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Abstract. Internet of Things (IoT) has been considered as an intuitive
evolution of sensing systems using Wireless Sensor Networks (WSN). In
this context, energy efficiency is considered as one of the most critical re-
quirement. For that purpose, the randomized node scheduling approach
is largely applied. The randomness feature in the node scheduling to-
gether with the unpredictable deployment make probabilistic techniques
much more appropriate to evaluate the coverage properties of WSNs.
Classical probabilistic analysis techniques, such as simulation and model
checking, do not guarantee accurate results, and thus are not suitable for
analyzing mission-critical WSN applications. Based on the most recently
developed probability theory, available in the HOL theorem prover, we
develop the formalizations of the key coverage performance attributes:
the coverage intensity of a specific point and the expected value of the
network coverage intensity. The practical interest of our higher-order-
logic developments is finally illustrated through formally analyzing the
asymptotic coverage behavior of an hybrid monitoring framework for
environmental IoT.

Keywords: Theorem proving, Wireless sensor networks, node schedul-
ing, performance analysis, network coverage, environmental monitoring

1 Introduction

Wireless Sensor Networks (WSN) have emerged as a key enabler technology for
the development of the Internet of Things (IoT) paradigm [20,24]. Deployed over
a field of interest, smart sensor nodes collaborate together without any human
interaction, in order to mainly achieve a monitoring or a tracking task. Such
networks are covering limitless applications [28], including home automation,
external environmental monitoring and object tracking, and hence integrating
WSN technologies into the IoT context [20,12].
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Due to their restricted size, sensors are basically battery-powered and thus
have very critical energy resources. Consider the example of a WSN deployed for
forest fire detection, in which the sensor nodes are randomly distributed with a
high density. The network should be able to ensure the monitoring of the whole
forest area while being functional for a sufficiently long period. Since a wild fire
occurs only occasionally, some sensor nodes can be intuitively deactivated to
save the network energy. In this context, the k-set randomized scheduling [18] is
a kind of scheduling approach, suitable for a wide range of WSN applications,
which mainly consists in organizing a given set of nodes by randomly partitioning
them into “k” subsets, which work alternatively.

Scheduling sensor nodes for lifetime management purposes is surely a simple
and intuitive approach, however it is also crucial to not compromise on the moni-
toring of the area. For the same forest fire application, the deployed WSN should
be also able to cover, i.e., monitor, the outbreak of fires occurring at any point
of the area with a high probability. Nevertheless, the coverage performance is
completely probabilistic. For instance, some fire outbreaks may not be effectively
covered if no nodes are deployed around the fire because of the random node
deployment, or the surrounding nodes are inactive, due to random scheduling.
Missing fire intrusion, can have devastating consequences.

The performance of the randomized scheduling has been generally analyzed
using paper-and-pencil based probabilistic technique [18,25]. The reliability of
the obtained analytical models is consolidated through simulation using the
Monte Carlo method [19]. However, both paper-and-pencil proof and simula-
tion methods cannot be regarded as completely accurate mainly due to the error
proneness of the former and the in-exhaustive nature of the later.

Formal methods overcome the drawbacks of simulation by rigorously using
mathematical techniques to validate the analytical model of the given system.
Recently, formal methods have gained a growing interest in the context of ana-
lyzing wireless sensor networks to analyze their functional or quantitative cor-
rectness [22,3,29], but most of the existing work is focused on the validation of
their functional aspects only. Nevertheless, rigorous performance evaluation of
WSNs constitutes also an extremely challenging aspect.

In this paper, we are interested in providing an accurate performance analysis
of WSN randomized scheduling based on the paper-and-pencil models proposed
in [18,26]. In earlier work [6,7], we have presented a formalization of the k-set
randomized scheduling algorithm and its coverage properties based on a proba-
bilistic framework developed by Hasan [13] in the HOL theorem prover. While
sufficient for analyzing the coverage aspects of the original WSN models [18,26],
this formalization falls short to reason about other performance aspects of the
same algorithm [8], like the detection metrics. In fact, the foremost requirement
for reasoning about these WSN aspects in a theorem prover is the availabil-
ity of the higher-order-logic formalization of probability theory and continuous
random variables. In this regard, Hurd’s [16] formalization of measure and prob-
ability theories is a pioneering work. Building upon this formalization, most of
the commonly-used continuous random variables [14] have been formalized using
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the HOL theorem prover. However, this foundational formalization of probability
theory only supports the whole universe as the probability space, which limits
its scope in many aspects. In particular the inability to reason about multiple
continuous random variables [14] is a major obstacle for modeling and analyzing
detection and lifetime properties of WSNs [9]. More recent probability theory
formalizations [21,15], however, allow the use of any arbitrary probability space
that is a subset of the universe and thus are more flexible than Hurd’s and
Hasan’s formalizations of probability theory. Particularly, Mhamdi’s [21] proba-
bility theory formalization which is based on extended-real numbers (real num-
bers including ±∞), has been included in the HOL theorem prover and thus has
been chosen for our work. Therefore, in this paper we propose to use the most
recent probability theory developed by Mhamdi [21] in HOL to formally reason
about the coverage properties of randomly-scheduled WSN, while emphasizing
on the main lessons learned through this experience. The practical interest of the
new developments is illustrated through the formal analysis of the asymptotic
coverage behavior of a WSN based environmental surveillance framework.

The rest of this paper is organized as follows. We review some related work
on the validation of WSNs in Section 2. In Section 3, we summarize the main
requirements of this work. Section 4 provides the foundational probabilistic anal-
ysis of the coverage properties. We utilize these developments to formally verify
a WSN-based monitoring framework for IoT applications in Section 5. Section 6
is devoted to discuss the main results of our work. We finally conclude the paper
in Section 7.

2 Related Work

Theoretical analysis, also known as paper-and-pencil based probabilistic tech-
nique, has been widely used to validate randomized scheduling algorithms for
WSN [18,25,26]. Such analysis consists in constructing a theoretical model where
the required random variables are determined together with the associated per-
formance metrics. Afterwards, a probabilistic based study is achieved. For vali-
dation purposes, simulation, using the Monte Carlo method [19], is finally done.

Traditional model checking technique [2] has been successfully used to val-
idate various aspects in the WSN context. In [22], the formal analysis of the
Optimal Geographical Density Control (OGDC) algorithm, which is a kind of
randomized scheduling algorithm, is done. Several other prominent works re-
ported on the use of model checking for the analysis of WSN protocols include
[10,30]. The main strength of all these methods is their formal models and auto-
matic verification. However, they suffer from the common model checking related
problem of state space explosion [2]. Hence, the analysis of the OGDC algorithm
[22] has been restricted for WSN with up to 6 nodes in a region of 15m× 15m.
Furthermore, the work of [30] has pointed out over 1 million generated states for
the analysis of a simple property. Furthermore, none of the previous works has
provided reliable probabilistic modelling. For example, in [22], a random func-
tion, assumed to be ’good’, has been used to model the probabilistic behavior.
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To cope with these major problems, probabilistic model checking [23] has
also been used for the probabilistic functional analysis of wireless systems. Prob-
abilistic model checking allows to capture the probability modelling for both the
system and the property of interest. The probabilistic model checker PRISM
has been applied quite frequently for the validation of Medium Access Control
(MAC) protocols for WSNs [11,29]. Nevertheless, the reasoning support for sta-
tistical quantities in most of model checkers suffers from many shortcomings.
Indeed, expected performance values are usually obtained through several runs
on the built model [29]. The obtained results can hardly be termed as exhaustive
and thus formally verified.

On the other hand, very few works based on theorem proving exist in the
open literature. The work [4] reports on the use of the PVS system to build
a theorem proving based framework for WSN algorithms, with some theories
expressing dynamic scenarios like nodes mobility and link quality changes [4].
While the PVS framework is supposed to be extended with some “dynamic”
scenarios in [4], the randomness aspect has been characterized by a pseudo-
random generator. The nodes mobility, specified by the random walk pattern,
has been also specified through a recursive function.

Unlike the PVS framework which is limited by the probability support of the
PVS system, the work, described in this paper, provides very accurate formal-
izations of the randomized scheduling algorithm based on the sound probability
support of the HOL theorem prover. In addition, the presented formalizations
are generic and completely valid for all the parameter values.

3 Preliminaries

3.1 Probabilistic Analysis in HOL

A probability measure P is basically a measure function on the sample space Ω
and an event is a measurable set within the set F of events which are subsets
of Ω. By definition, a random variable is a measurable function, satisfying the
condition that the inverse image of a measurable set is also measurable [21].

Definition 1. ` ∀X p. real random variable X p =

prob space p ∧
(∀x ∈ p space p ⇒ X x 6= NegInf ∧ X x 6= PosInf) ∧
X ∈ measurable (p space p,events p) Borel.

where X designates the random variable, p is a given probability space, NegInf
and PosInf are the higher-order-logic formalizations of negative infinity or pos-
itive infinity, and Borel is the HOL definition of the Borel sigma algebra.

The probability distribution of a random variable is specified as the function
that accepts a random variable X and a set s and returns the probability of the
event {X ∈ s}.

Definition 2. ` ∀X p.

distribution p X = (λs. prob p (PREIMAGE X s ∩ p space p)).
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In the discrete case, the expectation of the random variable X has been
formalized in HOL as follows.

Theorem 1. ` ∀X p. (real random variable X p) ∧ FINITE (IMAGE X

(p space p))

⇒ (expectation p X =∑
IMAGE X (p space p) (λr. r × Normal (distribution p X {r}))).

where (IMAGE X (p space p)) designates the list of values taken by the random
variable X over the sample space (p space p).

3.2 The k-set Randomized Scheduling Algorithm

During the initialization stage, the k-set randomized scheduling is run in parallel
on every node as follows [18]. Each node starts by randomly picking a number,
denoted by i, ranging from 0 to (k − 1), where k is the number of subsets or
partitions. A node sj is thus assigned to the ith sub-network, designated by Si,
and will activate itself only during the scheduling round of that subset. At the
end of the algorithm, k disjoint sub-networks are created. These subsets will
be working independently and alternatively.Fig. 1 shows a small WSN of eight
sensor nodes, which is randomly portioned into two sub-networks; S0 and S1.
Each node randomly chooses a number 0 or 1 in order to be assigned to one of
these two sub-networks. Suppose that nodes 0; 2; 5, randomly choose the number
0 and thus join the subset S0, whereas nodes 1; 3; 4; 6; 7, select the number 1
and will be in the subset S1. These two sub-networks will work by rounds, i.e.,
once the nodes 1; 3; 4; 6; 7, illustrated by the dashed circles, will be active, the
remaining nodes 0; 2; 5, will be at the sleep state, and vice-versa.

Fig. 1. The k-set randomized scheduling for (n = 8) nodes and (k = 2) subsets.

4 Formalization of the Network Coverage Intensity

Within a wireless sensor network, a given point is said to be covered, if any
occurring event at this point, is detected by at least one active node with a
given probability. According to [18], the coverage intensity of a specific point;
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Cp, inside the monitored area is defined as the average time during which the
point is covered in a whole scheduling cycle of length k × T . A given point is
covered if the current active subset contains at least one node, i.e., is not empty.

Let X be the random variable describing the total number of non-empty
subsets, the coverage intensity of a given point in the monitored area, Cp, as
originally specified in [18], is

Cp =
E[X]× T
k × T

. (1)

where E[X] denotes the expectation of X, which is described as:

X =

k−1∑
j=0

Xj . (2)

where Xj is the Bernoulli random variable whose value is 1 in case of non-
empty subset. A non-empty sub-network is described by a Bernoulli random
variable with the complement probability of

(
1− 1

k

)c
[6], where c is the number

of covering sensors for a given point.

Definition 3. ` ∀X p k c.

sbst non empty rv X p k c = bernoulli distr rv X p
(
1−

(
1− 1

&k

)c)
.

In higher-order logic, we model the coverage behavior of a specific point
(Equation (1)) by the following predicate cvrge intsty pt.

Definition 4. ` ∀p X k s c. cvrge intsty pt p X k s c =

expectation p (λx. SIGMA (λi. (X i) x) s) / (&k).

where X: a random variable that returns an extended real number, p: the prob-
ability space, k: the number of sub-networks, s: the summation set whose cardi-
nality is k, and c: the number of covering sensors for a given point. The operator
& allows the conversion of the natural number m into its extended number coun-
terpart.

The following mathematical expression for the coverage intensity of a point
has been formally verified in Theorem 2.

Theorem 2. ` ∀X p k s c. (prob space p) ∧ (FINITE s) ∧ (1 < k)

∧ (CARD s = k) ∧ (∀i. i ∈ s ⇒ sbst non empty rv (X i) p k c)

⇒ (cvrge intsty pt p X k s c = Normal
(
1−

(
1− 1

k

)c)
).

– The assumption (∀i. i ∈ s ⇒ sbst non empty rv (X i) p k c) indi-
cates that every element of the set s is a random variable sbst non empty rv

(Definition 3).

– The HOL function Normal is used to convert a real value to its corresponding
value in an extended real.
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The proof of the above theorem is mainly based on lemmas about the linearity
of the expectation property, which in turn required some reasoning on the inte-
grability of some functions as well as operations from the Lebesgue theory. For
most of these lemmas, it was a prerequisite to verify the measurability of the
used events, along with some analysis on extended reals.

The whole network can be now statistically described by a single performance
metric; Cn, which is the average or the expectation value of the coverage intensity
over all points of the monitored area.

Cn = E[Cp] . (3)

According to the expression of Cp, shown in Theorem 2, we can write

Cn = E[1−
(

1− 1

k

)c

] . (4)

Based on the above equation, we notice how the value of Cn depends mainly
on c which is the number of nodes covering a given point of the field. Intuitively,
we can assimilate the fact of covering a point or not to a Bernoulli trial with
the probability q = r

a [18]. Considering the variable c among the n nodes of the
network, it becomes a Binomial random variable (C) with the probability given
in Equation (5). Thereby, the network coverage intensity Cn, shown in Equation
(4), is not a simple expectation, but rather an expectation of a function of a
random variable.

Pr(C = j) = Cj
n ×

( r
a

)j
×
(

1−
( r
a

))n−j
. (5)

where Cj
n is the binomial coefficient, r is the size of the sensing area of each

sensor, a is the size of the monitored area, and
(
r
a

)
is the probability that each

sensor covers a given point. The Binomial random variable with n trials and
success probability q =

(
r
a

)
has been formalized in HOL as follows.

Definition 5. ` ∀X p q n. binomial distr rv X p q n =

(real random variable X p) ∧
(IMAGE X (p space p) = IMAGE (λx.&x) (count (SUC n))) ∧
(∀m. &m ∈ (IMAGE X (p space p)) ⇒
(distribution p X {&m} = &(binomial n m) × qm × (1− q)(n−m)).

whereX is a real random variable on the probability space p, and IMAGE (λx.&x)
(count (SUC n)) gives the support of the Binomial. The function binomial,
used in the above definition, is the higher-order-logic formalization of the bino-
mial coefficient for reals.

The coverage intensity of the whole WSN with n nodes has been formally
specified by the function cvrge intsty network, shown in Definition 6. The
latter takes as parameters: X: a random variable that returns an extended real
number, p: the probability space, s: the summation set used in Definition 4, k:
the number of sub-networks, C: the random variable describing the number of
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covering nodes, n: the total number of nodes, and q: the probability that each
sensor covers a given point.

Definition 6. ` ∀X p k s C n q.

cvrge intsty network p X k s C n q =

expectation p (λx. cvrge intsty pt p X k s (num (C x))).

where the function expectation designates the higher-order-logic formalization
of the expectation of a random variable that returns an extended real, and the
values (num(C x)), in the above definition, are the output values of the random
variable C. The function num, used here, converts an extended real; (&m), to its
corresponding natural value m, using the real function floor.

Based on the higher-order-logic formalizations developed so far, we have been
able to formally verify the final network coverage intensity as in Theorem 3.

Theorem 3. ` ∀p X k s C n q. (prob space p) ∧ (0 < q < 1) ∧
(events p = POW (p space p)) ∧ (1 ≤ n) ∧ (1 < k) ∧ FINITE s ∧
(CARD s = k) ∧ (sn covers p C p q n) ∧
(expectation p C 6= PosInf) ∧ (expectation p C 6= NegInf) ∧
(∀i x. (i ∈ s) ∧ (x ∈ p space p) ⇒

sbst non empty rv (X i) p k (num(C x)))

⇒ (cvrge intsty network p X k s C n q = Normal (1− (1− q
(&k) )

n)).

– The assumption (events p = POW (p space p)) describes the set of events
to be the power set of the sample space Ω.

– The assumptions (1 ≤ n) ensures that the WSN include at least one node,
while (0 < q < 1) checks that the probability q lies in [0..1].

– sn covers p is the Binomial random variable (Definition 5) with a finite
expectation, i.e., (expectation p C 6= PosInf) ∧ (expectation p C 6=
NegInf). The variables (PosInf) and (NegInf) are the higher-order-logic
formalizations of positive infinity and negative infinity, respectively.

– The function (sbst non empty rv (X i) p k (num(C x))) is the function
specified in Definition 3.

The proof of Theorem 3 is primarily based on Theorem 4 which verifies the
expectation of a function of a random variable. Additionally, the current proof
also required the application of the linearity of the expectation property. Finally,
a considerable amount of real analysis associated to the Binomial theorem for
reals, and to the summation function has been needed.

Theorem 4. ` ∀C p q n k.

(prob space p) ∧ (1 < k) ∧ (0 < q < 1) ∧
(events p = POW (p space p)) ∧ (1 ≤ n) ∧ (sn covers p C p q n)

⇒ (expectation p (λx. f fct (num (C x)) k) = Normal (1− q
(&k) )

n).

where the function f fct is defined as follows

f fct x k = Normal

(
1− 1

k

)x

. (6)
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The proof of Theorem 4 has been possible using intermediate results on the
injectivity of some functions, as well as, some properties related to the random
variables functions. A lot of reasoning associated with the use of extended real
and the floor function, has also been required.

In this section, we presented our new higher-order-logic formalizations of
the k-set randomized scheduling for wireless sensor networks, using the recently
developed probability theory available in the HOL theorem prover [21]. These
formalizations have been then utilized to formally reason about the coverage
performance properties. The corresponding HOL code of the current formaliza-
tions is available at [5]. Due to fundamental differences in the foundations of the
two probability theories in [13] and [21], the current resulting formalizations is
completely different from the previous one [6]. Indeed, the new probability the-
ory allows to cater for arbitrary probability spaces and is thus more generic and
complete compared to the previous formalization in which the probability space
has to be the universe of a set. Moreover, the specification of the randomized
algorithm has been found to be much more intuitive with [21]. Unlike the work
in [6], the developed proofs required much less reasoning about sets and lists pro-
ducing thus less lengthy proofs. However, these proofs have been more laboured
involving usually results from the three HOL theories: Lebesgue, measure and
extended reals. A deep learning of all theoretical foundations of [21] was thus
required to successfully achieve the target formalizations in the HOL theorem
prover. In the next section, we will illustrate how the developed generic theorems
extremely facilitate the formal analysis of real-world WSN applications.

5 Application: Formal Analysis of a WSN-based
monitoring framework for IoT Applications

Numerous frameworks for environmental monitoring based on WSN have been
hence proposed in the literature [1,27]. These systems can be seamlessly inte-
grated to build an extended IoT framework for low-cost, persistent and efficient
services [17,12]. Due to the new constraints of the IoT environment, deployed
WSN should have a smart behavior regarding the power availability while per-
forming a good coverage of any intrusion. The randomized node scheduling has
been proposed for use to save energy in the context of an heterogeneous surveil-
lance framework for environmental monitoring [27]. Such framework considers
collaboration between sensor nodes, mobile robots and RFID tags, to ensure ef-
ficient surveillance. Using specific sensors designed for IoT [17], this framework
can realize a whole IoT structure.

In this section, we focus on formally analyzing the coverage performances of
the hybrid surveillance framework proposed in [27] adopted for IoT applications.
The nodes can hence have any sensing area r, and are deployed into a circular
region of a radius R with a total size of a, whereas the success probability q of
a sensor covering a point is q = r

a . Such framework has been primarily analyzed
using a paper-and-pencil model, which has been then validated through some
simulation scenarios evaluating the expected coverage and the maximum number
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of subsets [27]. It would be interesting to provide a more rigorous technique to
validate the proposed paper-and-pencil model. Based on the formal development
achieved so far, we show in this section how we are able to carry out an accurate
asymptotic analysis of the probabilistic coverage according to the key design
parameters: n; the total number of sensor and k; the number of subsets.

We designate the generic network coverage intensity (cvrge intsty network

p X s k C n q), shown in Definition 6, by (Cn wsn p X s k C n q), that has
been checked in HOL as

Normal
(
1−

(
1− q

k

)n)
. (7)

5.1 Formal Analysis based on the Number of Nodes

Setting the number of subsets to k and targeting a network coverage intensity
Cn wsn of at least t, we verify, in Lemma 1, the minimum number of sensors;
nmin, that are necessary to deploy in the context of our monitoring framework.

Lemma 1. ` ∀p X s k C n q t. (1 ≤ n) ∧ (1 < k) ∧ (0 < q < 1) ∧
(0 < t < 1) ∧ (Normal t ≤ Cn wsn p X s k C n q)

⇒
[

ln(1−t)
ln(1− q

k )

]
≤ &n.

The higher-order-logic proof of the above lemma is based on some properties of
transcendental functions and arithmetic reasoning.

We have been able to formally verify, in Lemma 2, that the network coverage
intensity Cn wsn is a growing function of n, i.e., a larger node number n is
responding to a better coverage. For the monitoring framework, much more
points of the area are expected to be covered, since it is likely that many more
covering nodes are deployed in its surrounding area.

Lemma 2.

` ∀p X s k C q. (1 < k) ∧ (0 < q < 1)

⇒ (mono incr (λn. real(Cn wsn p X k s C n q))).

where the function real is used to convert the network coverage intensity of
type extended real to its corresponding real value, and mono incr is the HOL
definition of an increasing sequence.

While Cn wsn increases with the increase of the number of nodes n, as
verified in Lemma 2, the next lemma shows how the network coverage inten-
sity Cn wsn approaches 100% when n becomes infinite, independently of of the
monitoring application.

Lemma 3. ` ∀p X s k C q. (1 < k) ∧ (0 < q < 1)

⇒ ( lim
n→+∞

(λn. real(Cn wsn p X s k C n q)) = 1).
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5.2 Formal Analysis based on the Number of Subsets

Targeting a network coverage intensity of at least t, we successfully verify, in
Lemma 4, the upper bound on the number of disjoint subsets k for a given n.

Lemma 4. ` ∀p X s k C n q. (1 ≤ n) ∧ (0 < t < 1) ∧
(0 < q < 1) ∧ (1 < k) ∧ (Normal t ≤ (Cn wsn p X s k C n q))

⇒ k ≤ q

1−e
ln(1−t)
(&n)

.

The above result is interesting for practical WSN applications which necessitate
adjustable performance measurement quality for energy preserving purposes.

We have been able to formally check, in Lemma 5, that the network coverage
intensity Cn wsn definitely decreases when the WSN is partitioned into a quite
large number of sub-networks k.

Lemma 5. ` ∀p X s C n q. (1 ≤ n) ∧ (0 < q < 1)

⇒ (mono decr (λk. real (Cn wsn p X s k C n q))).

where the HOL function mono decr defines a decreasing sequence.
We also formally confirm, in Lemma 6, that increasing the number of de-

ployed nodes n gives smaller network coverage and hence a poor performance of
the deployed application.

Lemma 6. ` ∀p X s C n q. (1 ≤ n) ∧ (0 < q < 1)

⇒ ( lim
k→+∞

(λk. real (Cn wsn p X p s k C n q)) = 0).

The above lemma has been successfully verified in HOL using intermediate re-
sults associated to real and sequential limits.

5.3 Formal Analysis based on Uniform Partitions

We closely investigate the asymptotic coverage behavior of our monitoring frame-
work in the case of a uniform split of the nodes. Here, n can be written as k×m,
where m is the number of nodes per subset.

In particular, as the number of sub-networks k goes infinite, the upper limit
of the network coverage Cn wsn has been formally verified in Lemma 7.

Lemma 7. ` ∀p X s C m q. (0 < q < 1)

⇒ lim
k→+∞

(λk. real(Cn wsn p X s k C (m × k) q)) = 1 - e−q×(&m).

The proof of the above lemma has been quite tricky requiring the important
result lim

k→+∞
(1 + x

k
)k = ex, which had to be proved in HOL beforehand.

Based on Lemma 7, we can hence verify that when m becomes very large, the
uniform network coverage will surely approach 100%. Such result is considered
as a second verification of Lemma 3 in the case where n and k are proportional.
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Lemma 8. ` ∀X p s C q. (0 < q < 1)

⇒ lim
m→+∞

(λm. lim
k→+∞

(λk. real(Cn wsn p X s k C (m × k) q)) = 1.

The current analysis, presented in this section, distinctly shows how our
theoretical developments, described in Section 4, match pretty well the original
paper-and-pencil models of the randomized scheduling, available in the open
literature [18,26].

6 Discussion

The main motivation of the current work is to provide a rigorous approach for
the probabilistic performance evaluation of the k-set randomized scheduling algo-
rithm for wireless sensor networks. The randomness in the scheduling approach
and the node deployment makes the accuracy of the performance evaluation
of such algorithm very critical, especially given the major limitations of classi-
cal techniques and the safety-critical of most WSN applications. In this regard,
this paper describes the main formalizations of the k-set randomized scheduling
and its coverage properties using the new probability theory available within
the HOL4 theorem prover [21]. These higher-order-logic formalizations resulted
from the porting process of our previous formalizations [6,7], developed within a
precedent probabilistic framework of the HOL theorem prover [13]. The practical
usefulness of our approach is shown in Section 5, where we formally analyzed
the coverage performance of a general purpose surveillance framework based on
WSN for IoT applications.

The higher-order-logic formalizations, presented in this paper, consumed ap-
proximatively 730 lines of code in the HOL4 theorem prover. On the other hand,
the formal analysis of our application took only 200 lines of HOL code for the
verification of most of the lemmas. Nevertheless, the proofs of Lemmas 7 and
8 have been quite tedious consuming in total 500 lines of HOL code, since the
mathematical theorem lim

k→+∞
(1 + x

k
)k = ex, was missing in HOL. The latter re-

sult required a lot of real analysis related to the exponential function as a power
series and many other properties for the sequence convergence.

The generic nature of the theorem proving technique and the high expressibil-
ity of higher-order logic allows us a considerable amount of flexibility in several
aspects. Indeed, the formalizations, presented in this paper, primarily consti-
tutes a successful automation of the paper-and-pencil models [18,26] of the k-set
randomized scheduling and its coverage performance within a higher-order-logic
proof assistant. Through this work, we therefore clearly assert the complete ac-
cordance of the resulting formal developments with the mathematical models,
increasing thus the confidence on the developed theory. Given the discussion,
presented in Section 2, it is certain that other analysis techniques can never
have this efficiency. Actually, the existing probabilistic models of the randomized
scheduling are not so reliable either regarding the complete set of assumptions or
the correctness of the manual mathematical analysis, which may include human
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errors. In addition, while previous simulation methods usually rely on pseudo-
random modelling, we have been able to provide an appropriate modelling of the
inherent randomness of the algorithm of interest. Besides, unlike probabilistic
model checkers where statistical properties are not so accurately specified, we
have been able to achieve formal and precise analysis of the network coverage as
a statistical measure of the coverage intensity for a specific point. On the other
hand, the formal performance analysis of the coverage behavior of the environ-
mental framework clearly shows the usefulness of our theoretical developments.
Such verification enables reliable asymptotic reasoning of the deployed WSN.
Compared to the asymptotic analysis already done in [7], we have been able to
enrich our analysis with new valuable results. At the end, it is important to note
that the presented application is a simple case study illustrating the practical
interest of our work, but the claimed generic results can be obviously applied to
any other WSN application as well.

To successfully achieve the current work, we have experienced many diffi-
culties. Firstly, although the initial paper-and-pencil models [18,26] are depend-
ing on simple discrete random variables, the major challenge was to correctly
translate these models of a real WSN algorithm into higher-order logic. These
analytical modelling of real-world systems is effectively very intuitive, and the
original mathematical models [18,26] are usually missing detailed explanations
either when describing the probabilistic analysis or when applying the probabil-
ity rules. In addition, the assumptions of the original model are never presented
exhaustively. A deep investigation step was thus required in order to correctly
understand all missing steps and achieve then efficiently the target higher-order-
logic formalizations. For that purposes, a good background on probability cou-
pled with a sound knowledge of the WSN context, are usually required for an
effective understanding of the probabilistic reasoning.

Secondly, the choice of porting our previous higher-order-logic formalizations
[6,7] into a new probability theory [21], was, at once, tough and time consuming.
As previously mentioned, such choice has been primarily motivated by the fact
that we were targeting more evolutive probabilistic analysis of the k-set ran-
domized scheduling with the formalization of further performance aspects in the
near future [8]. These aspects should require some probabilistic features which
are not available in [13]. Moreover, while the new HOL specification seems to
be more straightforward in the new probability theory, we had to get exten-
sive understanding of all the corresponding mathematical foundations including
extended reals, measure and Lebesgue theories in order to correctly conduct
the probabilistic analysis. Nevertheless, the existing results from the formalized
probability theory helped us to keep the amount of proof efforts reasonable.

7 Conclusions

In this paper, we presented a reliable approach for the formal analysis of the
coverage performances of wireless sensor networks using the k-set randomized
scheduling to save energy. This formalization enables us to formally verify the
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coverage related characteristics of most WSNs using the k-set randomized schedul-
ing. To show the practical interest of our foundational results, we apply them
to perform the formal probabilistic analysis of an hybrid monitoring framework
for environmental Internet of Things (IoT) applications. Such framework can be
adapted for any kind of monitoring application using WSN as well.

On the other hand, the produced results are thoroughly generic, i.e., valid for
all parameter values. It is clear that such results cannot be achieved in simulation
or probabilistic model checking based approach. Moreover, it has been possible
to provide precise formal reasoning on the statistical coverage using expectation.
Finally, unlike most of the existing work that focuses on the validation of the
functional aspects of WSN algorithms, our work is distinguishable by addressing
the performance aspects. Finally, the proposed solution allowed us to build upon
our coverage formalizations to develop our whole methodology [8] in a single
coherent formalism. In particular, the current results have been very helpful for
our work on the higher-order-logic formalizations of the detection properties of
WSNs [9], based on the paper-and-pencil analysis of [26]. It has been useful to
formally check the relationship between coverage and detection showing that
coverage reflects detection [18].
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