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Introduction Générale

Introduction Générale

e cancer du sein est la premiére cause de mortalité féminine par cancer en plusieurs pays.

LDes ¢tudes ont montré qu’en moyenne 12% des femmes risquent de développer un cancer

du sein durant leur vie [1]. L’agence de recherche sur le cancer de 1’organisation mondiale de la santé
basée a Lyon estime que plus de 150 000 femmes dans le monde meurent par le cancer du sein par an
[2]. Ces chiffres montrent I’importance d’une détection précoce de cette maladie. La prévention de
cette maladie est tres difficile. Pour cela, le seul moyen permettant de réduire le taux de la mortalité est
le dépistage précoce. Ce dernier, permet de faire le tri entre les patientes ne présentant aucun signe de
cancer et celles ayant probablement un cancer. A I’heure actuelle, la chaine conventionnelle de
diagnostic repose sur I’examen clinique, la mammographie X et 1’échographie en mode B. En cas de
doute sur la nature d’une structure comprise a I’intérieur du sein, on proceéde a un examen cytologique.
L’imagerie par résonance magnétique étant plus colteuse, elle est pratiquée essentiellement pour des
¢tudes de recherches. Finalement, la mammographie reste la seule méthode de dépistage du cancer du

sein a un stade précoce.

La mammographie basée sur I’examen radiologique du sein, permet principalement de repérer
trois signes indicateurs de pathologies : les anomalies de la distorsion architecturale, de 1’opacité

(masse) et de microcalcifications.

En général, la recherche en traitement/analyse d’images et plus particuliecrement dans le
domaine médical progresse tous les jours. La mise a disposition de tels outils technologiques au
médecin lui permet d’améliorer son diagnostic et certainement d’optimiser son environnement de
travail. D’un point de vue « imagerie », ’analyse automatique des clichés mammographiques est un
défi qui fait I’objet de nombreuses recherches depuis plusieurs décennies ; c’est une succession de
plusieurs phases qui ont pour objectif la détection ou le diagnostic de la tumeur de sein. La description
de forme représente une phase parmi les phases importantes d’analyse mammographique vu son rdle
discriminatif. En ce qui concerne la détection, elle permet la distinction des régions suspectes de celles
normales. Alors que pour la phase de diagnostic, elle est utilisée pour la distinction entre les tumeurs

malignes et celles bénignes.
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L’objectif de notre travail est la proposition d’'une méthode de description des masses basée sur
la forme. Cette derni¢re doit satisfaire un compromis qualité de description / temps de calcul. Pour
cela, on commence, dans ce mémoire de mastere, par une étude théorique et bibliographique. On
présente, ensuite, notre approche de description de forme. On procéde, enfin, par une évaluation de

notre approche d’analyse mammographique avec une interprétation des résultats obtenus.

Ce mémoire de Masteére comprend quatre chapitres :

— Le chapitre 1 présente les principales pathologies du sein et leur classification. Il finit par une
présentation du domaine de recherche en exposant quelques applications développées pour

I’analyse des masses.
— Le chapitre 2 présente un état de I’art sur les méthodes d’analyse mammographique.

— Le chapitre 3 explicite la méthode adoptée pour la description des masses mammographiques

en indiquant les critéres du choix des caractéristiques.

— Le dernier chapitre est consacré a la présentation des méthodes utilisées pour 1’identification et
de classification des masses pour évaluer les caractéristiques de forme proposées, ainsi que

I’interprétation des résultats trouvés.

Enfin, on trace des conclusions et on donne quelques perspectives de ce travail.
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Chapitre 1

Généralité sur la
mammographie
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Le cancer du sein est le cancer le plus répandu chez la femme a 1'échelle mondiale. 11 est aussi
le plus fréquent dans les pays industrialisés [1], [2]. L'incidence est en hausse surtout chez les femmes
post ménopausées. Par contre, chez les jeunes femmes les taux d'incidence se stabilisent ou sont méme
en régression. Etant donnée que la prévention du cancer de sein reste encore difficile, le dépistage reste
le seul moyen permettant de diminuer le taux de mortalité ; car plus la maladie est détectée a un stade
précoce plus les chances de guérison sont grandes. Dans ce contexte, d’une part, la mammographie est
actuellement 1’examen de référence pour le dépistage du cancer du sein, d’autre part, les progres des
technologies informatiques ont comme objectif d’aide soit a la détection soit au diagnostic afin de

réduire encore le taux de mortalité.

Dans ce chapitre, on présente quatre parties : la premicre donne les principales pathologies du
sein. Quant a la deuxieme, elle présente un apercu sur la mammographie et son importance dans la
phase de dépistage et dans le diagnostic du cancer de sein. Dans la troisiéme partie, on focalise les
propriétés de malignités et de bénignités a prendre en considération par les radiologues lors de
I’analyse mammographique. Enfin, on donne un apergu sur les outils d’analyse automatisés permettant

d’aider a la réduction de taux de mortalité chez les femmes.

1. Anatomie du sein

pectoraux

muscles T . ‘

muscles inter
costaux

cote

gralsse et tissu
conjonctif

glande mammaire
{ lobule )

iy canal sinus
galactophore galactophore

Fig. 1.1. L’ anatomie du sein.
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Le sein est un organe constitu¢ d’un tissu graisseux qui repose sur les muscles pectoraux. Chez
la femme, sa principale fonction est la lactation. Il comporte 15 a 25 lobules faits de glandes
mammaires responsables de la sécrétion du lait. Celui-ci est conduit par les canaux galactophores vers
le mamelon. Les seins sont soutenus par la peau et un tissu fibreux qui pénétrent a ’intérieur de la

glande mammaire, participant ainsi a leur maintien.

2. Cancer de sein

Le cancer de sein est une maladie ou les cellules anormales se multiplient hors de tout contrdle.
La croissance de ces millions de cellules dans un seul endroit comme le sein constitue une tumeur
maligne ou un cancer de sein. A partir d’une phase du cancer de sein, les cellules cancéreuses se voient
propager vers d’autre partie du corps ou elles s’installent et se multiplient pour y former une autre
tumeur. La prévention de la maladie est trés difficile car, mis a part I’dge, on ne connait pas de facteurs
de risque déterminants. I1 est donc difficile de réduire I’incidence du cancer de sein par la prévention.
En effet, le seul moyen de réduire la mortalité est le dépistage précoce.

On présente par la suite les différentes pathologies ainsi que les diagnostics correspondants.

2.1. Pathologies mammaires

Les pathologies mammaires sont classées en quatre groupes qui sont les pathologies des lobules, les
pathologies des lobes, les pathologies des canaux collecteurs et les pathologies des enveloppes. Les
principales pathologies bénignes et malignes du sein rencontrées sont indiquées ci-dessous :

— Les pathologies bénignes sont : L’adénofibrome, le lipome, le kyste, le nodule de mastose.

— Les pathologies malignes sont divisées en deux catégories :

e Cancer in situ : les cellules cancéreuses se développent strictement a I’intérieur des canaux
galactophores. Les cellules ne peuvent pas se déplacer dans d’autres parties du corps. Le cancer
in situ est 1’étape qui préceéde I’apparition d’un cancer infiltrant.

e Cancer infiltrant : les cellules cancéreuses, localisées dans la paroi des canaux, détruisent et

franchissent cette paroi.

2.2. Diagnostic du cancer du sein

L’examen clinique est la premiére modalité de diagnostic du cancer du sein qui doit se
pratiquer, si possible, en début du cycle menstruel. Le praticien pratique une inspection comparative

des deux seins et enfin effectue une palpation de la glande mammaire. Lorsque le praticien remarque
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un écoulement mammelonnaire unilatéral, une infection cutanée, et une masse ou un ganglion
palpable, il demande des examens complémentaires.

Malgré I’utilité de cet examen clinique, il ne peut pas détecter des cancers de moins de 0.5 cm
de diametre, et encore moins les cancers non palpables. C’est pour cela, un examen mammographique
est nécessaire et est considéré comme le principal examen d’imagerie réalis¢ a I’aide du
mammographe (ou scénographe). Ce qui montre aussi 1’utilité et 'importance de cet examen est que
chez les patientes agées de 40 a 50 ans, 20 % des cancers sont ainsi découverts en plus de ceux qui le
sont par examen clinique et ce taux passe a 40 % apres ’age de 50, car a cet age le taux de graisse dans
les seins est plus important et de ce fait les radiographies sont plus faciles a lire [4].

En plus de la mammographie, d’autres examens complémentaires sont pratiqués comme
'échographie, la scintigraphie, la tomodensitométrie, la résonance magnétique. Mais seule la

mammographie est utile comme test de détection du cancer du sein a un stade précoce.

3. Mammographie et dépistage

La prévention de la maladie est trés difficile car les facteurs de risques sont soit mal connus
(facteurs nutritionnels, comportementaux ou environnementaux) soit peu influengables (risque
génétique, facteurs hormonaux tels que 1'dge des premicres régles, de la premicre grossesse ou de la
ménopause,...). Des études scientifiques [3] ont permis de mieux comprendre le développement des
cancers, mais il n'est pas encore possible de savoir pourquoi telle personne développe tel cancer. Il est a
noter que seulement 5 a 10 % des cancers du sein ont une origine héréditaire liée a la transmission de
genes déléteres dont les plus fréquemment incriminés sont BRCA1 et BRCA2 (Breast Cancer
Acronymes pour 1/2) associés a une prédisposition a la maladie.

Il est donc difficile de réduire I’incidence de cancer du sein par la prévention. En effet, le seul
moyen de réduire la mortalité est le dépistage précoce qui est basé sur la mammographie.

Dans ce qui suit, on donne le principe de la phase de dépistage et le rdle de la mammographie dans

cette phase.

3.1. Dépistage du cancer du sein

Le dépistage, aussi appelé prévention secondaire, est défini comme une mesure pour réduire la
gravité de la maladie. Il consiste, dans le cas du cancer du sein, a détecter la maladie au stade le plus
précoce possible ; c'est a dire @ un stade ou le volume de la tumeur est le plus petit possible. Plus

simplement, le dépistage revient a rechercher les signes d’une maladie avant qu’elle ne se déclare.
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On note la présence de deux types de dépistage : soit individuel, soit organisé¢ (par exemple un
examen chaque deux ans). Remarquons aussi, qu'il convient de distinguer entre dépistage et diagnostic.
Concernant, le dépistage il s’agit de faire le tri entre les femmes ne présentant pas de signes de cancer
et celles ayant peut étre un cancer. Alors que dans l'activité de diagnostic, il s'agit de caractériser la
pathologie et de décider le traitement a suivre.

Donc malgré Iutilit¢ du dépistage dans le monde médical et particulierement en
mammographie, il comporte, comme toute procédure, des risques et des bénéfices qu’il faut bien les

connaitre pour les maitriser.

3.1.1. Bénéfices

Le dépistage par la mammographie s'est jugé obligatoire chez les femmes de plus de 50 ans et
préférable chez les femmes de 40 a 49 ans. L’efficacité a été démontrée dans les années 80 aux Etats-
Unis [5] et en Suede [9]. Le dépistage diminue la mortalité¢ par cancer du sein et permet de renforcer
I’effet du traitement chez les femmes de plus de 50 ans, a condition d'étre périodiquement effectué
chez un nombre suffisant de femmes et de se dérouler dans des conditions optimales de qualité.

Depuis, la mise en place de campagnes de dépistage de ce cancer est un theme primordial de
santé publique dans des nombreux pays industrialisés. Par exemple en France, en 1989, le Fond
National de Prévention, d’Evaluation et d’Informations Sanitaires (FNPEIS) a initi€é un vaste
programme de dépistage de masse: il concernait seulement 6 départements en 1990, puis 21
départements en 1994 et aujourd’hui il porte sur toute la France ; les femmes de 50 a 74 ans sont
invitées tous les deux ans par leur régime d'assurance maladie a passer une mammographie gratuite.
Chaque mammographie est interprétée par le premier radiologue puis par un second lecteur plus

spécialis¢. Cette deuxieéme lecture permet de « rattraper » 15 % des cancers détectés [11].

3.1.2. Limites

Les femmes sont exposées a des inconvénients du dépistage [13], aussi bien dans le cadre des
programmes organisés que dans le cadre du dépistage individuel. Il faut bien connaitre les
inconvénients du dépistage afin de les contrdler et de les limiter. Parmi les inconvénients, on trouve :

— Les faux négatifs : le résultat de ’examen mammographique est négatif (cas bénigne), alors
que réellement il s’agit d’un cas maligne.
— Les faux positifs : le résultat de I’examen mammographique est positif (cas maligne), alors que

réellement il s’agit d’un cas bénigne.

Malgré les limites, le dépistage semble étre le seul moyen efficace de lutter contre un cancer.




Généralité sur la mammographie

3.2. Mammographie

La mammographie (ou mastographie) est le principal moyen de dépistage et de diagnostic.
C’est un examen radiographique (par rayons X) des deux seins, généralement sous deux incidences (un
cliché de face et un autre en oblique) qui permet de détecter certaines anomalies. On considere qu'en
moyenne le cancer est visible sur la mammographie de 1 a 3 ans avant le premier signe clinique.
D'autres modalités d'imagerie (échographie, ultrasons, IRM) peuvent étre employées mais a titre
d'examen complémentaire en cas de diagnostic difficile.
Une mammographie est pratiquée dans deux circonstances : dans le cadre d’un dépistage ou d’un
diagnostic a travers deux examens :

— L’examen de dépistage : il comporte une mammographie de base. Apres 1’age de 45 ans, cet
examen peut étre réalisé dans le cadre du programme de dépistage national généralisé, a raison
d’une fois tous les deux ans gratuitement. Ce type d’examen tres efficace permet de détecter les
cancers a leur stade le plus précoce, permettant d’en guérir plus de 80% [12].

— L’examen de diagnostic : il est réalisé lorsqu’une anomalie a été détectée au cours d’un examen
de dépistage ou lorsqu’une anomalie dans le sein (douleur, écoulement du mamelon, rougeur
de la peau, palpation d’une “boule” dans le sein, etc.) a été découverte par la patiente ou par
son médecin traitant. Cet examen aide a déterminer s’il s’agit d’une anomalie bénigne ou
maligne. En plus des clichés de base, des images complémentaires peuvent étre réalisées. Le
médecin radiologue peut ensuite compléter la mammographie par une échographie et/ou un
prélevement (c’est une action d’extraire quelque chose du corps pour I’analyser au

microscope).

On peut dire que la mammographie reste 1'outil principal de dépistage pour plusieurs raisons [8] :

e Le colt moyen d'un examen mammographique est faible comparé a d'autres techniques
d'imagerie comme I'IRM. De plus 'appareillage est mobile et peu encombrant ;

e ['examen n'est pas traumatisant. En effet les tissus du sein sont mous et perméables aux rayons
X, rendant faibles les doses d'irradiation. D'autre part, la compression du sein, nécessaire pour
obtenir une meilleure uniformité de la densité optique et une réduction du ou de diffusé, ne doit
pas en général étre douloureuse ;

e La résolution spatiale d'une radiographie est de l'ordre de quelques dizaines de microns, ce qui
permet de visualiser les microcalcifications, contrairement aux autres techniques d'imagerie ;

e Les mammographies numériques sont de plus en plus utilisées, ce qui permet de disposer du

signal directement sous forme numérique, avec les avantages associés en terme d'archivage et
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de consultation de dossier médical a distance. Pour autant, la mammographie numérique reste
colteuse pour des performances au niveau des diagnostics équivalents a celles des techniques

conventionnelles.

Malgré le role important de la mammographie dans la phase de dépistage ou de diagnostic, ¢a
n’empéche pas qu’elle posseéde des certaines limitations tels que I’irradiation par des rayons X, la
réalisation d’un examen inconfortable, I’interprétation difficile et la détection manquée d’un cas

maligne.

4. Anomalies radiologiques

Parmi les anomalies radiologiques les plus courantes observées sur une mammographie, on
peut citer les masses (ou encore les opacités), les calcifications et les distorsions architecturales. Dans

ce qui suit-on donne un apercu sur chacune de ces trois anomalies.

4.1. Masse

La masse mammographique est une anomalie qui peut infecter le sein. Il existe deux types de
masses (nodulaires et stellaires). On les distingue selon la forme. La masse nodulaire (figure 1.2 (a)) a
une forme arrondie compacte. Elle est considérée comme tumeur bénigne si sa forme est réguliére et
arrondie avec un contour net et bien défini. Mais elle est considérée comme tumeur maligne si son
contour est flou méme sur une partie seulement.

Dans le cas de masse stellaire (figure 1.2 (b)), la forme est comparable a la forme d’une étoile. Elle est

considérée comme tumeur maligne, et contient des spicules sur sa fronticre.

(®)
Fig. 1.2. La masse . (a) nodulaire et (b) stellaire.
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Afin d’arriver a analyser la masse, il faut savoir les différentes caractéristiques possibles a
utiliser pour distinguer entre les formes malignes de celles bénignes. Ces caractéristiques sont réparties
en trois catégories : une catégorie qui décrit la région, une autre qui décrit le contour et une derniére
qui caractérise la densité de la masse.

Dans ce qui suit, on présente les différentes propriétés de malignité et de bénignité qui décrivent les

masses mammographiques.

4.1.1. Description par la région

La région de la forme est considérée comme un signe indiquant 1’état pathologique qui peut
avoir la masse mammographique. En se basant sur la région, les radiologues spécifient quatre
caractéristiques de région (ronde, ovale, lobulée et irréguliere) permettant de classifier une masse en

tant que maligne ou bénigne.

Les caractéristiques que peut avoir une région sont données par la figure 1.3 et décrites comme suit :
— Ronde : la région est sphérique ou circulaire.
— Ovale : la région est elliptique ou en forme d’ceuf.

— Lobulée : la région contient de légere ondulation.

— Irréguliere : la région ne peut étre décrite par les termes repris ci-dessus.

o © ® &

Ronde Ovale Lobulée Irreguliére

Fig. 1.3. Caractéristiques selon la région d’une masse.

Si la région est ronde, ovale ou lobulée on parle d’une masse bénigne. Alors que lorsqu’il s’agit d’une

région irréguliere la masse est dite maligne.

4.1.2. Description par contour

Le contour d’une masse est pris en considération par les radiologues pour classifier les masses
mammographiques. Il tient donc une place importante dans la description pathologique d’une masse.
Les radiologues spécifient cinq propriétés (circonscrit, micro-lobulé, masqué, mal défini ou stellaire)

que peut avoir le contour de la masse.
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Circonscrit Masque Micro lobule Indistinct Spicule

Fig. 1.4. Caractéristiques selon le contour d’une masse.

Les caractéristiques que peut avoir le contour d’une masse mammographique sont données par la
figure 1.4 et décrites comme suit :

— Circonscrit : le contour est bien défini.

— Micro-lobulé : il y a présence de plusieurs ondulation sur le contour.

— Masqué : le contour est masqué par une superposition par d’autres investigations.

— Indistinct : le contour est mal défini pouvant correspondre a une infiltration.

— Spiculé: il y a présence des lignes radiaires sur le contour de la masse.

Les radiologues identifient la masse bénigne par la présence d’un contour circonscrit. Alors qu’ils
identifient la masse maligne par la présence d’un contour micro-lobulé, masqué, mal-défini ou

stellaire.

4.1.2. Description par densité (ou l'atténuation)

L'intensité ou I'atténuation de rayon X de la région de masse de tissu est décrite comme densité.
La densité ici est la densité relative, c’est a dire plus haut, inférieur ou semblable au tissu environnant.
La plupart des cancers du sein présentent une densité supérieure ou égale au tissu environnant.

Il est rare (mais non impossible) qu’un cancer du sein soit de densité inférieure.

Moyenne Faible

Fig. 1.5. Caractéristiques selon la densité d’une masse.
La densité est décrite en utilisant les caractéristiques données par la figure 1.5 et décrites ci-dessous :

— Forte (hyperdense) : densité forte par rapport au tissu environnant.

— Moyenne (isodense) : densité moyenne par rapport au tissu environnant.

10
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— Faible (hypodense) : densité faible par rapport au tissu environnant.

4.2. Calcifications

Les calcifications sont des dépdts de sels de calcium qui apparaissent sous forme de points
«blancs et brillants » a la mammographie. En fonction de leur taille, on parle de micro ou
macrocalcifications. En effet, les macrocalcifications sont souvent bénignes alors que les
microcalcifications demandent plus d'attention.

Le diagnostic dépend de leur position dans le sein, de leur arrangement géométrique (linéaire,
en forme d'agrégats, ...) et du nombre de microcalcifications dans un amas, mais aussi de la
comparaison avec une mammographie antérieure. La figure 1.6 (a) présente une mammographie

contenant un amas de microcalcifications, et 1.6 (b) un agrandissement de la région contenant 1'amas.

(@) (b)
Fig. 1.6. (a) Mammographie montrant un foyer de microcalcifications et (b) agrandissement de la

région contenant I'amas de microcalcifications.

Les radiologues caractérisent les microcalcifications a travers plusieurs propriétés [4]. Parmi les
propriétés importantes pour un radiologue, on trouve :

— Lataille des microcalcifications : plus la taille est faible plus le risque de malignité augmente.

— La forme : plus la forme est arrondie, moins serait le risque de malignité.

— L'orientation : les amas malignes ont tendance a avoir une forme triangulaire ou losangique

orientée vers le mamelon.

11
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— Le nombre : plus le nombre de microcalcifications est élevé, plus le risque de malignité
augmente.
— Le polymorphisme : si les microcalcifications dans un amas ont des formes variées, I'amas a plus

de risque d'étre maligne.

La présence des calcifications dans les cancers de seins est de 30 a 50% de la totalité¢ des
catégories existants [4]. De nombreuses classifications des calcifications existent. Parmi les plus
utilisées, celle de Le Gal et al [6]. Elle présente cing types de calcifications (voir le tableau 1.1) donnés

comme suit :

— Type 1: il s’agit des calcifications annulaires, arciformes ou polyédriques. Le risque de

cancer du sein est quasi nul.

— Type 2: ce sont des calcifications rondes et de tailles variables avec un risque de

carcinome : 22%.

— Type 3: ce sont des calcifications poussiéreuses, pulvérulentes avec un risque de cancer :

36%.
— Type 4: ce sont des calcifications irréguliéres associées a un risque de cancer : 56%.

— Type 5: ce sont des calcifications vermiculaires ou branchées avec un risque de

carcinome : 90%.

Typel Type 2 Type 3 Type 3 Type 4

S W g3 S

l:-..-lf__ - & '4't F] JJ‘J;’A-@-
Annulaires, Formes rondes, poussiéreuses Formes Vermiculaires

arrondies au densités irrégulieres Branchées

centre clair homogenes
Malignité
0% 19% 36% 52% 90%

12

Tab. 1.1. Classification des microcalcifications[6].
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4.3. Distorsion architecturale

Il s’agit d’une distorsion de I’architecture mammaire (figure 1.7). Ces images peuvent &tre
caractérisées par de fins rayons radiaux, ainsi que des rétractions ou des distorsions du bord du

parenchyme.

Fig. 1.7. Distorsion architecturale.

Il s’agit d’images difficiles a voir et a caractériser. Leur identification requiert une bonne
habitude de la mammographie pour les différencier de ’architecture normale et de ses superpositions.
Elles sont particulierement difficiles a reconnaitre dans les glandes denses et hétérogénes. Ces images

stellaires posent, en effet, des problémes de diagnostic difficiles.

Le taux de mortalité a diminué¢ pendant ces derni¢res années, dues en partie a Iutilisation de la
mammographie et du dépistage dans la plupart des pays [14]. Du fait de ce dépistage, le nombre de
mammographies a analyser est en augmentation, ce qui pose le probléme de la charge de travail des
spécialistes, qui varient dans leur interprétation des mammographies. Dans cette optique plusieurs
systémes automatisés d’analyse mammographique [15], [16], [17], ont été développés. On trouve le
systétme CAD (Computer Aided Detection) et celui de CADx (Computer Aided Diagnostic) : le CAD
sert a la détection d’une masse suspecte a partir d’une image mammographique, alors que les systémes

CADx aident les radiologues a la prise de décision concernant le degré de malignité des masses.

5. Systémes CAD/CADx

Les systémes de détection ou de diagnostic ont pour réle I’aide a identifier d’une manicre

efficace les tumeurs de sein. Plusieurs études ont été faites pour évaluer les performances des

13
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différents systemes CAD/CADx. Dans leur étude, C. Marx et al [14], ont démontré les possibilités des
systtmes CAD et CADX, en détectant la moiti¢ de cancers du sein manqués. Plus récemment, dans
une autre ¢tude de C. Marx et al [18], il a été prouvé que I’exactitude dans la lecture des
mammographies peut étre augmentée d’environ de 2% en utilisant un systéme de CAD ou CADx. La
proportion des cancers manqués peut étre trouvée grace a la double lecture avec la méthode du systéme
CAD, avec un taux de fausse détection FP (taux noté faux positif qui représente le nombre des cas mal
classifiés; c’est a dire que le systéme donne une classification au contraire de la réalité : par exemple
pour une région réellement normale le systéme indique qu’elle est cancéreuse) inférieur a 1 par image.
Il est connu qu’un taux élevé de FP peut constituer un probléme pendant I'utilisation réelle d’un

systeme CAD.

A notre connaissance, trois systétmes CAD/CADX [15], [16], [17] sont disponibles sur le

marché. La qualité de tels systémes dépend du taux de la détection de tumeur ainsi que de taux de FP :
— Le premier systéme est le systeme « ImageChecker » (R2 Technologie, Los Altos, CA, USA).

— Le second systéme est nommé « MammoReader » (Intelligent Systems Software Inc,

Clearwater, FL, USA).

— Le troisiéme systéme est le « Second look » (CADx Medical Systems, Quebec, Canada).

Fig. 1.8. Détection automatique des régions suspectes (les masses sont représentées par une étoile et

les microcalcifications par un triangle).

5.1. Technologie R2

Image Checker® de la technologie R2 était le premier systéme mammographique commercial

approuvé par la FDA. Ce systéme est congu pour rechercher les signes qui peuvent étre associés au

14




Généralité sur la mammographie

cancer du sein. Les masses sont identifiées par un astérisque tandis que les microcalcifications sont
identifiées par un triangle comme il est indiqué a la figure 1.8. Avec ce systéme, l'exactitude de
détection des microcalcifications a atteint 98.5% de sensibilité (la capacité d’un systéme a découvrir
les positifs ; c'est-a-dire le taux de détection des régions cancéreuse suspectes ou malignes) avec un
taux de FP de ’ordre 0.74 par image alors que l'exactitude de détection des masses a atteint 85.7% de

sensibilité et un taux FP de I’environ 1.32 par image.

5.2. Intelligent Systems Software

Le FDA a approuvé le systtme MammoReader™ en 2002. Ce systéme a été congu pour
détecter des signes fondamentaux de cancer de sein dans les images mammographiques y compris les
groupes des microcalcifications, les masses bien et mal définis, les masses stellaires et les distorsions
architecturales.

La sensibilité totale rapportée était 89.3% (91.0% dans le cas ou les microcalcifications étaient le seul

signe de cancer et 87.4% dans les cas restants ou les masses malignes étaient présentes).

5.3. CADx Medical Systems

CADx Medical Systems étaient la troisieme systéme recevant l'approbation pour un systeme
CAD mammographique appelée SecondLook™. Ce systéme a été congu pour marquer les régions des
images mammographiques qui donnent une indication sur des cancers. Il marque les masses avec des
cercles et le groupe des microcalcifications avec des rectangles. La sensibilité du systéme est de I’ordre
85% (combinaison de masses et des microcalcifications) et le taux de FP est de I’ordre de 0.28 par

image.

En conclusion, nous notons que les systemes de CAD et CADx, méme dans les versions
actuelles, se présentent comme des outils additionnels utiles pour éviter les biopsies (technique de
prélévement d’un petit morceau de tissu afin de 1’analyser au microscope) inutiles et pour augmenter

I’exactitude de la lecture de la mammographie.
6. Conclusion
Le cancer du sein est un cancer qui conduit a un taux de mortalité élevé chez les femmes.

Heureusement, la mammographie exécutée a des intervalles réguliers chez les femmes peut en affaiblir

la gravité des conséquences.
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L’automatisation a incité les informaticiens a toucher a I’élaboration des outils d’aide au
diagnostique et détection. Pour atteindre cet objectif, plusieurs laboratoires de recherches se sont
intéressés a la proposition de nouveaux algorithmes et méthodes touchants a la détection et au

diagnostique. Dans le chapitre 2 on présente 1’état de I’art 1i¢ a ces aspects.
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Etat de ’Art

Le dépistage ainsi que D’apparition de la mammographie dans le domaine médical ont
augmentée le taux de détection des cancers de sein a un stade précoce ce qui permet de réduire le taux
énorme de mortalité chez les femmes. Dans ce cadre, des études ont montré le dépistage permet de
réduire le taux de mortalité de 40% chez les femmes agées entre 50 et 60 ans [10]. L’automatisation et
les progres technologiques ont encouragé les chercheurs a élaborer des outils d’aide basés sur les

systeémes CAD et CADx permettant de rendre encore plus efficace I’analyse mammographique.

Dans ce chapitre, on donne 1’état de I’art des travaux menés dans le cadre de ces deux types de
systémes aprés avoir introduit quelques notions de base concernant 1’analyse mammographique. On

présente, a la fin, le flot de travail proposé.

1. Analyse mammographique

L’analyse des clichés mammographiques est une succession de plusieurs étapes depuis
I’acquisition jusqu’a la décision finale. Ces étapes sont étroitement liées ; la réussite d’une étape
dépend de la réussite de I’étape précédente. Dans cette partie, on présente la démarche générale qu’on
doit utiliser dans 1’analyse des clichés mammographiques et on donne quelques flots utilisés dans ce
sens.

Le fl6t général d’analyse mammographique, comme montre la figure 2.1, est composé¢ de deux
étapes : la détection et le diagnostic des anomalies mammographiques (particulierement les masses).
Le point commun entre ces deux étapes est qu’elles essaient d’identifier les cas cancéreux, tandis que
la différence entre elles est que la détection commence par une région qui peut avoir une anomalie

alors que I’étape de diagnostic doit commencer par une région contenant I'anomalie.



Extraction des caractéristiques -

Il faut distinguer entre le system de détection (CAD) et celui de diagnostic (CADX) : le premier
a pour objectif la discrimination régions suspectes/régions normales quant a la deuxiéme, il vise la

différenciation entre régions suspectes malignes et régions suspectes bénignes.

Entrée : Image

Mammographique Fy >
A

v
--------------------------- .
: Identification i i Prétraitement i
.'““““““i‘ ““““““ 7
i Extraction des !
\ Caractéristiques I

| Décisionaideala | I
E décision i e A
1 ! Décision/aide a la i
i décision :

v v

Sortie : Masse détectée Sortie : Masse bénigne
(Marque ou RI) ou maligne
a) Le systéme de détection. b) Le systéme de diagnostic.

Fig. 2.1. Flot général d’analyse : (a) détection et (b) diagnostic.

Dans la littérature, on trouve plusieurs flots d’analyse mammographique [67], [68], [69] dédiés
soit a la détection des masses soit au diagnostic. Par exemple, dans leur travail de d’analyse, S. Singh
et al [67] ont utilisé un flot (figure 2.2) commengant par une étape de prétraitement afin d’améliorer la
qualité d’image. La phase de détection de masses est basée sur la segmentation a travers la méthode de
la croissance de régions. Pour éliminer les régions qui ne représentent pas des masses ils ont utilisé¢ un
ensemble des caractéristiques basé sur la forme et la texture.

Concernant la phase de diagnostic un vecteur caractéristique, basé sur la forme et la texture, a été
utilisé pour permettre la prise de décision afin de donner finalement le type de la masse (bénigne ou

maligne).
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Image mammographique
Acquise

v A 4

Rehaussement (égalisation de Filtre de bruit
I’histogramme)

Extraction des Rls
> (masses)

A

Classification

v
Décision

Fig. 2.2. Fiot de détection/diagnostic —[67].

Concernant les mammographies de haute résolution, la détection de la masse entraine un temps
de calcul important. Pour cette raison, F. Djidel et F. Boumghar [68] ont utilisé une méthode basée sur

la multi-résolution dans leur analyse de masses (voir la figure 2.3).

Multi-résolution (Transformée en
ondelettes)

Classification

Fig. 2.3. Flot de détection des masses stellaires —[68].
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Elles ont utilisé la transformée par ondelettes pour décomposer 1’image en une pyramide d’images de
résolution réduite de moitié. A partir de cette représentation, ils ont réalisé 1’extraction des paramétres
caractérisant a la fois le centre de la masse et les spicules. Ces paramétres sont utilis€és comme une

entrée a un classifieur neuronal (Perceptron multicouches MLP).

Dans [69], N. Székely et al ont proposé un systeme des masses mammographiques. Une
méthode de segmentation globale est appliquée pour trouver les régions d’intéréts (RIs) dans I’image.
Pour ces régions ils ont calculé un vecteur de caractéristiques basé sur la texture. Ce vecteur servira
comme entrée a un classifieur basé sur ’arbre de décision. Dans la phase de diagnostic ils ont
appliqué, dans un premier temps, une segmentation locale (combinaison de la méthode de binarisation
et celle d’histogramme de Bézier). Ils ont extrait, dans un deuxiéme temps, des caractéristiques de

forme et de texture. En se basant sur ces caractéristiques, la décision finale est réalisée pour indiquer

W

s’il s’agit d’une masse maligne ou bénigne.

Image mammographique

l

Prétraitement (Filtre médian)

'

Région suspecte

|

Segmentation locale (binarisation,
Histogramme de Bézier)

A

Segmentation globale (Seuillage)

A

Extraction des caractéristiques
(basées sur la texture)

A 4

Extraction des caractéristiques (basées
sur la forme et la texture)

l

Décision

A

Classification (arbre de décision)

—

Fig. 2.4. Fiot de détection/ diagnostic - [69].

Techniquement, les flots d’analyses se basent généralement sur des méthodes de segmentation,
des méthodes de description et des méthodes de classification. La description des masses, a travers

I’extraction des caractéristiques, joue deux roles principaux dans 1’analyse mammographique : elle
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permet le raffinement de la détection en éliminant les régions qui paraient normales, et la
discrimination régions malignes/régions bénignes.

A partir des travaux présentés ci-dessus, on voit lutilit¢ et I’importance de la phase
d’extraction des caractéristiques dans la détection et le diagnostic des masses. C’est ce qui nous amene

a se concentrer sur cette phase et a développer ainsi une méthode basée sur la forme.

2. Détection assistée par ordinateur

L’étape de détection de masses fait 1’objectif de plusieurs travaux de recherche vu son
importance dans I’analyse mammographique. Elle aide les radiologues a identifier les régions
suspectes dans les clichés mammographiques.

Dans cette section, on présente 1’objectif de cette étape de détection ainsi qu’un apercu sur

quelques méthodes utilisées.

2.1. Objectif de CAD

Les systemes CAD sont utilisés pour assister le radiologue a identifier les régions suspectes
d’une image mammographique. Le radiologue garde la responsabilité du diagnostic final. Les systémes
CAD permettent aussi de détecter davantage de cancers. En effet, I’interprétation des mammographies
de dépistage est un véritable défi, compte tenu du grand nombre de clichés mammographiques a lire
par le radiologue pour détecter un petit nombre de cancers (3 & 10 cancers pour 1000 patientes
dépistées). Il en résulte quelques cancers parfois manqués.

Fort heureusement, les avancées technologiques récentes en mammographie digitale
(amélioration des contrastes, de la netteté¢ et de la qualité des images), ainsi que les progrés des
systéemes CAD, devraient apporter une aide appréciable au radiologue et permettraient de détecter
davantage les cancers tout en réduisant le nombre de patientes rappelées pour des examens
complémentaires.

Les chercheurs dans le domaine médical font appel a des critéres d’évaluation de performances, la
sensibilité et la spécificité (voir chapitre 4, section 2), pour juger l'exactitude des résultats et la
précision des systémes CAD.

Sensibilité - Nombre de vrai positives(VP)

(Eq. 2.1)
Nombre des masses suspectes

Avec

VP : nombre de vraie classification des masses suspectes.
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La sensibilité est la capacité de la technique a découvrir les positifs (cas suspects) alors que la

spécificité est la capacité de la technique a découvrir les négatifs (cas normaux)

o : néoati
Spécificite = Nombre de vrai négatives(VIN)

- (Eq.2.2)
Nombre de régions normales

Avec

VIV: nombre de vraie classification des régions normales.

Donc on peut dire que le principal objectif du CAD est d’améliorer le taux de sensibilité en

aidant des radiologues pour détecter la masse suspecte qui pourrait autrement avoir été€ manqué.

2.2. Détection de masses

Plusieurs travaux ont traité le probléme de la détection. La plupart des méthodes de détection

des masses se composent de deux étapes :

1) L’identification des régions

2) La discrimination entre régions suspectes et régions normales.

Dans I'étape d’identification, on essaie de détecter les régions d’intérét. Aprés ceci, les régions
sont classifiées en deux groupes : masses ou tissus normaux. On présentera ci-dessous dans le détail

ces deux étapes en citant quelques travaux relatifs a chacune d’entre elles.

2.2.1. Identification des régions

Le but de cette étape de détection est de séparer les régions qui contiennent des tumeurs
(bénignes et malignes) des régions normales. Elle est congue pour avoir une sensibilité tres élevée et
un grand nombre de faux positifs (FP) est acceptable puisqu'on s'attend a ce qu'ils soient enlevés dans

la deuxiéme étape.

Les masses mammographiques avec les marges stellaires ont une trés haute probabilité de
malignité (voir chapitre 1 section 3.2.1) et donc plusieurs méthodes ont été¢ développées
spécifiquement pour la détection de ce type de masses. Parmi les approches développées certaines
approches sont basées sur la détection de la masse centrale de la région stellaire, d’autres sont basées

sur la détection de spicules. Dans ce sens, W.P. Kegelmeyer et al [25] ont développé une méthode
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utilisant un ensemble de cinq caractéristiques. Ils ont utilis¢é I’écart type d'un histogramme de
I’orientation du contour ALOE (Analysis of Local Oriented Edges) et la sortie de quatre filtres
spatiaux. La raison d’utilisation de la caractéristique ALOE est que le tissu normal a des orientations
dans une direction particuliere alors que, dans les régions suspectes qui contiennent des masses
stellaires, les lignes radiales du contour sont orientées dans de nombreuses directions. Pour détecter
cette différence, ils ont calculé des orientations de contour afin de produire un histogramme. Cette idée
est représentée dans la figure 2.5. La caractéristique ALOE est définie comme 1’écart-type du nombre

d’¢léments de chaque classe de I’histogramme et est décrie par I’équation ci-dessous :

255 _\2
Z(b]btlj(n)—bmt(z; _]))
ALOE(d,) =\ 553

(Eq. 2.3)

Avec

[JI'Sth : est l'histogramme d'orientations de contour dans une fenétre autour de pixel localisée a (i, j).

hisK(1, J) : est la hauteur moyenne de I’histogramme bI'Sth.

N
A Reégion narmzale
[prixels }’
o E Reégion stallaire
I .
. -_
E N o S E
S direction de gradient
(a) )

Fig. 2.5. (a) Les directions de rayons d'une masse stellaire sont différentes des directions de
marquages linéaires normaux et (b) [’écart type de I'histogramme de l'orientation de gradient

différencie la région stellaire de celle normale- [22].
La transformée de Hough a été utilisée dans plusieurs travaux mammographiques pour I’objectif de

détection des masses stellaires ou entourées. Par exemple B.R. Groshong et W.P. Kegelmeyer [33], ont

utilis¢ la transformée de Hough cercle pour la détection des masses entourées : Tout d’abord, ils ont
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fait la détection de contour a I’aide de ’opérateur de Canny et ont sélectionné un sous-ensemble des
contours en se basant sur la longueur et I'intensité. Ce sous-ensemble de contours était I'entrée a la
transformée de Hough cercle. Deux caractéristiques ont été extraites du domaine de Hough afin de les
classer en masse ou tissu normal.

Dans [35], W. Zhang et al ont montré que la présence de masses stellaires est liée aux changements
dans la texture locale de la mammographie. Ils ont proposé qu’un tel changement pourrait étre détecté
dans le domaine de Hough. Ils ont découpé I’'image en plusieurs région et ont calculé les transformées
de Hough pour chaque région. Ils ont utilisé un seuillage pour détecter les changements de textures

locaux afin de déterminer la présence ou I’absence d'une masse stellaire.

L’inconvénient majeur de méthodes citées précédemment est que, si la résolution de 1’image est
grande, elles entrainent des temps de calcul prohibitifs. Pour cette raison, d’autres approches [30], [68]
ont proposée des méthodes de détection des masses stellaires a partir d’une représentation en multi
résolution. Dans ce contexte, les ondelettes ont été utilisé par Liu et al [30] pour décomposer I’image
selon plusieurs résolutions, et pour chaque résolution extraire des informations directionnelles afin de

détecter des spicules.

Vu que les masses ne sont pas toutes stellaires, la détection des autres types de masses est
¢galement importante. Dans ce cadre, H.D. Li et al [27] ont développé un systéme a deux phases : dans
la premicre, un seuillage adaptatif de niveau de gris a été utilisé afin d’obtenir une segmentation
initiale des régions suspectes ; dans la deuxiéme étape un arbre de décision flou a été développé pour
classer les régions identifiées en deux groupes (masse ou tissus normal). La décision a été faite a ’aide
d’un vecteur caractéristique basé sur la forme et sur la texture.

Le filtre de différence Gaussian (Difference of Gauss), qui est un filtre passe-bande, est parmi les
techniques de segmentation les plus figurant dans la littérature [29] utilisé pour la détection des masses

dans une image mammographique.

2.2.2. Discrimination entre les régions

La classification, qui est la deuxiéme étape du processus de détection, permet de séparer les
régions représentants des masses de celles normales. Elle permet également de réduire le nombre de
fausses détections qui ont été produits a la fin de la premicre étape.

Dans le domaine médical, les radiologues utilisent plusieurs propriétés de l'image pour
discriminer entre les masses et les tissus normaux. Les chercheurs ont essayé d'imiter ce processus, par

I’extraction de plusieurs caractéristiques de texture ou de forme a partir des régions suspectes et
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I’utilisation de ces caractéristiques par la suite dans la phase de classification. Dans ce cadre, B.Sahiner
et al [39] ont exploit¢ un ensemble des caractéristiques bas¢ sur la texture dans leur systéme de
classification. Dans un autre travail, D. Wei et al [42] ont développé un systéme utilisant les
caractéristique de texture calculées a partir de la matrice de cooccurrence et 1’analyse du discriminant
linéaire (Linear Discriminant Analysis) pour la classification. Dans un travail plus récent, D. Wei et al.
[19] a testé l'usage de 1’analyse en multi-résolution globale et locale afin d’extraire des caractéristiques

de texture.

La détection de masses, a travers les méthodes citées ci-dessus, permet d’aider le radiologue a
identifier les masses a traiter. Ce qui reste par la suite est de voir s’il s’agit d’une tumeur bénigne ou
maligne d’ou notre objectif dans ce travail qui permet d’aider le radiologue lors de la phase de

diagnostic.

3. Diagnostic assistée par ordinateur

Comme pour le cas de la détection, le diagnostic joue un role important dans le processus
d’analyse mammographique. Elle est utile dans la phase de décision et permet de séparer les tumeurs
malignes de celles bénignes afin d’éviter plusieurs traitements a réaliser par le radiologue qui, souvent,
s’intéresse seulement aux tumeurs malignes.

Dans cette partie on donne les objectifs des systemes CADx ainsi que les différentes techniques

utilisées en littérature.

3.1. Objectif de CADx

Les systemes CADx sont utilisés pour aider le radiologue a identifier les régions malignes et
bénignes d’un cliché mammographique. La diversité les signes des cas anormaux (bénignes et
malignes) dans les images mammographiques sont variés, rend le diagnostic difficile. Depuis des
années, des campagnes de dépistage systématique ont été organisées dans les pays développés. Ces
derniers engendrent un flux énorme de clichés mammographiques ce qui met les radiologues experts
face a un probleme d’imprécision d’analyse. Toutes ces limites, meénent a des traitements (biopsies
chirurgicales) inutiles. Afin d’éviter ces derniers, un systéme de diagnostic séparant les cas malignes
de celles bénignes est plus que nécessaire.

Pour évaluer la performance des systéemes CADx les chercheurs utilisent la sensibilité et la spécificité

données par les équations suivantes:

25




Extraction des caractéristiques

Sensibilité - Nombre de vrai positives(VP)

- (Eq. 2.4)
Nombre des masses malignes

Avec

VP : nombre de vraie classification des masses malignes.

Nombre de vrai négatives(VN)

Spécificité = (Eq. 2.5))

Nombre de masses bénignes

Avec

VV: nombre de vraie classification des masses bénignes.

L'objectif principal du CADx est d'améliorer le taux de spécificité (taux d’identification des

masses bénignes), sans diminuer le taux de sensibilité (taux de détection des masses malignes).

3.2. Diagnostic des masses

Les systemes de diagnostic ont comme entrée une région d'intérét (RI) contenant les masses

suspectes. IIs y agissent en trois reprises :

1)  Segmentation de masse dans la RI.
2) Extraction des caractéristiques.

3) Classification.

Dans ['étape de segmentation, la masse est séparée du tissu normal. En se basant sur les propriétés de la
forme, des caractéristiques discriminantes sont extraites. A la fin, les masses sont classifiées comme

malignes ou bénignes. Un état de I’art de ces différentes étapes est présenté par la suite.

3.2.1. Segmentation

L’étape de la segmentation sert a [I’identification des masses a partir des clichés
mammographiques. Elle peut étre manuelle, semi automatique, ou encore automatique. Elle est
extrémement importante puisque la réussite d'un systéme d’analyse mammographique dépend de cette
¢tape. En imagerie médicale, et particulierement en mammographie, il y’a trois types de méthodes de
segmentation utilisées : les méthodes basées sur la région, les méthodes basées sur le contour et celles
basées sur le regroupement. Dans ce qui suit, on donne les principaux travaux utilisant ces méthodes

de segmentation.
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3.2.1.1. Méthodes basées sur la région

La méthode de croissance de région est parmi les méthodes utilisées fréquemment dans la
segmentation des masses mammographiques. Par exemple, Z. Huo et al [23] ont développé une
approche semi-automatique de croissance de région dans laquelle le pas de croissance a été calculé
automatiquement suite a un chois manuel du point de départ (seed point). Une approche différente a
été proposée par D. Guliato et al [31], avec une implémentation d’une version de 1’algorithme de
croissance de région basée sur la logique floue.

L’inconvénient majeur de la croissance de région réside dans le choix du point de départ puisqu’un
mauvais choix meéne a un mauvais résultat. Pour surmonter ce probléme, cet algorithme a été modifié

de facon a identifier 'ensemble optimal des points de départ (seeds points) [38].

3.2.1.2. Méthodes basées sur le contour

Concernant la segmentation basée sur le contour, il y a seulement un nombre limité de travaux
vu la difficulté qui réside dans la distinction entre la masse et le tissu normal.
Les algorithmes typiques pour trouver les contours sont basés sur le filtrage de l'image pour rehausser
les contours pertinents avant 1'étape de la détection. Par exemple, dans le but d’améliorer le contraste,
N.Petrick et al [37] ont proposé une technique de segmentation basée sur la méthode de Gaussian-
Laplacien. Une approche différente a été proposée par H. Kobatake et Y. Yoshinaga [26] qui qui part
d’une sous image qui contient une masse. L'algorithme cherche les lignes radiales de la masse stellaire
et se résume dans trois étapes : 1) extraction des lignes radiales par skeletonisation, ii) application de la
transformée de Hough ligne modifiée pour I’extraction des lignes radiales qui passent par le centre de
la masse, iii) raffinement et sélection des masse dont le nombre de ligne dépasse un seuil fixé
d’avance.
Dans les approches récentes, l'information de contour a ét¢ utilisée pour raffiner les résultats initiaux
de la segmentation. Par exemple, B. Sahiner et al [40] ont utilis¢ le modéle de contour actif (Snake)

comme une étape finale de leur approche.
En mammographie, l’utilisation des méthodes de détection de contour ne peut pas étre

appliquée directement sur une image mammographique mais sur des régions d’intéréts (RIs)

prétraitées.
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3.2.1.3. Méthodes basées sur le regroupement de pixels (clustering)

Les méthodes par regroupement (Clustering) servent a diviser une région d’intérét en plusieurs
classes. Plusieurs travaux, utilisent les méthodes par classification pour la segmentation des clichés
mammographiques.

Un traditionnel algorithme est l'algorithme C-Means Flou (FCM), qui a été utilis¢é dans
différents objectifs dans les travaux de Velthuizen [28], Chen et Lee [44]. Pendant que Velthuizen l'a
utilisé pour grouper les pixels avec valeurs similaires du niveau de gris dans 1'image originale, Chen et
al I'ont utilisé sur I'ensemble de caractéristiques locales extraites de I’application.

La méthode de seuillage est une autre approche qui a été fréquemment utilisée en
mammographie. Elle forme un cas spécial des méthodes de segmentation par classification ou
seulement deux groupes sont considérés. Dans le travail de Matsubara et al [32], en se basant sur
I’analyse de l'histogramme, différentes valeurs de seuil ont été considérées. Plus récemment,
Mudigonda et al [34] ont utilisé un algorithme de seuillage a plusieurs niveaux afin de détecter les
contours fermés. Cet algorithme peut étre considéré comme une technique de croissance de région ou
dans chaque itération, les voisins qui possédent des niveaux de gris similaires sont groupés.

Dans d’autres cas, le seuillage n'est pas appliqué a 1'image mammographique directement, mais plutot
a une version rehaussée de I'image originelle. Par exemple, C. Varela et al. [24] ont appliqué « un filtre
Iris » afin de rehausser des masses arrondies. En utilisant un seuillage adaptatif, ils ont fait la détection

des masses.

3.2.2. Extraction des caractéristiques

L’étape d’extraction des caractéristiques est sans doute 1’étape la plus importante dans la phase
de diagnostic vu son rdle discriminatif permettant la différenciation entre les masses bénignes et celles
malignes. Elle est fortement liée a 1’étape de détection et sa réussite fait réussir la phase de détection.
En littérature, on trouve deux méthodes qui sont fréquemment utilisées : les méthodes basées sur la
texture et celles basées sur la forme.

L’identification de la tumeur selon 1’avis des radiologues se base sur 1’analyse de la forme de la région
suspecte. On se propose, dans le cadre de ce travail, de donner un panorama de techniques et de

méthodes permettant I’analyse selon la forme.

3.2.2.1. Caractéristiques de forme

La forme des régions suspectes se caractérise par des propriétés de malignité dépendant du

contenu (ou encore la région) et par des propriétés de malignité selon le contour (ou frontiére). Pour
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cette raison les caractéristiques qui forment le descripteur de forme (ou vecteur de caractéristiques)
sont divisées en deux catégories : les caractéristiques qui décrivent la région et celles permettant la
description du contour. Dans la littérature, on trouve plusieurs méthodes qui ont été exploitées pour

I’objectif de la description. On en résume dans le tableau 2.1 les plus importantes.

Les caractéristiques de forme simple. Description de la régularité de la région.

Les caractéristiques de I’enveloppe convexe. | Description de la convexité de la région.

La méthode RDM (Radial Distance Mesure). | Mesure de la régularité du contour.

Les moments. Description de la région/contour.
L’analyse de fractale. Description de la rugosité du contour.
La signature des contours. Description du contour.

Tab. 2.1. Méthodes d’extraction des caractéristiques basées sur la forme.

Ces caractéristiques seront détaillées plus tard.

a) Caractéristiques basées sur la région

Les propriétés de malignité et de bénignité peuvent étre tirées a partir de la région. Dans ce
cadre, plusieurs travaux ont traité les propriétés d’irrégularité de la région lors du choix des méthodes

de description.

— Caractéristiques simples :

Pour décrire la régularité de la forme d’une masse mammographique, plusieurs travaux font
appel a la caractéristique de circularité (C) (ou encore la compacité). Par exemple A. Retico et al [53],
Pohlman et al [46], Kilday et al [45] et A.V. Alvarenga et al [47], ont utilisé¢ pour leurs descripteurs de
forme des caractéristiques géométriques simples telles que la circularité (C) afin de distinguer les
masses mammographiques circulaires de celles irréguliéres. Pour évaluer la performance de leurs
caractéristiques, A.V. Alvarenga et al [47] ont montré que la circularité, a part sa simplicité, est la
deuxi¢me meilleure caractéristique parmi un ensemble de caractéristiques utilisé¢ pour la description.

Pour décrire les formes allongées qui représentent des tumeurs malignes, la caractéristique

d’excentricité (Exc) a été utilisée dans le travail de U. Bottigli et al [48]. Elle donne un indice
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d’¢longation de la forme qui peut aider a la discrimination entre les masses malignes et celles

bénignes.

— L’enveloppe convexe :

La notion de la convexité peut étre employée pour détecter I’irrégularité des régions. Pour cette raison
on trouve dans d’autres travaux [47], [53] plusieurs méthodes qui s’appuient sur /’enveloppe convexe
pour générer des caractéristiques de convexité discriminantes telles que /a convexité (CVX) et la
valeur résiduelle normalisée (NRV). Ces dernieres ont données des performances acceptables dans le

travail de A.V Alvarenga et al [47].

Les caractéristiques basées sur la région se caractérisent par la simplicité de calcul et aussi
I’efficacité¢ de différenciation entre les masses bénignes et celles malignes. Pour cette raison, dans

notre travail, on exploite ces caractéristiques.

b) Caractéristiques basés sur le contour

Ces caractéristiques résument D’information du contour pour décrire les masses. En
mammographie, plusieurs techniques ont ¢té employées pour générer des caractéristiques

discriminantes a partir du contour.

— La signature des contours :

La signature des contours sert a représenter un contour comme une fonction 1D (réelle ou
complexe) afin de réduire la dimensionnalité des contours 2D correspondantes. En mammographie, la
représentation du contour par signature est exploitée par plusieurs approches pour la description de la
rugosité du contour. En effet, dans la littérature, on trouve plusieurs types de signatures dont les plus
utilisées sont : la signature par le centroide [46] et la signature par I’angle de la tangente [49].

La signature par le centroide est basée sur la fonction de distance d(#)[65] qui est exprimée par
la distance euclidienne d des points de frontiére de coordonnées (x(t),y(t)) du centre C de coordonnées

(Xe, ye). La fonction de distance d(?) est donnée par 1’équation suivante :

d(t) =[(x(2)= x> —(AD - 3,)° (Eq. 2.6)
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Les figures 2.6 et 2.7 présentent deux signatures (figure 2.6 (b) et (figure 2.7 (b))) différentes des
tumeurs bénignes et malignes (figure 2.6 (a) et (figure 2.7 (a))). En regardant la signature de la tumeur
maligne, on constate qu’il y’a une grande différence par rapport a la signature de la tumeur bénigne.

Cette différence peut étre exploitée pour I’extraction des caractéristiques discriminantes.

ae)————————

(b)
Fig. 2.6. (a) Une tumeur bénigne et (b) sa signature.

(b)

Fig. 2.7. (a) Une tumeur maligne et (b) sa signature.

En mammographie, la signature par le centroide est utilisée dans plusieurs travaux de recherches tel
que le travail de S. Pohlman et al [46] qui, a partir de la représentation du contour, font I’extraction
d’un ensemble des caractéristiques et servent a la classification des masses en deux catégories (bénigne
ou maligne).
L’avantage d’utilisation de la signature par le centroide est qu’elle est simple a implémenter. Mais
cette signature n’est pas invariante au changement de la dimension et a la rotation et par la suite il
suffit de changer 'orientation ou la dimension du contour pour avoir une signature totalement
différente.

D’autres travaux ont fait appel a une autre fagon de représentation du contour, notée la
signature par ’angle de tangente [49] (figure 2.8 (b)), pour extraire des caractéristiques qui peuvent

distinguer les tumeurs bénignes de celles malignes.
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@) (b)
Fig. 2.8. Signature par I’angle) de la tangente au point P; et (b) la signature du contour-49].

Le principe de cette signature est que pour chaque point P; du contour on fait le calcul de I’angle @ &

partir de la tangente a ce point (Figure 2.8 (a)). Apres le calcul des angles sur toutes les tangentes on
aura une représentation (figure 2.8 (b)) qui sera exploitée par la suite pour D’extraction des
caractéristiques pouvant étre utiles pour la description du contour de la masse. Dans ce cadre, Rangaraj
et al [49], a partir de cette méthode, ont extrait deux caractéristiques : la premicre notée « indice de
spicule » (SIr4) permettant de mesurer le degré de rugosité du contour et la deuxiéme notée « indice
de convexité » (ICra) représentant le degré de convexité du contour. Pour évaluer la performance de
leur systeme, ils ont comparé les résultats fournis avec les résultats des travaux de Rangayyan et al.
[50], [51] basé¢ sur I’analyse fractale des contours. Ils ont montré qu’avec la signature par I’angle de la
tangente, les caractéristiques proposées permettent une bonne discrimination entre les masses bénignes
et celles malignes.

Le probléme de ce type de signature réside dans la complexité temporelle car le calcul des angles, le
passage a la représentation du contour et le calcul des caractéristiques demande beaucoup de traitement
a faire. Elle dépend aussi de la rotation ; c'est-a-dire ; pour deux rotations du méme contour on aura
deux signatures différentes. Ces inconvénients nous découragent a utiliser la signature par ’angle de la

tangente en tant qu’une méthode de description des masses mammographiques.
— descripteur de Fourier :
Une des techniques les plus prometteuses pour la description de masses mammographique est

celle basée sur des descripteurs de Fourier [56], [57]. Cette méthode s’effectue en quatre étapes : 1)

une étape de représentation des contours en tant que nombre complexe, ii) une étape de calcul des
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composants pour les N points du contours, iii) une phase de normalisation des composants et
finalement iv) une phase de calcul d’une caractéristique pour la description des contours.

Partant de ’ensemble N des points du contour, nous pouvons regarder la région comme étant placée
dans I’espace de représentation complexe, avec l'ordonnée étant 1'axe imaginaire et I'abscisse étant
I’axe réel. Puis, les coordonnées (x et y) de chaque point du contour a analyser peuvent étre
représentées en tant que nombres complexes (x + jy). L'ordre du contour peut alors étre décrit comme

ordre complexe Zi :

Z=x+jy, 1=0,1,2,...,N-1 (Eq.2.7)

Les composants de Fourier (FDS) a utiliser dans la description du contour sont définis comme :

—_— J’2
N

An) =isz:Z,J L 1=0,1,...., N-1 (Eq. 2.8)

Une normalisation de ces composants est calculée pour rendre ces quantités invariantes aux

transformations affines. Les composants normalisés deviennent :

O k=0
NFD(R)=] Ak AL k=1,2,.., N/2 (Eq. 2.9)
’ k=-1,-2,...-N/2+1

Ak 1%1(1);

Finalement la caractéristique notée FF (Fourier Fraction) est utilisée pour la discrimination entre les

masses des contours réguliers et celles des contours irréguliers.

Nj2 N2
e LTI I Ea210
k=—N/2+1 k=—NJ2

Dans es travaux [56], [57], on trouve des taux acceptables en exploitant la caractéristique FF.
Dans le travail de L.Shen et al [56], I'utilisation de FF a donné un taux d’exactitude de I’ordre de
84.81%. Plus récemment, R. M. Rangayyan et al [57] ont trouvé un taux d’exactitude de 1’ordre de
88.9% dans la distinction entre les contour stellaires et ceux circonscrits.
Malgré que les résultats trouvés soient acceptables, le probléme de cette méthode réside dans la
complexité temporelle a cause des traitements réalisés dans la représentation complexe du contour, le

calcul des composants et le passage a la normalisation.
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— Dimension fractale (FD) :

Le concept de la dimension fractale (FD) peut étre exploité pour mesurer la complexité ou
I’irrégularité de la frontiere d'un objet. En mammographie, ce concept est utilisé pour caractériser la
complexité des contours (2D) des masses, aussi bien que leurs signatures (1D). Les tumeurs
cancéreuses montrent un certain aspect aléatoire li¢ a leur croissance, et sont en général irrégulicres et
complexes en terme de forme ; donc, l'analyse de fractale peut fournir une meilleure idée concernant
leurs modeles en comparaison avec la géométrie euclidienne conventionnelle [55].

Dans leurs travail, Pohlman et al [46], ont obtenu un taux d’exactitude de classification de plus de 80%
avec l'analyse de fractale des signatures des contours de masses. Dans un travail récent, Matsubara et
al [52], ont obtenu un taux d'exactitude de 100% dans la classification de 13 masses. La méthode a
exigé le calcul d'une série de valeurs de FD pour plusieurs contours d'une masse donnée obtenue par
seuillage a plusieurs niveaux. La variation de FD a été employée pour classer les masses en deux
catégories (bénignes ou malignes).

Deux méthodes ont été décrites dans la littérature pour estimer la dimension de fractale: i) La méthode
de boite (box-counting) et ii) la méthode de régle (ruler) [51], [55]. Dans un travail plus récent, pour
I’objectif d’évaluer ces deux méthodes, Nguyen et Rangayyan [51] ont estimé le calcul de FD d'un
ensemble de 111 contours (2D) des masses aussi bien que leurs signatures 1D. La meilleure
performance de classification avec un taux d’exactitude de I'ordre de 89% a été obtenue avec la

méthode de régle appliquée aux signatures 1D des contours.

Malgré qu’elle puisse étre utile pour la description des masses, 1’analyse fractale présente
certaines limites qui nous découragent a I'utiliser dans notre travail. En regardant la figure 2.9, on
constate que les valeurs retenues par le FD sont trés proches et par la suite la séparation entre les cas
malignes et ceux bénignes est difficile. Aussi les valeurs retournées ne sont pas normalisées c'est-a-

dire elles ne sont pas limitées a un intervalle bien déterminé.

B1.o B1.01 B1.01 M1.03 M1.11 M1.12

e ,r\\ N T

L) ) 4 QA ,_} fr.L A

@) (b) © (@) () @

Fig. 2.9. Calcul de la caractéristique FD pour 6 cas de masses dont 3 sont bénignes (a, b et c) et 3
sont maligne (d, e et H){51].
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— Les moments :

Pour étudier I'irrégularité des masses mammographiques, plusieurs travaux ont fait appel aux
concepts des moments du contour [56], [41]. Les moments p+q sont définis par :

N-1M-1

m,, ()= ZO: ZO: XX Y% y) (Eq. 2.11)

Ou I est I'image au sein de laquelle la forme a étudier a été isolée, (M, N) sont les parametres de taille

d'image et (X, y) les coordonnées d’un pixel dans I’image I. En utilisant 1’équation 11 et les

coordonnées du centre ( X — Mo et j/Zﬂ correspondent a la position du centre de gravite de la
0 Ty
forme) les moments centrés peuvent étre ainsi:
N-1 M-1 _p B
Hpg(D=> > (x=-"(y-N"1(x y) (Eq.2.12)
0 0

Les moments centrés sont basés sur le calcul des distances euclidiennes des pixels de la région et le

point central de la forme. Les differentes valeurs de [/, permettent de caractériser une forme : par
exemple la valeur £, mesure I’allongement d’une forme.

Les formes ou les contours de deux objets sont alors comparables graces a leurs moments respectifs.
Dans ce cadre, HU [58] a dérivé un ensemble de sept caractéristiques, notées les moments invariants,

qui sont a base des moments centrés de second et de troisiéme ordre. Ces caractéristiques sont définies

comme suit:
1
¢ =— (it + 1) (Eq. 2.13)
00
1
b, :_4((/‘20 — Moy )2 +4/u121) (Eq. 2.14.)
00
1
¢ =— (3 =3,)" + Gty = ") (Eq. 2.15.)
Hoo
1
¢, :lu_s((,um — )" + (g = He3)*) (Eq. 2.16.)
00

1
¢5 = ,U_(l)g {(,u30 _3/112)-(#30 - ﬂu)[(,um + ,ulz)z - 3(/,130 + ,uzl)z] (Eq 217)

= Bty — o) -ty + 13 ) [ (o5 +/u21)2 -3(4t5, +/u12)2]}

¢ = L7 {(t — pop (s + 141, )’ - (Hos + s, )'1- A, (g + ) -(ty, + H3)} - (Eq. 2.18.)

00
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1
¢7 = Iu_(l)g{?’(,uzl —/,103).(/,130 +,u12)[(,u30 +,ulz)2 73(/,103 +,uzl)2] (Eq 219)

(g = th)-(thy, + Moy )3t + 141, )2 — (s + 1y, )2 1}

Les moments invariants de HU figurent dans plusieurs études pour différents objectifs ; elles ont été
exploitées dans le travail de Rangayyan et al [57] afin de distinguer entre les contours stellaires et ceux
circonscrits alors que dans un travail récent de N. Székely et al [61] elles ont été utilisées pour

I’objectif de détection des masses.

Dans une autre étude, L. Shen et al [56] ont utilisé une représentation unidimensionnelle du
contour afin d’estimer les moments. En se basant sur I’ensemble des coordonnées (x(i) et y(i)) des
points du contour et sur les distances euclidienne Z(i) entre le point central et les points du contour, le

moment d’ordre p a été défini ainsi :
1 X P
m,= WZ [z(z)} (Eq. 2.20.)
=1
Afin d’avoir des caractéristiques invariantes, une normalisation des moments est faite :
M =13 ?
p_wz;[z(z)—m} (Eq.2.21)
=

Lors de la description des masses stellaires, trois caractéristiques (}7{,}3,}7; ) ont été générées a

partir du moment A/, normalisé :

z—m)* (Eq. 2.22)

1 N ; %
F=— LNZ(ZI — ) (Bq. 2.23))
m p=
1
1 ul 4|
F, :a LNZ;(ZI.—Iq) (Eq. 2.24)

En se basant sur les caractéristiques définies ci-dessus, une autre caractéristique a été définie comme la

différence entre les caractéristiques F| et £

MF,_,=F-F, (Bq.2.25.)
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L. Shen et al [56], ont montré que cette derniére permet une meilleure description des contours

stellaires par rapport aux autres caractéristiques.

— RDM (Radial Distance Mesure) :

Une autre technique similaire a la méthode des moments est /la méthode RDM (Radial
Distance Mesure) qui a été utilisée pour I’extraction des caractéristiques permettant la description des
contours stellaires. Elle est basée sur la mesure de la distance euclidienne d (i) entre un point i du
contour et le point central de la masse (on revient en détail a cette méthode dans le prochain chapitre).
Dans [45], [53], [97], les auteurs ont fait appel a cette méthode vu qu’elle est la moins complexe par
rapport aux autres techniques. Dans le travail de A. Retico et al [53] plusieurs caractéristiques telles
que la distance moyenne dpoy la déviation standard (SDEV) et la rugosité (R) sont extraites a partir de
la méthode RDM.

La méthode RDM posseéde plusieurs avantages par rapport aux autres méthodes, vues
précédemment, qui nous poussent a I’utiliser pour résoudre notre probléme. Elle est simple a
implémenter, et est aussi invariante aux transformations affines et ne demande pas un prétraitement a
appliquer sur le contour ce qui nous permet de décrire, d’'une maniere efficace, les contours pour
n’importe quel position, dimension...

Dans notre travail on essai de réduire encore la complexité temporelle de cette méthode en procédant

par la minimisation du nombre des points du contour qui entrent dans le calcul des caractéristiques.

3.2.2.2. Caractéristiques combinées (texture et forme)

Il est parfois nécessaire de calculer des caractéristiques de texture [74] lorsque le contour de ces
objets n'est pas suffisamment discriminant. Ce probléme est plus complexe que la description a base du
contour car la description doit prendre en compte tant l'information sur le contour que sur la texture
interne des objets. Dans ce cadre, On trouve pas mal de travaux [45], [48], [56], [59] qui combinent les
caractéristiques de forme et celles de texture afin de mieux représenter les masses et améliorer le taux
d’exactitude de classification. Par exemple, J. Panchal et al [59], ont montré que ['utilisation des
caractéristiques combinées basées sur la technique RDM (3 caractéristiques) et la matrice de co-
occurrences (5 caractéristiques) donne un taux d’exactitude qui dépasse 78%. Aussi, dans le travail de
U.Bottigli et al [48] un ensemble de caractéristiques de forme (RDM, Forme géométrique simple) et de
caractéristiques de texture (la moyenne, 1’entropie...), a été utilis¢ pour prendre en considération les

trois types de propriétés d’une tumeur (le contour, la région et la texture).
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Dans un travail plus récent, A.V. Alvarenga et al [59], ont montré que I’utilisation des
caractéristiques combinées basées sur RDM (4 caractéristiques) et la matrice de co-occurrences (6
caractéristiques) augmente encore la performance (sensibilité et spécificité¢) et rend la caractérisation

des masses mammographiques plus précise (voir le tableau 2.2).

Caractéristiques Sensibilité (%) Spécificité (%)
Forme 88.0 90.4
Texture 89.0 86.5

Tab. 2.2. Performances obtenues avec des caractéristiques de forme, de texture et combinées [73].

3.2.3. Classification

Plusieurs techniques ont été utilisées pour la classification des cancers de sein. Parmi ces
techniques, on cite les méthodes supervisées (réseau de neurones, C-means,...) et d’analyse du
discriminant linéaire (LDA).

Dans le cadre d’analyse mammographique, on trouve plusieurs utilisations du systéme de
classification (LDA) [45], [47], [S57] pour I'objectif de la prise de décision en ce qui concerne la
malignité ou la bénignité d’une tumeur mammographique. Dans le travail de Kilday [45], 'utilisation
du classifieur LDA a abouti a un taux de sensibilité de ’ordre de 69%. Ce taux a augmenté a 95% dans
un travail récent de Rangayyan et al [57]. Dans une étude d’évaluation de la performance des
caractéristiques de forme, A. Alvarenga et al [47] ont trouvé un taux de sensibilit¢ (88%) et de

spécificité (90.4%).

Une autre forme de classification basée sur le modele de réseau de neurones est celle de
multicouche (MLP) qui a été utilisé dans plusieurs travaux mammographiques [48], [53]. Par
exemple, dans le travail de U. Bottigli et al [48] une comparaison d'un certain systeme de classification
des masses a été présentée. Les résultats trouvés, montrent que le classifieur MLP donne la meilleure
performance par rapport aux deux autres classifieurs KNN et SVM avec un taux de sensibilité de
I’ordre de 88%.

Kim et al [60] ont congu un nouveau type de classifieur qui combine un modele non supervisé

et un modele supervisé pour la classification des masses. Le modéle non supervisé est basé sur la
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théorie de la résonance adaptative ART qui a groupé les masses en plusieurs classes séparées. Les
classes ont été divisées en deux types: un qui contient seulement les masses malignes et un autre
contient un mélange des masses malignes et bénignes. Quelques masses malignes sont séparées et ont
¢été classées par ART et les masses bénignes et malignes les moins distinguables ont été classées par
LDA.

On présente dans le tableau 2.3, quelques travaux réalisés pour 1’objectif de diagnostic avec les
résultats trouvés. Ces derniers paraient étre comparables entre eux. Cependant, réellement, on ne peut
pas les comparer vu que les criteres d’évaluation, les bases d’images utilisées et les types des

classifieurs sont différents.

Rangayyan et al [57]. | 95% -- -- LDA Base locale (39 cas).
L. M. Bruce et al [43]. | 80% -- -- LDA Base locale (60 cas).
A. Retico et al [53]. 78,1% 79,1% -- MLP Base locale (226 cas
avec 109 malignes et
117 bénignes).
R.Feng Chang et al 88,89% 92.5% -- SVM Base locale (210 cas
[64]. avec 90 cas malignes

et 120 cas bénignes).

U. Bottigli et al [48]. 88% -- -- MLP Base CALMA
(320cas).

Kilday [45]. 69% -- -- LDA Base locale (82 cas).

A. Alvarenga et al [47] | 88,0% 90,4 88,8% LDA Base locale (152 cas).

Tab. 2.3. Résultat de test de quelques travaux utilisant des classifieurs supervisés.

4. Fl6t de diagnostic mammographique proposé

L’analyse mammographique se base sur trois étapes fortement liées quelque soit le flot a
utiliser: I’étape de segmentation, 1’étape d’extraction de caractéristiques et celle de classification.
Dans ce travail, on présente une démarche de diagnostic contenant trois parties (Fig. 2.10). La

premiere consiste en I’identification des masses. Quant a la deuxiéme, elle en aborde la description de
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forme. Dans la troisieme partie, on passe a la prise de décision concernant les masses suspectes

(bénigne ou maligne).

Image mammographique.

1

Segmentation : Identification de la masse

|

Région d’intérét contenant la masse

Description : Extraction des caractéristiques

Basées sur le contour Basées sur la région

Vecteur caractéristique

| |

Classification

|

Décision:masse bénigne ou maligne

Fig. 2.10. Flot de diagnostic mammographique proposé.

Une fois la région suspecte contenant la masse est connue (on suppose que la région est
détectée a travers un systeme CAD), la tiche a réaliser est I’identification de masses consistant a
séparer le tissu de la masse du tissu environnant normal. Cette tache peut étre manuelle (le radiologue
trace le contour autour la masse) ou automatique (a travers des méthodes de segmentation). Cette
phase sera I’objectif du quatrieme chapitre de notre travail.

Apres la récupération de masse, on passe a la phase de I’extraction des caractéristiques a ’aide
d’un descripteur de forme. Vu que les propriétés de malignité et de bénignité se basent sur la région et
le contour des masses, on propose de procéder par une méthode de description qui combine des
caractéristiques de région et du contour. On revient sur cette méthode en détail dans le chapitre

suivant.
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Finalement, pour évaluer la performance des caractéristiques générées dans la deuxiéme étape,

on passe a I’étape de décision a travers des méthodes de classification.

Il est a noter qu’on s’intéresse a 1’étape de description alors que les deux autres sont utilisés

seulement pour évaluer notre travail.

5. Conclusion

Dans deuxiéme partie, on a étudi¢ les deux parties constituant un systéme d’analyse des masses
mammographiques : la partie de détection et la partie de diagnostic. Dans les deux parties, I’étape
d’extraction des caractéristiques est trés importante et doit exister pour augmenter la performance de la

détection et/ou de la classification des tumeurs.
Dans notre travail, on s’intéresse a la deuxiéme partie d’analyse (partie diagnostic) et plus

exactement a la partie de description basée sur la forme. Cette derniere, sera I’objectif du chapitre

suivant.
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Chapitre 3

Extraction des
caractéristiques




Extraction des caractéristiques

L’analyse d’images est une discipline dont les fondements théoriques reposent sur les
mathématiques et les fondements pratiques sur I'informatique. En effet, les techniques d’analyse
d’images jouent un role trés important dans plusieurs applications médicales, particulierement en
mammographie.

En général, les applications incluent I’extraction automatique de caractéristiques qui seront
utilisées dans la prise de décision (par exemple distinguer les tissus normaux de ceux suspects).
L’extraction des caractéristiques, qui constitue la deuxiéme phase d’analyse, est 1’étape sur laquelle
repose tout ce qui suit car un faut départ peut dévier la décision et engendrer des résultats erronés.

Les caractéristiques extraites a partir d’une image donnent des informations sur les propriétés
de forme, les propriétés de couleur ou certaines propriétés de texture [66]. Dans notre travail on
s’intéresse aux caractéristiques de forme et c’est dans ce sens que s’oriente ce chapitre qui commence
par un apercu sur les méthodes utilisées pour la description des formes mammographiques suivie par

une description détaillée sur notre méthode proposée.

1. Forme

La forme de I'objet est une image binaire représentant 'ampleur de l'objet ; c'est-a-dire la forme

peut étre considérée comme une silhouette de 1'objet. La figure 3.1 montre quelques exemples :

Fig. 3.1. Forme binaire des différents objets.

En (2D), on peut définir deux notions de similarité entre les formes : la similarité de la région et
celle du contour. Ceci est illustré dans la figure 3.2 : les objets de la figure 3.2 (a) ont des similarités
spatiales dans la distribution des pixels et sont similaires selon des critéres régions, alors qu’ils sont
clairement différents selon leur contour (Figure 3.2 (b)). On peut déduire donc que I’analyse des

formes selon leurs régions ne suffit pas, et qu’il faut ajouter I’analyse basée sur le contour pour avoir
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une meilleure précision dans la caractérisation des formes. Dans ce contexte, nous proposons

une approche d’analyse des masses mammographique suivants leurs formes et leurs contours.

@) ®)

Fig. 3.2. Notion de similarité : (a)régions similaires et (b) contours différents.

2. Description de la forme

Le descripteur de forme se rapporte aux méthodes qui fournissent comme résultat une description
numérique de la forme. Il génére un vecteur de caractéristiques d'une forme donnée ; a un objet
(contour ou région) donné dans une image, on fait correspondre un vecteur caractéristique dont les
composantes sont les différents parametres calculés.

Les descripteurs, pour différentes formes, devraient étre assez différents pour que les formes
puissent étre distinguées. Ceci implique que le probléme rencontré dans 1’analyse d’images est le choix
d’un bon descripteur et par la suite on ne peut dire qu’un tel descripteur est meilleur qu’un autre que si
la différence des valeurs retenues, pour des formes différentes, est grande et que si la différence des

valeurs retenues, pour les formes semblables, est petite.

vd
2

Vi
e -

Fig. 3.3. Vecteur des caractéristiques.

Il est important de distinguer les types de descripteurs de forme utilisés pour la discrimination
ou la reconnaissance des objets. En général, les descripteurs de formes peuvent étre divisés en deux

grandes classes : les uns s’appuient sur la forme enticre et les autres sur le contour. Les descripteurs
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basés sur le contour prennent en compte seulement les pixels de la frontiere d’une forme alors

que les descripteurs basés sur la région prennent en compte tous les pixels de la forme.

= B

@) )

Fig. 3.4. Transformations appliquées a I'image : (a)changement de dimension et (b) rotation.

Malgré que l'objectif de la description soit de caractériser la forme a travers un vecteur
caractéristique, les descripteurs de formes doivent satisfaire certains critéres parmi lesquels :
— l'invariance a un ensemble de transformations géométriques comme la translation, le
changement de dimension et la rotation (figure 3.4) afin d’aboutir & une description efficace
d’une forme donnée.

— larapidité de calcul.

3. Méthodes de description de forme

Une fois la masse est identifiée, nous procédons par une extraction des caractéristiques a partir
du contour et de la région pour faire la distinction entre les masses bénignes et celles malignes. En

littérature, une variété des méthodes a été utilisée pour 1’objectif de description des masses.

Dans le cadre d’analyse des masses mammographiques, de nombreux descripteurs ont été
proposés. Dans [45], [46] les auteurs utilisent un ensemble de caractéristiques géométriques simples
telles que le périmétre, la circularité et 1'élongation pour la caractérisation des masses. Dans [47], [53],
les auteurs ont, pour leur part, exploité des caractéristiques de /’enveloppe convexe telle que la
convexité¢. La méthode RDM, est utilisée fréquemment dans diverses approches [53], [59] pour

générer des caractéristiques a utiliser dans la phase de description.
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Dans cette partie on donne un apercgu sur les méthodes qu’on peut exploiter dans 1’élaboration

de notre descripteur de forme.

3.1. Caractéristiques de forme simples

Plusieurs caractéristiques géométriques simples sont utilisées pendant [’analyse
mammographique. Ces caractéristiques peuvent étre utiles dans la description de forme. En présente
par la suite un panorama non exhaustif des caractéristiques les plus utilisées telles que aire, le

périmetre, la circularité et I’excentricité.

3.1.1. Aire et périmétre

L’aire A et le périmétre P sont calculés pour caractériser la taille d’une forme donnée. L’aire
est définie comme le nombre de pixels a ’intérieur d’une forme. Tandis que le périmetre est défini
comme le nombre de pixels du contour d’une forme. Ces deux caractéristiques ne peuvent pas étre
considérées seules en mammographie, et en analyse des masses afin de distinguer entre les tumeurs
bénignes et malignes. Ils ne sont pas suffisants car la taille de la tumeur de sein n’est pas un signe de
maladie. Mais ils sont utiles dans le calcul des plusieurs autres caractéristiques qu’on va détailler par la

suite.
3.1.2. Circularité

La circularité (C) est une caractéristique géométrique qui permet de décrire les régions qui

peuvent étre circulaires. Elle est donnée par 1’équation suivante:

_4r A

C—?

(Eq. 3.1)

Avec

P: Le périmétre de la région.
A: L'aire de la région.

Vu qu’on traite, en mammographie, des masses qui peuvent étre soit des formes rondes ou
ovales (dans le cas d’une tumeur bénigne), soit des formes irréguliéres (dans le cas d’une tumeur
maligne), la circularité peut étre utile dans ce sens et peut donner une indication sur la régularité d’une
forme donnée.

Dans la figure 3.5, on présente deux formes : la premiére représente une forme réguliére (figure

3.5 (a)) qui a une circularité C=1 et la deuxieme représente une forme irréguliere (figure 3.5 (b)) avec
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une circularité C<<I. Par la suite on peut constater que la différence entre les valeurs retenues dans les

deux cas peut étre exploitée pour regrouper les cas réguliers de ceux irréguliers.

@) C=1 (b) C<<I

Fig 3.5. Une (a) forme circulaire et une (b) forme irréguliére (non circulaire).

Plus la circularité est haute (C=1), plus la forme tend a étre plus ronde et par la suite la
probabilité d’une masse d’étre bénigne est plus grande. Par contre lorsque C est proche de 0, la forme

tend a étre irréguliére et par conséquent il s’agit d’une tumeur maligne.

En mammographie, la circularit¢é C est utilisée fréquemment dans des travaux destinés au
diagnostic [53], [59] vu qu’elle est simple a implémenter et possede I’avantage qu’elle est invariante a

toute transformation affine (translation, rotation, etc.).
3.1.3. Excentricité

L’excentricité est une autre caractéristique qui peut étre utilisée dans la discrimination des
masses. Elle donne une indication sur 1’élongation d’une masse et est définit par le rapport entre I’axe

mineur et ’axe majeur :

_ Axe_ Mineur

Ex= :
* Axe Majeur

(Eq.3.2)

L'axe majeur est la plus longue droite qui traverse le centre alors que 1’axe mineur est la ligne qui est
perpendiculaire a I'axe majeur et qui passe par le centre. Lorsque 1’axe mineur est proche de I’axe
majeur il s’agit d’une forme ronde alors que si I’axe mineur est loin de I’axe majeur on dit qu’il s’agit

d’une forme allongge.

La figure 3.6, illustre un exemple de calcul de I’excentricité pour une masse bénigne et une

autre maligne. Pour une forme bénigne, 1’excentricité vaut 1 alors que pour une forme maligne
9
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I’excentricité est loin de 1. Donc, on voit I'utilité de cette caractéristique dans la discrimination entre

les cas malins et ceux bénins.

Axe Majeur

Axe Majeur

Axe Mineur

Axe Mineur

@) (b)

Fig. 3.6. Calcul d’excentricité : pour une (a) tumeur bénigne et (b) une tumeur maligne.

Malgré que cette caractéristique puisse €tre utile dans la phase de description et qu’elle soit
invariante a toute transformation affine, elle présente des limites dans plusieurs cas. La figure 3.7
illustre deux cas dont les valeurs retournées (Exc= /) par I’excentricité indiquent la présence des

tumeurs bénignes alors qu’au contraire il s’agit des tumeurs malignes.

(a) Exc=1 (b) Exc= 1]

Fig. 3.7. Caractérisation non fiable pour deux tumeurs malignes : (a) Cas 1 et (b) Cas 2.

3.2. Enveloppe convexe

L’enveloppe convexe notée E est largement utilisée dans plusieurs domaines d’analyse telque

I’analyse d’images médicales et en particulier dans I’analyse des masses mammographiques [47], [53].
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Région résiduelle R.

Enveloppe Convexe
E

—>

Forme F

Fig. 3.8. L’enveloppe convexe E d’une forme F.

Elle est définie comme la plus petite surface convexe contenant une forme F (voir la figure 3.8).
L’objectif de l'utilisation de ’enveloppe convexe est I’extraction des caractéristiques qui servent a
décrire les formes et qui permettent de nous aider dans la distinction entre les formes réguliéres
(rondes, ovales, lobulaires) et celles irrégulieres.

On fait appel a plusieurs caractéristiques données comme suit :

— A (F) : L’aire (la surface) de la forme F.

— A (R): L’aire (la surface) de la région résiduelle R.
— A (E) : L’aire (la surface) de I’enveloppe Convexe E.
— P (E): Le périmetre de I’enveloppe Convexe E.

— P (F): Le périmetre de la forme F.

Les principales caractéristiques qu’on peut utiliser dans notre étude mammographique sont la
convexité¢ (CVX) et la valeur résiduelle normalisée (NRV). Ces deux derniéres seront 1’objectif des

sous-sections suivantes.
3.2.1. Convexité (CVX)

On dit qu’un ensemble X C E est convexe sirx + (1 — 1)y € X pourtoutx,y € X avecr €
[0, 1]. Autrement dit, tout segment reliant deux points quelconques (x et y) de X doit étre entiérement
contenu dans X. A la figure 3.9, on a un objet convexe (figure 3.9 (a)) et un autre qui est non convexe

(figure 3.9 (b)).
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@) (b)

Fig. 3.9. (a) forme convexe et (b) forme non convexe.

Une région fortement convexe (c’est a dire qui épouse parfaitement son enveloppe convexe) a une
valeur de convexité proche de 1 (figure 3.10 (a)). Alors qu’une région faiblement convexe possede une

valeur de convexité¢ loin de 1(figure 3.10 (b)).

Les formes irréguliéres des tumeurs malignes sont stellaires ou microlobulées ; ces formes sont
faiblement convexes. Par contre les formes régulieres des tumeurs bénignes (rondes, ovales et
lobulées) sont fortement convexes. D’ou, la nécessité de calculer une valeur de la convexité pour

caractériser les formes des masses mammographique.

K\

\

@) (b)

Fig. 3.10. (a) Région réguliére (tumeur bénigne) et (b) région irréguliére (tumeur maligne).

En mammographie, pour calculer la convexit¢ (CVX) d’une masse donnée, on utilise
I’enveloppe convexe. Cette caractéristique est définie comme le rapport entre I’aire de la forme A (F)

et I’aire de ’enveloppe convexe A (E) :
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CVX=‘;§—2 (Eq. 3.3)

La caractéristique de convexité a plusieurs avantages. En effet, elle est facile a calculer. Son
calcul est normalisé (entre O et 1) ; elle est invariante a toute transformation affine. Mais, la convexité
ne détecte pas des défauts énormes sur les frontiéres des formes qui ont un impact relativement petit

sur les surfaces des formes.
3.2.2. Valeur résiduelle normalisée (NRV)

La caractéristique NRV (ou Normalised Residual Value) est une autre caractéristique qu’on
peut I’extraire de I’enveloppe convexe. Elle est définie par le rapport entre I'aire A(R) de la région
résiduelle R et le périmeétre P(E) de ’enveloppe convexe E. La région résiduelle R (région en blanc
dans la figure 3.16 (b)) est la région résultante de la différence entre I’enveloppe convexe E et la forme
F:

R=FE-F (Eq.34.)
On dit qu'une forme F est convexe lorsque I’aire A(R) de la région résiduelle tend vers 0. La

caractéristique NRV est donnée par 1’équation suivante:

_ AR
NRV—ﬁ (Eq. 3.5)

Lorsque ’aire de la région résiduelle est plus grande que son périmétre, on aura une valeur de NRV
grande et par la suite il s’agit d’une forme non convexe irréguliére (figure 3.11 (a) et (b)). Dans le cas
contraire, ou le périmétre est proche a I’aire de la région résiduelle, on aura une valeur NRV =1, qui

permet de conclure que la forme est réguliére (figure 3.11 (c) et (d)).

L’avantage de NRV est qu’elle est simple a implémenter, elle est invariante a toute
transformation affine et qu’elle donne des résultats encourageants dans plusieurs travaux [47], [72]
d’analyse mammographiques. D’apres une étude d’évaluation, comme indique le tableau 3.1, d’un
ensemble des caractéristiques A. Alvarenga et al [47] ont montré que la caractéristique NRV possede
une meilleure sensibilité¢ (94.6%) par rapport a la CVX (81.5%) et aussi une meilleure spécificité
(91.7%) par rapport a la CVX (86.7%). Mais I’inconvénient de cette caractéristique est que les valeurs

calculées ne sont pas limitées dans un intervalle fini.
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Région résiduelle R.

/

Périmetre P(E).

(@) (®)
Fig. 3.11. Calcul de NRV : (a) forme irréguliére et son enveloppe convexe, (respectivement (b) forme

réguliére et son enveloppe convexe).

Caractéristiques Sensibilité (%) Spécificité (%)
ARV
C 88.0 88.3
cvVx 81.5 86.7

Tab 3.1. Evaluation de la caractéristique NRV [47].

3.3. Mesure de la Distance Radiale (RDM)

La technique de RDM est utilisée fréquemment dans I’analyse mammographique [53], [59] vu
qu’elle est efficace pour décrire des masses. A travers cette technique, on fait I’extraction de plusieurs
caractéristiques qui peuvent étre utilisées par la suite dans des vecteurs caractéristiques. Dans ce qui
suit, on donne le principe de cette technique et quelques caractéristiques qu’on peut utiliser pour

répondre a nos besoins.

3.3.1. Principe

La mesure de la distance radiale RDM est une méthode qui se base sur le calcul des distances
euclidiennes d (i) calculées du centre C de la tumeur aux points ¢lémentaires P; du contour comme il

est indiqué a la figure 3.12.
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Pi(xiaYi)

Fig 3.12. Principe de Ia méthode RDM.

Pour voir 'utilité de cette approche, on étudie la signature du contour afin de distinguer entre
un contour régulier et un autre irrégulier. A la figure 3.13 on a deux représentations : I'une pour une

tumeur bénigne (figure 3.13 (a)) et 'autre pour une tumeur maligne (figure 3.13 (b)).

a6
90 | , : , : . .
095| - e z
0.9 | :
0.85 | ]
0 50 100 150 200 250 300 350 poines

@)

d(1)

0 a0 100 150 200 250 300 350 Points

(b)

Fig. 3.13. Signature de contour dans le cas (a) d’une tumeur bénigne et (b) d’une tumeur maligne.
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En comparant les deux signatures, on remarque une grande variation entre les distances des rayons (les
rayons varient entre 0.4 et 1) pour une tumeur maligne alors que pour une tumeur bénigne il y’a une
petite variation entre les distances des rayons (les distances varient entre 0.93 et 1). La grande variation
s’explique par la présence d’un contour irrégulier et par la suite on peut conclure que I'utilisation de la
technique RDM peut nous mener a des bons résultats lors de la différenciation entre les contours des
masses.

Dans la partie suivante on présente les caractéristiques utilisées qui sont extraites a partir de

cette méthode pour décrire des masses mammographiques.
3.3.2. Caractéristiques

Plusieurs caractéristiques sont extraites a partir de la méthode RDM tels que la moyenne

(dmoy), la déviation standard (SDEV), le zero-crossing (ZC), la rugosité (R) et le rapport d’aire

(AR). Lors du calcul de ces caractéristiques, on utilise plusieurs parametres:

La distance d(7) :\/(Xf— X)?+(y;—Y)?* : la distance euclidienne entre le point i (de

coordonnées X:et J:) du contour et le point central de la forme (de coordonnées X.et ).

d(7)
max[d(7)]

— Ladistance d,(1)= : la distance euclidienne normalisée.

— Le nombre N : le nombre de points (pixels) du contour d’une forme (appelé aussi le périmétre

de contour).

— Les coordonnées X, =

: sont les coordonnées de point central d’une

ZNX et )2': ZN'y
N N

forme donnée.

Toutes les distances radiales étaient normalisées en utilisant la valeur maximale des distances
radiales. Cette normalisation a pour objectif la limitation de la valeur de distance d,(7) dans

I’intervalle [0, 1], quelque soit la dimension de la tumeur et par conséquent rendre la technique RDM

Invariante a toute transformation affine.

3.3.2.1. Distance moyenne normalisée ( a’moy)

Cette caractéristique peut étre utilisée directement pour la description, comme elle peut étre
utilisée pour calculer d’autres caractéristiques. Elle est importante pour la caractérisation des tumeurs

de formes stellaires.
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La caractéristique dmoyest donnée par 1’équation suivante :

1 N
oy = T\f; d (1) (Eq. 3.6

Plus la valeur retournée par cette caractéristique est proche de 1, plus la forme est régulicre ;

respectivement, plus la valeur de dmoy est loin de 1, plus la forme est irréguliere.

3.3.2.2. Déviation standard (o)

La caractéristique de déviation standard (Standard Deviation ouo ) de la distance radiale

normalisée est définie par la variance des distances autour du rayon (le rayon est la distance

g

ydéﬁnie précédemment) d’un cercle (figure 3.14).

Cette caractéristique est utilisée pour la description des contours stellaires. Elle est donnée par

I’équation suivante :

1 & ?

o= N2 (d.()- dmoy) (Eq.3.7)

Dans la figure 3.14, on montre la caractéristique SDEV qui est représentée par une ligne

pointillé qui est la différence (SDEV) entre la distance d,(7) et la distance moyenne dmoy.

() (b)
Fig. 3.14. Principe de SDEV pour (a) un contour stellaire et (b) un contour lobulé.
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Plus cette différence est grande, plus le contour étudié est irrégulier (contour stellaire maligne a la
figure 3.14 (a)). Au contraire, plus cette différence est petite plus la probabilité de régularité¢ du
contour est grande (contour lobulé bénigne a la figure 3.14 (b)). Par la suite, on constate que le SDEV
peut donner une bonne indication sur I’irrégularité du contour. En effet, lorsqu’il s’agit d’un contour
stellaire maligne la valeur de SDEV augmente, par contre dans le cas d’un contour bien entouré ou

lobulé bénigne le SDEV diminue et tend vers 0.

3.3.2.3. Zero Crossing (ZC)

C’est le nombre de fois ou la distance d,(7) est supérieure a la distance moyenne a’moy. Plus

la valeur de Zero Crossing est grande plus le contour est irrégulier. D’aprés les signatures des contours,

a la figure 3.15, on remarque que le nombre de fois ou la distance d,(7) est supérieure a la distance

moyenne a’moy est grand pour une tumeur maligne (figure 3.15 (a)) et il est petit pour une tumeur

bénigne (figure 3.15 (b)).

ZC
| G A .
0.8 L ]
} & X\ 7 / dily
0.6 w \/_/ N | W
0 50 100 150 200 250 300 350 points
(a)
L a0 ZC d
; . - - : - : may
09 | .
0.85 | .
0 50 100 150 200 250 300 350  points

(b)

Fig. 3.15. Signature de Zéro Crossing pour (a) une tumeur maligne et (b) une tumeur bénigne.
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Le probléme est que les valeurs retournées par cette caractéristique, pour une forme donnée, ne

sont pas normalisées et par la suite il faut définir un intervalle des valeurs pour n’importe quelle forme.

3.3.2.4. Rugosité (R)

Puisque, en mammographie, on traite des contours qui peuvent étre stellaires ou microlobulés,
la rugosité peut étre utilisée pour nous aider a la description de ces types de contours anguleux
(contours qui contiennent des segments concaves).

La rugosité est définie, par 1’équation suivante :
1 & .
R=— > |d, () - d,(i+1) (Eq.3.8)
=1

La figure 3.16 illustre le principe de la rugosité donnée par la différence R entre le rayon
d, (i) et le rayon d,(7+1). On remarque que R augmente pour un contour stellaire (figure 3.16 (a)),
diminue pour un contour microlobulé (figure 3.16 (b)) et proche de 0 pour un contour bien entouré

(figure 3.16 (c)). Généralement, on peut dire que la rugosité augmente pour une tumeur maligne et

diminue pour une tumeur bénigne.

@) (b) ©

Fig. 3.16. Principe de la rugosité (a) contour stellaire, (b) contour microlobulé et (c) contour lisse.
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3.3.2.5. Rapport d’aire (AR)

Le rapport d’aire Ar (ou Area Ration) est une autre forme de caractéristique qu’on peut utiliser

pour décrire les contours des masses stellaires. Elle permet de donner le pourcentage que la masse soit

en dehors de la région circulaire du rayon d,...,. L’équation de cette caractéristique est donné par :
g y moy q q p

N
AR = N*ld *Z(dn(l)_ dmoy) (Eq. 3.9.)

moy 1=l

Avec A,=0 Vd, ()< d,

oy

A la figure 3.17, on présente la fagon de calcul de la caractéristique Ag (représentée par la ligne

pointillé en bleu dans la figure) donnée par la différence entre la distance d,(1) et la distance

moyenne d,,,, mais seulement dans le cas ou la distance d,(7) est strictement supérieure a la

distance dmoy.

@) (b)

Fig. 3.17. Principe d’Ag pour (a) un contour stellaire et (b) un contour lobulé.

Comme pour le cas de la caractéristique SDEV, plus la ligne pointillé¢ est grande, plus le contour est
irrégulier (contour stellaire maligne a la figure 3.17 (a)). Au contraire, plus la ligne pointillé est petite
plus la probabilité de régularité du contour est grande (contour lobulé bénigne a la figure 3.17 (b)). Par
conséquent, la caractéristique Ar peut étre utile dans la discrimination des contours des masses
mammographique. En effet, lorsqu’il s’agit d’un contour stellaire maligne la valeur d’Ar augmente,

par contre dans le cas d’un contour bien entouré ou lobulé bénigne I’Agr diminue et tend vers 0.
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4. Descripteur de forme proposé

Notre méthode proposée est une combinaison des caractéristiques basées sur la région et des
caractéristiques basées sur le contour, comme indique la figure 3.17, afin de décrire d’'une maniére

plus efficace les masses mammographiques.

En utilisant une méthode de segmentation, qu’on va décrire dans le chapitre suivant, et a partir
de la région de masse (figure 3.18 (a)) isolée, on fait 1’extraction de trois caractéristiques : 1) la
circularité¢ C, ii) la valeur résiduelle normalisée NRV et iii) la caractéristique d’élongation notée CIE
(Cercle Interne Externe). Ces caractéristiques, ont pour réle la description du contenu des formes
mammographiques.

A partir du contour de la masse (figure 3.18 (b)), on extrait cinq caractéristiques : trois caractéristiques
provenant de la méthode RDM modifi¢e (section 4.1.1), une caractéristique de convexité CVX et une

caractéristique, propre a notre travail, calculée a partir des angles notée I’indice d’angle IA.

Descripteur de forme

—

Région

—

Contour

l

|

C RDM étendue
NRV CVX
CIE IA

@) (b)

Fig. 3.18. Descripteur de forme : (a) caractéristiques de région et (b) caractéristiques de contour.
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Finalement, on a un ensemble de huit caractéristiques qui sont choisies en respectant les critéres de

simplicité en terme d’implémentation d’un coté, et d’efficacité d’un autre coté.

Par la suite on présente notre vecteur de caractéristiques en indiquant a chaque fois I’intérét de

chaque caractéristique lors de la phase de description.

4.1. Caractéristiques basées sur le contour

Les caractéristiques basées sur le contour sont utilisées pour décrire la frontiére d’une forme.
En mammographie, on traite les contours des masses qui peuvent &tre stellaires, microlobulées,
circonscrits, mal définis et indistincts (vues dans le chapitre 1).
Les caractéristiques a utiliser sont celles extraites a travers la méthode RDM : le SDEV, la rugosité R
et le rapport AR. L’apport dans notre étude est ’amélioration de ces caractéristiques en optimisant les
temps de calculs et en augmentant la pertinence des valeurs retenues. Aussi on utilise la convexité
CVX a partir de I’enveloppe convexe.
La contribution ici est la réalisation d’une nouvelle caractéristique notée (IA) jouant un réle dans la

distinction entre les contours réguliers et les contours microlobulés.

4.1.1. RDM étendue

Les caractéristiques basées sur RDM sont celles dont la complexité temporelle liée au calcul est
optimale relativement aux autres caractéristiques basées sur le calcul d’angle tel que « turning angle »
[49].

Partant de la technique RDM décrite dans la section 3.4, qui est basée sur le calcul de tous les points
constituant le contour (complexité temporelle élevée), on se propose de minimiser encore sa
complexité en ne prenant en compte que quelques points de contours. Ces points représentent les
extrema du contour. Ces extrema représentent soit les points concaves soit les points convexes décrites
comme suit :
— Un point concave Pconcave (1) de contour est un point qui possede une distance radiale d (i)
inférieure a la distance radiale d (i-1) et inférieure a la distance radiale d (i+1).
— Un point convexe Peonvexe (1) de contour est un point qui posséde une distance radiale d (i)
supérieure a la distance radiale d (i-1) et supérieure a la distance radiale d (i+1).

La totalité des points sur lesquels on travaille est donnée comme suit:

—  Peoncave (1) ={ 1] d(1)<d(i-1) et d()< d(it1)}
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Peomvene (1) ={ 1] d()>d(i-1) et d(i)> d(i+1)}

En fixant les points convexes et concaves, on réduit le nombre de points du contour a utiliser
dans le calcul et par conséquent on réduit la complexité temporelle de calcul des caractéristiques
extraites a partir de la méthode RDM. Dans la figure 3.19 on a deux représentations : 1’'une pour une

tumeur maligne (figure 3.19 (a)) et I’autre pour une tumeur bénigne (figure 3.19 (b)).

Point concave

—

Point convexe

([ 7

(a) (b)
Fig. 3.19. Ensemble des points concaves et convexes (a) cas d’ une tumeur maligne et (b) d’une tumeur

bénigne.

D’apres la table 3.2, on remarque que les valeurs retenues par notre RDM améliorée respectent
la séparation entre les masses maligne et celles bénigne ainsi que la méthode RDM. En plus de ¢a, la
séparation a travers notre méthode est plus claire ; car si on prend par exemple le cas de la
caractéristique R on constate une distinction plus claire (les valeurs des cas malignes varient entre 0.13
et 0.21 alors qu’elles varient entre 0.013 et 0.018 pour les cas bénignes) par rapport a la caractéristique
R de la méthode RDM (les valeurs des cas malignes sont entre 0.02 et 0.03 alors qu’elles sont entre

0.018 et 0.029 pour les cas bénignes).
Parmi les caractéristiques extraites de la méthode RDM, on peut utiliser dans notre travail les

caractéristiques suivantes: 1’écart type SDEV, la rugosité R et le rapport AR (voir la section 3.2.3)

puisqu’elles caractérisent mieux les contours stellaires.
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RDM | 4 0.5723 0.6048 0.8602 0.8131
moy

‘tend

ctendue A, 0.1260 0.1470 0.0352 0.0545
- 0.1693 0.2108 0.0715 0.1047
R 0.1326 0.2102 0.0187 0.0138

RDM | 4 0.6224 0.6053 0.8598 0.8153
moy
A, 0.1012 0.1140 0.0305 0.0522
- 0.1518 0.1693 0.0629 0.0999
R 0.0238 0.0363 0.029 0.0188

Tab 3.2. Comparaison des valeurs retenues par la méthode RDM et RDM étendue.

4.1.2. Indice d’Angle (IA)

L’importance de la technique RDM réside dans la meilleure description du contour stellaire. En
contre partie, cette technique ne permet pas de distinguer, d’une manicre efficace, entre les cas des
contours stellaires et ceux microlobulés. Ce probléme peut étre résolu si on prend en considération la
notion d’angles.

Partant de la méthode RDM et en utilisant les points concaves et convexes vus dans la section
précédente, on ajoute a notre descripteur de forme une caractéristique, propre a notre application,
qu’on I’appelle Indice d’Angle (IA). Cette derni¢re permet la description de contours stellaires (figure

3.20 (a)) et de contours microlobulés (figure 3.20 (b)).

@) (b)

Fig. 3.20. Cas traité par la caractéristique 1A :(a) contour stellaire et (b) contour micro-lobulé.
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Elle est basée sur le calcul d’angle et est définie par le rapport entre les angles @; (calculés a partir des

points convexes et concaves) et les angles 671- (calculés a partir des points convexes et ses voisins). La

caractéristique d’indice d’angle est donnée par I’équation suivante :

N
2.
IA=5] (Eq. 3.10.)
2.9,
=1
Avec @; < 0.

A la figure 3.21, on présente un contour d’une masse microlobulée et la maniére de calcul

d’angle 91- et d’angle ;. Pour un point i du contour, I’angle @; est ’angle fait par le point convexe

Peonvexe (1) €t ses voisin concaves gauche (i-1) et droite (i+1). L’angle 671- est angle fait par le point

convexe Peonvexe (1) €t point convexe gauche Peonvexe (i+1) et droite Peopyexe (i-1).

PCOHVCXC (1 +1)

PCOHVCXC ( 1)
I'4

PCOHC&VC (1 +1) (1 _1)

KPconvexe (1 '1)

Fig. 3.21. Calcul des angles 0, et@;.

On peut déduire que, plus les valeurs des angles ¢, soient proches des valeurs des angles 671-,

plus la forme de tumeur est bénigne. Contrairement, lorsque les valeurs des angles @, soient loin des

valeurs des angles 671- la forme de tumeur est maligne. Les valeurs retournées par 1’indice d’angle (IA)
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sont limitées dans I’intervalle [0 ; 1]. En effet, pour une forme convexe avec un contour régulier la
valeur de IA =1 alors que pour une forme possédant un contour microlobulé la valeur IA<<I.
L’avantage de cette caractéristique, est qu’elle est normalisée et est invariante a toute
transformation affine. Aussi, elle a une meilleure complexité¢ par rapport aux autres caractéristiques
basées sur le calcul d’angle [49] vu qu’on se limite & un nombre réduit de I’ensemble des points du

contour alors que dans les autres méthode le calcul d’angle englobe tous les points du contour.

4.1.3. Convexité (CVX)

La convexité est une caractéristique utile dans la discrimination entre une tumeur bénigne et
autre maligne et elle est aussi simple a calculer.
En général, le calcul de la convexité CVX peut s’effectuer a I’aide de deux manicres :

— Soit on utilise le rapport entre I’aire de la forme A (F) et ’aire de ’enveloppe convexe A (E):

CVX =‘j((—g (Eq. 3.11)

— Soit on utilise le rapport entre le périmétre I’enveloppe convexe P(E) et le périmetre de la

forme P (F):

CW(z = ﬁ(—ﬁ) (Eq. 3.12)
(F)

Des travaux d’analyse mammographiques font appel a la caractéristique de convexité basée sur
le calcul d’aires (équation 11). Cependant, dans une étude comparative sur 1’efficacité de la convexité
dans I’analyse des formes J. Zunic et al [71] ont montré que le calcul de cette caractéristique en se
basant sur le périmetre au lieu de I’aire permet d’augmenter I’écart entre les valeurs de convexité pour
les formes convexes avec celles non convexes. La figure 3.22, présente une forme irréguliére non

convexe d’une tumeur maligne.

1
Fig. 3.22. Calcul de convexités : CVX;= (1-h) et CVXo=2/(3-h).
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En prenant une valeur de h proche de 0, on aura une valeur de CVX1 qui est proche de 1

(lim(l—b) =1) et une valeur de CVX2 qui tends vers 2/3 (Lim 2 22), par la suite on
h—0 h—0 3

(-4)

constate que CVX2 décrit d’'une manicre plus exacte la forme au contraire de CVX1 qui va conclure
sur le faite que la forme est convexe ce qui n’est pas le cas. Donc la convexité basée sur le calcul
d’aires peut mener a des décisions erronées ce qui nous empéche a utiliser cette caractéristique malgré

qu’elle est la plus utilisée dans la littérature.

Pour rendre notre description des contours plus fiable, nous proposons d’utiliser la convexité

calculée a partir des périmétres de la forme et de I’enveloppe convexe.

4.2. Caractéristiques basées sur la région

Les caractéristiques basées sur la région sont utilisées pour décrire le contenu d’une forme. En
mammographie, on traite des masses qui peuvent étre rondes, ovales, lobulaires et irrégulicres.
Dans notre étude, on opte pour I'utilisation de la circularit¢ C vu qu’elle est simple a implémenter et
qu’elle peut étre utile pour distinguer les masses réguliéres et les masses irrégulieres. En plus de la
circularité¢ la caractéristique NRV, extraite de 1’enveloppe convexe, peut nous aider a décrire les
masses et peut nous donner de meilleurs résultats. Notre contribution est 1’intégration d’une nouvelle
caractéristique. Cette derniere, notée Cercle Interne Externe (CIE), constitue une amélioration de la

caractéristique d’excentricité (voir la section 3.1.3).

4.2.1. Circularité (C)

L’utilisation de cette caractéristique ne fait pas partie de nos contributions, mais son utilisation
fréquente dans plusieurs approches d’analyse et sa simplicité d’implémentation nous encourage a
I’utiliser. D’ou I’idée de profiter de la circularité C (présentée dans la section 3.1.2) qui peut donner

des résultats importants [47] et surtout lorsqu’on étudie des formes qui peuvent étre circulaires.

4.2.2. Cercle Interne Externe (CIE)
Pour calculer le taux d’¢élongation d’une masse mammographique, on utilise la caractéristique

d’excentricité. Mais I’excentricité, comme on le montre par la suite, ne peut pas étre efficace dans

plusieurs cas ce qui donne un mauvais effet lors de la caractérisation des formes mammographiques.
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Sur la figure 3.23 on donne un exemple de calcul d’excentricité pour deux formes
mammographiques. En calculant le rapport entre I’axe mineur et I’axe majeur de la forme maligne
(figure 3.23 (b)), on remarque que la valeur retournée est la méme pour le cas de la forme bénigne

(figure 3.23 (a)). Par conséquent, I’excentricité, dans ce cas, conduira vers une fasse décision.

. Axe majeur
Axe majeur

Axe mineur

Axe mineur

(a) (b)
Fig. 3.23. Mauvaise description par I’excentricité :(a) forme ronde bénigne et (b) d’une forme

allongée maligne.

Pour remédier a ce probléme, nous nous proposons d’utiliser une autre caractéristique notée
« Cercle Inscrit Circonscrit » (CIE). Cette derniere a été utilisée par C. Chettaoui et al [54] dans leur
travail d’analyse des globules drépanocytaires. Ils ont montré que la caractéristique CIE peut palier les
défauts d’utilisation d’excentricité dans la description des régions qui peuvent étre allongées. Cette
caractéristique est basée sur le calcul de rapport entre deux rayons : le rayon Rgr du plus grand cercle
interne (le cercle en bleu a la figure 3.24) et le rayon Rpe du plus petit cercle externe (le cercle en

rouge a la figure 3.24) de la forme étudiée. Elle est donnée par 1’équation suivante :

R,
CIE=—2- (Eq. 3.13.)

R,

En analysant la figure 3.24, on remarque que pour une forme ronde (figure 3.24 (a)) la valeur de CIE
est proche de 1 puisque la valeur de Rgi est trés proche de la valeur de Rpe, alors que pour une forme
allongée (figure 3.24 (b)) la valeur de CIE devient proche de 0 puisque la valeur de Rgr est loin de la
valeur de Rpe.

L’avantage de cette caractéristique est qu’elle est invariante a toute transformation affine. Elle

est adéquate a notre travail et elle représente une amélioration de la caractéristique I’excentricité. Mais
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son calcul est moins rapide, étant donné que pour chaque forme on doit parcourir tous les points pour

déterminer le cercle inscrit dans 1'objet qui contient ce point.

@) (b)

Fig. 3.24. Caractéristique CIE pour une (a) forme ronde et (b) une forme allongée.

4.2.3. Valeur moyenne résiduelle (NRV)

A partir de I’enveloppe convexe, on utilise la caractéristique NRV (décrite dans la partie 3.2.2)
qui donne les meilleurs performances par rapport aux caractéristiques qu’ont peut extraire, et qui peut

étre utile dans la distinction entre les régions réguliéres et irrégulicres.

5. Conclusion

Dans ce chapitre, une étude sur les méthodes de description de forme, utilisées pour la
discrimination entre les masses malignes et bénignes, a été faite. Le choix de la méthode a pris en
compte deux catégories de caractéristiques : la premiére est basée sur le contour et elle sert a décrire la
régularité¢ de la frontiere d’une masse. Quant a la deuxi¢me, elle est basée sur la région et permet la
description de contenu d’une masse.

Parmi les méthodes de description du contour, on a montré que la méthode de la mesure de la
distance radiale (RDM) posséde une complexité de calcul minimale par rapport aux autres méthodes
telles que les moments et les méthodes basées sur le calcul d’angles. Nous avons proposé une méthode

de calcul permettant I’optimisation de la technique RDM afin de réduire de plus en plus la complexité
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temporelle. En utilisant la méthode RDM on a introduit une nouvelle caractéristique (IA) qui est basée
sur le calcul d’angle et a pour réle la description des contours microlobulés.

En plus des caractéristiques basées sur le contour, on a utilisé trois autres caractéristiques basées sur la
région : la premicére est la circularité (C) qui décrit les régions rondes, la deuxiéme est le Cercle Interne
Externe (CIE) qui décrit les régions allongées. Tandis que, la troisiéme caractéristique, extraite a partir
de D’enveloppe convexe, notée la NRV, est destinée a décrire la convexité¢ de la région. Ces

caractéristiques seraient évaluées dans le chapitre suivant.
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Validation et évaluation du flot proposé

Dans le chapitre précédent, on a définit un descripteur de forme a utiliser dans la discrimination
entre les tumeurs malignes et celles bénignes. Ce descripteur contient deux catégories de
caractéristiques : les caractéristiques basées sur la région et celles basées sur le contour. Dans ce
chapitre, on fait recours a la phase de validation de notre approche en se basant sur un flot d’analyse.
Pour cela, on commence par présenter le flot d’analyse proposée, ensuite on détaille chaque phase
d’analyse toute seule en indiquant son objectif, et enfin on termine par présenter et discuter les

résultats donnés par le descripteur de forme proposé.

1. Présentation du flot d’analyse

Le fl6t d’analyse proposé décrit les phases a suivre pour analyser les masses (voir la figure 4.1)
mammographiques. Ces phases sont respectivement: la segmentation, 1’extraction des caractéristiques

et la classification.

Segmentation : Identification de la masse
r Description : Extraction des caractéristiques ‘

Basées sur le contour Basées sur la région
Classification

| |
| Desionmsebigneoumlgne

Fig. 4.1. Fiot d’analyse proposé.
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Afin de d’extraire les caractéristiques, définies dans le chapitre précédent, on a besoin
d’identifier la masse sur laquelle on fait tous les calculs. Pour cela, on se propose d’utiliser des
techniques de segmentation classiques. Dans cette phase, on commence par une sélection manuelle de
la région suspecte et a partir de laquelle on applique une méthode de segmentation pour identifier la
forme. A partir de cette forme on applique une deuxiéme méthode de segmentation qui permet d’isoler
le contour.

Dans la phase d’extraction des caractéristiques, a travers la région et le contour déja identifiés,
on réalise notre descripteur de forme en calculant un ensemble de 8 caractéristiques. Aprés avoir
calculé I’ensemble des caractéristiques, et pour évaluer les résultats trouvés, on passe a une étape de
classification. Cette derniére nous permet d’avoir une information sur la décision ainsi que sur le taux
de performance de notre descripteur de forme.

Afin de voir I'impact de la classification sur les caractéristiques qu’on a défini on a utilisé trois
classifieurs supervisés de différents types: un probabiliste, un autre basé¢ sur 1’apprentissage et un
troisiéme exacte.

Dans cette section, on présente les détails de chacune des trois phases composant le flot

d’analyse proposé.

1.1. Identification de Ia masse (méthodes de segmentation)

La phase de segmentation est sans doute la colonne vertébrale de toute étude sur le
traitement/analyse d'images. De nombreuses techniques, méthodes, algorithmes peuvent étre trouvés
dans la littérature. Le niveau de connaissance dans le domaine est tel qu'il est nécessaire, a I'heure
actuelle, de choisir une technique de segmentation adaptée a une application donnée. En
mammographie, plusieurs méthodes de segmentation ont été utilisées pour I’extraction de région
d’intérét (RI) a partir d’une image. Ces méthodes sont classées en trois catégories : les méthodes
basées sur la région [23], [38], les méthodes de regroupement de pixels (clustering) [24] et les

méthodes basées sur le contour [37].

Vu que notre descripteur de forme proposé est une combinaison des caractéristiques qui
décrivent la région et le contour d’une forme, nous proposons d’utiliser deux méthodes de
segmentation : une méthode qui permet 1’identification de la région et une autre pour la détection du

contour.
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Notre méthode proposée pour I’identification des masses est semi-automatique et commence depuis la
sélection manuelle d’une zone suspecte, dans I’image, par le radiologue : La figure 4.2 présente le flot

d’extraction de masse propos¢.

Sélection d’une zone suspecte
dans I’image.

'

Elimination du bruit (Filtre Médian).

1 Image sans bruit.

Identification de la région par seuillage
(seuillage automatique).

m Masse extraite apres seuillage.

Détection du contour (Filtre de Sobel).

m Contour de la masse.

Extraction des points du contour.

Fig. 4.2. Flot d’identification d’une masse.
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Le flot proposé se compose de quatre étapes : élimination du bruit d’une zone sélectionnée
manuellement, extraction de la région, extraction du contour a partir de la région et extraction des

points du contour.

1.1.1. Prétraitement (élimination de bruit)

Cette premicre étape de prétraitement a pour but d’améliorer la qualité de l'image de fagon a ce
que le traitement qui suivra soit optimal en qualité. Elle permet d’atténuer le bruit de 1'image. Pour cela
plusieurs filtres passe-bas peuvent étre utilisés. Parmi ces filtres passe-bas qu’on peut utiliser est le

filtre médian.

1.1.2. /dentification de la région (seuillage)

Pour extraire une région d’une image I, on peut utiliser le seuillage binaire qui est un cas

particulier des méthodes par regroupement. Les méthodes de binarisation consistent a transformer une

image de niveau de gris en une image binaire a travers un seuil S bien déterminé ; c'est-a-dire pour f
une fonction de binarisation et (X, ¥) un pixel de I'image, ona (A x, y)) € {0,1}.

L’implémentation du seuillage binaire d’une image est trés simple mais la problématique est
dans le choix de seuil. C’est pour cette raison, qu’on peut utiliser une méthode de seuillage

automatique comme celle décrite dans [73].

1.1.3. Détection du contour (le filtrage de Sobel)

Apres le seuillage, on passe a I’extraction du contour a I’aide d’une méthode de détection.
Parmi les méthodes possibles on cite la méthode de Sobel, la méthode de Laplacien ou la méthode de
Snake.
Dans cette étude, on opte pour la méthode de Sobel pour I’extraction de contour car c’est la méthode la

plus simple a implémenter et qui permet d’aboutir a nos besoins. Cette méthode est basée sur le filtrage

passe-haut et elle consiste a appliquer les deux filtres ( G, pour I’axe horizontal (X) et Gy pour I’axe

vertical(Y)) sur I’image (voir figure 4.3).

G, G,

-1 0 1 -1 -2 -1
-2 0 2 0 0 0
-1 0 1 I 2 1
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Le contour résultat est donnée par G= 1/ ) ou g, et g sont les resultats de I’application
des filtres Gy et G sur I'image (c'est-a-dlre g, = GX* letg,=G,*1).

-1 0 1

-2 0 2

-1 0 1 —
G+G

—1—2—1
\ 0 0 0

I 2 1

@) (b) ©

Fig. 4.3. Filtrage Sobel : (a) Image initiale, (b) application de deux filtres 3x3 et (c) contour détecté.

1.1.4. Extraction des points du contour

L’extraction des points du contour nous permet d’obtenir une image binaire ; c'est-a-dire des
pixels blancs représentant les points de contour et des pixels noirs représentant les autres points de
I’image. Il existe plusieurs méthodes qu’on peut utiliser comme celle basée sur 1’algorithme de tortue
[62], ou celle basée sur le chainage de Freeman [63]. Dans notre étude, nous avons choisi la méthode

basée sur le chainage de Freeman pour le suivi du contour comme indique la figure 4.4.

= B
I I
" _l__;.__ —--—--'—-—_Fn—
| .? i i =3 |
";1__-}1.“& !-,5" | =1 I; = :1--'
..J11 -d ? I I ﬂl; _.I:".
Eo S f;r |
Fﬁ. ! G xS
ttl!t?'r-j 3 jD 0 _I;rT } T T 0
& } o 52 8 1
(a) (3223223...111) (b) (54544.. 222)

Fig. 4.4. Chainage de Freeman dans le cas de direction a (a) 4 connexité et 4 (b) § connexité
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Son principe est de réaliser le chainage par suivi des pixels du contour suivant une direction choisie
dans un ensemble fini. La direction est codée par une suite comprise entre 0 et 3 en 4 connexités (4
voisins pour chaque pixel) et une suite comprise entre 0 et 7 en 8 connexités (8 voisins pour chaque

pixel).

1.2. Extraction des caractéristiques

Pendant I’étape d’identification de la masse, on a utilisé¢ la méthode de seuillage et la méthode
de Sobel. L’utilisation du seuillage est utile dans le calcul des caractéristiques qui décrivent la région
alors que I'utilisation de la méthode de Sobel est utile lors du calcul des caractéristiques qui décrivent
le contour. On a choisit ces méthodes vu leur simplicité d’implémentation. Par la suite, on passe a
I’étape d’extraction de caractéristiques qui constitue la deuxieéme phase de notre flot d’analyse et qui
représente 1’objectif de notre travail.

Dans la figure 4.5 on présente deux images : la premiere (a) représente la région de la tumeur
avec leur caractéristiques (C, NRV, CIE), et la deuxieme représente le contour avec I’ensemble des

caractéristiques que lui sont associ¢ (CVX 0, R, AR, IA).

NRV
CIE

CVX

AR
IA

(b)

Fig. 4.5. Caractéristiques (a) de région et (b) de contour.
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Les caractéristiques de CIE (Cercle Interne Externe), C (la circularité¢) et NRV (I’indice de
convexité), qui décrivent la région, jouent le rdle de discriminants entre les masses réguliéres (rondes,

ovales, lobulaires) et les masses irrégulieres (voir la figure 4.6).

oleojolk

@) (b) (©) (d)

Fig. 4.6. Les régions a décrire . (a) rondes, (b) ovales, (c) lobulées et (d) irréguliéres.

Les caractéristiques qui décrivent le contour ont pour objectif la distinction entre les contours
stellaires, micro-lobulés et irréguliers (voir la figure 4.7). Pour cela on utilise la convexité¢ (CVX),
I’indice d’angle (ZA) et trois autres caractéristiques a partir de la technique RDM qui sont la déviation

standard (0 ), la rugosité (R) et le rapport (AR).

@) (b)

Fig. 4.7. Les contours d décrire : (a) stellaires et (b) microlobulés.

Concernant la description des contours indistincts et masqués (figure 4.8), plusieurs travaux utilisaient
des caractéristiques de texture et d’intensité [45], [48] vu que leurs descriptions avec des
caractéristiques de forme, sont difficile. Pour cette raison, Dans notre travail, on ne traite pas ce genre

des contours.

@) (b)

Fig. 4.8. Contours (a) indistincts et (b) masqués.
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Finalement, on a huit caractéristiques dont chacune d’entre elles posséde un rdle bien déterminé

dans la phase de discrimination. Ces caractéristiques, ainsi que leurs roles sont décrites dans la table ci-

Role

Basées sur la région

Cette caractéristique donne une indication sur
I’¢longation de la forme. Elle est utile dans la distinction
entre les formes rondes ou elliptiques et les formes
irrégulieres.

Cette caractéristique indique le dégrée de circularité¢ de
la forme.

Elle indique le dégrée de régularité¢ de la région d’une
masse. Elle permet la description des formes lobulaires,

ovales et rondes.

Basées sur Ile contour

dessous :
Caractéristique
R.
i
(1) CIE= R,
4r A
@ C="%
AR)
NRV=">—=~
A3) P(E)
_PE)
CVX=——~
@ PE)
N 2
(5) o= LN]’:I (dn(l) - dmoy)
e .
R=—>» |d ()—-d,(i+1
(6) N |d, (1)~ d,(i+1)
_ 1 S
@) AR = N*—dmy* ;( d,(1)—- dmoy)
N
2%
®) IA=13
2
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Elle indique le dégré de convexité du contour.

Ces trois caractéristiques sont utiles dans la description
des contours stellaires. Elles permettent la distinction
entre les masses stellaires et celles qui ont des contours

lisses.

Elle donne une indication sur la régularité du contour et

permet la description des contours microlobulés.

Tab 4.1. Liste des caractéristiques utilisées.
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1.3. Classification

Une fois I’extraction des caractéristiques est effectuée par les méthodes étudiées dans la section
précédente, on peut procéder par une classification des masses issues des images mammographiques
en se basant sur le vecteur caractéristique. La classification des images mammographiques constitue la
phase finale de notre travail qui sert a partitionner les masses en deux classes : les masses malignes et
celles bénignes. Pour cela, il faut choisir le classifieur adéquat et le plus performant, c'est-a-dire, celui
qui prédit correctement les classes.

Dans cette section, on donne les méthodes retenues qui serviront a une prise de décision afin d’aider le
médecin dans son travail.

La procédure de classification sera réalisée automatiquement a partir d’une base d’exemples
(un exemple consiste en une description d’un cas avec la classification correspondante). Un systeme
d’apprentissage doit alors, a partir de cette base d’exemples, déterminer une procédure de
classification. Le probléme est donc un probléme inductif; il s’agit en effet d’extraire une regle
générale a partir des données observées. La méthode devra classer les exemples d’échantillons mais
surtout avoir un bon pouvoir prédictif pour classer correctement les nouvelles descriptions.

Il existe plusieurs méthodes de classification réparties en deux catégorie : les méthodes supervisées et

celles non supervisées.

Méthode de classification

I I I ® 0 000 00

Probabilistes Exactes Apprentissage
L L L
1 1 1 1
Supervisées Non Supervisées Non Supervisées Non
supervisées supervisées supervisées

® 0 000 00 ® 0 000 00 ® 0 000 00

LG (D Ok
- Ol Cw

i

Arbre de
décision

Fig. 4.9. Méthodes de classification.
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La classification supervisée suppose qu’on connait les classes possibles et qu’on dispose d’un
ensemble d’instances déja classées, servant de base d’apprentissage. Le probléme est alors d’étre
capable d’associer a tout nouvel objet sa classe la plus adaptée en se servant des exemples déja
étiquetés. Dans ce sens, on peut citer quelques méthodes de classification automatique supervisée :

— Le classifieur KPPV (K-plus proches voisins ou K-NN) : ¢’est un classifieur exact.
— Le classifieur Bayes : c’est un classifieur probabiliste.

— Le classifieur MLP (Multi-Layer Perceptron) : qui est un classifieur basé sur I’apprentissage.

Dans la classification non supervisée, les classes possibles ne sont pas connues a 1’avance et les
exemples disponibles sont non étiquetés. Le but est donc de regrouper dans un méme groupe (ou
cluster) les objets considérés comme similaires, pour constituer les classes. L’apprentissage non
supervisé ne peut fonctionner que si les données ont déja une structure interne.

Dans notre travail on s’intéresse uniquement a la classification supervisée (voir la figure 4.9).
Notre objectif n’est pas de proposer ou d’évaluer une nouvelle méthode de classification pour la prise
de décision, mais d’utiliser une ou plusieurs méthodes qui permettent de répondre a nos besoins. En
effet, pour notre étude, on a choisit des méthodes de différentes catégories : une de la classe des
méthodes exactes (KPPV), une des méthodes probabilistes (Bayes) et une méthode de la classe basée
sur 'apprentissage (MLP) pour pouvoir comparer et tirer des résultats intéressantes servant a affiner
nos prédictions. Une comparaison entre les résultats de ces classifieurs sera détaillée dans ce qui suit

afin de choisir le meilleur dans notre cas.

2. Evaluation des caractéristiques

En imagerie médicale, on utilise des critéres afin d’évaluer la performance d’un classifieur. Les
criteres d’évaluation les plus utilisés en mammographie sont la sensibilité, la spécificité et le taux
d’exactitude :

— La sensibilité est la capacité d’une telle technique a découvrir les positifs c’est a dire les

cancers malignes. L’équation de la sensibilité est donnée par :

- Eq. 4.1.
Sensibilité P EN (Eq )

— La spécificité est la capacité d’une telle technique a découvrir les négatifs c’est a dire les

cancers bénignes. L’équation de la spécificité est donné par:

=_ Y Eq. 4.2.
Spécificité=—rr = (Eq.4.2)
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— Le taux d’exactitude est la capacité d’une telle technique a découvrir les négatifs et les positifs

a la fois. Elle est définie comme suit;

VN+ VP
_ Eq. 43.
X =N P+ P+ FN (Ba.43)

Les parametres utilisés par les critéres d’évaluation sont résumés dans le tableau ci dessous :

Cas Classifieur En réalité
Faux Positif (FP) maligne bénigne
Faux négatif (FN) bénigne maligne
Vrai Positif (VP) maligne maligne
Vrai négatif (VN) bénigne bénigne

Tab 4.2. Résumé de I’ensemble de parametres utilisés.

Afin de voir I'impact des classifieurs sur les résultats trouvés, on présente les différents
résultats trouvés par chacune des trois classifieurs. Tout d’abord, on fait une comparaison entre les
résultats trouvés par les caractéristiques basées sur la région et ceux trouvés par les caractéristiques
basées sur le contour.

Pour évaluer le changement de calcul sur la technique RDM et sur la convexit¢ CVX, on fait
une comparaison entre les résultats trouvés par notre méthode et ceux trouvés par les autres travaux
incluant, dans leurs approches, ces techniques. Aprés, on procéde par une évaluation de la
caractéristique (IA) basée sur le calcul d’angle.

Finalement, on donne quelques résultats générés de différentes approches d’analyse des masses

mammographiques.

2.1. Base d’images utilisée

La Base d’images Numérisées de I'Université de Florida DDSM (The Digital Database for
Screening Mammography) est une base de données d’images mammographiques digitalisée disponible
en ligne [70]. Elle est divisée en 43 volumes:15 volumes malignes, 16 bénignes et 12 normales. Au
total, le nombre de cas est de 2620. A chaque cas est associ¢ un ensemble d’informations concernant le
patient (Age, densité, description pour les caractéres anormaux...) et des informations concernant
I’image (Scanner, résolution, ...). De plus, pour les images qui contiennent des régions suspectes, des

informations sont associées sur ’emplacement et les types des régions.
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Pour la phase de test, on a utilisé un ensemble d’images qui contiennent des masses sélectionnées de la

base de données DDSM avec la composition suivante :

Cas maligne Cas bénigne
Base 120 120
Test 130 130

Tab 4.3. Résumé de I’ensemble d’image DDSM utilisées dans ce travail.

On a choisi d’utiliser la base de données DDSM vu qu’elle gratuite par opposition a d’autres

bases telles que MIAS (The Mammographic Image Analysis Society).

2.2. Evaluation des caractéristiques basées sur le contour et sur la région

En regardant les résultats des caractéristiques basées sur le contour présentés par le tableau 4.4,
on remarque un meilleur taux de détection des cas malignes (sensibilité), par rapport au taux de
détection des cas bénignes (spécificité), pour les trois classifieurs utilisés.

Malgré que le classifieur Bayesien donne le meilleur taux de spécificité (94.80%) et le
classifieur MLP donne le meilleur taux de sensibilité¢ (97,90%) et le meilleur taux d’exactitude
(95,98%), on ne peut pas dire qu’un classifieur est mieux qu’un autre vu que la différence entre les

résultats donnés par les trois classifieurs n’est pas grande.

Caractéristiques basées sur le contour

Tab 4.4. Résultat de test des caractéristiques basées sur le contour.

Concernant les résultats des caractéristiques basées sur la région, comme I’indique le tableau
4.5, on remarque un meilleur taux sensibilité donné par les trois classifieurs. Aussi, on remarque que le
classifieur MLP donne le meilleur taux d’exactitude (95,58%) et le meilleur taux de spécificité

(94,50%), alors que le classifieur Bayes méne a un meilleur taux de sensibilité (97,37%).
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Caractéristiques basées sur la région

Kppv Bayes MLP

Spécificité (%) 92,96 90,33 94,50
Sensibilité (%) 95,45 97,37 96,70
Taux d’Exa (%) 94,17 93,57 95,58

Tab 4.5. Résultat de test des caractéristiques basées sur la région.

En comparant les résultats fournis par chaque classifieur dans les deux tables 4.4 et 4.5, on
constate que les deux classifieurs Kppv et Bayes donnent le meilleur taux de spécificité et d’exactitude
pour le cas des caractéristiques basées sur le contour (respectivement, ils donnent le meilleur taux de
sensibilité pour le cas des caractéristiques basées sur la région). Le classifieur MLP donne le meilleur
taux de sensibilité et d’exactitude concernant les caractéristiques basées sur le contour
(respectivement, pour le cas des caractéristiques basées sur la région, ils donnent le meilleur taux de
spécificité).

Caractéristique de contour
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Kppv Bayes MLP

Spécificité (%) 93,67 94,80 94,20
Sensibilité (%) 95,10 95,16 97,90
Taux d’ Exa (%) 94,37 94,97 95,98

Vecteur caractéristique (basé sur le contour et la région)

Kppv Bayes MLP

Spécificité (%) 92,96 90,33 94,50
Sensibilité (% ) 95,45 97,37 96,70
Taux d’Exa (%) 94,17 93,57 95,58

Kppv Bayes MLP

Spécificité (%) 94,53 96,04 95,63
Sensibilité (%) 97,10 97,55 96,74
Taux d’Exa (%) 95,78 96,78 96,18

Tab 4.6. Résultat de test de notre vecteur caractéristique basé sur le contour et sur la région.
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L’apport réel de ce travail, réside dans la combinaison des caractéristiques basées sur la région
et celles basées sur le contour. D’apres la table 4.6, on remarque que les trois classifieurs utilisés nous
donnent la meilleure performance. En effet, les taux des critéres d’évaluations sont augmentés avec la
combinaison des caractéristiques et par la suite leur fusion permet d’augmenter le taux de détection des
tumeurs malignes et celles bénignes. Aussi, en comparant les résultats donnés par les trois classifieurs,
on remarque que le classifieur Bayesien posséde la meilleure sensibilité (97,55%), la meilleure
spécificité (96,04%) et le meilleur taux d’exactitude (96,78%) par rapport aux classifieurs Kppv et
MLP, malgré que la différence entre les performances de trois classifieurs n’est pas grande.

Finalement on peut déduire que I’utilisation d’'une combinaison d’un descripteur basé¢ sur la

région et d’un autre basé sur le contour a amélioré la description des masses mammographiques.

2.3. Evaluation des caractéristiques RDM

Afin de montrer I’efficacit¢ de RDM ¢étendue, on a fait une comparaison (tableau 4.7) des
résultats trouvés et ceux donnés par RDM [45], [47], [53]. On constate que les trois classifieurs utilisés
donnent une meilleure sensibilité, une meilleure spécificité et un meilleur taux d’exactitude pour notre
proposition. En effet, le taux de spécificité donné par RDM étendue est de 88% a 91% alors qu’il est
de 83% a 89% par les caractéristiques RDM utilisées dans d’autres travaux. Le taux de sensibilité
qu’on a trouvé est de 87% a 92% alors que taux est de 83% a 85% concernant les caractéristiques

RDM d’autres travaux.
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Kppv Bayes MLP
Spécificité (%) 89,74 83,93 86,88
Sensibilité (%) 85,22 83,93 85,43
Taux d’Exa (%) 87,34 83,93 86,14

RDM étendue.

Kppv Bayes MLP
Spécificité (%) 90,28 91,17 88,88
Sensibilité (%) 89,64 87,69 92,82
Taux d’Exa (%) 89,95 89,35 90,76

Tab 4.7. Résultats de test des caractéristigues RDM vs RDM étendue.
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Ce qu’on peut déduire est que la modification appliquée sur la méthode RDM a augmentée
I’efficacité de cette derni¢re dans la séparation des cas représentant des tumeurs malignes de ceux

représentant des tumeurs bénignes.

Pour voir I’apport de I'utilisation des caractéristiques RDM dans notre vecteur caractéristique,
on a fait une comparaison entre les résultats trouvés en utilisant la RDM étendue avec ceux trouvés en
utilisant la RDM figurant dans la littérature. On constate d’aprés le tableau 4.8 que les deux

classifieurs Bayes et MLP donnent la meilleure performance dans le cas de la RDM étendue.

Notre vecteur caractéristique incluant la technique RDM

Kppv Bayes MLP
Spécificité (%) 96 94,16 94,86
Sensibilité (%) 96,37 97,09 96,32
Taux d’Exa (%) 96,18 95,58 95,58

Kppv Bayes MLP
Spécificité (%) 94,53 96,04 95,63
Sensibilité (%) 97,10 97,55 96,74
Taux d’Exa (%) 95,78 96,78 96,18

Tab 4.8. Résultats de test avec intégration de la technique RDM.

Donc on peut dire que notre amélioration de calcul des caractéristiques RDM (voir le chapitre
3, section 4.1.1.) a améliorée davantage la description des masses mammographiques et la
performance de classification. En effet, on a optimisé le temps de calcul et on a augmenté la

performance des caractéristiques extraites de la méthode RDM.

2.4. Evaluation de la caractéristique d'angle (IA)

Le tableau 4.9 présente les résultats donnés concernant la caractéristique IA. Les résultats
trouvés en utilisant les trois types de classification sont proches. En effet, les taux donnés par les trois
criteres d’évaluation permettent d’indiquer la réussite de cette caractéristique dans la description des

contours microlobulés.
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Kppv Bayes MLP
Spécificité (%) 86,9 84,72 87,45
Sensibilité (%) 87,8 92,82 91,9
Taux d’Exa (%) 87,34 88,35 89,55

Tab 4.9. Résultats de test de la caractéristique d’angle (IA).

On ne peut vraiment pas comparer notre résultat trouvé avec les résultats trouvés pour d’autres

caractéristiques d’angle, puisque les critéres d’évaluation et la base d’images utilisés sont différents.

2.5. Evaluation de la caractéristique de convexité (CVX)

Comme dans le cas de la RDM, on a fait une comparaison des résultats trouvés lors de calcul
de la convexité (CVX) comme indique le tableau 4.10. D’aprés cette derniere, on remarque que les
deux classifieurs Kppv et MLP donnent la meilleure performance concernant la caractéristique de
convexité proposée. En effet, la différence entre les résultats trouvés concernant la caractéristique de
convexité proposée et ceux concernant la convexité utilisée par d’autres travaux [45], [47], [53], est
assez grande. Donc, I’amélioration apportée a la caractéristique de convexité a augmenté I’efficacité de

la description d’une masse mammographique.

Le vecteur caractéristique incluant la caractéristique CVX
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Kppv Bayes MLP
Spécificité (%) 88,67 86,64 87,54
Sensibilité (%) 90,9 95,92 95,55
Taux d’Exa (%) 89,75 90,76 91,16

Le vecteur caractéristique incluant la caractéristique CVX proposée.

Kppv Bayes MLP
Spécificité (%) 96 82,8 97,58
Sensibilité (%) 96,37 98,5 97,2
Taux d’Exa(%) 96,18 89,15 97,38

Tab 4.10. Résultats de test de la caractéristique de convexité (CVX).
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2.6. Comparaison avec d autres approches

Dans la littérature, on trouve plusieurs travaux qui ¢étudiaient I’analyse de masses
mammographiques [53], [57], [64]. On présente dans le tableau 4.11, ceux qui sont performants.
Cependant, puisque les méthodes de description de forme, les bases de test et les systémes de
classification utilisés par les autres approches sont différents, on ne peut pas dire qu’on a le meilleur

résultat malgré que les taux de sensibilité et de spécificité trouvés par notre travail soient les meilleurs.

D’apres les résultats qu’on a trouvé et aussi les résultats trouvés dans d’autres travaux, on
constate que les caractéristiques de forme peuvent caractériser les types des masses
mammographiques. Vu que les signes de malignité de la tumeur de sein concernent la forme et la
texture, les caractéristiques de forme restent insuffisantes toutes seules pour une description plus
efficace. C’est pour cette raison qu’on trouve, en mammographie, pas mal d’approches [45], [48], [56],
[59] qui prennent en considération les propriétés de malignité et de bénignité selon la texture des
masses. Donc il vaut mieux d’ajouter des caractéristiques de texture a nos descripteurs pour augmenter

encore le taux d’exactitude concernant la discrimination entre les masses bénignes et celles malignes.

Sensibilité | Spécificité | Exactitude | Classifieur Images utilisées
) | (%) (%)
RangaEISy;]n et al. 95 _ LDA Base locale (39 cas)
. Base locale (226 cas avec
b WEHED G 78,1 79,1 MLP | 109 malignes et 117
[53] L
bénignes)
Base locale (210 cas avec
R.Feng Changet | g o9 92.5 SVM | 90 cas malignes et 120
al [64] L.
cas bénignes)
U. Bottigli et al 28 __ MLP Base CALMA (320cas)
[48]
. Base locale (82 cas)
Kilday [45] 69 - LDA
A. Alva[r4e7r;ga et al 88,0 90.4 $8.8 LDA Base locale (152 cas)
Base DDSM (500 cas
.- avec 250 malignes et 250
Notre proposition 96,04 96,78 Bayes bénignes)

Tab 4.11. Comparaison avec d’autres approches.
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3. Conclusion

Via ce chapitre on a donné un apercu sur la méthode d’isolation des masses a partir d’une
image mammographique. Cette méthode permet d’isoler deux composantes de 1’image : une contenant
la région de la masse et une autre contenant le contour. A partir de ces deux composantes, on a fait
I’extraction des caractéristiques représentant notre descripteur de forme. Ce dernier sera I’entrée d’un

classifieur permettant de prendre une décision concernant le type de la masse.

Dans notre travail, on a utilisé une base d’images DDSM et trois classifieurs de différent types
afin d’évaluer notre descripteur de forme. Le classifieur Bayesien a donné la meilleure performance
par rapport aux deux autres (MLP et KPPV). On a obtenu un taux de 96,04% pour la spécificité, un
taux de 97,55% pour la sensibilité et un taux de 96,78% concernant I’exactitude de classification.
Aussi, la modification apportée a la méthode RDM et au calcul de la convexité a permis d’aboutir a

une meilleure performance par rapport aux autres travaux qui utilisaient ces techniques.
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Conclusions et perspectives

ans ce mastere, on s’est intéressé a la réalisation d’un descripteur de forme pour I’aide a
Dl’analyse des pathologies mammographiques. Afin de réaliser ce travail on a commencé

par une étude bibliographique consacrée a la présentation de différentes pathologies de sein et leurs
caractéristiques. On a trouvé que chaque pathologie posséde ses caractéristiques de forme qui sont
différentes aux autres. En raison de la difficulté de travailler sur toutes les caractéristiques de toutes les
pathologies et la difficulté de les intégrer dans un seul descripteur de forme, on a choisi de travailler
sur une seule pathologie qui est la masse. Cette derniere se caractérise par des propriétés de malignité

et de bénignité selon le contour et la région.

Apres I’étude des pathologies mammographiques on a donné un apergu sur les méthodes les

plus utilisées pour I’objectif de description des masses mammographiques.

Afin d’élaborer notre descripteur de forme, plusieurs approches ont été étudiées. Dans ce
travail, on a procédé par une combinaison des caractéristiques basées sur la région et autres basées sur
le contour. Les caractéristiques décrivant la région ont été choisies pour distinguer les formes rondes,
ovales, lobulées et celles irrégulieres. Parmi les caractéristiques utilisées dans la littérature on a choisi
celles les plus performantes en terme de description et celles les plus simples a implémenter. Les
caractéristiques basées sur le contour, qu’on a utilisé, ont été choisies pour la description de la frontiére
des masses et la distinction des contours réguliers de celles stellaires ou microlobulés. Dans ce cadre,
on a ajouté une nouvelle caractéristique basée sur le calcul d’angle, on a optimisé le calcul des
caractéristiques extraites a partir de la méthode RDM et on a modifi¢ le calcul de la caractéristique de

convexité.

Pour évaluer I’ensemble des caractéristiques proposées, on a utilisé trois types de classifieurs
supervisés de différents types (Kppv, Bayes et MLP). Le classifieur Bayes a donné la meilleure
performance avec un taux de 1’ordre de 96,04% pour la spécificité et un taux de 1’ordre de 97,55%

concernant la sensibilité. Aussi, et grace a notre optimisation de calcul, on a obtenu la meilleure
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performance (sensibilité et spécificité) pour les caractéristiques RDM étendue et la convexité modifiée,

utilisées dans notre descripteur.

Comme perspectives de ce travail de recherche, il est possible de réaliser une méthode de
détection automatique des masses mammographiques. Aussi la réalisation des caractéristiques de

forme pour la description des autres pathologies de sein tel que les microcalcifications.
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ALOE : Analysis of Local Oriented Edges.
AR : Area Ration.

ART : Adaptatif Resonance Therory.
BRCA : BReast Cancer Acronymes.

CAD : Computer Aided Detection.

CADx : Computer Aided Diagnosis.

CIE : Cercle Interne Externe.

CVX: ConVeXité.

DDSM : Digital Database for Screening Mammography.
DoG : Difference of Gauss.

FD : Fractal Dimension.

FDA : Food and Drug Administration.

FN : Faux Négatif ou False Negatif.

FP : Faux Positif ou False Positif.

IA : Indice d’Angle.

KNN : K-Nearest Neighbors.

KPPV : K Plus Proches Voisins.

LDA : Linear Discriminant Analysis.
MIAS : Mammographic Image Analysis Society.
MLP : Multi Layer Perceptron.

MRI : Magnetic Resonance Imaging.
NRYV : Normalised Residual Value.

RBF : Radial Basis Function.

RDM : Radial Distance Measure.

SDEYV : Standard DE Viation.

SVM : Support Vector Machine.

VN : Vrai Négatif.

VP : Vrai Positif.

ZC : Zero Crossing.
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Elaboration d’'un descripteur de forme en vue de classification des
clichés mammographiques

Ali Chérif CHAABANI
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Résumeé : L’automatisation a incité les informaticiens & élaborer des outils d’aide au diagnostic et a
la détection du cancer de sein. Dans ce contexte, on s’est intéressé a la proposition d’'une méthode
de description de forme pour aider au diagnostic du cancer de sein. Pour mieux caractériser la
masse, notre descripteur de forme combine des caractéristiques basées sur la région et autres
basées sur le contour. Pendant ce travail, on a modifié la méthode de la mesure de la distance
radiale (RDM) afin de réduire encore l'ordre de complexité temporelle. Aussi, on a proposé une
caractéristique, basée sur le calcul d’angle, notée Indice d’Angle (/A) afin de mieux décrire les
masses microlobulées. Autres caractéristiques, comme la circularité (C), la valeur moyenne (NRV) et
l'indice d’élongation (CI/E), ont été utilisées pour représenter la région.

Afin d’évaluer I'efficacité de notre descripteur de forme, on a utilisé une base d'images DDSM et trois
classifieurs supervisés de différent types (Kppv, Bayes et MLP). Le classifieur Bayesien a donné la
meilleure performance avec un taux de 96,04% en terme de spécificité et un taux de 97,55% en
terme de sensibilité.

Abstract : Automation has prompted scientists to develop tools to cope with breast cancer
detection and diagnosis. In this context, we proposed a new method to describe the shape to assist
in diagnosis of breast cancer. For better characterizing the mass, our shape descriptor combines
shape and boundary features. During this work, we modified the Radial Distance Measure (RDM)
method in order to reduce the temporal complexity. Also, we proposed a feature, based on the
measure of angle, denoted (/A) to describe the microlobulated masses. Other features like the
circularity (C), the average value (NRV) and the index of elongation (C/E) are used to represent the
region.

To evaluate the effectiveness of our shape descriptor, we used a DDSM database and three
supervised classifiers (Kppv, Bayes and MLP). The Bayesian classifier gave the best performance in
terms of specificity (96.04% ) and sensitivity (97.55%).
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