if :public virtual sc_interface
{
public:
virtual RSP service (const SERVICE_CALL&) = 0;
bi

La classe sat _service call décrit 'information envoyée par le module initiateur
au module target. Cette classe définit la premiére partie du protocole
sw_tim_sat. Flle est utilisée comme un parametre SERVICE CALL pour la

classe sw_tlm service if.
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De la méme maniere, la classe sat response décrit 'information retournée par
le module target, comportant sat status, au module initiateur. Cette classe
définit la seconde partie du protocole sw_¢/m sat. Elle est utilisée comme un
parameétre RSP pour la classe sw_ ¢/m_service if.

SW TLM PV est basé sur la couche Service. Il implémente le protocole SAT
(Service Accurate Transaction).

L’interface du protocole SAT, sat if, est définie avec une méthode virtuelle
CALL et sat_status comme étant la valeur de retour de la fonction de

I’interface du protocole SAT.

#ifndef _SAT IF_H_
#define _SAT IF H_

/// Class sat_if: sw_tlm_sat protocol layer convenience function definition

template<typename ID, typename DATA>
class sat_if {

public:
/* \brief Call access convenience API (implemented in
* sat_initiator_port and sat slaves).

*/

virtual sat_status CALL (const ID& id,
DATA& data,
sat_error_reason& error_reason,
const unsigned int service_id = NO_SERVICE,

) = 05

}i
}

#endif /* _SAT_IF_H */

La classe sat_error reason est un message de caractéres encapsulant la raison
de 'erreur (du target a l'initiateur) en cas d’échec d’une requéte.
Le parametre service id représente le service appelé, il est défini dans le fichier

« sat_protocol.h » comme suit :

/** \defgroup service_id_values Predefined service_id values
*@{
**/
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static const unsigned int NO_SERVICE = Oxffffffff;
static const unsigned int REGISTER_TASK = 0x1;
static const unsigned int MUTEX_INIT = 0x2;

static const unsigned int MUTEX_LOCK = 0x3;

static const unsigned int MUTEX_ UNLOCK = 0x4;

/* 8/

La classe sat status est le statut d’une transaction SA7. Elle définit le statut
d'une requéte d’un initiateur avec le protocole sw_ ¢/m sat. La valeur de
statut est fixée par le target (esclave ou routeur) et utilisée par les initiateurs
en cas de besoin.

La classe sat initiator port modélise le port initiateur construit en se basant
sur Uinterface sw_¢/m_service ifen se basant de méme sur le protocole SAT.
L’initiateur appelle un service du target et recoit une valeur de retour pour
indiquer si le service a été fourni ou non. Par exemple, la tache lance un appel

de service « CALL » comme suit :

void task()
{

status=initiator_port.CALL (id, data, error_reason, SERVICE, params);

« params » sont des variables qui dépendent du type de service appelé par
I'initiateur. Les services peuvent étre lire (read), écrire (write) ou les autres
services du systéme d’exploitation.

Deux exemples d’extraits de code applicatif sont montrés ci apres:

void threadDemux ()

{...
sat_status status;
sat_error_reason error_reason;
unsigned long size = 1;
int data;

status=initiator_port.CALL (os_id, data, error_reason, PIPE_WRITE,
dv_cmd, cmd, size);
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void application_init ()

{

sat_status status;
sat_error_reason error_reason;
int length = 64;

int size = 256;

int irg = 2;

int prio = 20;

char t = “17;

status=initiator_port.CALL (os_id, length, error_reason, PIPE_INIT,
dv_data, base_dv_data);

status=initiator_port.CALL (base_qgz_data, size, error_reason, FIFO_INIT,
gz_data, irq);

status=initiator_port.CALL (os_id, prio, error_reason, REGISTER_TASK,
threadDemux, t);

A la couche basse « SW bus layer », le bus logiciel est implémenté comme un
« sw_router » qui est responsable de relier les différentes requétes de services
provenant de différents initiateurs vers les targets correspondants.
On peut distinguer deux situations :
e Si le service est un service d’OS (par exemple communication inter
taches), il sera directement fourni par le bus logiciel lui méme;
e Sinon (par exemple service de communication avec extérieur), le bus
logiciel détermine le target approprié fournissant le service demandé

(exemple: pilote de périphérique) a 'initiateur appelant.

Le bus logiciel hérite de la classe rtos base [27] comme le montre le code ci-
aprés. Par conséquent, son instanciation dans le noeud logiciel donne acces au

modele de simulation du systéeme d’exploitation.

template <typename ID, typename DATA>
class sw_router
public rtos_base,
public sc_module,
public virtual sw_tlm service_if<
sat_service_call<ID, DATA>,
sat_response<DATA>
>I
public sw_tlm router_base<ID, sw_tlm_service_if<
sat_service_call<ID, DATA>,
sat_response<DATA>
>I
0>
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Il est & noter que la classe de base rtos base fournit des fonctionnalités
suffisantes et génériques nécessaires pour construire des modéles de simulation
de systémes d’exploitation. Chaque implémentation d’un modéle d’OS héritera
alors ces fonctionnalités de base afin de construire ses spécificités.

Le bus logiciel hérite également du sw_¢/m router base pour acheminer les
services vers les différents composants logiciels.

La figure 4.2 montre la hiérarchie de classe de notre bus logiciel en utilisant

une notation basée sur le formalisme UML.

sw_tlm_service_if <sat_service_call<ID,DATA>,sat_response<DATA> >

sw_tlm_router_base <ID,sw_tIm_service_if<sat_service_call
< ID,DATA>,sat_response<DATA> >,0>

rtos_base

sc_module

hérite de

SW BUS

Figure 4.2 — Hiérarchie de classe du bus logiciel
Le bus logiciel est reli¢ au bus matériel par l'intermédiaire du BFM comme
suit :

e un port initiateur (initiator port) qui représente le port CPU. Ce port
initie des transactions SAT au bus matériel (bus CPU local ou bus
systéme);

® un target port qui représente le port d’interruption. Ce port sert a servir
les interruptions provenant de I'extérieur du noeud logiciel.

Ainsi, le role du BFM est de traduire des transactions logiques aux
transactions physiques et de les amener & la couche physique du bus matériel
(physical HW BUS layer).

Le bus logiciel se sert d’'un fichier d’identificateurs de services (/dentification
map file) permettant de rendre compte du composant logiciel fournisseur du

service.
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Une transaction initiée par un pilote TLM par exemple résulte & un acces
READ/WRITE selon lidentificateur de service demandé a travers le port
target correspondant de la mémoire logique (identifié grace au map file).
Toutes ces méthodes et classes forment la base du SW TLM. Sur la base de ce
simple mécanisme de services nous pouvons établir des modeles logiciels et des
routeurs génériques.

Les interfaces du SW TLM sont facilement comprises et efficaces.

Les utilisateurs peuvent concevoir leurs propres composants logiciels mettant
en application quelques ou toutes ces interfaces, ou ils peuvent les implémenter
directement dans le target en utilisant sc export. La fonction service en

particulier sera souvent directement implémentée dans le target.

4.4 Conclusion

Ce chapitre a décrit la structure et les interfaces du SW TLM. Ce niveau est
facilement compris et utilisable. Cependant, pour pouvoir tester l’efficacité de
ce modele, nous ’avons appliqué sur un exemple de systéme multiprocesseur a

savoir 'application MJPEG.
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Chapitre 5
Etude de cas: Application du SW TLM sur
I’application MJPEG

5.1 Introduction

Ce chapitre présente 1’étude de cas réalisée pour illustrer 'utilisation du SW
TLM défini tout au long de ce travail.

La structure de ce chapitre se décompose en trois sections. La premiére section
décrit I'application sur laquelle a été appliqué SW TLM & savoir 'application
MJPEG. Dans la deuxiéme section, nous détaillons l'utilisation du SW TLM
pour la modélisation du logiciel embarqué au niveau V.A. Enfin la derniére
section évalue les résultats obtenus.

Nous cherchons a montrer que le modeéle adopté permet une modélisation

rapide et qu’il offre de la flexibilité.

5.2 Description de 'application MJPEG

5.2.1 L’application MJPEG

La Figure 5.1 montre un graphe de taches de l'application MJPEG qui est un
décodeur d’images vidéo JPEGY. C’est en fait une application logicielle multi-
thread réalisant le décodage d’un flux d’images JPEG.

Cette application est modélisée comme un ensemble de taches paralléles
communiquant a travers des canaux point a point de type FIFO.

Les arcs en gras représentent le flux de décompression, et les arcs en pointillés
représentent les parameétres de configuration qui sont des variables globales de

la configuration initiale [11].

1S Joint Photographic Experts Group
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Digital-to-Analog Converter
Figure 5.1 — Graphe de taches de I'application MJPEG

Le périphérique d’entrée est un générateur de trafic noté TG, et le
périphérique de sortie est un convertisseur vidéo noté RAMDAC.

Cette application lit un flux d’images JPEG 64x64 et produit un flux de pixels
dans 'ordre des lignes pour affichage.

Le décodage d’une image nécessite 6 étapes [11]:

- DEMUX analyse le flux fournit par le périphérique d’entrée pour en extraire
la taille de I'image, les tables de Huffman et les tables de quantification. Ces
informations sont usuellement stockées dans des wvariables globales. Les
données de l'image compressée sont lues par paquet et rangées dans un
tampon.

- Le décodeur de Huffman, VLD, décompresse ce tampon et met le résultat
dans un deuxiéme tampon.

- 77 réorganise le tampon suivant 1’ordre zigzag et produit son résultat dans
un troisiéme tampon.

- 1Q effectue la quantification inverse du tampon précédent pour le mettre
dans un nouveau tampon.

- IDCT exécute une transformé discréte inverse en cosinus du tampon fournit
par 1Q dans un nouveau tampon.

- LIBU stocke les blocs (8x8) issus de IQ dans un sixiéme tampon dont la
largeur en bit correspond a la taille de I'image. Une fois les lignes disponibles,

elles sont émises vers le périphérique de sortie.
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5.2.2 Partitionnement logiciel/matériel

Nous avons procédé a un partitionnement logiciel/matériel de ’application
MJPEG. Elle sera alors constituée de deux noeuds logiciels et deux nceuds
matériels a savoir le générateur de trafic TG, qui écrit le flux MJPEG
compressé en mémoire, et le coprocesseur RAMDAC qui lit les images
décompressées en mémoire et les envoie vers le terminal VIDEO. Les deux
neceuds logiciels comportent arbitrairement chacun trois taches logicielles.

Modélisé au niveau Architecture Virtuelle, le systéme se présente comme suit:

SWI SW2
HWI DO
O 0S
15 ;;;G @ Comm Comm
Modele Sim| (Modele Sim
CPU SS CPU SS

| I
< Bus svsteme. >
| | i |

Mémoire| |Controleur SW intr
FIFO N

Y

Terminal VIDEO

HW2
Figure 5.2 — Partitionnement logiciel /matériel de I’application MJPEG

Avec la méthodologie SW TLM, nous avons procédé a la co-simulation
logicielle/matérielle de 'application MJPEG.

Nous limitons notre étude au niveau PV.

Les objectifs & atteindre, lors de 'utilisation de la méthodologie SW TLM, sont
multiples:

- utiliser la méthodologie dans le but de montrer sa validité;

- montrer la flexibilité et la rapidité de la méthodologie;

- tester le bon fonctionnement des divers composants.

5.3 Architecture de 'application MJPEG au niveau V.A

Dans notre modéle, nous disposons de deux blocs matériels : TG et RAMDAC,
deux modules logiciels mappés & deux processeurs ARMT7 (chaque nceud
logiciel se compose de trois taches), une mémoire, un controleur de FIFO et un

module « Interrupt SW » qui gére les interruptions entre les modules logiciels.
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Ces composants sont connectés par l'intermédiaire du bus systéme (voir Figure
5.2).

En utilisant la présentation TLM et en détaillant D’architecture du sous
systeme CPU, le modéle sera présenté par la Figure 5.3.
Dans notre cas, nous avons seulement besoin de pilotes de FIFO pour la
communication. Le pilote FIFO est un composant esclave/maitre. Dans ce cas,
il fournit une simple API a 'application plus spécifiquement les services Read
et Write :

e w_fifo drv: controle l'acces d’écriture dans une FIFO;

e r fifo drv: utilisé quand l'application logicielle procéde & un acces en

lecture.

Pour synchroniser les taches logicielles des différents noecuds pour des accés en
lecture et écriture bloquants, un contréleur de FIFO intervient pour débloquer
la tache bloquée. Par suite, si une tache logicielle est bloquée dans un acces
parce que la FIFO est vide ou pleine, elle doit attendre une interruption
matérielle pour pouvoir accéder a la FIFO. Cette interruption est capturée par
le port interrupt port.

D’une part, w_fifo drv doit envoyer une interruption quand la FIFO ou il va
écrire est initialement pleine. Cela va réveiller les lectures bloquées. Pour
assurer ceci, w_fifo drv écrit dans une adresse particuliere du controleur de
FIFO.

En outre, les pilotes de FIFO tiennent des informations sur 1’état de FIFO
modélisée comme une FIFO circulaire, a savoir :

- read index: pointeur de lecture;

write index: pointeur d’écriture;
full: indique si la FIFO est pleine;
buffer: pointe a la base de la FIFO.

En fait, ces informations sont présentées comme étant des adresses dans

I’espace d’adressage de la mémoire logique.
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Figure 5.3 — Modele MJPEG au niveau Architecture Virtuelle

Le code suivant illustre une partie de 'implémentation d’un acceés en écriture

par w_ fifo drv:

sat_status FIFO_DRIVER::w_fifo drv(drv_fifo_t * drv, void *buf, unsigned
long size)

{

sat_status status;

sat_error_reason error_reason;

int full, data, temp_wi;

//waiting if fifo full
status= initiator_port.CALL(drv->full, full, error_reason, READ);
if (full) {

status= initiator_port.CALL(os_id, data, error_reason,
SIGNAL_SLEEP, drv->sig_r);

}
//prepare and send write transaction
status=initiator_port.CALL(drv->wi, temp_wi, error_reason, READ);

status=initiator_port.CALL (drv->buffer+temp_wi, data, error_reason,
WRITE) ;
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Le routage des services entre les différents composants est facilité par le fichier

d’identificateurs de services ([/dentification map file) qui contient en fait

I'identificateur du module fournisseur de service.

Un apercu de ce fichier est présenté ci-dessous :

jmm e m o | ————m— |————————-

; slave_name.port_name |Services id|

S — e R

TOP.MEMORY.target_port 0x10000000
TOP.FIFO_DRIVER.target_port 0x10010000

TOP.BFM.target_port 0x10010010

Au niveau « top level » nous trouvons l'instanciation des divers composants

logiciels et nous définissons leur connexion:

#ifndef _TOP_H_
#define _TOP_H_

#include “systemc.h”
#include “sw_router.h”

#include “sat_memory.h”
#include “drv_fifo.h”

//Channel
sw_router<int,int> * SW_ROUTER;

//Memory
sat_memory<int, int> * LOGICAL_MEMORY ;

// Fifo Driver
fifo_drv * FIFO_DRIVER;

//BFM
sw_hw_bridge<int> * BFM;

// Memory instantiation

LOGICAL_MEMORY = new sat_memory<int, int> (“LOGICAL_MEMORY”, 0x4000) ;
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//Channel instantiation
SW_ROUTER = new sw_router<int, int> (“SW_ROUTER”) ;

//Binding

SW_ROUTER->initiator_port (FIFO_DRIVER->target_port) ;
SW_ROUTER->initiator_port (RFM->target_port) ;

FIFO_DRIVER->initiator_port (SW_ROUTER->target_port) ;
b

#endif /* _TOP_H_ */

5.4 Analyse expérimentale

Pour valider notre méthodologie, nous ’avons appliqué sur ’exemple MJPEG.
Dans cette section, nous allons alors analyser les résultats que nous avons
obtenus. Ces résultats nous permettent d’effectuer des analyses non seulement
quantitatives, mais aussi qualitatives. Nous démontrons la validité de notre
méthodologie. Ensuite nous présentons ses avantages. Les difficultés ainsi

quelques limitations seront développées en dernier.

Réduction du temps de la phase de modélisation

Nous avons appliqué notre méthodologie a cet exemple. L’effort de
modélisation de la spécification a été faible. L’écriture d’une telle spécification
est facile et rapide.

Cette méthodologie nous a offert un format clair pour bien décrire le logiciel.
Par contre, sa conception est une tache laborieuse et a nécessité un temps
considérable (environ 5 semaines). Cette difficulté est notamment due a
I’étendue des connaissances que requiert la conception: bonne connaissance du
niveau TLM, du flot de conception des systémes multiprocesseurs monopuces,
de la structure et des fonctionnalités des systémes d’exploitation embarqués,

des protocoles de communication, etc.

Validation

Cette expérimentation nous a permis de valider les concepts et la méthodologie
que nous avons proposés et qui ont requis un travail important. La
méthodologie a été appliquée avec succes sur 'application MJPEG.

Les résultats expérimentaux obtenus nous ont permis alors d’analyser l'intérét

de 'approche proposée, notamment en termes de vitesse et de précision de la

Mémoire de Mastere -61-




EPT TIMA

simulation. En effet, aprés utilisation le niveau s’avére rapide et il simplifie le
travail du concepteur en faisant abstraction du logiciel et du matériel.
Le tableau ci-aprés résume les résultats de simulation des trois niveaux

d’abstraction : niveau fonctionnel, niveau V.A et niveau RTL:

Tableau 5.1 — Résultats comparatifs de la simulation aux différents niveaux d’abstraction

Niveau Temps Temps de Précision Vitesse
d’abstraction d’exécution simulation

Fonctionnel -- < 1ms 0% ~ 100

Architecture 0.90 s 20 s % ~ 1260
Virtuelle

RTL 0.73s “7h 100% -

Ces résultats correspondent a la simulation de 25 images. Nous avons utilisé
des processeurs ARM7TDMI cadencés a 40 Mhz.

La deuxiéme colonne du tableau montre le temps d’exécution qui représente le
temps « SystemC » consommé par les différents CPU afin de traiter une
seconde de séquences vidéo. Le temps de simulation correspond au temps
utilisé par la machine hoéte pour achever la simulation. Les deux derniéres
colonnes sont reliées a la précision ainsi qu’a la vitesse de simulation.

Les résultats obtenus montrent que la simulation au niveau Architecture
Virtuelle permet une accélération considérable par rapport & une simulation au
niveau RTL (plus de 3 ordres de grandeur). De méme, la précision de la
simulation du systéme entier est considérablement améliorée sans pour autant
atteindre la précision absolue d’un modele cycle a base d’Z55 (720% d’erreur).
L’erreur introduite au niveau V.A est due notamment a linexactitude de
I’estimation du temps d’exécution du logiciel et au niveau de la modélisation
de linterface logicielle/matérielle sans oublier que nous nous plagons & un
niveau d’abstraction élevé ce qui nous méne & tolérer une certaine erreur. D’otul
le niveau VA permet d’atteindre une précision comparable & celle obtenue au
niveau cycle précis.

En utilisant cette méthode nous pouvons aussi démarrer trés en amont le
développement des logiciels embarqués sur un modeéle représentatif du circuit
final, tout en bénéficiant d’une vitesse de simulation importante plus rapide
qu’au niveau RTL.

Donc les résultats obtenus montrent une vitesse de simulation considérable

comparée avec une simulation classique basée sur ISS et une précision
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raisonnable qui sont des critéres clés pour une exploration d’architectures a un
niveau d’abstraction élevé.

Un autre avantage de cette méthode est la simplicité de 1'utilisation du modele
de simulation ce qui rend l’exploration des différents choix architecturaux
facile tot dans le cycle de conception. En effet, pour modéliser le logiciel
embarqué un utilisateur pourra facilement manipuler le niveau SW TLM.

Pour implémenter un module master il doit avoir un port initiateur. Pour
rendre un module utilisateur un sat¢ slave, il doit hériter de sat slave base et
implémenter alors 'interface SAT.

Les appels de services ont lieu quand un module master appelle I'une des
méthodes de l'interface SAT a travers son port initiateur. Selon la méthode
appelée, le port initiateur crée une requéte et la transfére au port target en
utilisant U'interface service de la couche Service. La partie slave base du target
décode la requéte et appelle alors la méthode sat  if appropriée.

Pour le routage entre les composants maitre et esclave nous utilisons un bus
logiciel « sw_router ». Il conduit les transactions au target correspondant en

suivant le service demandé.

Limitations

Comme toute nouvelle approche, il y a toujours quelques difficultés et quelques
limitations. Nous allons en citer celles qui nous semblent les plus importantes.
En effet, le bus logiciel abstrait un systéme d’exploitation générique et donc au
cas ou 'application nécessite un systéme d’exploitation spécifique nous devons
intervenir dans l'implémentation du sw_router afin de supporter tous les
services et les particularités de I’OS requis par l'application. Par ailleurs, les
fonctionnalités requises pour les systémes d’exploitations embarqués sont d’une
grande variété, notamment pour les communications. Il est donc nécessaire que
ceux derniers puissent supporter cette variété, et ils doivent donc disposer de
trés nombreuses parties spécifiques. C’est un obstacle a lidée de
standardisation générale des systémes d’exploitation embarqués: en effet, a
moins d’avoir un jeu de fonctionnalités disproportionné capable de fournir des
fonctions optimales pour chaque cas, il est souvent nécessaire d’ajouter des
fonctions spécifiques au systéme pour qu’il puisse fonctionner avec une
architecture particuliere [19].

De méme chaque pilote TLM représente un élément qui fournit des services et

requiert des services fournis par d’autres éléments. Pour cette raison, l'ajout
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d’'un nouveau pilote nécessite la définition de ses relations avec les autres
éléments déja existants. La description doit aussi définir les services fournis et
requis par l’élément ajouté, les parametres d’appel de chaque méthode du
pilote et les liens vers les sources d’implémentation.

Toutes ces difficultés sont superficielles. Ainsi, I’expérimentation a confirmé la

faisabilité de ’approche proposée.

5.5 Conclusion

Nous avons développé et illustré les possibilités d’une nouvelle méthodologie
pour modéliser le logiciel embarqué en se basant sur TLM.

L’expérimentation de la méthode a montré tout d’abord sa faisabilité. Ensuite,
elle a permis de mettre en évidence la simplicité de développement du logiciel
embarqué & un haut niveau d’abstraction. Cette méthodologie est alors efficace
et permet de fournir une présentation unifiée de tout le systéme.

Le chapitre suivant conclut ce document en donnant un bilan du travail

effectué et les perspectives envisageables au terme de cette recherche.
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Chapitre 6
Conclusion

Les systémes embarqués sont présents dans des applications de plus en plus
nombreuses. Récemment la demande pour ces systéemes et le nombre des
fonctionnalités souhaitées s’est fortement accrue tandis que les délais de
conception requis diminuent. Des architectures multiprocesseurs hétérogenes
semblent devenir la clé pour que les systémes embarqués puissent supporter
cette complexité. En parallele, lintégration a fait de grands progres.
Cependant, les concepteurs n’arrivent plus & concevoir de tels circuits dans des
délais raisonnables: ils manquent de méthodologies et d’outils; par ailleurs la
vérification de ces systémes devient de plus en plus complexe.

Aussi est-il important de fournir les méthodologies et les outils qui faciliteront
et accéléreront la conception des systémes monopuces. Pour ce faire, un flot de
conception descendant est proposé par le groupe TIMA-SLS. De méme, le
besoin d’une méthodologie de conception basée sur une approche plus abstraite
pour la conception des systémes MPSoC est bien ressenti par le monde
industriel et celui de la recherche. Dans cette optique, I'utilisation d’un modele
de représentation unifié est requise d’ott une méthodologie pour la modélisation

du logiciel embarqué est proposée.

Dans ce document, nous avons présenté les systémes multiprocesseurs
monopuces ainsi que les défis de conception de ces systémes. A la lumiére de
ces défis, nous avons entrepris une étude des solutions proposées pour leur faire
face.

Nous avons présenté aprés les architectures logicielles et matérielles des
systémes multiprocesseurs monopuces. Les niveaux de modélisation RTL ainsi
que TLM ont été décrit. Ensuite, les flots de conception classiques ont été
étudiés. Nous comprenons alors dans quelle mesure ceux-ci ne répondent pas
aux besoins des futurs systémes embarqués. Une nouvelle approche de
conception plus appropriée, élaborée au groupe SLS, a été donc présentée.
Cette approche se base sur un raffinement de 1’architecture
logicielle/matérielle.

Le niveau d’abstraction intermédiaire dans ce flot de conception a savoir le

niveau Architecture Virtuelle a été ensuite décrit tout en présentant un

Mémoire de Mastere - 65-



EPT TIMA

nouveau niveau de modélisation pour le logiciel embarqué qui est SW TLM
ainsi que ses différents concepts de base. Nous avons exposé finalement
I’application des concepts proposés sur 'application MJPEG. Cette expérience

a montré I'intérét d’une telle approche d’un point de vue pratique.

Ainsi, ce travail inaugure un axe de recherche important.

En effet, notre approche de la modélisation du logiciel embarqué offre de
nouvelles perspectives et repousse encore les limites des flots de conception
classiques.

Grace a la méthodologie SW TLM, le matériel ainsi que le logiciel sont congus
parallelement au niveau TLM permettant 1’accélération de la simulation et
I’exploration d’architectures tot dans le cycle de conception.

Une perspective envisageable en prolongement direct de ce mémoire concerne
la définition du SW TLM au niveau PVT. Un futur travail serait aussi de
développer un outil automatique de génération de code pour les pilotes de
communication en se basant sur les concepts du SW TLM. L’automatisation
est une perspective trés importante pour pleinement exploiter la méthodologie

proposée et réduire le temps total de conception d’un systéme MPSoC.

Sans doute, les objectifs importants de conception sont de fixer les demandes
de performance, de pouvoir comparer différents alternatives et de choisir celle
qui respecte le mieux ces demandes. Il est naturel d’associer une phase
d’évaluation des performances avec chaque étape de conception pour choisir la
réalisation optimale.

Une perspective de ce travail serait alors l’exploration de 1’architecture du bus
logiciel, permettant d’offrir une bonne efficacité pour la réalisation du systéme

d’exploitation embarqué, facteur critique dans les MPSoC actuels.
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Glossaire

- API

- ASIC

- BFM

- CPU

- FIFO

- HAL

- IPC

- ISA

- ISS

: Application Programming Interface, ensemble de routines

standard destinées a faciliter au programmeur le développement
d’applications.

: Application Specific Integrated Circuit, circuit intégré développé

spécifiquement pour une application.

: Bus Functional Model, interface pour la simulation permettant

de transformer les accés mémoire fonctionnels en des accés
mémoires cycle-pres.

: Central Processor Unit, partie principale d’un systéme, réservée

aux traitements.

: First In First Out, classe de protocole de communication qui

assure que les premiéres données envoyées sont les premiéres
données recues.

: Hardware Abstraction Layer, la couche basse de I'organisation

du logiciel fournissant les pilotes et les controleurs pour la gestion
de la communication.

: Intellectual Property, élément (logiciel ou matériel) dont le

fonctionnement est connu et documenté, mais dont la structure
interne est inconnue.

: Inter-Process Communication (communication interprocessus),

ensemble de fonctions de communications inter-processus. Les
IPC fournissent des services de mémoire partagée, sémaphores et
messagerie.

: Instruction Set Architecture, niveau d’abstraction pour le logiciel

simulant ’architecture du jeu des instructions, avec la précision
du cycle d’horloge.

: Instruction Set Simulator, outil qui s’exécute sur la machine hote

et qui émule la fonctionnalité d’un processeur.

- MPSoC : Multi Processor System on Chip, systéme monopuce — circuit

intégrant sur une méme puce différents composants fonctionnels
(mémoires, processeurs, etc.).
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- RTL : Register Transfer Level, niveau d’abstraction pour la
spécification des systémes.

- SoC : System on Chip, systéme monopuce, circuit intégrant sur une
méme puce différents composants fonctionnels (mémoires,
processeurs, etc.).

Mémoire de Mastere - 68-



EPT TIMA

Références

[1] A. A. Jerraya « Long Terme Trends for Embedded System Design » CEPA
2 Workshop — Digital Platforms for Defence, Bruxel, Belgique, Mars 15-16,
2005

[2] A. A. Jerraya. « Programming Models and Hw-Sw Interfaces Abstraction
for Multiprocessor SoC' ». DAC, Juillet 2006.

[3] A. Bouchhima: Modélisation du logiciel embarqué & diftérents niveaux
d’abstraction en vue de la validation et la synthése des systémes monopuces.
Rapport de these, TIMA, Mai 2006.

[4] A. Gerstlauer, H. Yu et D. Gajski. R7OS Modeling for System Level
Design. Proc. Of Design, Automation & Test in Europe, Mars 2003.

[5] A. Haverinen, M. Leclercq, N. Weyrich, et D. Wingard, « SystemC™ based
SoC Communication Modeling for the OCP™ Protocol », OSCI Technical
Paper, Octobre dans www.systemc.org, 2002.

[6] A. Rose, S. Swan, J. Pierce, JM. Fermendez, " Transaction Level Modeling
in  System(C", Disponible sur le site: Open SystemC Initiative:
http://www.systemc.org, consulté le 11/10/06.

[7] B. Vanthournout. Transactional level as the new design and verification
abstraction above RTL. Coware Inc, Leuven, Belgium, 2003.

[8] D. Culler, J.P. Singh, et A.Gupta. « Parallel Computer Architecture: A
Hardware/Software Approach ». The Morgan Kaufmann series in Computer
Architecture and Design, Aotit 1998.

[9] D. Desmet, D. Verkest et H. De Man. Operating System based Software
Generation for Systems-on-Chip. Proc. Design Automation Conference, Juin
2000.

[10] F. Ghenassia. Transaction Level Modeling with SystemC: TLM Concepts
and Applications for Embedded Systems. Springer, Novembre 2005.

[11] 1. Augé, F. Pétrot, R. Buchmann, F. Donnet, P. Gomez, et E. Faure.
« Disydent: un environnement pour la conception de systémes numériques
synchrones ». Premier congrés international de Signaux Circuits et Systémes
(SCS’04), pp. 72-77, Monastir, Tunisie, Mars 2004.

Mémoire de Mastere - 69-



EPT TIMA

[12] ITRS. « International Technology Roadmap for Semiconductors:
Design ». 2001. Disponible sur le site http:// www.itrs.net/ Links /2001ITRS
/Design.pdf, consulté le 20/12/06.

[13] ITRS. « International Technology Roadmap for Semiconductors: System
Drivers ». 2005. Disponible sur le site http:// www.itrs.net/ Links/ 2005ITRS/
SysDrivers2005.pdf, consulté le 20/12/06.

[14] J. A. Rowson, A. S.-Vincentelli : Interface-Based Design. DAC 1997.

[15] J. Turley. « Survey says: software tools more important than chips ».
Embedded Systems Design Journal, novembre 2005.

[16] L. Benini, G. De Micheli: Networks on Chips: A New SoC Paradigm.
IEEE Computer, vol. 35, Janvier 2002.

[17] L. Cai et D. Gajski. Transaction Level Modeling in System Level Design.
CEC Technical Report 03-10, Mars 28, 2003.

[18] L. Charest, E. M. Aboulhamid, et A. Tsikhanovish. Designing with
SystemC: Multiparadigm modeling and simulation performance evaluation.
Dans International HDL Conference, San Jose, USA, Mars 2002.

[19] L. Gauthier: Génération de systéme d’exploitation pour le ciblage de
logiciel multitache sur des architectures multiprocesseurs hétérogénes dans le
cadre des systémes embarqués spécifiques. Rapport de thése, TIMA, Décembre
2001.

[20] M. Baklouti: Performance estimation based on a high level abstraction
model of MPSoC Hardware/Software architecture. Mémoire de mastere, TIMA
et EPT, Juin 2006.

[21] MathWorks. «The Mathworks — Simulink — Simulation and Model-Based
Design», disponible sur le site http://www.mathworks.com/ products/
simulink/, consulté le 17/02/07.

[22] P. Paulin, C. Pilkington, M. Langevin, E. Bensoudane, D. Lyonnard, O.
Benny, B. Lavigueur, D. Lo, G. Beltrame, V. Gagne, G. Nicolescu. « Parallel
Programming Models for a Multi-Processor SoC Platform Applied to
Networking and Multimedia ». IEEE Transactions on Very Large Scale
Integration (VLSI) Journal, 2006.

[23] R. K. Gupta, D. Gajski, R. Allen, Y. Trivedi. “Opportunities and pitfalls
in HDL-based system design”. Dans les actes de ICCD 1996.

Mémoire de Mastere -70-



EPT TIMA

[24] Samuel K. MOORE. « Winner multimedia monster » IEEE Spectrum
journal, pages 18-21, Janvier 2006.

[25] S. Wang, S. Malik, et R. A. Bergamaschi, Modeling and Integration of
Peripheral Devices in FEmbedded Systems. Dans les actes de Design
Automation and Test in Europe (DATE 03). Mars 2003.

[26] SystemC 2.1, disponible sur le site http://www.systemc.org/ consulté le
22/10/06.

[27] W. Cesario and all: Component-Based Design Approach for Multicore
SoCs. DAC 2002.

Mémoire de Mastere -71-



