Towards the automatic generation of real time
operating systems applying UML/MDA

Yessine Hadj kacem®, Adel Mahfoudhi® %, Hedi Tmar', Mohamed Abid®
! National Engineering School of Sfax Road Soukra km 3,5
Computer & Embedded Systems Laboratory (CES)

B.P.: w -- 3038 Sfax TUNISIA
adel.mahfoudhi@fss.rnu.tn
2 Department of Computer Science, Science Faculty of Sfax
Road Soukra km 3,5 BP : 802 -- 3018 Sfax TUNISIA

mohamed.abid@enis.rnu.tn

Abstract— This paper presents our contributions to the
specification and the design of Real time embedded systems,
which require runtime guarantees from their underlying
environment. It is not sufficient to reach these guarantees;
performance and timing constraints but it is desirable to employ
Real time operating system RTOS. With the model driven
approach MDA, and specially, with a UML (Unified Modeling
language) profile, software designers can focus on their business
logic. That is to say MDA enables them to specify the functions
and the properties of the RTOS with a platform independent
model.

This work is one step of the RTOS modeling, resting on MDA
Model driven architecture). The model driven engineering MDE
based solution proposes to model the structure of a RTOS. It
suggests the implementation of statecharts relating to the state of
a process. Using this approach, real time constraints can be
translated by defining the semantics variants of statecharts. The
main goal of the suggested proposition is to generate the code
automatically.

semantics,
automatic code

Key words—
statecharts implementation,
generation

RTOS modeling, statecharts
UML/MDA,

I. INTRODUCTION

HE correctness of the computed results in real time
embedded systems depends not only on the right results
but also in the time during which they are provided. Their bad
function can have serious effects (economic, legal, human,
etc) because of the overload or the deadline expiry for some
services. These systems require runtime guarantees from their
underlying environment. To reach these guarantees,
performance and timing constraints, these systems must be
provided by software called RTOS.

So, several constraints, namely, real time ones, are imposed
during their design phase. The checking of the system
properties at a preliminary stage could reduce the problem
impact. In fact, the real time design passes through different
abstraction layers in order to automate the transition between
them. In regard to the bottom layers, there exists many
synthetic tools; the only problem concerns the CAD
(Computer Aiding Design) of the highest level and it is here
where our work lies.

Currently, oriented objects modeling supported by UML
standard brings effective solution to the problems related to
the real time systems design. Its realisation is possible through
the extension and/or the restriction of this standard via UML
profile. However, the capacities of real time behaviour
specification of a given application have not been completely
satisfactory yet. Indeed, these methods, recently
industrialized, provide solutions in terms of concurrent
application, but they remain insufficient especially, for the
expression of the no functional properties and the integration
of the RTOS modeling.

This paper proposes an approach that supports the RTOS
modeling starting from high level design, and ending up with
the implementation code which can be used in different
platforms.

This position paper starts with a brief discussion of some
related works. The proposed approach comes into in the next
section. In this section, the models of the RTOS structure and
the scheduler are introduced through the implementation of
statecharts. Section four presents a case study. The paper
closes with some final conclusions and an outlook on future
work.

Il. RELATED WORKS

When the specificity of each UML profile such as SPT
[11], QoS/FT [11] and MARTES [10] are examined, it is
concluded that the focus is on to the description of the
material architecture and the application. These profiles are
founded on an abstraction level higher than other approaches
like ROOM, SDL, ADL, Petri Net. They also aim at the
applications to data flow predominance rather than those of
control. Even, if these works briefly tackle the temporal
aspect, they cannot cover the RTOS modeling. They are
criticized for the lack of temporal and transitional semantics
common to the models as well as the absence of tools which
support them. In fact, these works have not enabled us to
guarantee the reliability of the system yet, i.e, its determinism
aspect. These models do not support the integration of real
time characteristics sufficiently and therfore they do not
consider the RTOS related to a specific architecture and

application. The simulation approaches need a simulation time
long enough to give a relatively reliable sight of operation.

In [12], the authors” work is based on two independent class
diagrams: a diagram describing the structure and another
describing the scheduler. These models, related to the
structure and the scheduler, explicitly separated, suffer from
major limitations; namely the coherence between diagrams
and the definition of temporal semantics. In fact, the diagram
used to characterise the scheduler is a static one. Thus, it can’t
cover the temporal behaviour of the RTOS, it must also have
to be complementary to the structure model via a good
expression of the follow-up of the real time process evolution.
For this, a methodology assuring the coherence between used
diagrams and the support of scheduling model is important.

Based on a real time library VxWorks written in C, DAV et
al. [3] carry out the transformations necessary to lead to a
UML diagram. This downward transformation leads to some
entities specifying the components of a real time system. The
bond between them is left with the load of the designer. This
approach is restricted with a static description. Thus, the
behaviour can be dealt with introducing attributes describing
the state of a task state progression into time or by defining a
reflexive precedence relation or by adding attribute showing
time evolution. This technique is called the definition of
operational semantics [2].

According to [9], a scheduling algorithm can be modeled
using the sequence diagram and some stereotypes provided by
the SPT profile. This proposal handicaps resides at the
existence of a great number of scheduling algorithms, and
consequently the designer will be opposite to a several
scheduling algorithms using a succession of sequence
diagrams and he will be vis-a-vis the problem of integration of
the whole of these diagrams in MDA process.

For the suggested models, the structure of the RTOS is
described through a class diagram which includes the
definition of operational semantics. Then the behaviour of a
task which constitutes the core of the RTOS is defined, in
order to ensure coherence between various diagrams UML. To
lead to the model of scheduling, the temporal and transitional
semantic of the statecharts relative to the various states of a
real time process is defined.

I1l. PROPOSED APPROACH

A. Over View

To overcome the limitation of the previously mentioned
works, this proposed approach presents a step ensuring
coherence between various used UML diagrams and covering
the behaviour aspect of the system like real time constraints.
First, we define the model of the RTOS structure. Then, a
statecharts diagram related to the entity Task presents the
temporal behaviour of a real time task. This diagram is
annotated with OCL constraints. After that, we define the
temporal semantic presented by the statecharts [1]. While
defining the variant semantic points of the statecharts, some
techniques such as the reification and the enumeration of the

states and the events are applied. The integration of design
patterns is chosen for the re-use of existing and testing
software components, rather than to recreate new models for
the implementation of the statecharts. The final model
corresponds to the target model during the stage of model
transformation. As a final stage, the code is generated
automatically.

Source
Meta-Model

RTOS Structure |&===="3 Source Model

recefve

State and transitions

possible ofa task

Burddery

Variant Semantics
Modeling
product
Statecharts Target
Implementation Target Model Meta-Model

Figure 1: Proposed Approach

B. RTOS structure

Two diagrams are proposed for the description of the RTOS
structure, a class diagram describing the major components of
the RTOS, and a statecharts diagram modeling the behavioural
aspect of a real time Task. To guarantee the correction quality
of the system, the statecharts diagram is annotated by some
OCL rules.

The class diagram which is presented by figure 2 is
considered as the source model during the stage of model
transformation that has an important role in Model Driven
Engineering; it is represented by the following entities:

= Task: It is the most important component of the
RTOS core. A task must acquire a great number of
information in order to manage their scheduling

= Event: It causes the change of a task state

= |SR: Interrupt Server Routine: It is the routine in
charge of the interruption processing. It makes, in
this context, the relay between the material
interruption mechanism and the software one

= Alarm: Based on a meter, an alarm could activate a
task, impose an event or activate an alarmCallBack

= Counter: It presents a software/ hardware source for
an alarm. It is an object intended for recording of
"ticks" coming from a timer

= Resource: This entity is used to coordinate the
concurrent accesses to shared resources. It is similar
to semaphores

= MeanOfCommunication: It is an abstract interface
which manages data between active objects. The
class ProtectedVar which implements this interface,
associates a mechanism of data protection
(semaphore). In addition LettreBox uses a file of
messages.

= Watchdog: The ISR contains one or more watchdog
timers. The watchdog could possibly provide
debugging information

= Precedes: It illustrates the dependence of a task with
another one.

—~|RTOSKernel

t
! L
Task Ressource
* ? -taskState =
1 -Pricrity -before
Process -idTask -next
= FdProcess ko . |-dateFirstactivation Precedes
. -deadline 1 |xind "
Event - 1 'ge“"_de -after
-duration |
nature — Q-periodicily _previous o~ ISR
AlarmAction -responseTime 1 o 1
. . +entryy)
+activate()
+terminate() P S— — 1
T +preempte() 1 " -
+create()
] Alarm +release) winterfacen watchDog
SIS = (P MeanOfCommunication
+activateTask() 1 ~write() Hstop()
+setEvent() 1 TaskContext +ready) H+activate()
+activateslarmCallBackl() +opent)
3y +wait) +close()
Counter |
FMaxAlloweadyalue
FMinCycle LettreBox ProtectedWVar TCPSocket

i 7 i 9

FileMessage Mutex
+isEmpty() +take)
+nbMessagel() +libarate()
+send()

+recaive()

Figure 2: Static Model of the RTOS Structure

For the dynamic model of the RTOS structure, it is
described by the statecharts diagram. Before presenting the
appropriate diagram, let us remind that each state of a task
running on RTOS can take only one of the following values:

= Waiting: waiting for synchronization;

= Running: running on the processor;

= Ready: waiting to be selected by the RTOS to
enter the Running state

= Suspended: task finished or stopped by the
scheduler

= Created: new task

The structure of the statecharts diagram is nevertheless given a
precise specification [13], which is required for tool
interoperability. It can not easily be understood. So UML 2.0
Statecharts present some semantic point variation. The
definition of this semantic will be detailed in the next section.
It corresponds to the target model during the model
transformation.

{Context Task::start()
pre self.oclinstate(Ready)
post self.oclinsate(Running)}

1

{Context Task:terminate()
pre self.oclinstate{ Running)
post self.oclinsate{Suspended]}

1

Running

terminate

{Context Task: wait() [vai
pre self oclinstate(Running)

post self acllinsate(waiting)}

start

release

Suspended

{Context Task::activate()
pre self.oclinstate(Suspended)
post self.oclinsate({Ready)}

actival

|

create

activate

Waiting

presmpt

Ready
g

{Context Task:realase()
pre self.oclinstate(waiting)
post self.oclinsate(ready)}

)

{Context Task::preempt()
pre self oclinstate(wainting)
post self oclinsate(ready)}

1

Figure 3: Dynamic model for the RTOS Structure

procedure stepi)
hegin
eventSet := eventPool.select():
anEvent := eventSet.choice():
transitionSet := getFirableTransition(event).selecti):
aTransition := transitionSet.choice();
aTransition.fire();

end.

Figure 4: The run-to-completion procedure

A. Scheduling model

Statecharts have been adapted with an informally or
undefined semantics. The semantic variation points principally
concern 3 aspects: time management (synchronous vs.
asynchronous), the event selection policy, and the transition
selection policy.

Harel [7] represents the semantics of the statecharts based
on the description of a run-to-completion step as illustrated in
figure 4.

A set of approaches [6, 8] was proposed in the literature in
order to define this semantics and implement the statecharts.
For our work, we choose the approach proposed by [4]. This
technique is based on the enumeration and the reification.

The state of the Task entity can take the following values :{
created, new, waiting, ready, running, stopped}. As for, an
event has these values :{ terminate, activate, start, wait,
preempt, release, create}.

The reification consists in the transformation of states into
specific class hierarchy through the application of the design
patterns.

A solution to separate the behaviour related to a state in an
object, is to reify states through the utilisation of the state
pattern [5].

To reify and select the right transition events, the command
pattern [5] is applied to the entity Task. (see figure 5).

In the light of the solutions given previously and in order to
ensure the progression of the automat, it is necessary to focus
on the deterministic aspect of the system, it is essential to
determine the state running of the automat and the behavior to
be adopted according to the event which has occurred.

- ~ receptor context T T T T T T
B CommandPattern]__________f ________ Task - ~.
| S - Ea Kmmm e m - StatePattern - |
| T - - - -
| | +processPlayEvent() N =T :
| | T
| | | I |
: \abstractCommand - contexte : :
| ! | abstractState 1 |
! 1 [currentState 1 |
| abstractEvent | " |
: —————————————————————————— ' +stop() K== |
<<depends>> +preempt() abstractStats !
! [+ P p 4bstractState
| asing +processPlayEvent() :
|
! I
I |
' |
I |
' |
: |
' |
' |
con c"ateCOrr m |
jand :
: createEvent|[p ptEvent|| waitEvent | terminateEvent||r Event|factivateEvent P waitState readyState| [cr runningState|_|

v

cofcreteState

Figure 5: Application of the state and command pattern to the Task entity

When it acts of the enumeration of the states and the events,
the code reacting the progression of the automat is localised in
the method processEvent(). As for the enumeration of the
states and the reification of the events, the code will have set
out again between the method processEvent() and execute() of
each class. Concerning the reification of the states and the
enumeration of the events, the code will be distributed
between the method processEvent() and the method
processEventPlay() of each class state. Finally, when we reify
the states and the events, the code is distributed between the
method processEvent() principal class, the methods
processEvent() of the classes states and the methods execute()
of the classes events.

The last solutions based on enumeration and reification do
not allow representing the concept of file messages related to
the automat progression. Time is not taken into account. To
overcome this problem, the use of the pattern Active-Object
[5] is therefore essential. This owner is thus effective for the
achievement of the various policies of parallelism as it is
shown in figure 6.

eventPool

Proxy Scheduler

+Hnesxt()
+add()
+remaove()

[+process() +step() 1 1

1
1

currentsta

Task jabstractEvent

A R

+run() frrung)

Figure 6: Active-Object applied to Task entity

Following the application of the reification of the states and
the events, as well as the illustration of the evolution of the
automat, the final model corresponding to the target model
during the models transformation is represented by the model

+execute()

below.

A. Code generation

The objective of this work consists in transforming a source
model XML (Extensible Markup Language) obtained
automatically starting from an UML source model, in a target
model XML. To carry out the transformations, we are based
on a model transformation using ATL language. To describe
the model transformed, the KM3 (Kernel MetaMetaModel)
language is used. It makes it possible to define models
according to meta-model MOF in a textual form.

The source model transformed corresponds to the diagram
of class presented by figure 2. The code corresponding to
XMI (XML Metadata Interchange) based on XML offers a
tree structure to our model by presenting the classes and the
attributes in textual form.

The target model is the model that we want to obtain after
the execution of the transformations applied to the source
model. It was presented above by figure 7.

IV. CASE STUDY

It should be noted that the example used at the time of the
transformation is taken adequately since the objective of our
work is to show right the feasibility of the use of the MDE for
the integration of RTOS modeling for embedded system
design. So transformations are focused just on ensuring tasks
scheduling.

receptor

context

4 CommandPattern) Task -7 T~
i S~ e TTTT T T R - StatePattern F————- |
: I i +processPlayEvent() e - — :
I | T
i i L] I
: \abstractCommand | e] |
: L : abstractState : :
: abstractEvent : curentState . _: :
: B T ;:d;D_B;d_S; ___________ :Z:‘{;F;{r%pt{} bstractState :
| 5*9‘3‘;;” +processPlayEvent() :
: I
: I
| N I
| I
: I
| I
| I
' I
com%rete[‘,o m I
| and :
| reateEvent| [waitEvent |[preemptEvent| fterminateEvent| [activateEvent| [startEvent stopState waitState readyState| [createState| funningStatec |
b
s congreteState
;
Proxy Scheduler
+process() +step()
}
q s
eventPool
+next()
+add()
+remgovel()
Figure 7: RTOS scheduler model
In order to do that, four tasks are taken with various
characteristics. During the writing of the transformation rules, I. CONCLUSION

the scheduling of these tasks is made according to the
scheduling algorithm Rate Monotonic as shone in figure 8.

module StructureZichudeler;
create OUT : RTOS3chudeler from IN @ RTOSStructure;
rule RTOSModeling|
from
s : RTO38tructurelTaskl
to
w : RTO38chudeler!lshudeler
idTaskm <- s.getidtask)

b

rule TaskZTask{
from
s : RTO38tructurelTaskl
to
w : RTO38chudeler!Task
idTask <- s.idTask,
priority <- s.priority,
dateFirstactivation <- =.dateFirstictivation,
deadline <- s.deadline,
duration <- s.duration,
periode <- s.periode,
o1 - 8,01,
Tsi <- s5.Tsi)
b
rule EventZEvent{
from
s : RTOZ¥tructurelBventl
to
w : RTO83chudeler!Event(
nature <- s.nature)
b
helper context RTOSStructure!Taskl def: getIdRunningTask :
recurn = self.getlllittributes|)-» select (name='priorite').upper;

Figure 8: Transformation rules

Integer =

The present paper demonstrates that the RTOS can be
modeled in high level design. The challenge consists of the
use of existing UML profiles in order to integrate the RTOS
modeling by the definition of the transition and the temporal
semantics.

At the level of the integration of the RTOS modeling in
MDE approach, concepts endure abstract and are independent
from realisation and specific platform execution.

The implementation of the variant semantic points offered
by UML statecharts provides an efficient way to specify task
management and real time scheduling.

Future work includes the focus on the transformation rules
to generate the code.

REFERENCES

Arnaud Cuccuru, Chokri Mraidha, Frangois Terrier, Sébastien Gérard.
Templatable Metamodels for Semantic Variation Points. ECMDA-FA
2007: 68-82

Benoit Combemale Sylvain Rougemaille, Xavier Crégut, Fedéric
Migeon Marc Pantel Christine Maurel. Expérience pour décrire la
sémantique en Ingénierie des modéles. IDM6 LILE 26 28 juin 2006

(1

(2]

[3] Dave Thomas Claude Baron Bertrannd Tondu. Ingénierie dirigée par les
modeéles appliquée a la conception d’un contrdleur de robot de service.
IDM6 LILE 26 28 juin 2006.

[4] Franck Chauvel and Jean-Marc Jézéquel. Code generation from UML

models with semantic variation points. In S. Kent L. Briand, editor,
Proceedings of MODELS/UML'2005, volume 3713 of LNCS, pages --,
Montego Bay, Jamaica, October 2005. Springer

[5]

[6]

[7

(8]

Gamma, Erich, Helm, Richard, Johnson, Ralph, and Vlissides, John.
Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley Longman Publishing Co., Inc., 1995.

Gergely Pinter and Istvan Majzik. Impact of Statechart Implementation
Techniques on the Effectiveness of Fault Detection Mechanisms,
Proceedings of the 30th EUROMICRO Conference (EUROMICRO’04).
1089-6503/04 |EEE

Harel, David and Naamad, Amnon. The STATEMATE Semantics of
Statecharts. ACM Transactions on Software Engineering and
Methodology, 5(4):293-333, October 1996.

Luis Gomes, Aniké Costa. From Use Cases to System Implementation:
Statechart Based Co-design, Proceedings of the First ACM and IEEE
International Conference on Formal Methods and Models for Co-Design
(MEMOCODE’03). ISBN 0-7695-1923-7/03 2003 |IEEE.

(9]

[10]

[11]

[12]

[13]

Maria Cruz Valiente, Gonzalo Genova, Jesus Carretero. UML 2.0
Notation for Modeling Real Time Task Scheduling. Carlos Il University
of Madrid JOURNAL

OMG Document Number: ptc/07-08-04. A UML Profile for MARTE,
Beta 1 OMG Adopted Specification, August 2007

Simona Bernardi and Dorina Petriu. Comparing UML Profiles for Non-
functional. Requirement Annotations: the SPT and QoS Profiles,
SVERTS 2004

Shourong Lu Wolfgmg A. Halang Roman Gumzej. Towards Platform
Independent Models of Real Time Operating Systems. 0-7803-8513-
6/04/ Q2004 IEE

Sudhanwa Kholgade, Jamie White, Hassan Reza: Comparing the
Specification of a Near-Real Time Commanding System Using
Statecharts and AADL. ITNG 2007: 355-360

