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Introduction Générale  

e cancer du sein est la première cause de mortalité féminine par cancer en plusieurs pays. 

Des études ont montré qu’en moyenne 12% des femmes risquent de développer un cancer 

du sein durant leur vie [1]. L’agence de recherche sur le cancer de l’organisation mondiale de la santé 

basée à Lyon estime que plus de 150 000 femmes dans le monde meurent par le cancer du sein par an 

[2].  Ces  chiffres  montrent  l’importance  d’une  détection  précoce  de  cette maladie.  La  prévention  de 

cette maladie est très difficile. Pour cela, le seul moyen permettant de réduire le taux de la mortalité est 

le dépistage précoce. Ce dernier, permet de faire le tri entre les patientes ne présentant aucun signe de 

cancer  et  celles  ayant  probablement  un  cancer.  À  l’heure  actuelle,  la  chaîne  conventionnelle  de 

diagnostic repose sur  l’examen clinique,  la mammographie X et  l’échographie en mode B. En cas de 

doute sur la nature d’une structure comprise à l’intérieur du sein, on procède à un examen cytologique. 

L’imagerie par résonance magnétique étant plus coûteuse, elle est pratiquée essentiellement pour des 

études de recherches. Finalement, la mammographie reste la seule méthode de dépistage du cancer du 

sein à un stade précoce. 

La mammographie basée sur  l’examen radiologique du sein, permet principalement de repérer 

trois  signes  indicateurs  de  pathologies  :  les  anomalies  de  la  distorsion  architecturale,  de  l’opacité 

(masse) et de microcalcifications. 

En  général,  la  recherche  en  traitement/analyse  d’images  et  plus  particulièrement  dans  le 

domaine  médical  progresse  tous  les  jours.  La  mise  à  disposition  de  tels  outils  technologiques  au 

médecin  lui  permet  d’améliorer  son  diagnostic  et  certainement  d’optimiser  son  environnement  de 

travail. D’un point de vue « imagerie »,  l’analyse automatique des clichés mammographiques  est un 

défi  qui  fait  l’objet  de  nombreuses  recherches  depuis  plusieurs  décennies ;  c’est  une  succession  de 

plusieurs phases qui ont pour objectif la détection ou le diagnostic de la tumeur de sein. La description 

de forme représente une phase parmi  les phases  importantes d’analyse mammographique vu son rôle 

discriminatif. En ce qui concerne la détection, elle permet la distinction des régions suspectes de celles 

normales. Alors que pour la phase de diagnostic, elle est utilisée pour la distinction entre les tumeurs 

malignes et celles bénignes. 

L
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L’objectif de notre travail est la proposition d’une méthode de description des masses basée sur 

la  forme. Cette  dernière  doit  satisfaire  un  compromis  qualité  de  description  /  temps  de  calcul.  Pour 

cela,  on  commence,  dans  ce  mémoire  de  mastère,  par  une  étude  théorique  et  bibliographique.  On 

présente,  ensuite,  notre  approche de description  de  forme. On procède,  enfin,  par  une  évaluation  de 

notre approche d’analyse mammographique avec une interprétation des résultats obtenus. 

Ce mémoire de Mastère comprend quatre chapitres : 

–  Le chapitre 1 présente les principales pathologies du sein et  leur classification. Il finit par une 

présentation  du  domaine  de  recherche  en  exposant  quelques  applications  développées  pour 

l’analyse des masses. 

–  Le chapitre 2 présente un état de l’art sur les méthodes d’analyse mammographique. 

–  Le chapitre 3 explicite  la méthode adoptée pour la description des masses mammographiques 

en indiquant les critères du choix des caractéristiques. 

–  Le dernier chapitre est consacré à la présentation des méthodes utilisées pour l’identification et 

de  classification  des  masses  pour  évaluer  les  caractéristiques  de  forme  proposées,  ainsi  que 

l’interprétation des résultats trouvés. 

Enfin, on trace des conclusions et on donne quelques perspectives de ce travail.
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mammographie



Généralité sur la mammographie 

Le cancer du sein est le cancer le plus répandu chez la femme à l'échelle mondiale. Il est aussi 

le plus fréquent dans les pays industrialisés [1], [2]. L'incidence est en hausse surtout chez les femmes 

post ménopausées. Par contre, chez les jeunes femmes les taux d'incidence se stabilisent ou sont même 

en régression. Etant donnée que la prévention du cancer de sein reste encore difficile, le dépistage reste 

le seul moyen permettant de diminuer le taux de mortalité ; car plus la maladie est détectée à un stade 

précoce plus les chances de guérison sont grandes. Dans ce contexte, d’une part, la mammographie est 

actuellement  l’examen de référence pour le dépistage du cancer du sein, d’autre part,  les progrès des 

technologies  informatiques  ont  comme  objectif  d’aide  soit  à  la  détection  soit  au  diagnostic  afin  de 

réduire encore le taux de mortalité. 

Dans ce chapitre, on présente quatre parties :  la première donne les principales pathologies du 

sein. Quant à  la deuxième, elle présente un aperçu sur  la mammographie et  son  importance dans  la 

phase de dépistage  et  dans  le  diagnostic  du  cancer  de  sein. Dans  la  troisième partie,  on  focalise  les 

propriétés  de  malignités  et  de  bénignités  à  prendre  en  considération  par  les  radiologues  lors  de 

l’analyse mammographique. Enfin, on donne un aperçu sur les outils d’analyse automatisés permettant 

d’aider à la réduction de taux de mortalité chez les femmes. 

1. Anatomie du sein 

Fig. 1.1. L’anatomie du sein.
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Le sein est un organe constitué d’un tissu graisseux qui repose sur les muscles pectoraux. Chez 

la  femme,  sa  principale  fonction  est  la  lactation.  Il  comporte  15  à  25  lobules  faits  de  glandes 

mammaires responsables de la sécrétion du lait. Celui­ci est conduit par les canaux galactophores vers 

le mamelon. Les  seins  sont  soutenus par  la peau et un  tissu  fibreux qui pénètrent à  l’intérieur de  la 

glande mammaire, participant ainsi à leur maintien. 

2. Cancer de sein 

Le cancer de sein est une maladie où les cellules anormales se multiplient hors de tout contrôle. 

La  croissance  de  ces millions  de  cellules  dans  un  seul  endroit  comme  le  sein  constitue  une  tumeur 

maligne ou un cancer de sein. À partir d’une phase du cancer de sein, les cellules cancéreuses se voient 

propager  vers  d’autre  partie  du  corps  où  elles  s’installent  et  se multiplient  pour  y  former  une  autre 

tumeur. La prévention de la maladie est très difficile car, mis à part l’âge, on ne connaît pas de facteurs 

de risque déterminants. Il est donc difficile de réduire l’incidence du cancer de sein par la prévention. 

En effet, le seul moyen de réduire la mortalité est le dépistage précoce. 

On présente par la suite les différentes pathologies ainsi que les diagnostics correspondants. 

2.1.  Pathologies mammaires 

Les pathologies mammaires  sont classées en quatre groupes qui  sont  les pathologies des  lobules,  les 

pathologies  des  lobes,  les  pathologies  des  canaux  collecteurs  et  les  pathologies  des  enveloppes. Les 

principales pathologies bénignes et malignes du sein rencontrées sont indiquées ci­dessous : 

–  Les pathologies bénignes sont : L’adénofibrome, le lipome, le kyste, le nodule de mastose. 

–  Les pathologies malignes sont divisées en deux catégories : 

•  Cancer  in  situ  :  les  cellules  cancéreuses  se  développent  strictement  à  l’intérieur  des  canaux 

galactophores. Les cellules ne peuvent pas se déplacer dans d’autres parties du corps. Le cancer 

in situ est l’étape qui précède l’apparition d’un cancer infiltrant. 

•  Cancer  infiltrant  :  les cellules cancéreuses,    localisées dans  la paroi des canaux, détruisent et 

franchissent cette paroi. 

2.2.  Diagnostic du cancer du sein 

L’examen  clinique  est  la  première  modalité  de  diagnostic  du  cancer  du  sein  qui  doit  se 

pratiquer, si possible,  en début du cycle menstruel. Le praticien pratique une  inspection comparative 

des deux seins et enfin effectue une palpation de la glande mammaire.  Lorsque le praticien remarque
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un  écoulement  mammelonnaire  unilatéral,  une  infection  cutanée,  et  une  masse  ou  un  ganglion 

palpable, il demande des examens complémentaires. 

Malgré l’utilité de cet examen clinique, il ne peut pas détecter des cancers de moins de 0.5 cm 

de diamètre, et encore moins les cancers non palpables. C’est pour cela, un examen mammographique 

est  nécessaire  et  est  considéré  comme  le  principal  examen  d’imagerie  réalisé  à  l’aide  du 

mammographe (ou scénographe). Ce qui montre aussi  l’utilité et  l’importance de cet examen est que 

chez les patientes âgées de 40 à 50 ans, 20 % des cancers sont ainsi découverts en plus de ceux qui le 

sont par examen clinique et ce taux passe à 40 % après l’âge de 50, car à cet âge le taux de graisse dans 

les seins est plus important et de ce fait les radiographies sont plus faciles à lire [4]. 

En  plus  de  la  mammographie,  d’autres  examens  complémentaires  sont  pratiqués  comme 

l'échographie,  la  scintigraphie,  la  tomodensitométrie,  la  résonance  magnétique.  Mais  seule  la 

mammographie est utile comme test de détection du cancer du sein à un stade précoce. 

3.  Mammographie et dépistage 

La  prévention  de  la  maladie  est  très  difficile  car  les  facteurs  de  risques  sont  soit  mal  connus 

(facteurs  nutritionnels,  comportementaux  ou  environnementaux)  soit  peu  influençables  (risque 

génétique,  facteurs  hormonaux  tels  que  l'âge  des  premières  règles,  de  la  première  grossesse  ou  de  la 

ménopause,...).  Des  études  scientifiques  [3]  ont  permis  de  mieux  comprendre  le  développement  des 

cancers, mais il n'est pas encore possible de savoir pourquoi telle personne développe tel cancer. Il est à 

noter que seulement 5 à 10 % des cancers du sein ont une origine héréditaire liée à la transmission de 

gènes  délétères  dont  les  plus  fréquemment  incriminés  sont  BRCA1  et  BRCA2  (Breast  Cancer 

Acronymes pour 1/2) associés à une prédisposition à la maladie. 

Il est donc difficile de réduire l’incidence de cancer du sein par la prévention. En effet, le seul 

moyen de réduire la mortalité est le dépistage précoce qui est basé sur la mammographie. 

Dans ce qui suit, on donne  le principe de  la phase de dépistage et  le rôle de  la mammographie dans 

cette phase. 

3.1.  Dépistage du cancer du sein 

Le dépistage, aussi appelé prévention secondaire, est défini comme une mesure pour réduire  la 

gravité de  la maladie.  Il consiste, dans  le cas du cancer du sein, à détecter  la maladie au stade  le plus 

précoce  possible ;  c'est  à  dire  à  un  stade  où  le  volume  de  la  tumeur  est  le  plus  petit  possible.    Plus 

simplement, le dépistage revient à rechercher les signes d’une maladie avant qu’elle ne se déclare.
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On note la présence de deux types de dépistage : soit individuel, soit organisé (par exemple un 

examen chaque deux ans). Remarquons aussi, qu'il convient de distinguer entre dépistage et diagnostic. 

Concernant, le dépistage il s’agit de faire le tri entre les femmes ne présentant pas de signes de cancer 

et celles ayant peut être un cancer. Alors que dans  l'activité de diagnostic,  il  s'agit de caractériser  la 

pathologie et de décider le traitement à suivre. 

Donc  malgré  l’utilité  du  dépistage  dans  le  monde  médical  et  particulièrement  en 

mammographie,  il comporte, comme toute procédure, des risques et des bénéfices qu’il  faut bien  les 

connaître pour les maîtriser. 

3.1.1.  Bénéfices 

Le dépistage par la mammographie s'est jugé obligatoire chez les femmes de plus de 50 ans et 

préférable chez les femmes de 40 à 49 ans. L’efficacité a été démontrée dans les années 80 aux Etats­ 

Unis [5] et en Suède [9]. Le dépistage diminue la mortalité par cancer du sein et permet de renforcer 

l’effet  du  traitement  chez  les  femmes  de plus  de  50  ans,  à  condition  d'être  périodiquement  effectué 

chez un nombre suffisant de femmes et de se dérouler dans des conditions optimales de qualité. 

Depuis,  la mise en place de campagnes de dépistage de ce cancer est un thème primordial de 

santé  publique  dans  des  nombreux  pays  industrialisés.  Par  exemple  en  France,  en  1989,  le  Fond 

National  de  Prévention,  d’Evaluation  et  d’Informations  Sanitaires (FNPEIS)  a  initié  un  vaste 

programme  de  dépistage  de  masse :  il  concernait  seulement  6  départements  en  1990,  puis  21 

départements  en  1994  et  aujourd’hui  il  porte  sur  toute  la  France ;  les  femmes  de  50  à  74  ans  sont 

invitées tous les deux ans par  leur régime d'assurance maladie à passer une mammographie gratuite. 

Chaque  mammographie  est  interprétée  par  le  premier  radiologue  puis  par  un  second  lecteur  plus 

spécialisé. Cette deuxième lecture permet de « rattraper » 15 % des cancers détectés [11]. 

3.1.2. Limites 

Les femmes sont exposées à des inconvénients du dépistage [13], aussi bien dans le cadre des 

programmes  organisés  que  dans  le  cadre  du  dépistage  individuel.  Il  faut  bien  connaître  les 

inconvénients du dépistage afin de les contrôler et de les limiter. Parmi les inconvénients, on trouve : 

–  Les  faux  négatifs  :  le  résultat  de  l’examen mammographique  est  négatif  (cas  bénigne),  alors 

que réellement il s’agit d’un cas maligne. 

–  Les faux positifs : le résultat de l’examen mammographique est positif (cas maligne), alors que 

réellement il s’agit d’un cas bénigne. 

Malgré les limites, le dépistage semble être le seul moyen efficace de lutter contre un cancer.
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3.2.Mammographie 

La  mammographie  (ou  mastographie)  est  le  principal  moyen  de  dépistage  et  de  diagnostic. 

C’est un examen radiographique (par rayons X) des deux seins, généralement sous deux incidences (un 

cliché de face et un autre en oblique) qui permet de détecter certaines anomalies. On considère qu'en 

moyenne  le  cancer  est  visible  sur  la  mammographie  de  1  à  3  ans  avant  le  premier  signe  clinique. 

D'autres  modalités  d'imagerie  (échographie,  ultrasons,  IRM)  peuvent  être  employées  mais  à  titre 

d'examen complémentaire en cas de diagnostic difficile. 

Une  mammographie  est  pratiquée  dans  deux  circonstances  :  dans  le  cadre  d’un  dépistage  ou  d’un 

diagnostic à travers deux examens : 

–  L’examen de dépistage :  il  comporte une mammographie de base. Après  l’âge de 45 ans, cet 

examen peut être réalisé dans le cadre du programme de dépistage national généralisé, à raison 

d’une fois tous les deux ans gratuitement. Ce type d’examen très efficace permet de détecter les 

cancers à leur stade le plus précoce, permettant d’en guérir plus de 80% [12]. 

–  L’examen de diagnostic : il est réalisé lorsqu’une anomalie a été détectée au cours d’un examen 

de dépistage ou  lorsqu’une anomalie dans  le sein (douleur, écoulement du mamelon, rougeur 

de  la peau, palpation d’une “boule” dans  le  sein, etc.) a été découverte par  la patiente ou par 

son  médecin  traitant.  Cet  examen  aide  à  déterminer  s’il  s’agit  d’une  anomalie  bénigne  ou 

maligne. En plus des clichés de base, des  images complémentaires peuvent être  réalisées. Le 

médecin  radiologue  peut  ensuite  compléter  la  mammographie  par  une  échographie  et/ou  un 

prélèvement  (c’est  une  action  d’extraire  quelque  chose  du  corps  pour  l’analyser  au 

microscope). 

On peut dire que la mammographie reste l'outil principal de dépistage pour plusieurs raisons [8] : 

•  Le  coût  moyen  d'un  examen  mammographique  est  faible  comparé  à  d'autres  techniques 

d'imagerie comme l'IRM. De plus l'appareillage est mobile et peu encombrant ; 

•  L'examen n'est pas traumatisant. En effet les tissus du sein sont mous et perméables aux rayons 

X, rendant faibles les doses d'irradiation. D'autre part, la compression du sein, nécessaire pour 

obtenir une meilleure uniformité de la densité optique et une réduction du ou de diffusé, ne doit 

pas en général être douloureuse ; 

•  La résolution spatiale d'une radiographie est de l'ordre de quelques dizaines de microns, ce qui 

permet de visualiser les microcalcifications, contrairement aux autres techniques d'imagerie ; 

•  Les mammographies numériques sont de plus en plus utilisées, ce qui permet de disposer du 

signal directement sous forme numérique, avec les avantages associés en terme d'archivage et
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de consultation de dossier médical à distance. Pour autant, la mammographie numérique reste 

coûteuse pour des performances au niveau des diagnostics équivalents à celles des techniques 

conventionnelles. 

Malgré le rôle important de la mammographie dans la phase de dépistage ou de diagnostic, ça 

n’empêche  pas  qu’elle  possède  des  certaines  limitations  tels  que l’irradiation  par  des  rayons  X,  la 

réalisation  d’un  examen  inconfortable,  l’interprétation  difficile  et  la  détection  manquée  d’un  cas 

maligne. 

4. Anomalies radiologiques 

Parmi  les  anomalies  radiologiques  les  plus  courantes  observées  sur  une  mammographie,  on 

peut citer les masses (ou encore les opacités), les calcifications et les distorsions architecturales. Dans 

ce qui suit­on donne un aperçu sur chacune de ces trois anomalies. 

4.1.  Masse 

La masse mammographique est une anomalie qui peut infecter  le sein. Il existe deux types de 

masses (nodulaires et stellaires). On les distingue selon la forme. La masse nodulaire (figure 1.2 (a)) a 

une forme arrondie compacte. Elle est considérée comme tumeur bénigne si sa forme est régulière et 

arrondie  avec un  contour  net  et  bien  défini. Mais  elle  est  considérée  comme  tumeur maligne  si  son 

contour est flou même sur une partie seulement. 

Dans le cas de masse stellaire (figure 1.2 (b)), la forme est comparable à la forme d’une étoile. Elle est 

considérée comme tumeur maligne, et contient des spicules sur sa frontière. 

(a)  (b) 
Fig. 1.2. La masse : (a) nodulaire et (b) stellaire.
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Afin  d’arriver  à  analyser  la  masse,  il  faut  savoir  les  différentes  caractéristiques  possibles  à 

utiliser pour distinguer entre les formes malignes de celles bénignes. Ces caractéristiques sont réparties 

en trois catégories : une catégorie qui décrit  la région, une autre qui décrit  le contour et une dernière 

qui caractérise la densité de la masse. 

Dans ce qui  suit, on présente  les différentes propriétés de malignité et de bénignité qui décrivent  les 

masses mammographiques. 

4.1.1. Description par la région 

La  région  de  la  forme  est  considérée  comme un  signe  indiquant  l’état  pathologique qui  peut 

avoir  la  masse  mammographique.  En  se  basant  sur  la  région,  les  radiologues  spécifient  quatre 

caractéristiques de région (ronde, ovale,  lobulée et  irrégulière) permettant de classifier une masse en 

tant que maligne ou bénigne. 

Les caractéristiques que peut avoir une région sont données par la figure 1.3 et décrites comme suit : 

–  Ronde : la région est sphérique ou circulaire. 

–  Ovale : la région est elliptique ou en forme d’œuf. 

–  Lobulée : la région contient de légère ondulation. 

–  Ir régulière : la région ne peut être décrite par les termes repris ci­dessus. 

Fig. 1.3. Caractéristiques selon la région d’une masse. 

Si la région est ronde, ovale ou lobulée on parle d’une masse bénigne. Alors que lorsqu’il s’agit d’une 

région irrégulière la masse est dite maligne. 

4.1.2.  Description par contour 

Le contour d’une masse est pris en considération par les radiologues pour classifier les masses 

mammographiques. Il  tient donc une place  importante dans  la description pathologique d’une masse. 

Les radiologues spécifient cinq propriétés (circonscrit, micro­lobulé, masqué, mal défini ou stellaire) 

que peut avoir le contour de la masse.
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Fig. 1.4. Caractéristiques selon le contour d’une masse. 

Les  caractéristiques  que peut  avoir  le  contour  d’une masse mammographique  sont  données  par  la 

figure 1.4 et décrites comme suit : 

–  Circonscrit : le contour est bien défini. 

–  Micro­lobulé : il y à présence de plusieurs ondulation sur le contour. 

–  Masqué : le contour est masqué par une superposition par d’autres investigations. 

–  Indistinct : le contour est mal défini pouvant correspondre à une infiltration. 

–  Spiculé: il y à présence des lignes radiaires sur le contour de la masse. 

Les  radiologues  identifient  la  masse  bénigne  par  la  présence  d’un  contour  circonscrit.  Alors  qu’ils 

identifient  la  masse  maligne  par  la  présence  d’un  contour  micro­lobulé,  masqué,  mal­défini  ou 

stellaire. 

4.1.2.  Description par densité (ou l’atténuation) 

L'intensité ou l'atténuation de rayon X de la région de masse de tissu est décrite comme densité. 

La densité ici est la densité relative, c’est à dire plus haut, inférieur ou semblable au tissu environnant. 

La plupart des cancers du sein présentent une densité supérieure ou égale au tissu environnant. 

Il est rare (mais non impossible) qu’un cancer du sein soit de densité inférieure. 

Fig. 1.5. Caractéristiques selon la densité d’une masse. 

La densité est décrite en utilisant les caractéristiques données par la figure 1.5 et décrites ci­dessous : 

–  Forte (hyperdense) : densité forte par rapport au tissu environnant. 

–  Moyenne (isodense) : densité moyenne par rapport au tissu environnant.
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–  Faible (hypodense) : densité faible par rapport au tissu environnant. 

4.2. Calcifications 

Les  calcifications  sont  des  dépôts  de  sels  de  calcium  qui  apparaissent  sous  forme  de  points 

« blancs  et  brillants »  à  la  mammographie.  En  fonction  de  leur  taille,  on  parle  de  micro  ou 

macrocalcifications.  En  effet,  les  macrocalcifications  sont  souvent  bénignes  alors  que  les 

microcalcifications demandent plus d'attention. 

Le diagnostic dépend de leur position dans le sein, de leur arrangement géométrique (linéaire, 

en  forme  d'agrégats,  ...)  et  du  nombre  de  microcalcifications  dans  un  amas,  mais  aussi  de  la 

comparaison  avec  une  mammographie  antérieure.  La  figure  1.6  (a)  présente  une  mammographie 

contenant un amas de microcalcifications, et 1.6 (b) un agrandissement de la région contenant l'amas. 

(a)                                                  (b) 

Fig. 1.6. (a) Mammographie montrant un foyer de microcalcifications et (b) agrandissement de la 
région contenant l'amas de microcalcifications. 

Les  radiologues  caractérisent  les  microcalcifications  à  travers  plusieurs  propriétés  [4].  Parmi  les 

propriétés importantes pour un radiologue, on trouve : 

–  La taille des microcalcifications : plus la taille est faible plus le risque de malignité augmente. 

–  La forme : plus la forme est arrondie, moins serait le risque de malignité. 

–  L'orientation  :  les  amas  malignes  ont  tendance  à  avoir  une  forme  triangulaire  ou  losangique 

orientée vers le mamelon.
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–  Le  nombre  :  plus  le  nombre  de  microcalcifications  est  élevé,  plus  le  risque  de  malignité 

augmente. 

–  Le polymorphisme : si les microcalcifications dans un amas ont des formes variées, l'amas a plus 

de risque d'être maligne. 

La  présence  des  calcifications  dans  les  cancers  de  seins  est  de  30  à  50%  de  la  totalité  des 

catégories  existants  [4].  De  nombreuses  classifications  des  calcifications  existent.  Parmi  les  plus 

utilisées, celle de Le Gal et al [6]. Elle présente cinq types de calcifications (voir le tableau 1.1) donnés 

comme suit : 

–  Type 1:  il s’agit des calcifications annulaires, arciformes ou polyédriques. Le risque de 

cancer du sein est quasi nul. 

–  Type  2:  ce  sont  des  calcifications  rondes  et  de  tailles  variables  avec  un  risque  de 

carcinome : 22%. 

–  Type 3: ce sont des calcifications poussiéreuses, pulvérulentes avec un risque de cancer : 

36%. 

–  Type 4: ce sont des calcifications irrégulières associées à un risque de cancer : 56%. 

–  Type 5: ce sont des calcifications vermiculaires ou branchées avec un risque de 

carcinome : 90%. 

Type1  Type 2  Type 3  Type 3  Type 4 

Annulaires, 

arrondies au 

centre clair 

Formes rondes, 

densités 

homogènes 

poussiéreuses  Formes 

irrégulières 

Vermiculaires 

Branchées 

Malignité 

0%  19%  36%  52%  90% 

Tab. 1.1. Classification des microcalcifications [6].
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4.3. Distorsion architecturale 

Il  s’agit  d’une  distorsion  de  l’architecture  mammaire  (figure  1.7).  Ces  images  peuvent  être 

caractérisées  par  de  fins  rayons  radiaux,  ainsi  que  des  rétractions  ou  des  distorsions  du  bord  du 

parenchyme. 

Fig. 1.7. Distorsion architecturale. 

Il  s’agit  d’images  difficiles  à  voir  et  à  caractériser.  Leur  identification  requiert  une  bonne 

habitude de la mammographie pour les différencier de l’architecture normale et de ses superpositions. 

Elles sont particulièrement difficiles à reconnaître dans les glandes denses et hétérogènes. Ces images 

stellaires posent, en effet, des problèmes de diagnostic difficiles. 

Le taux de mortalité a diminué pendant ces dernières années, dues en partie à l’utilisation de la 

mammographie et du dépistage dans  la plupart des pays  [14]. Du  fait de ce dépistage,  le nombre de 

mammographies à analyser est en augmentation, ce qui pose  le problème de  la charge de travail des 

spécialistes,  qui  varient  dans  leur  interprétation  des  mammographies.  Dans  cette  optique  plusieurs 

systèmes  automatisés  d’analyse mammographique  [15],  [16],  [17], ont  été  développés. On  trouve  le 

système CAD (Computer Aided Detection) et celui de CADx (Computer Aided Diagnostic) : le CAD 

sert à la détection d’une masse suspecte à partir d’une image mammographique, alors que les systèmes 

CADx aident les radiologues à la prise de décision  concernant le degré de malignité des masses. 

5.  Systèmes CAD/CADx 

Les  systèmes  de  détection  ou  de  diagnostic  ont  pour  rôle  l’aide  à  identifier  d’une  manière 

efficace  les  tumeurs  de  sein.  Plusieurs  études  ont  été  faites  pour  évaluer  les  performances  des
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différents systèmes CAD/CADx. Dans leur étude, C. Marx et al [14], ont démontré les possibilités des 

systèmes CAD et CADX, en détectant  la moitié  de cancers du sein manqués. Plus  récemment, dans 

une  autre  étude  de  C.  Marx  et  al  [18],  il  a  été  prouvé  que  l’exactitude  dans  la  lecture  des 

mammographies peut être augmentée d’environ de 2% en utilisant un système de CAD ou CADx. La 

proportion des cancers manqués peut être trouvée grâce à la double lecture avec la méthode du système 

CAD, avec un taux de fausse détection FP (taux noté faux positif qui représente le nombre des cas mal 

classifiés; c’est à dire que le système donne une classification au contraire de la réalité : par exemple 

pour une région réellement normale le système indique qu’elle est cancéreuse) inférieur à 1 par image. 

Il  est  connu  qu’un  taux  élevé  de  FP  peut  constituer  un  problème  pendant  l’utilisation  réelle  d’un 

système CAD. 

À  notre  connaissance,  trois  systèmes  CAD/CADX  [15],  [16],  [17]  sont  disponibles  sur  le 

marché. La qualité de tels systèmes dépend du taux de la détection de tumeur ainsi que de taux de FP : 

–  Le premier système est le système « ImageChecker » (R2 Technologie, Los Altos, CA, USA). 

–  Le  second  système  est  nommé  «  MammoReader  »  (Intelligent  Systems  Software  Inc, 

Clearwater, FL, USA). 

–  Le troisième système est le « Second look » (CADx Medical Systems, Quebec, Canada). 

Fig. 1.8. Détection automatique des régions suspectes (les masses sont représentées par une étoile et 
les microcalcifications par un triangle). 

5.1. Technologie R2 

Image Checker® de la technologie R2 était le premier système mammographique commercial 

approuvé par  la FDA. Ce  système est conçu pour  rechercher  les  signes qui peuvent être associés  au
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cancer du sein. Les masses  sont  identifiées par un astérisque tandis que  les   microcalcifications sont 

identifiées  par  un  triangle  comme  il  est  indiqué  à  la  figure  1.8.  Avec  ce  système,  l'exactitude  de 

détection des microcalcifications a atteint 98.5% de sensibilité (la capacité d’un système à découvrir 

les positifs ;  c'est­à­dire  le  taux de détection des  régions  cancéreuse suspectes ou malignes) avec  un 

taux de FP de l’ordre 0.74  par image alors que l'exactitude de détection des masses a atteint 85.7% de 

sensibilité et un taux FP de l’environ 1.32 par image. 

5.2. Intelligent Systems Software 

Le  FDA  a  approuvé  le  système  MammoReader™  en  2002.  Ce  système  a  été  conçu  pour 

détecter des signes fondamentaux de cancer de sein dans les images mammographiques y compris les 

groupes des microcalcifications,  les masses bien et mal définis,  les masses stellaires et  les distorsions 

architecturales. 

La sensibilité totale rapportée était 89.3% (91.0% dans le cas où les microcalcifications étaient le seul 

signe de cancer et 87.4% dans les cas restants où les masses malignes étaient présentes). 

5.3. CADx Medical Systems 

CADx Medical  Systems  étaient  la  troisième  système  recevant  l'approbation  pour  un  système 

CAD mammographique appelée SecondLook™. Ce système a été conçu pour marquer les régions des 

images mammographiques qui donnent une indication sur des cancers. Il marque les masses avec des 

cercles et le groupe des microcalcifications avec des rectangles. La sensibilité du système est de l’ordre 

85% (combinaison de masses et des microcalcifications) et  le  taux de FP est de  l’ordre de 0.28 par 

image. 

En  conclusion,  nous  notons  que  les  systèmes  de  CAD  et  CADx,  même  dans  les  versions 

actuelles,  se  présentent  comme  des  outils  additionnels  utiles  pour  éviter  les  biopsies  (technique  de 

prélèvement d’un petit morceau de tissu afin de l’analyser au microscope) inutiles et pour augmenter 

l’exactitude de la lecture de la mammographie. 

6. Conclusion 

Le  cancer  du  sein  est  un  cancer  qui  conduit  à  un  taux  de mortalité  élevé  chez  les  femmes. 

Heureusement, la mammographie exécutée à des intervalles réguliers chez les femmes peut en affaiblir 

la gravité des conséquences.



Généralité sur la mammographie 

16 

L’automatisation  a  incité  les  informaticiens  à  toucher  à  l’élaboration  des  outils  d’aide  au 

diagnostique  et  détection.  Pour  atteindre  cet  objectif,  plusieurs  laboratoires  de  recherches  se  sont 

intéressés  à  la  proposition  de  nouveaux  algorithmes  et  méthodes  touchants  à  la  détection  et  au 

diagnostique. Dans le chapitre 2 on présente l’état de l’art lié à ces aspects.



Etat de l’Art 

Chapitre 2 

Etat de l’art



Etat de l’Art 

Le  dépistage  ainsi  que  l’apparition  de  la  mammographie  dans  le  domaine  médical  ont 

augmentée le taux de détection des cancers de sein à un stade précoce ce qui permet de réduire le taux 

énorme de mortalité  chez  les  femmes. Dans ce cadre, des études ont montré  le dépistage permet de 

réduire le taux de mortalité de 40% chez les femmes âgées entre 50 et 60 ans [10]. L’automatisation et 

les  progrès  technologiques  ont  encouragé  les  chercheurs  à  élaborer  des  outils  d’aide  basés  sur  les 

systèmes CAD et CADx permettant de rendre encore plus efficace l’analyse mammographique. 

Dans  ce chapitre, on  donne l’état de l’art des travaux menés dans le cadre de ces deux types de 

systèmes  après  avoir  introduit  quelques  notions  de base  concernant  l’analyse mammographique. On 

présente, à la fin, le flôt de travail proposé. 

1. Analyse mammographique 

L’analyse  des  clichés  mammographiques  est  une  succession  de  plusieurs  étapes  depuis 

l’acquisition  jusqu’à  la  décision  finale.  Ces  étapes  sont  étroitement  liées ;  la  réussite  d’une  étape 

dépend de la réussite de l’étape précédente. Dans cette partie, on présente la démarche générale qu’on 

doit utiliser dans  l’analyse des clichés mammographiques et on donne quelques  flôts utilisés dans ce 

sens. 

Le flôt général d’analyse mammographique, comme montre la figure 2.1, est composé de deux 

étapes :  la détection et  le diagnostic des anomalies mammographiques  (particulièrement  les masses). 

Le point commun entre ces deux étapes est qu’elles essaient d’identifier les cas cancéreux, tandis que 

la  différence  entre  elles  est  que  la  détection  commence  par  une  région  qui  peut  avoir  une  anomalie 

alors que l’étape de diagnostic doit commencer par une région contenant l'anomalie.
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Il faut distinguer entre le system de détection (CAD) et celui de diagnostic (CADx) : le premier 

à  pour  objectif  la  discrimination  régions  suspectes/régions  normales  quant  à  la  deuxième,  il  vise  la 

différenciation entre régions suspectes malignes et régions suspectes bénignes. 

a) Le système de détection.                                         b) Le système de diagnostic. 

Fig. 2.1. Flôt général d’analyse : (a) détection et (b) diagnostic. 

Dans la littérature, on trouve plusieurs flôts d’analyse mammographique [67], [68], [69] dédiés 

soit à la détection des masses soit au diagnostic. Par exemple, dans leur travail de d’analyse, S. Singh 

et al [67] ont utilisé un flôt (figure 2.2) commençant par une étape de prétraitement afin d’améliorer la 

qualité d’image. La phase de détection de masses est basée sur la segmentation à travers la méthode de 

la croissance de régions. Pour éliminer les régions qui ne représentent pas des masses ils ont utilisé un 

ensemble des caractéristiques basé sur la forme et la texture. 

Concernant  la  phase  de  diagnostic  un  vecteur  caractéristique,  basé  sur  la  forme  et  la  texture,  a  été 

utilisé pour permettre la prise de décision afin de donner  finalement  le type de  la masse (bénigne ou 

maligne). 

Identification 

Décision/aide à la 
décision 

Prétraitement 

Extraction des 
Caractéristiques 

Décision/aide à la 
décision 

Entrée : Image 

Mammographique 

Sortie : Masse détectée 

(Marque ou RI) 

Sortie : Masse bénigne 

ou maligne
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Fig. 2.2. Flôt de détection/diagnostic – [67]. 
Concernant les mammographies de haute résolution, la détection de la masse entraîne un temps 

de calcul important. Pour cette raison, F. Djidel et F. Boumghar [68] ont utilisé une méthode basée sur 

la multi­résolution dans leur analyse de masses (voir la figure 2.3). 

Fig. 2.3. Flôt de détection des masses stellaires – [68]. 
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Elles ont utilisé la transformée par ondelettes pour décomposer l’image en une pyramide d’images de 

résolution réduite de moitié. À partir de cette représentation, ils ont réalisé l’extraction des paramètres 

caractérisant à  la  fois  le centre de  la masse  et  les  spicules. Ces paramètres  sont utilisés comme une 

entrée à un classifieur neuronal (Perceptron multicouches MLP). 

Dans  [69],  N.  Székely  et  al  ont  proposé  un  système  des  masses  mammographiques.  Une 

méthode de segmentation globale est appliquée pour trouver les régions d’intérêts (RIs) dans l’image. 

Pour ces régions  ils ont calculé un vecteur de caractéristiques basé sur  la texture. Ce vecteur servira 

comme  entrée  à  un  classifieur  basé  sur  l’arbre  de  décision.  Dans  la  phase  de  diagnostic  ils  ont 

appliqué, dans un premier temps, une segmentation locale (combinaison de la méthode de binarisation 

et  celle  d’histogramme  de  Bézier).  Ils  ont  extrait,  dans  un  deuxième  temps,  des  caractéristiques  de 

forme et de texture. En se basant sur ces caractéristiques,  la décision finale est réalisée pour indiquer 

s’il s’agit d’une masse maligne ou bénigne. 

Fig. 2.4. Flôt de détection/ diagnostic ­ [69]. 

Techniquement, les flôts d’analyses se basent généralement sur des méthodes de segmentation, 

des méthodes  de description  et  des méthodes  de  classification. La description  des masses,  à  travers 

l’extraction  des  caractéristiques,  joue  deux  rôles  principaux  dans  l’analyse  mammographique :  elle 
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permet  le  raffinement  de  la  détection  en  éliminant  les  régions  qui  paraient  normales,  et  la 

discrimination régions malignes/régions bénignes. 

À  partir  des  travaux  présentés  ci­dessus,  on  voit  l’utilité  et  l’importance  de  la  phase 

d’extraction des caractéristiques dans la détection et le diagnostic des masses. C’est ce qui nous amène 

à se concentrer sur cette phase et à développer ainsi une méthode basée sur la forme. 

2. Détection assistée par ordinateur 

L’étape  de  détection  de  masses  fait  l’objectif  de  plusieurs  travaux  de  recherche  vu  son 

importance  dans  l’analyse  mammographique.  Elle  aide  les  radiologues  à  identifier  les  régions 

suspectes dans les clichés mammographiques. 

Dans  cette  section,  on  présente  l’objectif  de  cette  étape  de  détection  ainsi  qu’un  aperçu  sur 

quelques méthodes utilisées. 

2.1. Objectif de CAD 

Les  systèmes CAD  sont  utilisés  pour  assister  le  radiologue  à  identifier  les  régions  suspectes 

d’une image mammographique. Le radiologue garde la responsabilité du diagnostic final. Les systèmes 

CAD permettent aussi de détecter davantage de cancers. En effet, l’interprétation des mammographies 

de dépistage est un véritable défi, compte tenu du grand nombre de clichés mammographiques à  lire 

par  le  radiologue  pour  détecter  un  petit  nombre  de  cancers  (3  à  10  cancers  pour  1000  patientes 

dépistées). Il en résulte quelques cancers parfois manqués. 

Fort  heureusement,  les  avancées  technologiques  récentes  en  mammographie  digitale 

(amélioration  des  contrastes,  de  la  netteté  et  de  la  qualité  des  images),  ainsi  que  les  progrès  des 

systèmes  CAD,  devraient  apporter  une  aide  appréciable  au  radiologue  et  permettraient  de  détecter 

davantage  les  cancers  tout  en  réduisant  le  nombre  de  patientes  rappelées  pour  des  examens 

complémentaires. 

Les  chercheurs  dans  le  domaine médical  font  appel  à  des  critères  d’évaluation  de  performances,  la 

sensibilité  et  la  spécificité  (voir  chapitre  4,  section  2),  pour  juger  l'exactitude  des  résultats  et  la 

précision des systèmes CAD. 

( ) Nombre de vrai positives VP Sensibilité 
Nombre des masses suspectes 

=  (Eq. 2.1.) 

Avec 
VP : nombre de vraie classification des masses suspectes.
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La  sensibilité  est  la  capacité  de  la  technique  à  découvrir  les  positifs  (cas  suspects)  alors  que  la 

spécificité est la capacité de la technique à découvrir les négatifs (cas normaux) 

v   ( ) Nombre de rai négatives VN Spécificité 
Nombre de régions normales 

=  (Eq. 2.2.) 

Avec

VN : nombre de vraie classification des régions normales. 

Donc on peut dire que  le principal objectif du CAD est d’améliorer  le  taux de  sensibilité en 

aidant des radiologues pour détecter la masse suspecte qui pourrait autrement avoir été manqué. 

2.2. Détection de masses 

Plusieurs  travaux ont traité  le problème de  la détection. La plupart des méthodes de détection 

des masses se composent de deux étapes : 

1)  L’identification des régions 

2)  La discrimination entre régions suspectes et régions normales. 

Dans l'étape d’identification, on essaie de détecter les régions d’intérêt. Après ceci, les régions 

sont classifiées en deux groupes : masses ou tissus normaux. On présentera ci­dessous dans  le détail 

ces deux étapes en citant quelques travaux relatifs à chacune d’entre elles. 

2.2.1. Identification des régions 

Le  but  de  cette  étape  de  détection  est  de  séparer  les  régions  qui  contiennent  des  tumeurs 

(bénignes et  malignes) des régions normales. Elle est conçue pour avoir une sensibilité très élevée et 

un grand nombre de faux positifs (FP) est acceptable puisqu'on s'attend à ce qu'ils soient enlevés dans 

la deuxième étape. 

Les  masses  mammographiques  avec  les  marges  stellaires  ont  une  très  haute  probabilité  de 

malignité  (voir  chapitre  1  section  3.2.1)  et  donc  plusieurs  méthodes  ont  été  développées 

spécifiquement  pour  la  détection  de  ce  type  de  masses.  Parmi  les  approches  développées  certaines 

approches sont basées sur  la détection de la masse centrale de la région stellaire, d’autres sont basées 

sur  la  détection  de  spicules. Dans  ce  sens, W.P. Kegelmeyer  et  al  [25]  ont  développé une méthode
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utilisant  un  ensemble  de  cinq  caractéristiques.  Ils  ont  utilisé  l’écart  type  d'un  histogramme  de 

l’orientation  du  contour  ALOE  (Analysis  of  Local  Oriented  Edges)  et  la  sortie  de  quatre  filtres 
spatiaux. La raison d’utilisation de la caractéristique ALOE est que le tissu normal a des orientations 

dans  une  direction  particulière  alors  que,  dans  les  régions  suspectes  qui  contiennent  des  masses 

stellaires,  les  lignes  radiales du contour  sont orientées dans de  nombreuses directions. Pour détecter 

cette différence, ils ont calculé des orientations de contour afin de produire un histogramme. Cette idée 

est représentée dans la figure 2.5. La caractéristique ALOE est définie comme l’écart­type du nombre 

d’éléments de chaque classe de l’histogramme et est décrie par l’équation ci­dessous : 

( ) 255  2 

0 
( ) ( , ) 

( )  255 
ij 

n 
ij 

hist n hist i j 
ALOE = 

− 
∂ = 

∑ 
(Eq. 2.3.) 

Avec 

ij hist  : est l'histogramme d'orientations de contour dans une fenêtre autour de pixel localisée à (i, j). 

( , ) hist i j  : est la hauteur moyenne de l’histogramme  ij hist  . 

(a)  (b) 

Fig. 2.5. (a) Les directions de rayons d'une masse stellaire sont différentes des directions de 
marquages linéaires normaux et (b) l’écart type de l'histogramme de l'orientation de gradient 

différencie la région stellaire de celle normale­ [22]. 

La  transformée de Hough  a été utilisée dans plusieurs  travaux mammographiques pour  l’objectif de 

détection des masses stellaires ou entourées. Par exemple B.R. Groshong et W.P. Kegelmeyer [33], ont 

utilisé  la transformée de Hough cercle pour  la détection des masses entourées : Tout d’abord,  ils ont
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fait  la détection de contour à  l’aide de  l’opérateur de Canny et ont sélectionné un sous­ensemble des 

contours en  se  basant  sur  la  longueur et  l’intensité. Ce sous­ensemble de contours était  l'entrée à  la 

transformée de Hough cercle. Deux caractéristiques ont été extraites du domaine de Hough afin de les 

classer en masse ou tissu normal. 

Dans [35],  W. Zhang et al ont montré que la présence de masses stellaires est  liée aux changements 

dans la texture locale de la mammographie. Ils ont proposé qu’un tel changement pourrait être détecté 

dans le domaine de Hough. Ils ont découpé l’image en plusieurs région et ont calculé les transformées 

de Hough pour chaque  région.  Ils ont utilisé un  seuillage pour détecter  les changements de  textures 

locaux afin de déterminer la présence ou l’absence d'une masse stellaire. 

L’inconvénient majeur de méthodes citées précédemment est que, si la résolution de l’image est 

grande, elles entraînent des temps de calcul prohibitifs. Pour cette raison, d’autres approches [30], [68] 

ont  proposée  des méthodes  de détection  des masses  stellaires  à  partir  d’une  représentation  en multi 

résolution. Dans ce contexte, les ondelettes ont été utilisé par Liu et al [30] pour décomposer  l’image 

selon plusieurs résolutions, et pour chaque résolution extraire des informations directionnelles afin de 

détecter des spicules. 

Vu  que  les  masses  ne  sont  pas  toutes  stellaires,  la  détection  des  autres  types  de masses  est 

également importante. Dans ce cadre, H.D. Li et al [27] ont développé un système à deux phases : dans 

la  première,  un  seuillage  adaptatif  de  niveau  de  gris  a  été  utilisé  afin  d’obtenir  une  segmentation 

initiale des régions suspectes ; dans la deuxième étape un arbre de décision flou a été développé pour 

classer les régions identifiées en deux groupes (masse ou tissus normal). La décision a été faite à l’aide 

d’un vecteur caractéristique basé sur la forme et sur la texture. 

Le  filtre  de  différence  Gaussian  (Difference  of  Gauss),  qui  est  un  filtre  passe­bande,  est  parmi  les 

techniques de segmentation les plus figurant dans la littérature [29] utilisé pour la détection des masses 

dans une image mammographique. 

2.2.2. Discrimination entre les régions 

La  classification,  qui  est  la  deuxième  étape  du  processus  de détection,  permet  de  séparer  les 

régions représentants des masses de celles normales. Elle permet également de réduire  le nombre de 

fausses détections qui ont été produits à la fin de la première étape. 

Dans  le  domaine  médical,  les  radiologues  utilisent  plusieurs  propriétés  de  l'image  pour 

discriminer entre les masses et les tissus normaux. Les chercheurs ont essayé d'imiter ce processus, par 

l’extraction  de  plusieurs  caractéristiques  de  texture  ou  de  forme  à  partir  des  régions  suspectes  et
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l’utilisation de ces caractéristiques par la suite dans la phase de classification. Dans ce cadre, B.Sahiner 

et  al  [39]  ont  exploité  un  ensemble  des  caractéristiques  basé  sur  la  texture  dans  leur  système  de 

classification.  Dans  un  autre  travail,  D.  Wei  et  al  [42]  ont  développé  un  système  utilisant  les 

caractéristique de texture calculées à partir de la matrice de cooccurrence et l’analyse du discriminant 

linéaire (Linear Discriminant Analysis) pour la classification. Dans un travail plus récent, D. Wei et al. 

[19] a testé l'usage de l’analyse en multi­résolution globale et locale afin d’extraire des caractéristiques 

de texture. 

La détection de masses, à travers les méthodes citées ci­dessus, permet d’aider le radiologue à 

identifier  les masses à traiter. Ce qui reste par  la suite est de voir s’il s’agit d’une tumeur bénigne ou 

maligne  d’où  notre  objectif  dans  ce  travail  qui  permet  d’aider  le  radiologue  lors  de  la  phase  de 

diagnostic. 

3. Diagnostic assistée par ordinateur 

Comme  pour  le  cas  de  la  détection,  le  diagnostic  joue  un  rôle  important  dans  le  processus 

d’analyse mammographique. Elle est utile dans la phase de décision et permet de séparer  les tumeurs 

malignes de celles bénignes afin d’éviter plusieurs traitements à réaliser par le radiologue qui, souvent, 

s’intéresse seulement aux tumeurs malignes. 

Dans  cette  partie  on  donne  les  objectifs  des  systèmes  CADx  ainsi  que  les  différentes  techniques 

utilisées en littérature. 

3.1. Objectif de CADx 

Les systèmes CADx sont utilisés pour aider  le radiologue à  identifier  les régions malignes et 

bénignes  d’un  cliché  mammographique.  La  diversité  les  signes  des  cas  anormaux  (bénignes  et 

malignes)  dans  les  images  mammographiques  sont  variés,  rend  le  diagnostic  difficile.  Depuis  des 

années,  des  campagnes  de dépistage  systématique ont  été  organisées  dans  les  pays  développés. Ces 

derniers engendrent un  flux énorme de clichés mammographiques ce qui met  les radiologues experts 

face  à  un  problème  d’imprécision  d’analyse.  Toutes  ces  limites,  mènent  à  des  traitements  (biopsies 

chirurgicales)  inutiles. Afin d’éviter ces derniers, un système de diagnostic séparant  les cas malignes 

de celles bénignes est plus que nécessaire. 

Pour évaluer la performance des systèmes CADx les chercheurs utilisent la sensibilité et la spécificité 

données par les équations suivantes:
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v   ( ) Nombre de rai positives VP Sensibilité 
Nombre des masses malignes 

=  (Eq. 2.4.) 

Avec 
VP : nombre de vraie classification des masses malignes. 

v   ( ) Nombre de rai négatives VN Spécificité 
Nombre de masses bénignes 

=  (Eq. 2.5.) 

Avec

VN : nombre de vraie classification des masses bénignes. 

L'objectif  principal  du CADx  est  d'améliorer  le  taux  de  spécificité  (taux  d’identification  des 

masses bénignes), sans diminuer le taux de sensibilité (taux de détection des masses malignes). 

3.2. Diagnostic des masses 

Les  systèmes  de diagnostic  ont  comme entrée  une  région  d'intérêt  (RI)  contenant  les masses 

suspectes. Ils y agissent en trois reprises : 

1)  Segmentation de masse dans la RI. 

2)  Extraction des caractéristiques. 

3)  Classification. 

Dans l'étape de segmentation, la masse est séparée du tissu normal. En se basant sur les propriétés de la 

forme, des caractéristiques discriminantes sont extraites. A  la  fin,  les masses sont classifiées comme 

malignes ou bénignes. Un état de l’art de ces différentes étapes est présenté par la suite. 

3.2.1. Segmentation 

L’étape  de  la  segmentation  sert  à  l’identification  des  masses  à  partir  des  clichés 

mammographiques.  Elle  peut  être  manuelle,  semi  automatique,  ou  encore  automatique.  Elle  est 

extrêmement importante puisque la réussite d'un système d’analyse mammographique dépend de cette 

étape. En imagerie médicale, et particulièrement en mammographie, il y’a trois types de méthodes de 

segmentation utilisées : les méthodes basées sur la région, les méthodes basées sur le contour et celles 

basées sur  le regroupement. Dans ce qui suit, on donne les principaux travaux utilisant ces méthodes 

de segmentation.
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3.2.1.1. Méthodes basées sur la région 

La  méthode  de  croissance  de  région  est  parmi  les  méthodes  utilisées  fréquemment  dans  la 

segmentation  des  masses  mammographiques.  Par  exemple,  Z.  Huo  et  al  [23]  ont  développé  une 

approche  semi­automatique de  croissance de  région  dans  laquelle  le  pas  de  croissance  a  été  calculé 

automatiquement suite à un chois manuel du point de départ (seed point). Une approche différente a 

été  proposée  par  D.  Guliato  et  al  [31],  avec  une  implémentation  d’une  version  de  l’algorithme  de 

croissance de région basée sur la logique floue. 

L’inconvénient majeur de  la croissance de  région  réside dans  le choix du point de départ puisqu’un 

mauvais choix mène à un mauvais résultat. Pour surmonter ce problème, cet algorithme a été modifié 

de façon à identifier l'ensemble optimal des points de départ (seeds points) [38]. 

3.2.1.2.  Méthodes basées sur le contour 

Concernant la segmentation basée sur le contour, il y a seulement un nombre limité de travaux 

vu la difficulté qui réside dans la distinction entre la masse et le tissu normal. 

Les algorithmes typiques pour trouver les contours sont basés sur le filtrage de l'image pour rehausser 

les contours pertinents avant l'étape de la détection. Par exemple, dans le but d’améliorer le contraste, 

N.Petrick  et  al  [37]  ont  proposé une  technique  de  segmentation  basée  sur  la méthode de Gaussian­ 

Laplacien. Une approche différente a été proposée par H. Kobatake et Y. Yoshinaga [26] qui qui part 

d’une sous image qui contient une masse. L'algorithme cherche les lignes radiales de la masse stellaire 

et se résume dans trois étapes : i) extraction des lignes radiales par skeletonisation, ii) application de la 

transformée de Hough ligne modifiée pour l’extraction des lignes radiales qui passent par le centre de 

la  masse,  iii)  raffinement  et  sélection  des  masse  dont  le  nombre  de  ligne  dépasse  un  seuil  fixé 

d’avance. 

Dans les approches récentes,  l'information de contour a été utilisée pour raffiner  les résultats  initiaux 

de  la  segmentation. Par exemple, B. Sahiner et al [40] ont utilisé  le modèle de contour actif (Snake) 

comme une étape finale de leur approche. 

En  mammographie,  l’utilisation  des  méthodes  de  détection  de  contour  ne  peut  pas  être 

appliquée  directement  sur  une  image  mammographique  mais  sur  des  régions  d’intérêts  (RIs) 

prétraitées.
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3.2.1.3.  Méthodes basées sur le regroupement de pixels (clustering) 

Les méthodes par regroupement (Clustering) servent à diviser une région d’intérêt en plusieurs 

classes.  Plusieurs  travaux,  utilisent  les  méthodes  par  classification  pour  la  segmentation  des  clichés 

mammographiques. 

Un  traditionnel  algorithme  est  l'algorithme  C­Means  Flou  (FCM),  qui  a  été  utilisé  dans 

différents objectifs dans les travaux de Velthuizen [28], Chen et Lee [44]. Pendant que Velthuizen l'a 

utilisé pour grouper les pixels avec valeurs similaires du niveau de gris dans l'image originale, Chen et 

al l'ont utilisé sur l'ensemble de caractéristiques locales extraites de l’application. 

La  méthode  de  seuillage  est  une  autre  approche  qui  a  été  fréquemment  utilisée  en 

mammographie.  Elle  forme  un  cas  spécial  des  méthodes  de  segmentation  par  classification  où 

seulement  deux  groupes  sont  considérés.  Dans  le  travail  de  Matsubara  et  al  [32],  en  se  basant  sur 

l’analyse  de  l'histogramme,  différentes  valeurs  de  seuil  ont  été  considérées.  Plus  récemment, 

Mudigonda  et  al  [34]  ont  utilisé  un  algorithme de  seuillage  à  plusieurs  niveaux  afin  de  détecter  les 

contours fermés. Cet algorithme peut être considéré comme une technique de croissance de région où 

dans chaque itération, les voisins qui possèdent des niveaux de gris similaires sont groupés. 

Dans d’autres cas, le seuillage n'est pas appliqué à l'image mammographique directement, mais plutôt 

à une version rehaussée de l'image originelle. Par exemple, C. Varela et al. [24] ont appliqué « un filtre 

Iris » afin de rehausser des masses arrondies. En utilisant un seuillage adaptatif, ils ont fait la détection 

des masses. 

3.2.2. Extraction des caractéristiques 

L’étape d’extraction des caractéristiques est sans doute l’étape la plus importante dans la phase 

de diagnostic vu son rôle discriminatif permettant la différenciation entre les masses bénignes et celles 

malignes. Elle est fortement liée à l’étape de détection et sa réussite fait réussir la phase de détection. 

En  littérature, on  trouve deux méthodes qui  sont  fréquemment utilisées :  les méthodes  basées  sur  la 

texture et celles basées sur la forme. 

L’identification de la tumeur selon l’avis des radiologues se base sur l’analyse de la forme de la région 

suspecte.  On  se  propose,  dans  le  cadre  de  ce  travail,  de  donner  un  panorama  de  techniques  et  de 

méthodes permettant l’analyse selon la forme. 

3.2.2.1.  Caractéristiques de forme 

La  forme  des  régions  suspectes  se  caractérise  par  des  propriétés  de malignité  dépendant  du 

contenu (ou encore la région) et par des propriétés de malignité selon  le contour (ou frontière). Pour
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cette  raison  les  caractéristiques  qui  forment  le  descripteur  de  forme  (ou  vecteur  de  caractéristiques) 

sont  divisées  en  deux  catégories :  les  caractéristiques  qui  décrivent  la  région  et  celles  permettant  la 

description du  contour. Dans  la  littérature, on  trouve plusieurs méthodes qui ont été exploitées pour 

l’objectif de la description. On en résume dans le tableau 2.1 les plus importantes. 

Caractéristiques  Rôle 

Les caractéristiques de forme simple.  Description de la régularité de la région. 

Les caractéristiques de l’enveloppe convexe.  Description de la convexité de la région. 

La méthode RDM (Radial Distance Mesure).  Mesure de la régularité du contour. 

Les moments.  Description de la région/contour. 

L’analyse de fractale.  Description de la rugosité du contour. 

La signature des contours.  Description du contour. 

Tab. 2.1. Méthodes d’extraction des caractéristiques basées sur la forme. 

Ces caractéristiques seront détaillées plus tard. 

a) Caractéristiques basées sur la région 

Les  propriétés  de malignité  et  de  bénignité  peuvent  être  tirées  à  partir  de  la  région. Dans  ce 

cadre, plusieurs travaux ont traité les propriétés d’irrégularité de la région lors du choix des méthodes 

de description. 

–  Caractéristiques simples : 

Pour  décrire  la  régularité  de  la  forme d’une masse mammographique,  plusieurs  travaux  font 

appel à la caractéristique de circularité (C) (ou encore la compacité). Par exemple A. Retico et al [53], 
Pohlman et al [46], Kilday et al [45] et A.V. Alvarenga et al [47], ont utilisé pour leurs descripteurs de 

forme  des  caractéristiques  géométriques  simples  telles  que  la  circularité  (C)  afin  de  distinguer  les 
masses  mammographiques  circulaires  de  celles  irrégulières.  Pour  évaluer  la  performance  de  leurs 

caractéristiques, A.V. Alvarenga  et  al  [47]  ont montré  que  la  circularité,  à  part  sa  simplicité,  est  la 

deuxième meilleure caractéristique parmi un ensemble de caractéristiques utilisé pour la description. 

Pour  décrire  les  formes  allongées  qui  représentent  des  tumeurs  malignes,  la  caractéristique 

d’excentricité  (Exc)  a  été  utilisée  dans  le  travail  de  U.  Bottigli  et  al  [48].  Elle  donne  un  indice
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d’élongation  de  la  forme  qui  peut  aider  à  la  discrimination  entre  les  masses  malignes  et  celles 

bénignes. 

–  L’enveloppe convexe : 

La notion de la convexité peut être employée pour détecter l’irrégularité des régions. Pour cette raison 

on trouve dans d’autres travaux [47], [53] plusieurs méthodes qui s’appuient sur l’enveloppe convexe 
pour  générer  des  caractéristiques  de  convexité  discriminantes  telles  que  la  convexité  (CVX)  et  la 

valeur  résiduelle normalisée (NRV). Ces dernières ont données des performances acceptables dans le 
travail de A.V Alvarenga et al [47]. 

Les  caractéristiques  basées  sur  la  région  se  caractérisent  par  la  simplicité  de  calcul  et  aussi 

l’efficacité  de  différenciation  entre  les  masses  bénignes  et  celles  malignes.  Pour  cette  raison,  dans 

notre travail, on exploite ces caractéristiques. 

b) Caractéristiques basés sur le contour 

Ces  caractéristiques  résument  l’information  du  contour  pour  décrire  les  masses.  En 

mammographie,  plusieurs  techniques  ont  été  employées  pour  générer  des  caractéristiques 

discriminantes à partir du contour. 

–  La signature des contours : 

La  signature  des  contours  sert  à  représenter  un  contour  comme  une  fonction  1D  (réelle  ou 

complexe) afin de réduire la dimensionnalité des contours 2D correspondantes. En mammographie, la 

représentation du contour par signature est exploitée par plusieurs approches pour la description de la 

rugosité du contour. En effet, dans la littérature, on trouve plusieurs types de signatures dont les plus 

utilisées sont : la signature par le centroide [46] et la signature par l’angle de la tangente [49]. 

La signature par le centroide est basée sur la fonction de distance d(t) [65] qui est exprimée par 

la distance euclidienne d des points de frontière de coordonnées (x(t),y(t)) du centre C de coordonnées 
(xc, yc). La fonction de distance d(t) est donnée par l’équation suivante : 

2 2 ( ) ( ( ) ) ( ( ) ) c c d t x t x y t y = − − −  (Eq. 2.6.)
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Les  figures  2.6  et  2.7  présentent  deux  signatures  (figure  2.6  (b)  et  (figure  2.7  (b)))  différentes  des 

tumeurs bénignes et malignes (figure 2.6 (a) et (figure 2.7 (a))). En regardant la signature de la tumeur 

maligne, on constate qu’il y’a une grande différence par rapport à la signature de la tumeur bénigne. 

Cette différence peut être exploitée pour l’extraction des caractéristiques discriminantes. 

(a)  (b) 

Fig. 2.6. (a) Une tumeur bénigne et (b) sa signature. 

(a)                                                                             (b) 

Fig. 2.7. (a) Une tumeur maligne et (b) sa signature. 

En mammographie,  la  signature par  le centroide est utilisée dans plusieurs  travaux de  recherches  tel 

que  le travail de S. Pohlman et al [46] qui, à partir de  la représentation du contour, font  l’extraction 

d’un ensemble des caractéristiques et servent à la classification des masses en deux catégories (bénigne 

ou maligne). 

L’avantage  d’utilisation  de  la  signature  par  le  centroide est  qu’elle  est  simple  à  implémenter. Mais 

cette  signature  n’est  pas  invariante  au  changement  de  la  dimension  et  à  la  rotation  et  par  la  suite  il 

suffit  de  changer  l’orientation  ou  la  dimension  du  contour  pour  avoir  une  signature  totalement 

différente. 

D’autres  travaux  ont  fait  appel  à  une  autre  façon  de  représentation  du  contour,  notée  la 

signature par  l’angle de  tangente  [49]  (figure 2.8  (b)), pour extraire des caractéristiques qui peuvent 

distinguer les tumeurs bénignes de celles malignes.
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(a)                                                              (b) 

Fig. 2.8.  Signature par l’angleφ  de la tangente au point P i et (b) la signature du contour­[49]. 

Le principe de cette signature est que pour chaque point P i du contour on fait le calcul de l’angleφ  à 

partir de la tangente à ce point (Figure 2.8 (a)). Après le calcul des angles sur toutes les tangentes on 

aura  une  représentation  (figure  2.8  (b))  qui  sera  exploitée  par  la  suite  pour  l’extraction  des 

caractéristiques pouvant être utiles pour la description du contour de la masse. Dans ce cadre, Rangaraj 

et  al  [49],  à partir de cette méthode, ont extrait deux caractéristiques :  la première  notée « indice de 
spicule » (SITA) permettant de mesurer  le degré de rugosité du contour et la deuxième notée « indice 
de convexité » (ICTA) représentant  le degré de convexité du contour. Pour évaluer  la performance de 
leur  système,  ils ont comparé  les  résultats  fournis avec  les  résultats des  travaux de Rangayyan et al. 

[50], [51] basé sur l’analyse fractale des contours. Ils ont montré qu’avec la signature par l’angle de la 

tangente, les caractéristiques proposées permettent une bonne discrimination entre les masses bénignes 

et celles malignes. 

Le problème de ce type de signature réside dans la complexité temporelle car  le calcul des angles,  le 

passage à la représentation du contour et le calcul des caractéristiques demande beaucoup de traitement 

à  faire. Elle dépend aussi de  la rotation ; c'est­à­dire ; pour deux rotations du même contour on aura 

deux signatures différentes. Ces inconvénients nous découragent à utiliser la signature par l’angle de la 

tangente en tant qu’une méthode de description des masses mammographiques. 

–  descripteur de Fourier : 

Une des techniques les plus prometteuses pour la description de masses mammographique est 

celle basée  sur des descripteurs de Fourier [56], [57]. Cette méthode s’effectue en quatre étapes : i) 
une  étape  de  représentation  des  contours  en  tant  que  nombre  complexe,  ii)  une  étape  de  calcul  des
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composants  pour  les  N  points  du  contours,  iii)  une  phase  de  normalisation  des  composants  et 

finalement iv) une phase de calcul d’une caractéristique pour la description des contours. 

Partant de l’ensemble N des points du contour, nous pouvons regarder  la région comme étant placée 

dans  l’espace  de  représentation  complexe,  avec  l'ordonnée  étant  l'axe  imaginaire  et  l'abscisse  étant 

l’axe  réel.  Puis,  les  coordonnées  (x  et  y)  de  chaque  point  du  contour  à  analyser  peuvent  être 

représentées en tant que nombres complexes (x + jy). L'ordre du contour peut alors être décrit comme 

ordre complexe Zi : 

,    0,1,2,...., 1 i i i Z x jy i N = + = −  (Eq. 2.7.) 

Les composants de Fourier (FDS) à utiliser dans la description du contour sont définis comme : 

2 
1
0 

1 ( ) ;   0,1,....., 1 
j ni 

N  N 
i i A n Z e n N N 

π   
  
  
  

− 
−

= 
= = − ∑  (Eq. 2.8.) 

Une  normalisation  de  ces  composants  est  calculée  pour  rendre  ces  quantités  invariantes  aux 

transformations affines. Les composants normalisés deviennent : 

0;  0 
( ) ( )            1,2,..., / 2 (1); 

­1,­2,...,­ / 2 1 ( 1) 
(1); 

k 
A k NFD k k N A 

k N A k 
A 

 
 
 
 
 
 
 
 
 

= 
= = 

= + 
+ 

(Eq. 2.9.) 

Finalement  la caractéristique notée FF (Fourier Fraction) est utilisée pour  la discrimination entre les 
masses des contours réguliers et celles des contours irréguliers. 

2 2 

2 1 2 
( ) ( ) 

N N 

k N k N 
FF NFD k k NFD k 

=− + =− 

  
  
    

= ∑ ∑  (Eq. 2.10.) 

Dans es travaux [56], [57], on trouve des taux acceptables en exploitant  la caractéristique FF. 

Dans  le  travail  de L.Shen  et  al  [56],  l’utilisation  de  FF  a  donné  un  taux d’exactitude de  l’ordre  de 

84.81%. Plus  récemment, R. M. Rangayyan et al  [57] ont  trouvé un  taux d’exactitude de  l’ordre de 

88.9% dans la distinction entre les contour stellaires et ceux circonscrits. 

Malgré  que  les  résultats  trouvés  soient  acceptables,  le  problème  de  cette  méthode  réside  dans  la 

complexité temporelle à cause des traitements réalisés dans la représentation complexe du contour, le 

calcul des composants et le passage à la normalisation.
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–  Dimension fractale (FD) : 

Le concept   de  la dimension  fractale  (FD) peut être exploité pour mesurer  la complexité ou 
l’irrégularité de  la  frontière d'un objet. En mammographie, ce concept est utilisé pour caractériser  la 

complexité  des  contours  (2D)  des  masses,  aussi  bien  que  leurs  signatures  (1D).  Les  tumeurs 

cancéreuses montrent un certain aspect aléatoire lié à leur croissance, et sont en général irrégulières et 

complexes en terme de forme ; donc,  l'analyse de fractale peut fournir une meilleure idée concernant 

leurs modèles en comparaison avec la géométrie euclidienne conventionnelle [55]. 

Dans leurs travail, Pohlman et al [46], ont obtenu un taux d’exactitude de classification de plus de 80% 

avec l'analyse de fractale des signatures des contours de masses. Dans un travail récent, Matsubara et 

al  [52], ont obtenu un  taux d'exactitude de 100% dans  la classification de 13 masses. La méthode a 

exigé le calcul d'une série de valeurs de FD pour plusieurs contours d'une masse donnée obtenue par 

seuillage  à  plusieurs  niveaux.  La  variation  de  FD  a  été  employée  pour  classer  les  masses  en  deux 

catégories (bénignes ou malignes). 

Deux méthodes ont été décrites dans la littérature pour estimer la dimension de fractale: i) La méthode 

de boîte (box­counting) et ii) la méthode de règle (ruler) [51], [55]. Dans un travail plus récent, pour 

l’objectif  d’évaluer  ces  deux méthodes, Nguyen  et Rangayyan  [51]  ont  estimé  le  calcul  de FD d'un 

ensemble  de  111  contours  (2D)  des  masses  aussi  bien  que  leurs  signatures  1D.  La  meilleure 

performance  de  classification  avec  un  taux  d’exactitude  de  l’ordre  de  89%  a  été  obtenue  avec  la 

méthode de règle appliquée aux signatures 1D des contours. 

Malgré  qu’elle  puisse  être  utile  pour  la  description  des  masses,  l’analyse  fractale  présente 

certaines  limites  qui  nous  découragent  à  l’utiliser  dans  notre  travail.  En  regardant  la  figure  2.9,  on 

constate que les valeurs retenues par  le FD sont très proches et par la suite la séparation entre les cas 

malignes  et ceux  bénignes est difficile. Aussi  les valeurs  retournées ne sont pas  normalisées c'est­à­ 

dire elles ne sont pas limitées à un intervalle bien déterminé. 

(a)             (b)           (c)           (d)           (e)           (f) 

Fig. 2.9.  Calcul de la caractéristique FD pour 6 cas de masses dont 3 sont bénignes (a, b et c) et 3 
sont maligne (d, e et f)­[51].
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–  Les moments : 

Pour étudier  l’irrégularité des masses mammographiques, plusieurs  travaux ont fait appel aux 

concepts des moments du contour [56], [41]. Les moments p+q sont définis par : 
1 1 

0 0 
( ) ( , ) 

N M 
q P 

pq m I x y I x y 
− − 

= ∑ ∑  (Eq. 2.11.) 

Où I est l’image au sein de laquelle la forme à étudier a été isolée, (M, N) sont les paramètres de taille 

d'image  et  (x,  y)  les  coordonnées  d’un  pixel  dans  l’image  I.  En  utilisant  l’équation  11  et  les 

coordonnées du centre (  10

00 

m x  m =  et  01

00 

m y  m =  correspondent à  la position du centre de gravite de  la 

forme) les moments centrés peuvent être ainsi: 
1 1 

0 0 
( ( ) ( ) ) ( , ) 

N M 
q P 

pq  I x x y y I x y µ 
− − 

= − − ∑ ∑  (Eq. 2.12.) 

Les moments centrés sont basés sur  le calcul des distances euclidiennes des pixels de  la région et  le 

point central de  la  forme. Les différentes valeurs de  pq µ  permettent de caractériser une  forme : par 

exemple la valeur  01 µ  mesure l’allongement d’une forme. 

Les formes ou les contours de deux objets sont alors comparables grâces à leurs moments respectifs. 

Dans ce cadre, HU [58] a dérivé un ensemble de sept caractéristiques, notées les moments invariants, 

qui sont  à base des moments centrés de second et de troisième ordre. Ces caractéristiques sont définies 

comme suit: 

1 20 02 2 
00 

1  ( ) φ µ µ 
µ 

= +  (Eq. 2.13.) 

2 2 
2 20 02 11 4 

00 

1  (( ) 4 ) φ µ µ µ 
µ 

= − +  (Eq. 2.14.) 

2 2 
3 30 12 21 03 5 

00 

1  (( 3 ) (3 ) ) φ µ µ µ µ 
µ 

= − + −  (Eq. 2.15.) 

2 2 
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00 

1  (( ) ( ) ) φ µ µ µ µ 
µ 

= − + −  (Eq. 2.16.) 

2 2 
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00 
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(3 ).( )[( ) 3( ) ]} 
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+ − + 

+ + − + 

= − − 

− − 
(Eq. 2.17.) 

2 2 
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00 
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+ − + + + = − −  (Eq. 2.18.)
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2 2 
7 21 03 30 12 30 12 03 21 10

00 

2 2 
30 12 21 03 30 12 03 21 

1  {3( ).( )[( ) 3( ) ] 

( ).( )[3( ) ( ) ]} 

φ µ µ µ µ µ µ µ µ 
µ 

µ µ µ µ µ µ µ µ 

+ + − + 

+ + − + 

= − 

− − 
(Eq. 2.19.) 

Les moments  invariants de HU figurent dans plusieurs études pour différents objectifs ; elles ont été 

exploitées dans le travail de Rangayyan et al [57] afin de distinguer entre les contours stellaires et ceux 

circonscrits  alors  que  dans  un  travail  récent  de  N.  Székely  et  al  [61]  elles  ont  été  utilisées  pour 

l’objectif de détection des masses. 

Dans  une  autre  étude, L.  Shen  et  al [56]  ont  utilisé  une  représentation  unidimensionnelle  du 

contour  afin  d’estimer  les moments. En  se  basant  sur  l’ensemble  des  coordonnées  (x(i)  et  y(i))  des 

points du contour et sur les distances euclidienne Z(i) entre le point central et les points du contour, le 

moment d’ordre p a été défini ainsi : 

1 

1  ( ) 
N  p 

p 
i 

m z i N = 
  
  = ∑  (Eq. 2.20.) 

Afin d’avoir des caractéristiques invariantes, une normalisation des moments est faite : 

1 
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1  ( ) 
N  p 

p 
i 

M z i m N = 
  
  = − ∑  (Eq. 2.21.) 

Lors  de  la  description  des  masses  stellaires,  trois  caractéristiques  (  1 F ,  2 F  ,  3 F  )  ont  été  générées  à 

partir du moment  p M  normalisé :

2 1 
1 1 
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= − ∑  (Eq. 2.22.) 
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  
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= − ∑  (Eq. 2.24.) 

En se basant sur les caractéristiques définies ci­dessus, une autre caractéristique a été définie comme la 

différence entre les caractéristiques  1 F  et  3 F  : 

1 3 1 2 MF F F − = −  (Eq. 2.25.)
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L.  Shen  et  al  [56],  ont  montré  que  cette  dernière  permet  une  meilleure  description  des  contours 

stellaires par rapport aux autres caractéristiques. 

–  RDM (Radial Distance Mesure) : 

Une  autre  technique  similaire  à  la  méthode  des  moments  est  la  méthode  RDM  (Radial 
Distance Mesure) qui a été utilisée pour l’extraction des caractéristiques permettant la description des 
contours  stellaires. Elle  est  basée  sur  la mesure  de  la  distance  euclidienne d  (i)  entre  un  point  i  du 

contour et le point central de la masse (on revient en détail à cette méthode dans le prochain chapitre). 

Dans [45], [53], [97], les auteurs ont fait appel à cette méthode vu qu’elle est  la moins complexe par 

rapport aux autres  techniques. Dans  le  travail de A. Retico et al [53] plusieurs caractéristiques telles 

que la distance moyenne dmoy, la déviation standard (SDEV) et la rugosité (R) sont extraites à partir de 

la méthode RDM. 

La  méthode  RDM  possède  plusieurs  avantages  par  rapport  aux  autres  méthodes,  vues 

précédemment,  qui  nous  poussent  à  l’utiliser  pour  résoudre  notre  problème.  Elle  est  simple  à 

implémenter, et est aussi  invariante aux transformations affines et ne demande pas un prétraitement à 

appliquer  sur  le  contour  ce  qui  nous  permet  de  décrire,  d’une  manière  efficace,  les  contours  pour 

n’importe quel position, dimension… 

Dans notre travail on essai de réduire encore la complexité temporelle de cette méthode en procédant 

par la minimisation du nombre des points du contour qui entrent dans le calcul des caractéristiques. 

3.2.2.2.  Caractéristiques combinées (texture et forme) 

Il est parfois nécessaire de calculer des caractéristiques de texture [74] lorsque le contour de ces 

objets n'est pas suffisamment discriminant. Ce problème est plus complexe que la description à base du 

contour car  la description doit prendre en compte tant  l'information sur  le contour que sur  la texture 

interne des objets. Dans ce cadre, On trouve pas mal de travaux [45], [48], [56], [59] qui combinent les 

caractéristiques de forme et celles de texture afin de mieux représenter les masses et améliorer le taux 

d’exactitude  de  classification.  Par  exemple,  J.  Panchal  et  al  [59],  ont  montré  que  l’utilisation  des 

caractéristiques  combinées  basées  sur  la  technique  RDM  (3  caractéristiques)  et  la  matrice  de  co­ 

occurrences (5 caractéristiques) donne un taux d’exactitude qui dépasse 78%. Aussi, dans le travail de 

U.Bottigli et al [48] un ensemble de caractéristiques de forme (RDM, Forme géométrique simple) et de 

caractéristiques  de  texture  (la moyenne,  l’entropie...),  a  été  utilisé  pour  prendre  en  considération  les 

trois types de propriétés d’une tumeur (le contour, la région et la texture).
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Dans  un  travail  plus  récent,  A.V.  Alvarenga  et  al  [59],  ont  montré  que  l’utilisation  des 

caractéristiques  combinées  basées  sur  RDM  (4  caractéristiques)  et  la  matrice  de  co­occurrences  (6 

caractéristiques) augmente encore la performance (sensibilité et spécificité)  et rend la caractérisation 

des masses mammographiques plus précise (voir le tableau 2.2). 

Caractéristiques  Sensibilité (%)  Spécificité (%) 

Forme  88.0  90.4 

Texture  89.0  86.5 

Combinées  92.0  94.2 

Tab. 2.2. Performances obtenues avec des caractéristiques de forme, de texture et combinées [73]. 

3.2.3.  Classification 

Plusieurs  techniques  ont  été  utilisées  pour  la  classification  des  cancers  de  sein.  Parmi  ces 

techniques,  on  cite  les  méthodes  supervisées  (réseau  de  neurones,  C­means,…)  et  d’analyse  du 
discriminant linéaire (LDA). 

Dans  le  cadre  d’analyse  mammographique,  on  trouve  plusieurs  utilisations  du  système  de 

classification  (LDA)  [45],  [47],  [57]  pour  l’objectif  de  la  prise  de  décision  en  ce  qui  concerne  la 

malignité ou la bénignité d’une tumeur mammographique. Dans le travail de Kilday [45], l’utilisation 

du classifieur LDA a abouti à un taux de sensibilité de l’ordre de 69%. Ce taux a augmenté à 95% dans 

un  travail  récent  de  Rangayyan  et  al  [57].  Dans  une  étude  d’évaluation  de  la  performance  des 

caractéristiques  de  forme,  A.  Alvarenga  et  al  [47]  ont  trouvé  un  taux  de  sensibilité  (88%)  et  de 

spécificité (90.4%). 

Une  autre  forme  de  classification  basée  sur  le  modèle  de  réseau  de  neurones  est  celle  de 

multicouche  (MLP)  qui  a  été  utilisé  dans  plusieurs  travaux  mammographiques  [48],  [53].  Par 

exemple, dans le travail de U. Bottigli et al [48] une comparaison d'un certain système de classification 

des masses a été présentée. Les résultats trouvés, montrent que le classifieur MLP donne la meilleure 

performance  par  rapport  aux  deux  autres  classifieurs KNN  et  SVM avec  un  taux  de  sensibilité  de 

l’ordre de 88%. 

Kim et al [60] ont conçu un nouveau type de classifieur qui combine un modèle non supervisé 

et  un  modèle  supervisé  pour  la  classification  des  masses.  Le modèle  non  supervisé  est  basé  sur  la
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théorie  de  la  résonance  adaptative ART  qui  a  groupé  les  masses  en  plusieurs  classes  séparées.  Les 

classes  ont  été  divisées  en  deux  types:  un  qui  contient  seulement  les  masses  malignes  et  un  autre 

contient un mélange des masses malignes et bénignes. Quelques masses malignes sont séparées et ont 

été classées par ART et  les masses bénignes et malignes  les moins distinguables ont été classées par 

LDA. 

On présente dans le tableau 2.3, quelques travaux réalisés pour l’objectif de diagnostic avec les 

résultats trouvés. Ces derniers paraient être comparables entre eux. Cependant, réellement, on ne peut 

pas  les  comparer  vu  que  les  critères  d’évaluation,  les  bases  d’images  utilisées  et  les  types  des 

classifieurs sont différents. 

Travail  Sensibilité  Spécificité  Ac  Classifieur  Base utilisée 

Rangayyan et al [57].  95%  ­­  ­­  LDA  Base locale (39 cas). 

L. M. Bruce et al [43].  80%  ­­  ­­  LDA  Base locale (60 cas). 

A. Retico et al [53].  78,1%  79,1%  ­­  MLP  Base locale (226 cas 

avec 109 malignes et 

117 bénignes). 

R.Feng Chang et al 

[64]. 

88,89%  92.5%  ­­  SVM  Base locale (210 cas 

avec 90 cas malignes 

et 120 cas bénignes). 

U. Bottigli et al [48].  88%  ­­  ­­  MLP  Base CALMA 

(320cas). 

Kilday [45].  69%  ­­  ­­  LDA  Base locale (82 cas). 

A. Alvarenga et al [47]  88,0%  90,4  88,8%  LDA  Base locale (152 cas). 

Tab. 2.3. Résultat de test de quelques travaux utilisant des classifieurs supervisés. 

4. Flôt de diagnostic mammographique proposé 

L’analyse  mammographique  se  base  sur  trois  étapes  fortement  liées  quelque  soit  le  flôt  à 

utiliser: l’étape de segmentation, l’étape d’extraction de caractéristiques et celle de classification. 

Dans  ce  travail,  on  présente  une  démarche  de  diagnostic  contenant  trois  parties  (Fig.  2.10).  La 

première consiste en  l’identification des masses. Quant à la deuxième, elle en aborde la description de
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forme.  Dans  la  troisième  partie,  on  passe  à  la  prise  de  décision  concernant  les  masses  suspectes 

(bénigne ou maligne). 

Fig. 2.10. Flôt de diagnostic mammographique proposé. 

Une  fois  la  région  suspecte  contenant  la  masse  est  connue  (on  suppose  que  la  région  est 

détectée  à  travers  un  système  CAD),  la  tâche  à  réaliser  est  l’identification  de  masses  consistant  à 

séparer le tissu de la masse du tissu environnant normal. Cette tâche peut être manuelle (le radiologue 

trace  le  contour  autour  la  masse)  ou  automatique  (à  travers  des  méthodes  de  segmentation).  Cette 

phase sera l’objectif du quatrième chapitre de notre travail. 

Après la récupération de masse, on passe à la phase de l’extraction des caractéristiques à l’aide 

d’un descripteur de forme. Vu que les propriétés de malignité et de bénignité se basent sur la région et 

le  contour  des  masses,  on  propose  de  procéder  par  une  méthode  de  description  qui  combine  des 

caractéristiques  de  région  et  du  contour.  On  revient  sur  cette  méthode  en  détail  dans  le  chapitre 

suivant. 

Image mammographique. 

Segmentation : Identification de la masse 

Région d’intérêt contenant la masse 

Description : Extraction des caractéristiques 

Classification 

Décision:masse bénigne ou maligne 

Vecteur caractéristique 

Basées sur la région Basées sur le contour



Extraction des caractéristiques 

41 

Finalement, pour évaluer la performance des caractéristiques générées dans la deuxième étape, 

on passe à l’étape de décision à travers des méthodes de classification. 

Il  est  à noter qu’on s’intéresse à  l’étape de description alors que  les deux autres  sont utilisés 

seulement pour évaluer notre travail. 

5. Conclusion 

Dans deuxième partie, on a étudié les deux parties constituant un système d’analyse des masses 

mammographiques :  la  partie  de  détection  et  la  partie  de  diagnostic.  Dans  les  deux  parties,  l’étape 

d’extraction des caractéristiques est très importante et doit exister pour augmenter la performance de la 

détection et/ou de la classification des tumeurs. 

Dans  notre  travail,  on  s’intéresse  à  la  deuxième  partie  d’analyse  (partie  diagnostic)  et  plus 

exactement  à  la  partie  de  description  basée  sur  la  forme.  Cette  dernière,  sera  l’objectif  du  chapitre 

suivant.
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L’analyse  d’images  est  une  discipline  dont  les  fondements  théoriques  reposent  sur  les 

mathématiques  et  les  fondements  pratiques  sur  l’informatique.  En  effet,  les  techniques  d’analyse 

d’images  jouent  un  rôle  très  important  dans  plusieurs  applications  médicales,  particulièrement  en 

mammographie. 

En  général,  les  applications  incluent  l’extraction  automatique  de  caractéristiques  qui  seront 

utilisées  dans  la  prise  de  décision  (par  exemple  distinguer  les  tissus  normaux  de  ceux  suspects). 

L’extraction  des  caractéristiques,  qui  constitue  la  deuxième  phase  d’analyse,  est  l’étape  sur  laquelle 

repose tout ce qui suit car un faut départ peut dévier la décision et engendrer des résultats erronés. 

Les  caractéristiques  extraites  à  partir  d’une  image  donnent des  informations  sur  les propriétés 

de  forme,  les  propriétés  de  couleur  ou  certaines  propriétés  de  texture  [66].  Dans  notre  travail  on 

s’intéresse aux caractéristiques de forme et c’est dans ce sens que s’oriente ce chapitre qui commence 

par  un  aperçu  sur  les méthodes  utilisées pour  la description des  formes mammographiques  suivie par 

une description détaillée sur notre méthode proposée. 

1.  Forme 

La forme de l'objet est une image binaire représentant l'ampleur de l'objet ; c'est­à­dire la forme 

peut être considérée comme une silhouette de l'objet. La figure 3.1 montre quelques exemples : 

Fig. 3.1. Forme binaire des différents objets. 

En (2D), on peut définir deux notions de similarité entre les formes : la similarité de la région et 

celle du contour. Ceci est  illustré dans la figure 3.2 : les objets de la figure 3.2 (a) ont des similarités 

spatiales dans  la distribution des pixels et  sont  similaires  selon des critères  régions, alors qu’ils  sont 

clairement  différents  selon  leur  contour  (Figure  3.2  (b)).  On  peut  déduire  donc  que  l’analyse  des 

formes selon leurs régions ne suffit pas, et qu’il faut ajouter l’analyse basée sur le contour pour avoir
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une meilleure précision dans  la caractérisation des  formes. Dans ce contexte, nous proposons 

une approche d’analyse des masses mammographique suivants leurs formes et leurs contours. 

(a)  (b) 

Fig. 3.2. Notion de similarité : (a)régions similaires et (b) contours différents. 

2.  Description de la forme 

Le  descripteur  de  forme  se  rapporte  aux  méthodes  qui  fournissent  comme  résultat  une  description 

numérique  de  la  forme.  Il  génère  un  vecteur  de  caractéristiques  d'une  forme  donnée ;  à  un  objet 

(contour  ou  région)  donné  dans  une  image,  on  fait  correspondre  un  vecteur  caractéristique dont  les 

composantes sont les différents paramètres calculés. 

Les descripteurs, pour différentes  formes, devraient être assez différents pour que  les  formes 

puissent être distinguées. Ceci implique que le problème rencontré dans l’analyse d’images est le choix 

d’un bon descripteur et par la suite on ne peut dire qu’un tel descripteur est meilleur qu’un autre que si 

la différence des valeurs retenues, pour des  formes différentes, est grande et que si  la différence des 

valeurs retenues, pour les formes semblables, est petite. 

Fig. 3.3. Vecteur des caractéristiques. 

Il est important de distinguer les types de descripteurs de forme utilisés pour la discrimination 

ou  la  reconnaissance des objets. En général,  les  descripteurs de  formes peuvent être divisés en deux 

grandes classes :  les uns  s’appuient sur  la  forme entière et  les autres sur  le contour. Les descripteurs
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basés sur le contour prennent en compte seulement les pixels de la frontière d’une forme alors 

que les descripteurs basés sur la région prennent en compte tous les pixels de la forme. 

(a)                                          (b) 
Fig. 3.4. Transformations appliquées à l’image : (a)changement de dimension et (b) rotation. 

Malgré  que  l’objectif  de  la  description  soit  de  caractériser  la  forme  à  travers  un  vecteur 

caractéristique, les descripteurs de formes doivent satisfaire certains critères parmi lesquels : 

–  l'invariance  à  un  ensemble  de  transformations  géométriques  comme  la  translation,  le 

changement  de  dimension  et  la  rotation  (figure  3.4)  afin  d’aboutir  à  une description  efficace 

d’une forme donnée. 

–  la rapidité de calcul. 

3. Méthodes de description de forme 

Une fois la masse est identifiée, nous procédons par une extraction des caractéristiques à partir 

du contour et  de  la  région pour  faire  la distinction  entre  les masses  bénignes et  celles malignes. En 

littérature,  une variété des méthodes a été utilisée pour l’objectif de description des masses. 

Dans  le  cadre  d’analyse  des  masses  mammographiques,  de  nombreux  descripteurs  ont  été 

proposés. Dans [45], [46]  les auteurs utilisent un ensemble de caractéristiques géométriques simples 
telles que le périmètre, la circularité et l'élongation pour la caractérisation des masses. Dans [47], [53], 

les  auteurs  ont,  pour  leur  part,  exploité  des  caractéristiques  de  l’enveloppe  convexe  telle  que  la 
convexité.  La  méthode  RDM,  est  utilisée  fréquemment  dans  diverses  approches  [53],  [59]  pour 

générer des caractéristiques à utiliser dans la phase de description.
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Dans cette partie on donne un aperçu sur les méthodes qu’on peut exploiter dans l’élaboration 

de notre descripteur de forme. 

3.1. Caractéristiques de forme simples 

Plusieurs  caractéristiques  géométriques  simples  sont  utilisées  pendant  l’analyse 

mammographique. Ces caractéristiques peuvent être utiles dans  la description de  forme. En présente 

par  la  suite  un  panorama  non  exhaustif  des  caractéristiques  les  plus  utilisées  telles  que  l’aire,  le 

périmètre, la circularité et l’excentricité. 

3.1.1.  Aire et périmètre 

L’aire A  et le périmètre P sont calculés pour caractériser  la taille d’une forme donnée. L’aire 

est définie comme  le  nombre de pixels  à  l’intérieur d’une  forme. Tandis  que  le périmètre est  défini 

comme  le  nombre de pixels  du  contour  d’une  forme. Ces  deux  caractéristiques  ne peuvent  pas  être 

considérées  seules en mammographie,  et  en  analyse des masses afin de distinguer entre  les  tumeurs 

bénignes et malignes. Ils ne sont pas suffisants car la taille de la tumeur de sein n’est pas un signe de 

maladie. Mais ils sont utiles dans le calcul des plusieurs autres caractéristiques qu’on va détailler par la 

suite. 

3.1.2.  Circularité 

La circularité (C) est une caractéristique géométrique qui permet de décrire les régions qui 

peuvent être circulaires. Elle est donnée par l’équation suivante: 

2 
4  A C 
P 
π =  (Eq. 3.1.) 

Avec 

P:  Le périmètre de la région. 
A:  L'aire de la région. 
 
 
 

Vu  qu’on  traite,  en mammographie,  des  masses  qui  peuvent  être  soit  des  formes  rondes  ou 

ovales  (dans  le  cas  d’une  tumeur  bénigne),  soit  des  formes  irrégulières  (dans  le  cas  d’une  tumeur 

maligne), la circularité peut être utile dans ce sens et peut donner une indication sur la régularité d’une 

forme donnée. 

Dans la figure 3.5, on présente deux formes : la première représente une forme régulière (figure 

3.5 (a))  qui a une circularité C=1 et la deuxième représente une forme irrégulière (figure 3.5 (b)) avec
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une circularité C<<1. Par la suite on peut constater que la différence entre les valeurs retenues dans les 

deux cas peut être exploitée pour regrouper les cas réguliers de ceux irréguliers. 

(a)    C=1                                     (b)  C<<1 
Fig 3.5. Une (a) forme circulaire et une (b) forme irrégulière (non circulaire). 

Plus  la  circularité  est  haute  (C; 1),  plus  la  forme  tend  à  être  plus  ronde  et  par  la  suite  la 

probabilité d’une masse d’être bénigne est plus grande. Par contre lorsque C est proche de 0, la forme 

tend à être irrégulière et par conséquent il s’agit d’une tumeur maligne. 

En  mammographie,  la  circularité  C  est  utilisée  fréquemment  dans  des  travaux  destinés  au 

diagnostic [53], [59] vu qu’elle est simple à implémenter et possède l’avantage qu’elle est invariante à 

toute transformation affine (translation, rotation, etc.). 

3.1.3. Excentricité 

L’excentricité  est  une  autre  caractéristique  qui  peut  être  utilisée  dans  la  discrimination  des 

masses. Elle donne une indication sur l’élongation d’une masse et est définit par le rapport entre l’axe 

mineur et l’axe majeur : 

(Eq. 3.2.) 

L'axe majeur est la plus longue droite qui traverse le centre alors que l’axe mineur est la ligne qui est 

perpendiculaire  à  l'axe majeur  et  qui passe  par  le  centre.  Lorsque  l’axe mineur  est  proche  de  l’axe 

majeur il s’agit d’une forme ronde alors que si l’axe mineur est loin de l’axe majeur on dit qu’il s’agit 

d’une forme allongée. 

La  figure  3.6,  illustre  un  exemple de  calcul  de  l’excentricité  pour  une masse  bénigne  et  une 

autre  maligne.  Pour  une  forme  bénigne,  l’excentricité  vaut  1  alors  que  pour  une  forme  maligne 

_ 
_ 

Axe Mineur Ex  Axe Majeur =
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l’excentricité est  loin de 1. Donc, on voit  l’utilité de cette caractéristique dans la discrimination entre 

les cas malins et ceux bénins. 

(a)                                                                   (b) 
Fig. 3.6. Calcul d’excentricité : pour une (a) tumeur bénigne et (b) une tumeur maligne. 

Malgré  que  cette  caractéristique puisse  être  utile  dans  la  phase  de description  et  qu’elle  soit 

invariante  à  toute  transformation  affine,  elle  présente  des  limites  dans  plusieurs  cas.  La  figure  3.7 

illustre  deux  cas  dont  les  valeurs  retournées  (Exc; 1)  par  l’excentricité  indiquent  la  présence  des 
tumeurs bénignes alors qu’au contraire il s’agit des tumeurs malignes. 

(a)   Exc; 1  (b) Exc; 1 
Fig. 3.7. Caractérisation non fiable  pour deux tumeurs malignes : (a) Cas 1 et (b) Cas 2. 

3.2.  Enveloppe convexe 

L’enveloppe convexe notée E est  largement utilisée dans plusieurs domaines d’analyse telque 

l’analyse d’images médicales et en particulier dans l’analyse des masses mammographiques [47], [53]. 

Axe Majeur 

Axe Mineur 

Axe Majeur 

Axe Mineur
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Fig. 3.8. L’enveloppe convexe E d’une forme F. 

Elle  est  définie  comme  la  plus  petite  surface  convexe  contenant  une  forme  F  (voir  la  figure  3.8). 

L’objectif  de  l’utilisation  de  l’enveloppe  convexe  est  l’extraction  des  caractéristiques  qui  servent  à 

décrire  les  formes  et  qui  permettent  de  nous  aider  dans  la  distinction  entre  les  formes  régulières 

(rondes, ovales, lobulaires) et celles irrégulières. 

On fait appel à plusieurs caractéristiques données comme suit : 

–  A (F) : L’aire (la surface) de la forme F. 

–  A (R) : L’aire (la surface) de la région résiduelle R. 

–  A (E) : L’aire (la surface) de l’enveloppe Convexe E. 

–  P (E) : Le périmètre  de l’enveloppe Convexe E. 

–  P (F) : Le périmètre  de la forme F. 

Les principales caractéristiques qu’on peut utiliser dans notre étude mammographique sont  la 

convexité  (CVX) et  la  valeur  résiduelle  normalisée  (NRV). Ces deux dernières  seront  l’objectif des 

sous­sections suivantes. 

3.2.1. Convexité (CVX) 

On dit qu’un ensemble X ⊆  E est convexe si rx + (1 − r)y ∈ X pour tout x, y ∈ X avec r ∈ 
[0, 1]. Autrement dit, tout segment reliant deux points quelconques (x et y) de X doit être entièrement 

contenu dans X. A la figure 3.9, on a un objet convexe (figure 3.9 (a)) et un autre qui est non convexe 

(figure 3.9 (b)). 

Région résiduelle R. 
Enveloppe Convexe 
E 

Forme F
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(a)  (b) 
Fig. 3.9. (a) forme convexe et (b) forme non convexe. 

Une  région  fortement  convexe  (c’est  à  dire  qui  épouse  parfaitement  son  enveloppe  convexe)  a  une 

valeur de convexité proche de 1 (figure 3.10 (a)). Alors qu’une région faiblement convexe possède une 

valeur de convexité  loin de 1(figure 3.10 (b)). 

Les formes irrégulières des tumeurs malignes sont stellaires ou microlobulées ; ces formes sont 

faiblement  convexes.  Par  contre  les  formes  régulières  des  tumeurs  bénignes  (rondes,  ovales  et 

lobulées)  sont  fortement  convexes.  D’où,  la  nécessité  de  calculer  une  valeur  de  la  convexité  pour 

caractériser les formes des masses mammographique. 

(a)                                                                     (b) 

Fig. 3.10. (a) Région régulière (tumeur bénigne) et (b) région  irrégulière (tumeur maligne). 

En  mammographie,  pour  calculer  la  convexité  (CVX)  d’une  masse  donnée,  on  utilise 

l’enveloppe convexe. Cette caractéristique est définie comme le rapport entre l’aire de la forme A (F) 

et l’aire de l’enveloppe convexe A (E) : 

x 
z 

y
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( ) 
( ) 

A F CVX  A E =  (Eq. 3.3.) 

La caractéristique de  convexité a plusieurs  avantages. En effet,  elle est  facile à calculer. Son 

calcul est normalisé (entre 0 et 1) ; elle est invariante à toute transformation affine. Mais, la convexité 

ne détecte pas des défauts énormes sur  les  frontières des  formes qui ont un  impact relativement petit 

sur les surfaces des formes. 

3.2.2. Valeur résiduelle normalisée (NRV) 

La  caractéristique NRV  (ou Normalised Residual Value)  est  une  autre  caractéristique  qu’on 

peut  l’extraire de  l’enveloppe convexe. Elle est définie par  le  rapport entre  l’aire A(R) de  la  région 

résiduelle R et  le périmètre P(E) de  l’enveloppe convexe E. La région résiduelle R (région en blanc 

dans la figure 3.16 (b)) est la région résultante de la différence entre l’enveloppe convexe E et la forme 

F : 

(Eq. 3.4.) 

On  dit  qu’une  forme  F  est  convexe  lorsque  l’aire  A(R)  de  la  région  résiduelle  tend  vers  0.  La 

caractéristique NRV est donnée par l’équation suivante: 

( ) 
( ) 

A R NRV  P E =  (Eq. 3.5.) 

Lorsque  l’aire de  la région résiduelle est plus grande que son périmètre, on aura une valeur de NRV 

grande et par la suite il s’agit d’une forme non convexe irrégulière (figure 3.11 (a) et (b)). Dans le cas 

contraire, où le périmètre est proche à l’aire de la région résiduelle, on aura une valeur NRV ; 1, qui 
permet de conclure que la forme est régulière (figure 3.11 (c) et (d)). 

L’avantage  de  NRV  est  qu’elle  est  simple  à  implémenter,  elle  est  invariante  à  toute 

transformation  affine  et  qu’elle  donne  des  résultats  encourageants  dans  plusieurs  travaux  [47],  [72] 

d’analyse  mammographiques.  D’après  une  étude  d’évaluation,  comme  indique  le  tableau  3.1,  d’un 

ensemble des caractéristiques A. Alvarenga et al [47] ont montré que la caractéristique NRV possède 

une  meilleure  sensibilité  (94.6%)  par  rapport  à  la  CVX  (81.5%)  et  aussi  une  meilleure  spécificité 

(91.7%) par rapport à la CVX (86.7%). Mais l’inconvénient de cette caractéristique est que les valeurs 

calculées ne sont pas limitées dans un intervalle fini. 

R E F = −



Extraction des caractéristiques 

51 

(a)                                                                        (b) 
Fig. 3.11. Calcul de NRV: (a) forme irrégulière et  son enveloppe convexe, (respectivement (b) forme 

régulière et son enveloppe convexe). 

Caractéristiques  Sensibilité (%)  Spécificité (%) 

NRV 

C  88.0  88.3 

CVX  81.5  86.7 

Tab 3.1. Evaluation de la caractéristique NRV [47]. 

3.3. Mesure de la Distance Radiale (RDM) 

La technique de RDM est utilisée fréquemment dans l’analyse mammographique [53], [59] vu 

qu’elle est efficace pour décrire des masses. À travers cette technique, on fait l’extraction de plusieurs 

caractéristiques qui peuvent être utilisées par  la  suite dans des vecteurs caractéristiques. Dans ce qui 

suit,  on  donne  le  principe  de  cette  technique  et  quelques  caractéristiques  qu’on  peut  utiliser  pour 

répondre à nos besoins. 

3.3.1. Principe 

La mesure de la distance radiale RDM est une méthode qui se base sur  le calcul des distances 

euclidiennes d (i) calculées du centre C de la tumeur aux points élémentaires Pi du contour comme il 

est indiqué à la figure 3.12. 

Périmètre P(E). 

Région résiduelle R. 

94.6  91.7
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Fig 3.12. Principe de la méthode RDM. 

Pour voir  l’utilité de cette approche, on étudie la signature du contour afin de distinguer entre 

un contour régulier et un autre irrégulier. À la figure 3.13 on a deux représentations :  l’une pour une 

tumeur bénigne (figure 3.13 (a)) et l’autre pour une tumeur maligne (figure 3.13 (b)). 

(a) 

(b) 
Fig. 3.13. Signature de contour dans le cas (a) d’une tumeur bénigne et (b) d’une tumeur maligne. 

d(i) 

d(i) 

Points 

Points 

P i ( x i , y i ) 

C ( Xc ,Yc ) 

d (i)
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En comparant les deux signatures, on remarque une grande variation entre les distances des rayons (les 

rayons varient entre 0.4 et 1) pour une tumeur maligne alors que pour une tumeur bénigne il y’a une 

petite variation entre les distances des rayons (les distances varient entre 0.93 et 1). La grande variation 

s’explique par la présence d’un contour irrégulier et par la suite on peut conclure que l’utilisation de la 

technique RDM peut nous mener à des bons résultats lors de la différenciation entre les contours des 

masses. 

Dans  la partie  suivante on présente  les caractéristiques utilisées qui  sont  extraites à partir de 

cette méthode pour décrire des masses mammographiques. 

3.3.2. Caractéristiques 

Plusieurs  caractéristiques  sont  extraites  à  partir  de  la  méthode  RDM  tels  que  la  moyenne 

(  moy d  ),  la  déviation  standard  (SDEV),  le  zero­crossing  (ZC),  la  rugosité  (R)  et  le  rapport  d’aire 

(AR). Lors du calcul de ces caractéristiques, on utilise plusieurs paramètres: 

–  La  distance  2 2 ( ) ( ) ( ) c c i i d i x X y Y = − + −  :  la  distance  euclidienne  entre  le  point  i  (de 

coordonnées  i x et  i y ) du contour et le point central de la forme (de coordonnées  c X  et  c Y  ). 

–  La distance  ( ) ( ) 
max[ ( )] n 

d i d i  d i =  : la distance euclidienne normalisée. 

–  Le nombre N : le nombre de points (pixels) du contour d’une forme (appelé aussi le périmètre 

de contour). 

–  Les coordonnées  N 
c 

x 
X  N = ∑  et  N 

c 
y 

Y  N = ∑  : sont  les coordonnées de point central d’une 

forme donnée. 

Toutes les distances radiales étaient normalisées en utilisant  la valeur maximale des distances 

radiales.  Cette  normalisation  a  pour  objectif  la  limitation  de  la  valeur  de  distance  ( ) n d i  dans 

l’intervalle [0, 1], quelque soit la dimension de la tumeur et par conséquent rendre la technique RDM 

invariante à toute transformation affine. 

3.3.2.1. Distance moyenne normalisée (  moy d  ) 

Cette  caractéristique  peut  être  utilisée  directement  pour  la  description,  comme  elle  peut  être 

utilisée pour calculer d’autres caractéristiques. Elle est importante pour la  caractérisation des tumeurs 

de formes stellaires.
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La caractéristique  moy d  est donnée par l’équation suivante : 

1 

1  ( ) n 

N 
moy 

i 
d d i N = 

= ∑  (Eq. 3.6.) 

Plus  la  valeur  retournée  par  cette  caractéristique  est  proche  de  1,  plus  la  forme  est  régulière ; 

respectivement, plus la valeur de  moy d  est loin de 1, plus la forme est irrégulière. 

3.3.2.2. Déviation standard (σ ) 

La  caractéristique  de  déviation  standard  (Standard  Deviation  ouσ  )  de  la  distance  radiale 
normalisée  est  définie  par  la  variance  des  distances  autour  du  rayon  (le  rayon  est  la  distance 

moy d  définie précédemment) d’un cercle (figure 3.14). 

Cette  caractéristique  est  utilisée  pour  la  description  des  contours  stellaires.  Elle  est  donnée  par 

l’équation suivante : 

( ) 
2 

1 

1  ( ) n 

N 
moy 

i 
d i d N σ 

= 

  
  
    
  

= − ∑  (Eq. 3.7.) 

Dans  la  figure  3.14,  on  montre  la  caractéristique  SDEV  qui  est  représentée  par  une  ligne 

pointillé qui est la différence (SDEV) entre la distance  ( ) n d i  et la distance moyenne  moy d  . 

(a)                                                                      (b) 

Fig. 3.14. Principe de SDEVpour (a) un contour stellaire et (b) un contour lobulé. 

moy d 

SDEV 

moy d 
SDEV



Extraction des caractéristiques 

55 

Plus  cette  différence  est  grande,  plus  le  contour  étudié  est  irrégulier  (contour  stellaire  maligne  à  la 

figure  3.14  (a)).  Au  contraire,  plus  cette  différence  est  petite  plus  la  probabilité  de  régularité  du 

contour est grande (contour lobulé bénigne à la figure 3.14 (b)). Par la suite, on constate que le SDEV 

peut donner une bonne  indication sur  l’irrégularité du contour. En effet,  lorsqu’il s’agit d’un contour 

stellaire maligne  la  valeur de SDEV augmente, par contre dans  le cas d’un contour bien entouré ou 

lobulé bénigne le SDEV diminue et tend vers 0. 

3.3.2.3. Zero Crossing (ZC) 

C’est le nombre de fois où la distance  ( ) n d i  est supérieure à la distance moyenne  moy d  . Plus 

la valeur de Zero Crossing est grande plus le contour est irrégulier. D’après les signatures des contours, 

à la figure 3.15, on remarque que le nombre de fois où la distance  ( ) n d i  est supérieure à la distance 

moyenne  moy d  est grand pour une  tumeur maligne  (figure 3.15  (a)) et  il  est petit pour une  tumeur 

bénigne (figure 3.15 (b)). 

(a) 

(b) 
Fig. 3.15. Signature de Zéro Crossing pour (a) une tumeur maligne et (b) une tumeur bénigne. 

Points 

( ) n d i 
dmoy 

ZC 

Points 

ZC 
( ) n d i 

dmoy
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Le problème est que les valeurs retournées par cette caractéristique, pour une forme donnée, ne 

sont pas normalisées et par la suite il faut définir un intervalle des valeurs pour n’importe quelle forme. 

3.3.2.4. Rugosité (R) 

Puisque, en mammographie, on traite des contours qui peuvent être stellaires ou microlobulés, 

la  rugosité  peut  être  utilisée  pour  nous  aider  à  la  description  de  ces  types  de  contours  anguleux 

(contours qui contiennent des segments concaves). 

La rugosité est définie, par l’équation suivante : 

1 

1  ( ) ( 1) 
N 

n n 
i 

R d i d i N = 
= − + ∑  (Eq. 3.8.) 

La  figure  3.16  illustre  le  principe  de  la  rugosité  donnée  par  la  différence  R  entre  le  rayon 

( ) n d i  et le rayon  ( 1) n d i+  . On remarque que R augmente pour un contour stellaire (figure 3.16 (a)), 

diminue pour un contour microlobulé  (figure 3.16  (b)) et proche de 0 pour un contour bien entouré 

(figure  3.16  (c)). Généralement, on  peut  dire  que  la  rugosité  augmente  pour  une  tumeur maligne  et 

diminue pour une tumeur bénigne. 

(a)                                                 (b)  (c) 
Fig. 3.16. Principe de la rugosité (a) contour stellaire, (b) contour microlobulé et (c) contour lisse. 

( ) n d i 
( 1) n d i+ 

( ) n d i 
( 1) n d i + 

( ) n d i 
( 1) n d i+ 

R
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3.3.2.5. Rapport d’aire (AR) 

Le rapport d’aire AR  (ou Area Ration) est une autre forme de caractéristique qu’on peut utiliser 

pour décrire les contours des masses stellaires. Elle permet de donner le pourcentage que la masse soit 

en dehors de la région circulaire du rayon  moy d  . L’équation de cette caractéristique est donné par : 

( ) 
1 

1  * ( ) 
* 

N 

n moy R 
i moy 

d i d N d A 
= 

− = ∑  (Eq. 3.9.) 

Avec  R A  =0  ( ) n moy d i d ∀ ≤ 

À la figure 3.17, on présente la façon de calcul de la caractéristique AR (représentée par la ligne 

pointillé  en  bleu  dans  la  figure)  donnée  par  la  différence  entre  la  distance  ( ) n d i  et  la  distance 

moyenne  moy d  mais  seulement  dans  le  cas  où  la  distance  ( ) n d i  est  strictement  supérieure  à  la 

distance  moy d  . 

(a)                                                                      (b) 
Fig. 3.17. Principe d’AR  pour (a) un contour stellaire et (b) un contour lobulé. 

Comme pour le cas de la caractéristique SDEV, plus la ligne pointillé est grande, plus le contour est 

irrégulier (contour stellaire maligne à la figure 3.17 (a)). Au contraire, plus la ligne pointillé est petite 

plus la probabilité de régularité du contour est grande (contour lobulé bénigne à la figure 3.17 (b)). Par 

conséquent,  la  caractéristique  AR  peut  être  utile  dans  la  discrimination  des  contours  des  masses 

mammographique. En effet,  lorsqu’il  s’agit d’un contour  stellaire maligne  la  valeur d’AR  augmente, 

par contre dans le cas d’un contour bien entouré ou lobulé bénigne l’AR diminue et tend vers 0. 

AR 

moy d
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4. Descripteur de forme proposé 

Notre méthode proposée est une combinaison des caractéristiques  basées  sur  la  région et des 

caractéristiques  basées  sur  le contour,  comme  indique  la  figure 3.17,    afin de décrire d’une manière 

plus efficace les masses mammographiques. 

En utilisant une méthode de segmentation, qu’on va décrire dans le chapitre suivant, et à partir 

de  la  région  de  masse  (figure  3.18  (a))  isolée,  on  fait  l’extraction  de  trois  caractéristiques :  i)  la 

circularité C, ii) la valeur résiduelle normalisée NRV et iii) la caractéristique d’élongation notée CIE 

(Cercle  Interne  Externe).  Ces  caractéristiques,  ont  pour  rôle  la  description  du  contenu  des  formes 

mammographiques. 

À partir du contour de la masse (figure 3.18 (b)), on extrait cinq caractéristiques : trois caractéristiques 

provenant de la méthode RDM modifiée (section 4.1.1), une caractéristique de convexité CVX et une 

caractéristique, propre à notre travail, calculée à partir des angles notée l’indice d’angle IA. 

C  RDM étendue 

NRV                                                                                   CVX 

CIE  IA 

(a)                                                           (b) 
Fig.  3.18. Descripteur de forme : (a) caractéristiques de région et (b) caractéristiques de contour. 

Descripteur de forme 

Région  Contour
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Finalement, on a un ensemble de huit  caractéristiques qui  sont choisies en  respectant  les  critères  de 

simplicité en terme d’implémentation d’un côté, et d’efficacité d’un autre côté. 

Par la suite on présente notre vecteur de caractéristiques en indiquant à chaque fois l’intérêt de 

chaque caractéristique lors de la phase de description. 

4.1. Caractéristiques basées sur le contour 

Les caractéristiques basées  sur  le contour sont utilisées pour décrire  la  frontière d’une  forme. 

En  mammographie,  on  traite  les  contours  des  masses  qui  peuvent  être  stellaires,  microlobulées, 

circonscrits, mal définis et indistincts (vues dans le chapitre 1). 

Les caractéristiques à utiliser sont celles extraites à travers la méthode RDM : le SDEV, la rugosité R 

et le rapport AR. L’apport dans notre étude est l’amélioration de ces caractéristiques en optimisant  les 

temps  de  calculs  et  en  augmentant  la  pertinence  des  valeurs  retenues. Aussi  on  utilise  la  convexité 

CVX à partir de l’enveloppe convexe. 

La contribution  ici est  la  réalisation d’une nouvelle caractéristique notée (IA)  jouant  un  rôle dans  la 

distinction entre les contours réguliers et les contours microlobulés. 

4.1.1. RDM étendue 

Les caractéristiques basées sur RDM sont celles dont la complexité temporelle liée au calcul est 

optimale relativement aux autres caractéristiques basées sur le calcul d’angle tel que « turning angle » 

[49]. 

Partant de la technique RDM décrite dans la section 3.4, qui est basée sur  le calcul de tous les points 

constituant  le  contour  (complexité  temporelle  élevée),  on  se  propose  de  minimiser  encore  sa 

complexité  en  ne  prenant  en  compte  que  quelques  points  de  contours.  Ces  points  représentent  les 

extrema du contour. Ces extrema représentent soit les points concaves soit les points convexes décrites 

comme suit : 

–  Un point concave Pconcave ( i ) de contour  est un  point qui possède une distance radiale d (i) 

inférieure à la distance radiale d (i­1) et inférieure à la distance radiale d (i+1). 

–  Un point convexe Pconvexe  ( i ) de contour est un point qui possède une distance radiale d (i) 

supérieure à la distance radiale d (i­1) et supérieure à la distance radiale d (i+1). 

La totalité des points sur lesquels on travaille est donnée comme suit: 

–  Pconcave ( i ) ={ i | d(i)<d(i­1) et d(i)< d(i+1)}
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–  Pconvexe ( i ) ={ i | d(i)>d(i­1) et d(i)> d(i+1)} 

En fixant  les points convexes et concaves, on réduit  le nombre de points du contour à utiliser 

dans  le  calcul  et  par  conséquent  on  réduit  la  complexité  temporelle  de  calcul  des  caractéristiques 

extraites à partir de  la méthode RDM. Dans la figure 3.19 on a deux représentations :  l’une pour une 

tumeur maligne (figure 3.19 (a)) et l’autre pour une tumeur bénigne (figure 3.19 (b)). 

(a)                                                                                (b) 
Fig. 3.19. Ensemble des points concaves et convexes (a) cas d’une tumeur maligne et (b) d’une tumeur 

bénigne. 

D’après la table 3.2, on remarque que les valeurs retenues par notre RDM améliorée respectent 

la séparation entre les masses maligne et celles bénigne ainsi que la méthode RDM. En plus de ça, la 

séparation  à  travers  notre  méthode  est  plus  claire ;  car  si  on  prend  par  exemple  le  cas  de  la 

caractéristique R on constate une distinction plus claire (les valeurs des cas malignes varient entre 0.13 

et 0.21 alors qu’elles varient entre 0.013 et 0.018 pour les cas bénignes) par rapport à la caractéristique 

R de  la méthode RDM (les valeurs des cas malignes sont entre 0.02 et 0.03 alors qu’elles  sont entre 

0.018 et 0.029 pour les cas bénignes). 

Parmi les caractéristiques extraites de la méthode RDM, on peut utiliser dans notre travail les 

caractéristiques  suivantes:  l’écart  type SDEV,  la  rugosité R  et  le  rapport AR  (voir  la  section  3.2.3) 

puisqu’elles caractérisent mieux les contours stellaires. 

Point concave 

Point convexe
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moy d  0.5723  0.6048  0.8602  0.8131 

R A  0.1260  0.1470  0.0352  0.0545 

σ  0.1693  0.2108  0.0715  0.1047 

RDM 

étendue 

R  0.1326  0.2102  0.0187  0.0138 

moy d  0.6224  0.6053  0.8598  0.8153 

R A  0.1012  0.1140  0.0305  0.0522 

σ  0.1518  0.1693  0.0629  0.0999 

RDM 

R  0.0238  0.0363  0.029  0.0188 

Tab 3.2. Comparaison des valeurs retenues par la méthode RDM et RDM étendue. 

4.1.2. Indice d’Angle (IA) 

L’importance de la technique RDM réside dans la meilleure description du contour stellaire. En 

contre  partie,  cette  technique  ne permet  pas  de  distinguer,  d’une manière  efficace,  entre  les  cas  des 

contours stellaires et ceux microlobulés. Ce problème peut être résolu si on prend en considération la 

notion d’angles. 

Partant de la méthode RDM et en utilisant  les points concaves et convexes vus dans la section 

précédente,  on  ajoute  à  notre  descripteur  de  forme  une  caractéristique,  propre  à  notre  application, 

qu’on l’appelle Indice d’Angle (IA). Cette dernière permet la description de contours stellaires (figure 

3.20 (a)) et de contours microlobulés (figure 3.20 (b)). 

(a)                                (b) 
Fig. 3.20. Cas traité par la caractéristique IA :(a) contour stellaire et (b) contour micro­lobulé.
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Elle est basée sur le calcul d’angle et est définie par le rapport entre les angles  i ϕ  (calculés à partir des 

points convexes et concaves) et les angles  i θ  (calculés à partir des points convexes et ses voisins). La 

caractéristique d’indice d’angle est donnée par l’équation suivante : 

1 

1 

N 

i 
i 
N 

i 
i 

IA 
ϕ 

θ 
= 

= 

= 
∑ 

∑ 
(Eq. 3.10.) 

Avec  i ϕ  <  i θ 

À  la  figure  3.21,  on  présente  un  contour  d’une  masse  microlobulée  et  la  manière  de  calcul 

d’angle  i θ  et d’angle  i ϕ  . Pour un point  i du contour, l’angle  i ϕ  est  l’angle fait par  le point convexe 

Pconvexe (i) et ses voisin concaves gauche  (i­1) et droite (i+1). L’angle  i θ  est  l’angle  fait par  le point 

convexe Pconvexe (i) et  point convexe gauche Pconvexe (i+1) et droite Pconvexe (i­1). 

Fig. 3.21. Calcul des angles  i θ  et  i ϕ  . 

On peut déduire que, plus  les  valeurs des angles  i ϕ  soient  proches des  valeurs des angles  i θ  , 

plus la forme de tumeur est bénigne. Contrairement, lorsque les valeurs des angles  i ϕ  soient loin des 

valeurs des angles  i θ  la forme de tumeur est maligne. Les valeurs retournées par l’indice d’angle (IA) 

Pconvexe (i) 

Pconvexe (i ­1) 

Pconvexe (i +1) 

Pconcave (i +1)  Pconcave (i ­1)
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sont  limitées  dans  l’intervalle  [0 ;  1]. En  effet,  pour  une  forme  convexe  avec  un  contour  régulier  la 

valeur de IA; 1 alors que pour une forme possédant un contour microlobulé la valeur IA<<1. 

L’avantage  de  cette  caractéristique,  est  qu’elle  est  normalisée  et  est  invariante  à  toute 

transformation  affine.  Aussi,  elle  a  une meilleure  complexité  par  rapport  aux  autres  caractéristiques 

basées sur  le calcul d’angle [49] vu qu’on se  limite à un nombre réduit de  l’ensemble des points du 

contour alors que dans les autres méthode le calcul d’angle englobe tous les points du contour. 

4.1.3. Convexité (CVX) 

La convexité est une  caractéristique utile dans  la discrimination entre une  tumeur  bénigne et 

autre maligne et elle est aussi simple à calculer. 

En général, le calcul de la convexité CVX peut s’effectuer à l’aide de deux manières : 

–  Soit on utilise le rapport entre l’aire de la forme A (F) et l’aire de l’enveloppe convexe A (E): 

1 
( ) 
( ) 

A F CVX  A E =  (Eq. 3.11.) 

–  Soit  on  utilise  le  rapport  entre  le  périmètre  l’enveloppe  convexe  P(E)  et  le  périmètre  de  la 

forme P (F): 

2 
( ) 
( ) 

P E CVX  P F =  (Eq. 3.12.) 

Des travaux d’analyse mammographiques font appel à la caractéristique de convexité basée sur 

le calcul d’aires (équation 11). Cependant, dans une étude comparative sur l’efficacité de la convexité 

dans  l’analyse des  formes J. Zunic et al  [71] ont montré que  le calcul de  cette caractéristique en  se 

basant sur le périmètre au lieu de l’aire permet d’augmenter l’écart entre les valeurs de convexité pour 

les  formes  convexes  avec  celles  non  convexes.  La  figure  3.22,  présente  une  forme  irrégulière  non 

convexe d’une tumeur maligne. 

Fig. 3.22. Calcul de convexités : CVX1= (1­h)  et CVX2=2/(3­h). 
1 

1 

h
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En  prenant  une  valeur  de  h  proche  de  0,  on  aura  une  valeur  de  CVX1  qui  est  proche  de  1 

( ( ) 0 
lim 1 1 
h 

h 
→ 

− =  )  et  une  valeur  de CVX2  qui  tends  vers  2/3  ( 
( ) 0 
2 2 

3 3 
lim 
h  h → 

  
    −   

=  ),  par  la  suite  on 

constate que CVX2 décrit d’une manière plus exacte la forme au contraire de CVX1 qui va conclure 

sur  le  faite  que  la  forme  est  convexe  ce  qui  n’est  pas  le  cas. Donc  la  convexité  basée  sur  le  calcul 

d’aires peut mener à des décisions erronées ce qui nous empêche à utiliser cette caractéristique malgré 

qu’elle est la plus utilisée dans la littérature. 

Pour  rendre notre description des contours plus  fiable, nous proposons d’utiliser  la convexité 

calculée à partir des périmètres de la forme et de l’enveloppe convexe. 

4.2. Caractéristiques basées sur la région 

Les caractéristiques basées sur la région sont utilisées pour décrire le contenu d’une forme. En 

mammographie, on traite des masses qui peuvent être rondes, ovales, lobulaires et irrégulières. 

Dans notre étude, on opte pour l’utilisation de la circularité C vu qu’elle est simple à implémenter et 

qu’elle  peut  être  utile  pour  distinguer  les masses  régulières  et  les masses  irrégulières. En  plus  de  la 

circularité  la  caractéristique  NRV,  extraite  de  l’enveloppe  convexe,  peut  nous  aider  à  décrire  les 

masses et peut nous donner de meilleurs résultats. Notre contribution est  l’intégration d’une nouvelle 

caractéristique. Cette dernière, notée Cercle  Interne Externe  (CIE), constitue une amélioration de  la 

caractéristique d’excentricité (voir la section 3.1.3). 

4.2.1. Circularité (C) 

L’utilisation de cette caractéristique ne fait pas partie de nos contributions, mais son utilisation 

fréquente  dans  plusieurs  approches  d’analyse  et  sa  simplicité  d’implémentation  nous  encourage  à 

l’utiliser. D’où l’idée de profiter de  la circularité C (présentée dans  la section 3.1.2) qui peut donner 

des résultats importants [47] et surtout lorsqu’on étudie des formes qui peuvent être circulaires. 

4.2.2. Cercle Interne Externe (CIE) 

Pour calculer  le taux d’élongation d’une masse mammographique, on utilise la caractéristique 

d’excentricité. Mais  l’excentricité,  comme  on  le montre  par  la  suite,  ne  peut  pas  être  efficace  dans 

plusieurs cas ce qui donne un mauvais effet lors de la caractérisation des formes mammographiques.
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Sur  la  figure  3.23  on  donne  un  exemple  de  calcul  d’excentricité  pour  deux  formes 

mammographiques.  En  calculant  le  rapport  entre  l’axe mineur  et  l’axe majeur  de  la  forme maligne 

(figure 3.23  (b)), on  remarque que  la  valeur  retournée est  la même pour  le cas de  la  forme bénigne 

(figure 3.23 (a)). Par conséquent, l’excentricité, dans ce cas, conduira vers une fasse décision. 

(a)                                                                (b) 
Fig. 3.23. Mauvaise description par l’excentricité :(a) forme ronde bénigne et (b) d’une forme 

allongée maligne. 

Pour  remédier  à  ce  problème,  nous  nous  proposons  d’utiliser  une  autre  caractéristique  notée 

« Cercle Inscrit Circonscrit » (CIE). Cette dernière a été utilisée par C. Chettaoui et al [54] dans leur 
travail d’analyse des globules drépanocytaires. Ils ont montré que la caractéristique CIE peut palier les 

défauts d’utilisation d’excentricité dans  la description des  régions qui peuvent être allongées.  Cette 

caractéristique est basée sur le calcul de rapport entre deux rayons : le rayon Rgi du plus grand cercle 
interne  (le cercle en  bleu  à  la  figure 3.24) et  le  rayon Rpe du plus petit  cercle externe  (le  cercle  en 
rouge à la figure 3.24) de la forme étudiée. Elle est donnée par l’équation suivante : 

gi 

pe 

R 
CIE  R =  (Eq. 3.13.) 

En analysant  la figure 3.24, on remarque que pour une forme ronde (figure 3.24 (a)) la valeur de CIE 

est proche de 1 puisque la valeur de Rgi est très proche de la valeur de Rpe, alors que pour une forme 

allongée (figure 3.24 (b)) la valeur de CIE devient proche de 0 puisque la valeur de Rgi est loin de la 
valeur de Rpe. 

L’avantage de cette caractéristique est qu’elle est invariante à toute transformation affine. Elle 

est adéquate à notre travail et elle représente une amélioration de la caractéristique l’excentricité.  Mais 

Axe majeur 

Axe mineur 

Axe mineur 

Axe majeur



Extraction des caractéristiques 

66 

son calcul est moins rapide, étant donné que pour chaque forme on doit parcourir tous les points pour 

déterminer le cercle inscrit dans l'objet qui contient ce point. 

(a)                                                           (b) 

Fig. 3.24. Caractéristique CIE pour une (a) forme ronde et (b) une forme allongée. 

4.2.3. Valeur moyenne résiduelle (NRV) 

À partir de l’enveloppe convexe, on utilise la caractéristique NRV (décrite dans la partie 3.2.2) 

qui donne les meilleurs performances par rapport aux caractéristiques qu’ont peut extraire, et qui peut 

être utile dans la distinction entre les régions régulières et irrégulières. 

5. Conclusion 

Dans  ce  chapitre,  une  étude  sur  les  méthodes  de  description  de  forme,  utilisées  pour  la 

discrimination  entre  les masses malignes  et  bénignes,  a  été  faite.  Le  choix  de  la  méthode  a  pris  en 

compte deux catégories de caractéristiques : la première est basée sur le contour et elle sert à décrire la 

régularité de  la  frontière d’une masse. Quant à  la deuxième, elle est basée  sur  la région et permet la 

description de contenu d’une masse. 

Parmi les méthodes de description du contour, on a montré que la méthode de la mesure de la 

distance radiale (RDM) possède une complexité de calcul minimale par rapport  aux autres méthodes 

telles que les moments et les méthodes basées sur le calcul d’angles. Nous avons proposé une méthode 

de calcul permettant l’optimisation de la technique RDM afin de réduire de plus en plus la complexité 

Rgi 

Rpe 

Rgi Rpe
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temporelle. En utilisant la méthode RDM on a introduit une nouvelle caractéristique (IA) qui est basée 

sur le calcul d’angle et a pour rôle la description des contours microlobulés. 

En plus des caractéristiques basées sur le contour, on a utilisé trois autres caractéristiques basées sur la 

région : la première est la circularité (C) qui décrit les régions rondes, la deuxième est le Cercle Interne 

Externe (CIE)  qui décrit les régions allongées. Tandis que, la troisième caractéristique, extraite à partir 

de  l’enveloppe  convexe,  notée  la  NRV,  est  destinée  à  décrire  la  convexité  de  la  région.  Ces 

caractéristiques seraient évaluées dans le chapitre suivant.
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Dans le chapitre précédent, on a définit un descripteur de forme à utiliser dans la discrimination 

entre  les  tumeurs  malignes  et  celles  bénignes.  Ce  descripteur  contient  deux  catégories  de 

caractéristiques :  les  caractéristiques  basées  sur  la  région  et  celles  basées  sur  le  contour.  Dans  ce 

chapitre, on fait recours à la phase de validation de notre approche en se basant sur un flôt d’analyse. 

Pour  cela,  on  commence  par  présenter  le  flôt  d’analyse  proposée,  ensuite  on  détaille  chaque  phase 

d’analyse  toute  seule  en  indiquant  son  objectif,  et  enfin  on  termine  par  présenter  et  discuter  les 

résultats donnés par le descripteur de forme proposé. 

1. Présentation du flôt d’analyse 

Le flôt d’analyse proposé décrit les phases à suivre pour analyser les masses (voir la figure 4.1) 

mammographiques. Ces phases sont respectivement: la segmentation, l’extraction des caractéristiques 

et la classification. 

Fig. 4.1. Flôt d’analyse proposé. 

Image mammographique. 

Segmentation : Identification de la masse 

Région d’intérêt contenant la masse 

Description : Extraction des caractéristiques 

Classification 

Décision:masse bénigne ou maligne 

Vecteur caractéristique 

Basées sur la région Basées sur le contour
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Afin  de  d’extraire  les  caractéristiques,  définies  dans  le  chapitre  précédent,  on  a  besoin 

d’identifier  la  masse  sur  laquelle  on  fait  tous  les  calculs.  Pour  cela,  on  se  propose  d’utiliser  des 

techniques de segmentation classiques. Dans cette phase, on commence par une sélection manuelle de 

la région suspecte et à partir de  laquelle on applique une méthode de segmentation pour identifier  la 

forme. À partir de cette forme on applique une deuxième méthode de segmentation qui permet d’isoler 

le contour. 

Dans la phase d’extraction des caractéristiques, à travers la région et le contour déjà identifiés, 

on  réalise  notre  descripteur  de  forme  en  calculant  un  ensemble  de  8  caractéristiques.  Après  avoir 

calculé  l’ensemble des caractéristiques, et pour évaluer  les résultats  trouvés, on passe à une étape de 

classification. Cette dernière nous permet d’avoir une information sur la décision ainsi que sur le taux 

de performance de notre descripteur de forme. 

Afin  de  voir  l’impact  de  la  classification  sur  les  caractéristiques  qu’on  a  défini  on  a  utilisé  trois 

classifieurs supervisés  de  différents  types :  un  probabiliste,  un  autre  basé  sur  l’apprentissage  et  un 

troisième exacte. 

Dans  cette  section,  on  présente  les  détails  de  chacune  des  trois  phases  composant  le  flôt 

d’analyse proposé. 

1.1. Identification de la masse (méthodes de segmentation) 

La  phase  de  segmentation  est  sans  doute  la  colonne  vertébrale  de  toute  étude  sur  le 

traitement/analyse  d'images. De  nombreuses  techniques, méthodes,  algorithmes  peuvent  être  trouvés 

dans  la  littérature.  Le  niveau  de  connaissance  dans  le  domaine  est  tel  qu'il  est  nécessaire,  à  l'heure 

actuelle,  de  choisir  une  technique  de  segmentation  adaptée  à  une  application  donnée.  En 

mammographie,  plusieurs  méthodes  de  segmentation  ont  été  utilisées  pour  l’extraction  de  région 

d’intérêt  (RI)  à  partir  d’une  image.  Ces  méthodes  sont  classées  en  trois  catégories :  les  méthodes 

basées  sur  la  région  [23],  [38],  les  méthodes  de  regroupement  de  pixels  (clustering)  [24]  et  les 

méthodes basées sur le contour [37]. 

Vu  que  notre  descripteur  de  forme  proposé  est  une  combinaison  des  caractéristiques  qui 

décrivent  la  région  et  le  contour  d’une  forme,  nous  proposons  d’utiliser  deux  méthodes  de 

segmentation : une méthode qui permet l’identification de  la région et une autre pour la détection du 

contour.
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Notre méthode proposée pour l’identification des masses est semi­automatique et commence depuis la 

sélection manuelle d’une zone suspecte, dans l’image, par le radiologue : La figure 4.2 présente le flôt 

d’extraction de masse proposé. 

Fig. 4.2. Flôt d’identification d’une masse. 

P1  P2  P3  Pn­1  Pn 

Détection du contour (Filtre de Sobel). 

Identification de la région par seuillage 
(seuillage automatique). 

Sélection d’une zone suspecte 
dans l’image. 

Masse extraite après seuillage. 

Contour de la masse. 

Extraction des points du contour. 

…… 

Élimination du bruit (Filtre Médian). 

Image sans bruit.
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Le  flôt  proposé  se  compose  de  quatre  étapes  :  élimination  du  bruit  d’une  zone  sélectionnée 

manuellement,  extraction  de  la  région,  extraction  du  contour  à  partir  de  la  région  et  extraction  des 

points du contour. 

1.1.1. Prétraitement (élimination de bruit) 

Cette première étape de prétraitement a pour but d’améliorer la qualité de l'image de façon à ce 

que le traitement qui suivra soit optimal en qualité. Elle permet d’atténuer le bruit de l'image. Pour cela 

plusieurs  filtres  passe­bas  peuvent  être  utilisés.  Parmi  ces  filtres  passe­bas  qu’on  peut  utiliser  est  le 

filtre médian. 

1.1.2. Identification de la région (seuillage) 

Pour  extraire  une  région  d’une  image  I,  on  peut  utiliser  le  seuillage  binaire  qui  est  un  cas 

particulier des méthodes par regroupement. Les méthodes de binarisation consistent à transformer une 

image de niveau de gris en une image binaire à travers un seuil S bien déterminé ; c'est­à­dire pour  f 
une fonction de binarisation et  ( , ) i x y  un pixel de l’image, on a  ( ( , ))   {0,1} f i x y ∈  . 

L’implémentation du  seuillage  binaire d’une  image est  très  simple mais  la problématique est 

dans  le  choix  de  seuil.  C’est  pour  cette  raison,  qu’on  peut  utiliser  une  méthode  de  seuillage 

automatique comme celle décrite dans [73]. 

1.1.3. Détection du contour (le filtrage de Sobel) 

Après  le  seuillage,  on  passe  à  l’extraction  du  contour  à  l’aide  d’une  méthode  de  détection. 

Parmi les méthodes possibles on cite la méthode de Sobel, la méthode de Laplacien ou la méthode de 

Snake. 

Dans cette étude, on opte pour la méthode de Sobel pour l’extraction de contour car c’est la méthode la 

plus simple à implémenter et qui permet d’aboutir à nos besoins. Cette méthode est basée sur le filtrage 

passe­haut et elle consiste à appliquer  les deux filtres (  x G  pour l’axe horizontal (X) et  y G  pour l’axe 

vertical(Y)) sur l’image (voir figure 4.3). 

x G  y G 
1 0 1 
2 0 2 
1 0 1 

−   
  −  
  −   

1 2 1 
0 0 0 
1 2 1 

− − −   
  
  
  
 
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Le contour résultat est donnée par  2 2 ( ) x y G g g = +  où  x g  et  y g  sont  les résultats de  l’application 
des filtres  x G  et  y G  sur l’image (c'est­à­dire  * x x g G I =  et  * y y g G I =  ). 

1 0 1 
2 0 2 
1 0 1 

−   
  −  
  −   

1 2 1 
0 0 0 
1 2 1 

− − −   
  
  
  
  

(a)  (b)  (c) 

Fig. 4.3. Filtrage Sobel : (a) Image initiale, (b) application de deux filtres 3x3 et (c) contour détecté. 

1.1.4. Extraction des points du contour 

L’extraction des points du contour nous permet d’obtenir une  image binaire ;  c'est­à­dire des 

pixels  blancs  représentant  les  points  de  contour et  des  pixels  noirs  représentant  les  autres  points  de 

l’image. Il existe plusieurs méthodes qu’on peut utiliser comme celle basée sur l’algorithme de tortue 

[62],  ou celle basée sur le chaînage de Freeman [63]. Dans notre étude, nous avons choisi la méthode 

basée sur  le chaînage de Freeman pour le suivi du contour comme indique la figure 4.4. 

(a) (3223223…111)                                           (b) (54544…222) 
Fig. 4.4. Chaînage  de Freeman dans le cas  de direction à  (a) 4 connexité et à (b) 8 connexité 

2 2 
x y G +G =
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Son principe est de réaliser  le chaînage par suivi des pixels du contour suivant une direction choisie 

dans un ensemble  fini. La direction est codée par une suite comprise entre 0 et 3 en 4 connexités  (4 

voisins pour chaque pixel) et une suite comprise entre 0 et 7 en 8 connexités (8 voisins pour chaque 

pixel). 

1.2. Extraction des caractéristiques 

Pendant  l’étape d’identification de la masse, on a utilisé la méthode de seuillage et  la méthode 

de Sobel. L’utilisation du seuillage est utile dans le calcul des caractéristiques qui décrivent  la région 

alors que l’utilisation de la méthode de Sobel est utile lors du calcul des caractéristiques qui décrivent 

le  contour. On  a  choisit  ces méthodes  vu  leur  simplicité  d’implémentation.  Par  la  suite,  on  passe  à 

l’étape d’extraction de caractéristiques qui constitue  la deuxième phase de notre flôt d’analyse et qui 

représente l’objectif de notre travail. 

Dans la figure 4.5 on présente deux images :  la première (a) représente la région de la tumeur 

avec  leur caractéristiques  (C, NRV, CIE), et  la deuxième  représente  le  contour avec  l’ensemble des 
caractéristiques que lui sont associé (CVX,σ , R, AR, IA). 

(a) 

(b) 

Fig. 4.5. Caractéristiques (a) de région et (b) de contour.
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Les  caractéristiques  de CIE  (Cercle  Interne  Externe),  C  (la  circularité)  et  NRV  (l’indice  de 

convexité), qui décrivent la région, jouent le rôle de discriminants entre les masses régulières (rondes, 

ovales, lobulaires) et les masses irrégulières (voir la figure 4.6). 

(a)              (b)                 (c)                (d) 

Fig. 4.6. Les régions à décrire : (a) rondes, (b) ovales, (c) lobulées et (d) irrégulières. 

Les  caractéristiques  qui  décrivent  le  contour  ont  pour  objectif  la  distinction  entre  les  contours 

stellaires,  micro­lobulés  et  irréguliers  (voir  la  figure  4.7).  Pour  cela  on  utilise  la  convexité  (CVX), 

l’indice d’angle (IA) et trois autres caractéristiques à partir de la technique RDM qui sont la déviation 

standard (σ ), la rugosité (R) et le rapport (AR). 

(a)              (b) 

Fig. 4.7. Les contours à décrire : (a) stellaires et (b) microlobulés. 

Concernant la description des contours indistincts et masqués (figure 4.8), plusieurs travaux utilisaient 

des  caractéristiques  de  texture  et  d’intensité  [45],  [48]  vu  que  leurs  descriptions  avec  des 

caractéristiques de forme, sont difficile. Pour cette raison, Dans notre travail, on ne traite pas ce genre 

des contours. 

(a)               (b) 

Fig. 4.8. Contours (a) indistincts et (b) masqués.



Validation et évaluation du flot proposé 

75 

Finalement, on a huit caractéristiques dont chacune d’entre elles possède un rôle bien déterminé 

dans la phase de discrimination. Ces caractéristiques, ainsi que leurs rôles sont décrites dans la table ci­ 

dessous : 

Caractéristique  Rôle 

Basées sur la région 

(1)  gi 

pe 

R 
CIE  R = 

Cette  caractéristique  donne  une  indication  sur 

l’élongation de la forme. Elle est utile dans la distinction 

entre  les  formes  rondes  ou  elliptiques  et  les  formes 

irrégulières. 

(2)  2 
4  A C 
P 
π = 

Cette  caractéristique  indique  le  dégrée de  circularité  de 

la forme. 

(3) 
( ) 
( ) 
A R NRV  P E = 

Elle  indique  le  dégrée  de  régularité  de  la  région  d’une 

masse. Elle permet la description des  formes  lobulaires, 

ovales et rondes. 

Basées sur le contour 

(4) 
( ) 
( ) 

P E CVX  P F =  Elle indique le dégré de convexité du contour. 

(5) ( ) 
2 

1 

1  ( ) n 

N 
moy 

i 
d i d N σ 

= 

  
  
    
  

= − ∑ 

(6) 
1 

1  ( ) ( 1) 
N 

n n 
i 

R d i d i N = 
= − + ∑ 

(7) ( ) 
1 

1  * ( ) 
* 

N 

n moy R 
i moy 

d i d N d A 
= 

− = ∑ 

Ces  trois caractéristiques  sont utiles dans  la description 

des  contours  stellaires.  Elles  permettent  la  distinction 

entre  les masses  stellaires et celles qui ont des contours 

lisses. 

(8)  1 

1 

N 

i 
i 
N 

i 
i 

IA 
ϕ 

θ 
= 

= 

= 
∑ 

∑ 
Elle donne une indication sur  la régularité du contour et 

permet la description des contours microlobulés. 

Tab 4.1. Liste des caractéristiques utilisées.
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1.3. Classification 

Une fois l’extraction des caractéristiques est effectuée par les méthodes étudiées dans la section 

précédente, on peut procéder par une classification des masses  issues des  images mammographiques 

en se basant sur le vecteur caractéristique. La classification des images mammographiques constitue la 

phase finale de notre travail qui sert à partitionner les masses en deux classes : les masses malignes et 

celles bénignes. Pour cela, il faut choisir le classifieur adéquat et le plus performant, c'est­à­dire, celui 

qui prédit correctement les classes. 

Dans cette section, on donne les méthodes retenues qui serviront à une prise de décision afin d’aider le 

médecin dans son travail. 

La procédure  de  classification  sera  réalisée  automatiquement  à  partir  d’une  base  d’exemples 

(un exemple consiste en une description d’un cas avec  la classification correspondante). Un système 

d’apprentissage  doit  alors,  à  partir  de  cette  base  d’exemples,  déterminer  une  procédure  de 

classification.  Le  problème  est  donc  un  problème  inductif ;  il  s’agit  en  effet  d’extraire  une  règle 

générale à partir des données observées. La méthode devra classer  les  exemples d’échantillons mais 

surtout avoir un bon pouvoir prédictif pour classer correctement les nouvelles descriptions. 

Il existe plusieurs méthodes de classification réparties en deux catégorie : les méthodes supervisées et 

celles non supervisées. 

Fig. 4.9. Méthodes de classification. 

Méthode de classification 

Probabilistes  Exactes  Apprentissage 

Supervisées  Non 
supervisées 

Supervisées  Non 
supervisées 

Supervisées  Non 
supervisées 

Bayes 

Arbre de 
décision 

… 

…. 

…. 

KPPV 

Parzen 

…. 

…. 

MLP 

RBF 

…. 

… 

……. 
…….. 

……. 
…….. 

……. 
…….. 

……. 
……..
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La classification supervisée suppose qu’on connaît les classes possibles et qu’on dispose d’un 

ensemble  d’instances  déjà  classées,  servant  de  base  d’apprentissage.  Le  problème  est  alors  d’être 

capable  d’associer  à  tout  nouvel  objet  sa  classe  la  plus  adaptée  en  se  servant  des  exemples  déjà 

étiquetés. Dans ce sens, on peut citer quelques méthodes de classification automatique supervisée : 

–  Le classifieur KPPV (K­plus proches voisins ou K­NN) : c’est un classifieur exact. 

–  Le classifieur Bayes : c’est un classifieur probabiliste. 

–  Le classifieur MLP (Multi­Layer Perceptron) : qui est un classifieur basé sur l’apprentissage. 

Dans la classification non supervisée, les classes possibles ne sont pas connues à l’avance et les 

exemples  disponibles  sont  non  étiquetés.  Le  but  est  donc  de  regrouper  dans  un  même  groupe  (ou 

cluster)  les  objets  considérés  comme  similaires,  pour  constituer  les  classes.  L’apprentissage  non 

supervisé ne peut fonctionner que si les données ont déjà une structure interne. 

Dans notre travail on s’intéresse uniquement à la classification supervisée (voir  la figure 4.9). 

Notre objectif n’est pas de proposer ou d’évaluer une nouvelle méthode de classification pour la prise 

de décision, mais d’utiliser une ou plusieurs méthodes qui permettent de répondre à nos besoins. En 

effet,  pour  notre  étude,  on  a  choisit  des  méthodes  de  différentes  catégories  :  une  de  la  classe  des 

méthodes exactes (KPPV), une des méthodes probabilistes (Bayes) et une méthode de la classe basée 

sur  l’apprentissage (MLP) pour pouvoir comparer et tirer des résultats  intéressantes servant à affiner 

nos prédictions. Une comparaison entre les résultats de ces classifieurs sera détaillée dans ce qui suit 

afin de choisir le meilleur dans notre cas. 

2. Evaluation des caractéristiques 

En imagerie médicale, on utilise des critères afin d’évaluer la performance d’un classifieur. Les 

critères  d’évaluation  les  plus  utilisés  en  mammographie  sont  la  sensibilité,  la  spécificité  et  le  taux 

d’exactitude : 

–  La  sensibilité  est  la  capacité  d’une  telle  technique  à  découvrir  les  positifs  c’est  à  dire  les 

cancers malignes. L’équation de la sensibilité est donnée par : 

VP Sensibilité  VP FN = 
+ 

(Eq. 4.1.) 

–  La  spécificité  est  la  capacité  d’une  telle  technique  à  découvrir  les  négatifs  c’est  à  dire  les 

cancers bénignes. L’équation de la spécificité est donné par: 
VN Spécificité  VN FP = 
+ 

(Eq. 4.2.)
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–  Le taux d’exactitude est la capacité d’une telle technique à découvrir les négatifs et les positifs 

à la fois. Elle est définie comme suit: 
VN VP Exa  VN FP VP FN 

+ = 
+ + + 

(Eq. 4.3.) 

Les paramètres utilisés par les critères d’évaluation sont résumés dans le tableau ci dessous : 

Cas  Classifieur  En réalité 

Faux Positif (FP)  maligne  bénigne 

Faux négatif (FN)  bénigne  maligne 

Vrai Positif (VP)  maligne  maligne 

Vrai négatif (VN)  bénigne  bénigne 

Tab 4.2. Résumé de l’ensemble de paramètres utilisés. 
Afin  de  voir  l’impact  des  classifieurs  sur  les  résultats  trouvés,  on  présente  les  différents 

résultats  trouvés  par  chacune  des  trois  classifieurs. Tout  d’abord, on  fait  une  comparaison  entre  les 

résultats  trouvés  par  les  caractéristiques  basées  sur  la  région  et  ceux  trouvés  par  les  caractéristiques 

basées sur le contour. 

Pour évaluer  le changement de calcul  sur  la technique RDM et sur  la convexité CVX, on fait 

une comparaison entre  les  résultats  trouvés par notre méthode et ceux  trouvés par  les autres  travaux 

incluant,  dans  leurs  approches,  ces  techniques.  Après,  on  procède  par  une  évaluation  de  la 

caractéristique (IA) basée sur le calcul d’angle. 

Finalement, on donne quelques résultats générés de différentes approches d’analyse des masses 

mammographiques. 

2.1. Base d’images utilisée 

La  Base  d’images  Numérisées  de  l'Université  de  Florida  DDSM  (The  Digital  Database  for 

Screening Mammography) est une base de données d’images mammographiques digitalisée disponible 

en  ligne  [70]. Elle est divisée en 43 volumes:15  volumes malignes, 16 bénignes et 12 normales. Au 

total, le nombre de cas est de 2620. À chaque cas est associé un ensemble d’informations concernant le 

patient  (Age,  densité,  description  pour  les  caractères  anormaux…)  et  des  informations  concernant 

l’image (Scanner, résolution, …). De plus, pour les images qui contiennent des régions suspectes, des 

informations sont associées sur l’emplacement et les types des régions.
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Pour la phase de test, on a utilisé un ensemble d’images qui contiennent des masses sélectionnées de la 

base de données DDSM avec la composition suivante : 

Cas maligne  Cas bénigne 

Base  120  120 

Test  130  130 

Tab 4.3. Résumé de l’ensemble d’image DDSM utilisées dans ce travail. 

On a choisi d’utiliser  la base de données DDSM vu qu’elle gratuite par opposition à d’autres 

bases telles que MIAS (The Mammographic Image Analysis Society). 

2.2. Evaluation des caractéristiques basées sur le contour et sur la région 

En regardant les résultats des caractéristiques basées sur le contour présentés par le tableau 4.4, 

on  remarque  un  meilleur  taux  de  détection  des  cas  malignes  (sensibilité),  par  rapport  au  taux  de 

détection des cas bénignes (spécificité), pour les trois classifieurs utilisés. 

Malgré  que  le  classifieur  Bayesien  donne  le  meilleur  taux  de  spécificité  (94.80%)  et  le 

classifieur  MLP  donne  le  meilleur  taux  de  sensibilité  (97,90%)  et  le  meilleur  taux  d’exactitude 

(95,98%), on ne peut pas dire qu’un classifieur est mieux qu’un autre vu que  la différence entre  les 

résultats donnés par les trois classifieurs n’est pas grande. 

Caractéristiques basées sur le contour 

Kppv  Bayes  MLP 

Spécificité (% )  93,67  94,80  94,20 

Sensibilité (% )  95,10  95,16  97,90 

Taux d’Exa (% )  94,37  94,97  95,98 

Tab 4.4. Résultat de test des caractéristiques basées sur le contour. 

Concernant  les  résultats des caractéristiques  basées  sur  la  région, comme  l’indique  le  tableau 

4.5, on remarque un meilleur taux sensibilité donné par les trois classifieurs. Aussi, on remarque que le 

classifieur  MLP  donne  le  meilleur  taux  d’exactitude  (95,58%)  et  le  meilleur  taux  de  spécificité 

(94,50%), alors que le classifieur Bayes mène à un meilleur taux de sensibilité (97,37%).
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Caractéristiques basées sur la région 

Kppv  Bayes  MLP 

Spécificité (% )  92,96  90,33  94,50 

Sensibilité (% )  95,45  97,37  96,70 

Taux d’Exa (% )  94,17  93,57  95,58 

Tab 4.5. Résultat de test des caractéristiques basées sur la région. 

En  comparant  les  résultats  fournis  par  chaque  classifieur  dans  les  deux  tables  4.4  et  4.5,  on 

constate que les deux classifieurs Kppv et Bayes donnent le meilleur taux de spécificité et d’exactitude 

pour le cas des caractéristiques basées sur le contour (respectivement, ils donnent  le meilleur taux de 

sensibilité pour le cas des caractéristiques basées sur la région). Le classifieur MLP donne le meilleur 

taux  de  sensibilité  et  d’exactitude  concernant  les  caractéristiques  basées  sur  le  contour 

(respectivement, pour le cas des caractéristiques basées sur  la région,  ils donnent  le meilleur taux de 

spécificité). 

Caractéristique de contour 

Kppv  Bayes  MLP 

Spécificité (% )  93,67  94,80  94,20 

Sensibilité (% )  95,10  95,16  97,90 

Taux d’ Exa (% )  94,37  94,97  95,98 

Caractéristiques de région 

Kppv  Bayes  MLP 

Spécificité (% )  92,96  90,33  94,50 

Sensibilité (% )  95,45  97,37  96,70 

Taux d’Exa (% )  94,17  93,57  95,58 

Vecteur caractéristique (basé sur le contour et la région) 

Kppv  Bayes  MLP 

Spécificité (% )  94,53  96,04  95,63 

Sensibilité (% )  97,10  97,55  96,74 

Taux d’Exa (% )  95,78  96,78  96,18 

Tab 4.6. Résultat de test de notre vecteur caractéristique basé sur le contour et sur la région.
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L’apport réel de ce travail, réside dans la combinaison des caractéristiques basées sur la région 

et celles basées sur le contour. D’après la table 4.6, on remarque que les trois classifieurs utilisés nous 

donnent la meilleure performance. En effet, les taux des critères d’évaluations sont augmentés avec la 

combinaison des caractéristiques et par la suite leur fusion permet d’augmenter le taux de détection des 

tumeurs malignes et celles bénignes. Aussi, en comparant les résultats donnés par les trois classifieurs, 

on  remarque  que  le  classifieur  Bayesien  possède  la  meilleure  sensibilité  (97,55%),  la  meilleure 

spécificité  (96,04%)  et  le  meilleur  taux  d’exactitude  (96,78%)  par  rapport  aux  classifieurs  Kppv  et 

MLP, malgré que la différence entre les performances de trois classifieurs n’est pas grande. 

Finalement  on  peut  déduire  que  l’utilisation  d’une  combinaison  d’un  descripteur  basé  sur  la 

région et d’un autre basé sur le contour a amélioré la description des masses mammographiques. 

2.3. Evaluation des caractéristiques RDM 

Afin  de  montrer  l’efficacité  de  RDM  étendue,  on  a  fait  une  comparaison  (tableau  4.7)  des 

résultats trouvés et ceux donnés par RDM [45], [47], [53]. On constate que les trois classifieurs utilisés 

donnent une meilleure sensibilité, une meilleure spécificité et un meilleur taux d’exactitude pour notre 

proposition. En effet, le taux de spécificité donné par RDM étendue est de 88% à 91% alors qu’il est 

de  83%  à  89%  par  les  caractéristiques RDM utilisées  dans  d’autres  travaux.  Le  taux  de  sensibilité 

qu’on  a  trouvé  est  de  87% à 92% alors  que  taux  est  de  83% à 85% concernant  les  caractéristiques 

RDM d’autres travaux. 

RDM 

Kppv  Bayes  MLP 

Spécificité (%)  89,74  83,93  86,88 

Sensibilité (%)  85,22  83,93  85,43 

Taux d’Exa (%)  87,34  83,93  86,14 

RDM  étendue. 

Kppv  Bayes  MLP 

Spécificité (%)  90,28  91,17  88,88 

Sensibilité (%)  89,64  87,69  92,82 

Taux d’Exa (%)  89,95  89,35  90,76 

Tab 4.7. Résultats de test des caractéristiques RDM vs RDM étendue.



Validation et évaluation du flot proposé 

82 

Ce qu’on peut déduire est que  la modification appliquée  sur  la méthode RDM   a augmentée 

l’efficacité  de  cette  dernière  dans  la  séparation  des  cas  représentant  des  tumeurs  malignes  de  ceux 

représentant des tumeurs bénignes. 

Pour voir  l’apport de l’utilisation des caractéristiques RDM dans notre vecteur caractéristique, 

on a fait une comparaison entre les résultats trouvés en utilisant la RDM étendue avec ceux trouvés en 

utilisant  la  RDM  figurant  dans  la  littérature.  On  constate  d’après  le  tableau  4.8  que  les  deux 

classifieurs Bayes et MLP donnent la meilleure performance dans le cas de la RDM étendue. 

Notre vecteur caractéristique incluant la technique RDM 

Kppv  Bayes  MLP 

Spécificité (%)  96  94,16  94,86 

Sensibilité (%)  96,37  97,09  96,32 

Taux d’Exa (%)  96,18  95,58  95,58 

Notre vecteur caractéristique incluant la technique RDM étendue 

Kppv  Bayes  MLP 

Spécificité (%)  94,53  96,04  95,63 

Sensibilité (%)  97,10  97,55  96,74 

Taux d’Exa (%)  95,78  96,78  96,18 

Tab 4.8. Résultats de test avec intégration de la technique RDM. 

Donc on peut dire que notre amélioration de calcul des caractéristiques RDM (voir  le chapitre 

3,  section  4.1.1.)  a  améliorée  davantage  la  description  des  masses  mammographiques  et  la 

performance  de  classification.  En  effet,  on  a  optimisé  le  temps  de  calcul  et  on  a  augmenté  la 

performance des caractéristiques extraites de la méthode RDM. 

2.4. Evaluation de la caractéristique d’angle (IA) 

Le  tableau  4.9  présente  les  résultats  donnés  concernant  la  caractéristique  IA.  Les  résultats 

trouvés en utilisant les trois types de classification sont proches. En effet, les taux donnés par les trois 

critères d’évaluation permettent d’indiquer  la réussite de cette caractéristique dans  la description des 

contours microlobulés.
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Kppv  Bayes  MLP 

Spécificité (%)  86,9  84,72  87,45 

Sensibilité (%)  87,8  92,82  91,9 

Taux d’Exa (%)  87,34  88,35  89,55 

Tab 4.9. Résultats de test de la caractéristique d’angle (IA). 

On ne peut vraiment pas comparer notre résultat trouvé avec les résultats trouvés pour d’autres 

caractéristiques d’angle, puisque les critères d’évaluation et la base d’images utilisés sont différents. 

2.5. Evaluation de la caractéristique de convexité (CVX) 

Comme dans le cas de la RDM, on a fait une comparaison des résultats trouvés lors de calcul 

de  la convexité  (CVX)  comme  indique  le  tableau 4.10. D’après cette dernière, on  remarque que  les 

deux  classifieurs  Kppv  et  MLP  donnent  la  meilleure  performance  concernant  la  caractéristique  de 

convexité proposée. En effet,  la différence entre  les résultats  trouvés concernant  la caractéristique de 

convexité proposée et ceux concernant  la convexité utilisée par d’autres  travaux  [45],  [47],  [53],  est 

assez grande. Donc, l’amélioration apportée à la caractéristique de convexité a augmenté l’efficacité de 

la description d’une masse mammographique. 

Le vecteur caractéristique incluant la caractéristique CVX 

Kppv  Bayes  MLP 

Spécificité (%)  88,67  86,64  87,54 

Sensibilité (%)  90,9  95,92  95,55 

Taux d’Exa (%)  89,75  90,76  91,16 

Le vecteur caractéristique incluant la caractéristique CVX proposée. 

Kppv  Bayes  MLP 

Spécificité (%)  96  82,8  97,58 

Sensibilité (%)  96,37  98,5  97,2 

Taux d’Exa(%)  96,18  89,15  97,38 

Tab 4.10. Résultats de test de la caractéristique de convexité (CVX).
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2.6. Comparaison avec d’autres approches 

Dans  la  littérature,  on  trouve  plusieurs  travaux  qui  étudiaient  l’analyse  de  masses 

mammographiques  [53],  [57],  [64].  On  présente  dans  le  tableau  4.11,  ceux  qui  sont  performants. 

Cependant,  puisque  les  méthodes  de  description  de  forme,  les  bases  de  test  et  les  systèmes  de 

classification utilisés par  les autres approches sont différents, on ne peut pas dire qu’on a le meilleur 

résultat malgré que les taux de sensibilité et de spécificité trouvés par notre travail soient les meilleurs. 

D’après  les  résultats  qu’on  a  trouvé  et  aussi  les  résultats  trouvés  dans  d’autres  travaux,  on 

constate  que  les  caractéristiques  de  forme  peuvent  caractériser  les  types  des  masses 

mammographiques. Vu  que  les  signes  de malignité  de  la  tumeur  de  sein  concernent  la  forme  et  la 

texture,  les  caractéristiques  de  forme  restent  insuffisantes  toutes  seules  pour  une  description  plus 

efficace. C’est pour cette raison qu’on trouve, en mammographie, pas mal d’approches [45], [48], [56], 

[59]  qui  prennent  en  considération  les  propriétés  de  malignité  et  de  bénignité  selon  la  texture  des 

masses. Donc il vaut mieux d’ajouter des caractéristiques de texture à nos descripteurs pour augmenter 

encore le taux d’exactitude concernant la discrimination entre les masses bénignes et celles malignes. 

Sensibilité 
(%) 

Spécificité 
(%) 

Exactitude 
(%) 

Classifieur  Images utilisées 

Rangayyan et al. 
[57]  95  ­­  LDA  Base locale (39 cas) 

A. Retico et al 
[53]  78,1  79,1  MLP 

Base locale (226 cas avec 
109 malignes et 117 
bénignes) 

R.Feng Chang et 
al [64]  88,89  92.5  SVM 

Base locale (210 cas avec 
90 cas malignes et 120 
cas bénignes) 

U. Bottigli et al 
[48]  88  ­­  MLP  Base CALMA (320cas) 

Kilday [45]  69  ­­  LDA 
Base locale (82 cas) 

A. Alvarenga et al 
[47]  88,0  90,4  88,8  LDA  Base locale (152 cas) 

Notre proposition  Bayes 
Base DDSM (500 cas 
avec 250 malignes et 250 
bénignes) 

Tab 4.11. Comparaison avec d’autres approches. 

97,55  96,04  96,78
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3. Conclusion 

Via  ce  chapitre  on  a  donné  un  aperçu  sur  la  méthode  d’isolation  des  masses  à  partir  d’une 

image mammographique. Cette méthode permet d’isoler deux composantes de l’image : une contenant 

la région de  la masse et une autre contenant  le contour. À partir de ces deux composantes, on a  fait 

l’extraction des caractéristiques représentant notre descripteur de forme. Ce dernier sera l’entrée d’un 

classifieur permettant de prendre une décision concernant le type de la masse. 

Dans notre travail, on a utilisé une base d’images DDSM et trois classifieurs de différent types 

afin d’évaluer notre descripteur de  forme. Le classifieur Bayesien a donné  la meilleure performance 

par rapport aux deux autres (MLP et KPPV). On a obtenu un taux de 96,04%  pour la spécificité, un 

taux  de  97,55%  pour  la  sensibilité  et  un  taux  de  96,78%  concernant  l’exactitude  de  classification. 

Aussi,  la modification apportée à la méthode RDM et au calcul de  la convexité a permis d’aboutir à 

une meilleure performance par rapport aux autres travaux qui utilisaient ces techniques.
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Conclusions et perspectives  

ans ce mastère, on s’est intéressé à la réalisation d’un descripteur de forme pour l’aide à 

l’analyse des pathologies mammographiques. Afin de réaliser ce travail on a commencé 

par une étude bibliographique  consacrée  à  la présentation de différentes pathologies de sein  et  leurs 

caractéristiques. On  a  trouvé  que  chaque  pathologie  possède  ses  caractéristiques  de  forme  qui  sont 

différentes aux autres. En raison de la difficulté de travailler sur toutes les caractéristiques de toutes les 

pathologies et  la difficulté de les  intégrer dans un seul descripteur de forme, on a choisi de travailler 

sur une seule pathologie qui est la masse. Cette dernière se caractérise par des propriétés de malignité 

et de bénignité selon le contour et la région. 

Après  l’étude des pathologies mammographiques on a donné un  aperçu sur  les méthodes  les 

plus utilisées pour l’objectif de description des masses mammographiques. 

Afin  d’élaborer  notre  descripteur  de  forme,  plusieurs  approches  ont  été  étudiées.  Dans  ce 

travail, on a procédé par une combinaison des caractéristiques basées sur la région et autres basées sur 

le contour. Les caractéristiques décrivant la région ont été choisies pour distinguer  les formes rondes, 

ovales, lobulées et celles irrégulières. Parmi les caractéristiques utilisées dans la littérature on a choisi 

celles  les  plus  performantes  en  terme  de  description  et  celles  les  plus  simples  à  implémenter.  Les 

caractéristiques basées sur le contour, qu’on a utilisé, ont été choisies pour la description de la frontière 

des masses et la distinction des contours réguliers de celles stellaires ou microlobulés. Dans ce cadre, 

on  a  ajouté  une  nouvelle  caractéristique  basée  sur  le  calcul  d’angle,  on  a  optimisé  le  calcul  des 

caractéristiques extraites à partir de la méthode RDM et on a modifié le calcul de la caractéristique de 

convexité. 

Pour  évaluer  l’ensemble  des  caractéristiques  proposées,  on  a  utilisé  trois  types  de  classifieurs 

supervisés  de  différents  types  (Kppv,  Bayes  et  MLP).  Le  classifieur  Bayes  a  donné  la  meilleure 

performance avec un  taux de  l’ordre de 96,04% pour  la  spécificité et un  taux de  l’ordre de 97,55% 
concernant  la  sensibilité.  Aussi,  et  grâce  à  notre  optimisation  de  calcul,  on  a  obtenu  la  meilleure 

D
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performance (sensibilité et spécificité) pour les caractéristiques RDM étendue et la convexité modifiée, 

utilisées dans notre descripteur. 

Comme  perspectives  de  ce  travail  de  recherche,  il  est  possible  de  réaliser  une  méthode  de 

détection  automatique  des  masses  mammographiques.  Aussi  la  réalisation  des  caractéristiques  de 

forme pour la description des autres pathologies de sein tel que les microcalcifications.
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Glossaire  

ALOE : Analysis of Local Oriented Edges. 

AR : Area Ration. 

ART : Adaptatif Resonance Therory. 

BRCA : BReast Cancer Acronymes. 

CAD : Computer Aided Detection. 

CADx : Computer Aided Diagnosis. 

CIE : Cercle Interne Externe. 

CVX : ConVeXité. 

DDSM : Digital Database for Screening Mammography. 

DoG : Difference of Gauss. 

FD : Fractal Dimension. 

FDA : Food and Drug Administration. 

FN : Faux Négatif ou False Negatif. 

FP : Faux Positif ou False Positif. 

IA : Indice d’Angle. 

KNN : K­Nearest Neighbors. 

KPPV : K Plus Proches Voisins. 

LDA : Linear Discriminant Analysis. 

MIAS : Mammographic Image Analysis Society. 

MLP : Multi Layer Perceptron. 

MRI : Magnetic Resonance Imaging. 

NRV : Normalised Residual Value. 

RBF : Radial Basis Function. 

RDM : Radial Distance Measure. 

SDEV : Standard DEViation. 

SVM : Support Vector Machine. 

VN : Vrai Négatif. 

VP : Vrai Positif. 

ZC : Zero Crossing.



Bibliographie 

87 

Bibliographie  

[1]  L.  Zhang,  R.  Sankar  et  W.  Qian,  “Advances  in  micro­calcification  clusters  detection  in 
mammography”, Computers in Biology and Medicine, vol. 32, no. 6, pp 515­528, 2002. 

[2] S. Yu et L. Guan, “A CAD System for the Automatic Detection of Clustered Microcalcifications in 

Digitized Mammogram  Films”,  IEEE Tranactions  on Medical  Imaging,  vol.  19,  n o .  2,  pp.  115­126, 

2000. 

[3] Lansac, “Cancer du sein”, Le monde, pp. 19, 9 octobre 1985. 
[4] M. Lanyi, “Diagnosis and Differential Diagnosis of Breast calcifications”, Springer­Verlag, Berlin, 
Heidelberg, 1988. 

[5] S. Shapiro, P. Venet, P. Strax et R. Roeser ,“Ten to fourteen years effect of breast cancer screening 
on mortality”, J Natl Cancer Inst, vol. 69, pp. 349­355, 1982. 
[6] Le Gal, J.C. Durant, Laurent et M. Pellier, “Conduite à tenir devant une mammographie révélatrice 
de microcalcifications groupées, sans tumeur palpable”, la nouvelle presse Médicale, vol. 5, pp. 1623­ 

1627, 1976. 

[7] KELSY, “A review of  the epidemiology of human breast  cancer”, Epidemiol, vol. 15, pp. 36­47, 
1993. 

[8] H. Guillemet, H.  BENALI,  F.  Preteux  et  R. DI  Paola,  “Noisy  Fractional  Brownian Motion  for 

Detection  of  Perturbations  in  Regular  Textures” ,  Proceedings  SPIE  Conference  on  Statistical  and 
Stochastic Methods for Image Processing, vol. 2823, pp. 40­51, Denver, CO,1996. 

[9]  L.Tabár,  C.  Fagerberg,  A.  Gad,  L.  Baldetorp,  L.H.  Holmberg  et  O.Gröntoft,  “Reduction  in 

mortality  from  breast  cancer  after  mass  screening  with  mammography:  Randomised  trial  from  the 

Breast Cancer Screening Working Group of the Swedish National Board of Health and Welfare”, The 
Lancet,vol. 325, no. 8433, pp. 829­832, 1985. 
[10]  B.K Rimer, N.  Resch,  E.  King,  E.  Ross,  C.  Lerman,  A.  Boyce, H.  Kessler  et  P.F.  Engstrom, 

“Multistrategy health education program to increase mammography use among women ages 65 and 

older”, Public Health Rep, vol. 107, no. (4), pp. 369­380, 1992. 
[11] B.Séradour, M.H.Dilhuydy, “Dépistage organisé des cancers du sein : un enjeu de santé publique 
”, Springer éd, pp.158, 2003.



Bibliographie 

88 

[12] H.D. Cheng, C. Xiaopeng, C. Xiaowei, H. Liming et L. Xueling, “Computer­aided detection and 

classification of microcalcifications in mammograms : a survey”, Pattern Recognition, vol. 36, no. 12, 
pp. 2967­2991, 2003. 

[13] S.F. Hurley, J.M. Kaldor, “The benefits and risks of mammographic screening for breast cancer”, 
Epidemiologic Reviews, vol.14, pp.101­30, 1992. 

[14] C. Marx, B. Schutze, M. Fleck, K. O’Shaughnessy et W.A. Kaiser, “Computer aided diagnosis in 
mammography”, European Journal of Radiology, vol. 7, pp. 7­82, 1997. 
[15] Y­H. Chang, B. Zheng, David Gur, “Computer­aided detection of clustered microcalcifications 
on digitized mammograms: a robustness experiment”, Acad Radiol., vol 4, no. 6, pp. 415­418, 1997. 

[16] A. Malich, C. Marx, M. Facius, T. Boehm, M. Fleck et W.A. Kaiser, “Tumour detection rate of a 
new commercially available computer­aided detection (CAD) system”, European Journal of Radiology, 
vol. 12, pp. 14­20, 2001. 

[17]  E.  Thurfjell, M.G.  Thurfjell,  E.  Egge  et  N. Bjurstam,  “Sensitivity  and  specificity  of  computer­ 

assisted  breast  cancer  detection  in  mammography  screening”,  Acta  Radiol.,  vol.  39,  pp.  384­388, 
1998. 

[18] C. Marx, A. Malich, M. Facius, U. Grebenstien, D. Sauner,  S.  Pleiderer  et W.A. Kaiser,  “Are 
unnecessary  follow­up  procedures  by  computer­aided  diagnosis  (CAD)  in  mammography  ? 

Comparaison  of  mammographic  diagnosis  with  and  without  use  of  CAD”,  European  Journal  of 
Radiology., vol. 51, pp. 66­72, 2003. 

[19]  D.  Wei,  H.  P.  Chan,  N.  Petrick,  B.  Sahiner,  M.A.  Helvie,  D.D.  Adler  et  M.M.  Goodsitt, 

“Falsepositive reduction technique for detection of masses on digital mammograms: global and local 

multiresolution texture analysis”, Medical Physics, vol. 24, pp. 903­14, 1997. 

[20] G. M. Brake, N. Karssemeijer et J.H. Hendriks, “An automatic method to discriminate malignant 
masses  from  normal  tissue  in  digital  mammograms”,  Physics  in  Medicine  &  Biology,  vol.  45,  pp. 

2843­2857, 2000. 

[21] G.D. Tourassi, R. Vargas­Voracek, D.M. Catarious, et C.E. Floyd, “Computer­assisted detection 

of  mammographic  masses:  a  template  matching  scheme  based  on  mutual  information”,  Medical 

Physics, vol. 30, pp. 2123­2130, 2003. 

[22] S.L. Liu, C.F. Babbs  et E.J. Delp,  “MultiResolution Detection  of  spiculated Lesions  in Digital 
Mammograms”, IEEE Transactions on Image Processing, vol. 10, no. 6, pp. 874­884, 2001. 

[23] Z. Huo, M.L. Giger, C.J. Vyborny, U. Bick, P. Lu, D.E. Wolverton et R.A. Schmidt, “Analysis of 
spiculation  in  the  computerized  classification  of mammographic masses”, Medical  Physics,  vol.  22, 

no. 10, pp.1569­1579, 1995.



Bibliographie 

89 

[24] C. Varela, P.G. Tahoces, A. J. Méndez, M. Souto et J.J. Vidal , “Computerized detection of breast 

masses in digitized mammograms ”, Computers in Biology and Medicine, vol. 37, no. 2, pp. 214­226, 

2007. 

[25]  W.P.  Kegelmeyer,  J.M.  Pruneda,  P.D.  Bourland,  A.  Hillis,  M.W.  Riggs  et  M.L.  Nipper, 

“Computer­aided  mammographic  screening  for  spiculated  lesions”,  Radiology,  vol.  191,  pp.  331­ 

337,1994. 

[26]  H.  Kobatake  et  Y.  Yoshinaga,  “Detection  of  spicules  on  mammogram  based  on  skeleton 
analysis”, IEEE Transactions on Medical Imaging, vol. 15, no. 3, pp. 235­245, 1996. 

[27] H.D. Li, M.~Kallergi, L. P. Clarke, V.K.  Jain, et R.A. Clark,  “Markov  random field  for  tumor 

detection in digital mammography”, IEEE Transactions on Medical Imaging, vol. 14, no. 3, pp. 565­ 

576, 1995. 

[28] R.P. Velthuizen, “Computer diagnosis of mammographic masses”, IEEE Transactions In Proc. of 
the App. Imagery Pattern Recognition Workshop, pp. 166­172, 2000. 

[29] W.E. Polakowski, D.A. Cournoyer, S.K. Rogers, M.P. DeSimio, D.W. Ruck, J. W. Hoffmeister et 

R. A. Raines, “Computer­aided breast  cancer detection and diagnosis of masses using difference of 
Gaussians  and  derivative­based  feature  saliency”,  IEEE Transactions  on Medical  Imaging,  vol.  16, 

pp.811­819, 1997. 

[30] W. Qian, L. Li, L. Clarke, R. A. Clark, et J. Thomas, “Comparison of adaptive and non adaptive 
cad methods for mass detection”, Academic Radiology, vol. 6, pp. 471­480, 1999. 
[31]  D.  Guliato,  R.M.  Rangayyan,  W.A.  Carnielli,  J.A  Zuffo  et  J.E.L  Desautels,  “Segmentation  of 
breast  tumors  in  mammograms  by  fuzzy  region  growing”  In  Proc  International  Conference  IEEE 

Engineering in Medecine and Biology Society”, vol. 20, pp. 1002­1005,1998. 

[32] T. Matsubara, H. Fujita, T. Hara, S. Kasai, O. Otsuka, Y. Hatanaka, et T. Endo, “Development of 
a new algorithm for detection of mammographic masses”, In Proc. International Workshop on Digital 

Mammography, pp. 139­142, 1998. 

[33]  B.R.  Groshong  et  W.  P.  Kegelmeyer,  “Evaluation  of  a  Hough  Transform  Method  for 

Circumscribed Lesion Detection”, In Digital Mammography, pp. 361­366, 1996. 

[34]  N.R.  Mudigonda,  R.M.  Rangayyan  et  J.E.L.  Desautels,  “Detection  of  breast  masses  in 
mammograms  by  density  slicing  and  texture  flow­field  analysis”,  IEEE  Transactions  on  Medical 

Imaging, vol. 20, pp. 1215­1227, 2001. 

[35] W. Zhang, K. Doi, M.L. Giger, R.M. Nishikawa et R.A. Schmidt, “An improved shift­invariant 
artificial  neural  network  for  computerized  detection  of  clustered  microcalcifications  in  digital 
mammograms”, Medical Physics., vol. 23, pp. 595­601, 1996.

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T5N-4JRVD6N-1&_user=1062533&_coverDate=02/28/2007&_alid=958075047&_rdoc=58&_fmt=high&_orig=search&_cdi=5007&_sort=d&_docanchor=&view=c&_ct=223&_acct=C000053505&_version=1&_urlVersion=0&_userid=1062533&md5=374c9d34a3433eb1ea0f3ff1b8cfc27d


Bibliographie 

90 

[36]  R.  Prokop.  et  A.  Reeves,  “A  survey  of  moment  based  techniques  for  unoccluded  object 

representation and recognition”, Graphical Models and Image Processing, vol. 54, no 5, pp. 438­460, 

1992. 

[37] N. Petrick, H.P. Chan, B. Sahiner, D. Wei, D.D. Alder et M.A. Helvie, “Automated detection of 
breast  masses  on  mammograms  using  adaptive  contrast  enhancement  and  texture  classification”, 

Medical Physics, vol. 23, pp.1685­1696, 1996. 

[38] H. Qi et W.E. Snyder, “Lesion detection and characterization in digital mammography by Bézier 
histograms”,  In Proc. International Conference  IEEE Engineering  in Medecine and Biology Society, 

vol. 2, pp. 1021­1024, 1998. 

[39]  B.  Sahiner,  H.­P.  Chan,  N.  Petrick,  D.  Wei,  M.A.  Helvie,  D.D.  Adler,  et  M.M.  Goodsitt, 

“Classification of mass and normal breast tissue: a convolution neural network classifier with spatial 
domain and texture images”, IEEE Transactions on Medical Imaging, vol. 15, pp. 598­610, 1996. 

[40]  B.  Sahiner,  H.P.  Chan,  N.  Petrick,  M.A.  Helvie,  et  L.M.  Hadjiiski,  “Improvement  of 

mammographic  mass  characterization  using  spiculation  measures  and  morphological  features”, 
Medical Physics, vol. 28, pp. 1455­1465, 2001. 

[41]  M.K. Hu, “Visual pattern recognition by moment invariants”, IRE Trans.Inform. Theory, vol. IT­ 
8, no. 2, pp. 179–187, 1962. 

[42]  D.  Wei,  H.P.  Chan,  M.A.  Helvie,  B.  Sahiner,  N.  Petrick,  D.D.  Adler  et  M.M.  Goodsitt, 

“Classification  of  mass  and  normal  breast  tissue  on  digital  mammograms:  multiresolution  texture 
analysis”, Medical Physics, vol. 22, pp. 1501­13, 1995. 

[43]  L.M.  Bruce  et  R.R.  Adhami,  “Classifying  mammographic  mass  shapes  using  the  wavelet 

transform modulus­maxima method”,  IEEE Transactions  on  Medical  Imaging,  vol.  18,  pp.  1170­7, 

1999. 

[44] C.H. Chen et G.G. Lee, “On digital mammogram segmentation and microcalcification detection 
using multiresolution  wavelet  analysis”,  Graphical Models  and  Image  Processing,  vol.  59,  pp.  349­ 

364, 1997. 

[45]  J.  Kilday,  F.  Palmieri  et  M.D.  Fox,  “Classifying  mammographic  lesions  using  computerized 
image analysis”, IEEE Transactions on Medical Imaging, vol. 12, pp. 664­9, 1993. 

[46] S. Pohlman, K.A. Powell  et N.A. Obuchowski,  “Quantitative classification of breast  tumors  in 
digitized mammograms”, Medical Physics, vol. 23, pp.1337­1145, 1996. 

[47]  A.  V.  Alvarenga,  A.  F.  Catelli  Infantosi,  W.  C.  de  Albuquerque  Pereira,  C. M.  de  Azevedo, 

“Assessing  the  performance  of  the  normalised  radial  length  and  convex  polygons  in  distinguishing 
breast  tumours  on  ultrasound  images”,  Pereira  Revista  Brasileira  de  Engenharia  Biomédica,  ISSN 
1517­3151, vol. 22, no. 3, pp. 181­189, 2006.



Bibliographie 

91 

[48]  U.  Bottigli,  D.  Cascio,  F.  Fauci,  B.  Golosio,  R.  Magro,  G.L.  Masala,  P.  Oliva,  G.  Raso,  et 

S.Stumbo  “Massive  Lesions  Classification  using  Features  based  on  Morphological  Lesion 
Differences”, Proceedings of World Academy Of Science, vol. 12, ISSN 1307­6884, 2006. 

[49]  R.M.  Rangayyan,  D.  Guliato,  J.D.  Carvalho,  et  S.A.  Santiago,  “Feature  extraction  from  the 
turning  angle  function  for  the  classification  of  breast  tumors”,  In  Int.  Special  Topics  Conf.  Inf. 

Technol.Biomed, Greece, 2006. 

[50] R.M. Rangayyan, N.R. Mudigonda et  JEL. Desautels,  “Boundary modelling and shape analysis 
methods  for  classification  of  mammographic  masses”,  Medical  and  Biological  Engineering  and 

Computing, vol. 38, no. 5, pp.487–496, ISSN 0140­0118, 2000. 

[51]  T.M.  Nguyen  et  R.M.  Rangayyan,  “Shape  analysis  of  breast  masses  in  mammograms  via  the 
fractal  dimension”,  In  Proceedings  of  the  27th  Annual  International  Conference  of  the  IEEE 
Engineering in Medicine and Biology Society , pp. 3210­3213, Shanghai, China, 2006. 

[52] T. Matsubara, H. Fujita, S. Kasai, M. Goto, Y. Tani, T. Hara et T. Endo, “Development of new 

schemes for detection and analysis of mammographic masses”,  In Proceedings of  the 1997 IASTED 
International  Conference  on  Intelligent  Information  Systems  (IIS’97),  pp.  63–66,  Grand  Bahama 

Island, Bahamas,1997. 

[53]  A.  Retico,  P.  Delogu,  M.E.  Fantacci  et  P.  Kasae,  “An  Automatic  System  to  Discriminate 

Malignant  from Benign Massive Lesions  on Mammograms”, Medical  Physics,  vol.  14,  pp. 596­600, 

2007. 

[54] C. Chettaoui, K. Djamel, A. Djouak et H. Maaref, “Etude de formes des globules drépanocytaires 
par traitement numérique des images”, In Int. Conf. SETIT, Tunisia, 2005. 

[55] T.M. Nguyen et R.M. Rangayyan , “Fractal analysis of contours of mammographic masses”, In 
Third IASTED International Conference on Biomedical Engineering, pp. 186–191, Innsbruck, Austria, 

2005. 

[56] L. Shen, R.M. Rangayyan, et J.E.L. Desautels, “Application of shape analysis to mammographic 
calcifications”, IEEE Transactions on Medical Imaging, vol.13, no. 2, pp. 263–274, 1994. 

[57] R.M. Rangayyan, N.M. El­Faramawy, J.E.L. Desautels, et O.A. Alim, “Measures of acutance and 
shape for classification of breast tumors”, IEEE Transactions on Medical Imaging, vol. 16, no. 6, pp. 

799­810, 1997. 

[58] M.K. Hu, “Visual pattern recognition by moment invariants,” IRE Trans.Inform. Theory, vol. IT­ 

8, no. 2, pp. 179–187, 1962. 

[59] A.V. ALVARENGA, A.F.C. INFANTOSI, W.C.A. PEREIRA, C.M. AZEVEDO, “Morphometric 

and  Texture  Parameters  in  Distinguishing  Breast  Tumours  on  Ultrasound  Images”,  In:  WC2006,



Bibliographie 

92 

World  Congress  on  Medical  Physics  and  Biomedical  Engineering,  IFMBE  Proceedings.  Korea  : 

IFMBE, vol. 14, pp. 2156­2159, Seoul, 2006. 

[60]  J.K.  Kim,  J.M.  Park,  K.S.  Song  et  H.W.  Park,  “Adaptive mammographic  image  enhancement 
using  first  derivative  and  local  statistics”,  IEEE  Transactions  on  Medical  Imaging,  pp:  495–502, 

vol.16, no. 5, 1997. 

[61]  N.  Székely,  N.  Tóth  et  B.  Pataki,  “A  Hybrid  System  for  Detecting Masses  in Mammographic 
Images”,  in  Proc.  of  the  IEEE  Instrumentation  and  Measurement  Technology  Conference,  IMTC 
'2004, pp. 2065­2070, Italy, 2004. 
[62] A. Trémeau, Ch. Fernandez­Maloigne et P. Bonton, “Images numériques Couleur ”, DUNOD, pp. 

100­113, 2004. 

[63] H. Freeman, “On the encoding of arbitrary geometric configurations”, IRE Trans. Electron. 

Comput. EC­10, pp. 260­268, 1961. 

[64]  R.F.  Chang,  W.Wu,  W.K.  Moon,  et  D.R.Chen,  “Automatic  ultrasound  segmentation  and 

morphology based diagnosis of solid breast tumors”, Springer, vol. 89, no. 2, pp.179–185, 2005. 
[65] D. Zhang et G. Lu, “A Comparative Study of Fourier Descriptors for Shape Representation and 
Retrieval”,  In  Proc.  of  the  Fifth  Asian  Conference  on  Computer  Vision,  pp.  646­651,  Melbourne, 

Australia, 2002. 

[66] P. S. P. Wang, C. H. Chen et L.F. Pau,  “The Handbook of Pattern Recognition and Computer 
Vision”, (2nd Edition), pp. 207­248, World Scientific Publishing Co, 1998. 

[67]  S.  Singh  et  R.  Al­Mansoori,  “Identification  of  regions  of  interest  in  digital  mammograms”, 
Journal of Intelligent Systems, vol. 10,no. 2, pp. 183­217, 2000. 

[68] F. Djidel et F. Boumghar, “Détection de Lésions Stellaires par la Multirésolution et les Réseaux 
de Neurones”, 3rd International Conference: Sciences of Electronic, Technologies of Information and 
Telecommunications, Tunisia , 2005. 

[69] N. Székely, N. Tóth, L. Lasztovicza et B. Pataki,  “Combining Methods For Mass Detection  In 
Mammograms”, In Proceedings of the 17 th Biennial International EURASIP Conference BIOSIGNAL, 

pp. 281­283, Brno, Csehország, 2004. 

[70]  M.  Heath,  K.  Bowyer,  D. Kopans,  R.  Moore  et  P.J.  Kegelmeyer,  “The  Digital  Database  for 
Screening Mammography”,  In Proc. International Workshop on Digital Mammography, pp. 212­218, 

2000. 

[71] J. Zunic et P.L. Rosin. “A New Convexity Measure for Polygons”. IEEE Transactions on Pattern 
Analysis and Machine Intelligence, vol. 26, no. 7, pp. 923 – 934, 2004. 

[72] A.V. ALVARENGA, J.L.R. Macrini, W.C.A. PEREIRA, C.E. PEDREIRA, A.F.C. INFANTOSI, 

“Breast  Ultrasound  Images  Classification  Using  Morphometric  Parameters  Ordered  by  Mutual



Bibliographie 

93 

Information”,  In Proc of  the 11th Mediterranean Conference on Medical and Biological Engineering 

and Computing ­ MEDICON2007, Ljubljana ­ Slovenia. IFMBE  Proceedings, vol. 16, pp. 1025­1029, 

2007. 

[73] O. Otsu, “A threshold selection method from gray­level histogram,” IEEE Trans. on System, Man 
and Cybernetics, vol. 9, pp. 62–66, 1979. 

[74] A.  Boujelben, H.  TMAR,  J. MNIF et M. ABID,  “  Influence  des  caractéristiques  issues  de  la 
matrice  de  co­occurrence  sur  le  diagnostic  du  cancer  du  sein ”,  In  2 th  Workshop  AMINA : 

Application Medicale en Informatique: Nouvelle Approche, pp.9­14, Monastir, Tunisia, 2006.



87 

Elaboration d’un descripteur de forme en vue de classification des 
clichés mammographiques 

Ali Chér if CHAÂBANI 

 تطرق إلى تطوير أدوات للمساعدة في التشخيص والكشف إلى ال الإعلامية في مجال ن ي باحث دفع ال إن تفعيل آلية الأنظمة : الخلاصة
 المساعدة في اجل من ) masses ( غرافية الكوعيبرات الممو ل اقتراح طريقة لوصف شك قمنا ب في هذا السياق٬ . عن سرطان الثدي

 الثدي  بين الذي أنجزناه شكل اصف ال و إن . تشخيص سرطان  من خصائص يجمع  تستمد من حدود أخرى و الشكل منطقة تستمد
 . أفضل وصف الشكل من اجل ضمان

 ٬ النقاط الموجودة عند حدوده بين مركز الشكل و ٬ التي تعتمد قيس المسافات RDM قمنا بإدخال تغيرات على طريقة خلال هذا العمل٬
 تحسين  الزمني آل قصد  اقترحنا . تعقيد  الزاوية خاصية كما  ل التي (IA) مؤشر  الزاوية  حساب  على  الأشكال وصف تعتمد

) microlobulées ( حدودها   عند  مقعرة  أقواس  لها  أخرى . التي  دائرية مثل خصائص  تحدب و ) C ( الشكل مؤشر  مقياس
 . الشكل منطقة ها لوصف م ا استخد قع ٬ و ) CIE ( التمدد مؤشر و ) NRV ( الشكل

 فعالية  بيانات واصف الشكل لتقييم  قاعدة  استخدمنا  أنواع مختلفة و DDSM الصور ٬  Bayes ٬ Kppv ( المصنفين من ثلاثة
 نسبة « Bayesien » المصنف . ) MLP و  مع  أداء  أفضل  دقة ) 96.04 (% قدم  حيث  الحميدة من  الأورام  وبنسبة كشف ٬ 
 . كشف الأورام الخبيثة قة د حيث من ) 97.55 % (

Résumé : L’automatisation a incité les informaticiens à élaborer des outils d’aide au diagnostic et à 
la détection du cancer de sein. Dans ce contexte, on s’est intéressé à la proposition d’une méthode 
de  description  de  forme  pour  aider  au  diagnostic  du  cancer  de  sein.  Pour  mieux  caractériser  la 
masse,  notre  descripteur  de  forme  combine  des  caractéristiques  basées  sur  la  région  et  autres 
basées  sur  le  contour.  Pendant  ce  travail,  on  a modifié  la  méthode  de  la  mesure  de  la  distance 
radiale  (RDM)  afin  de  réduire  encore  l’ordre  de  complexité  temporelle.  Aussi,  on  a  proposé  une 
caractéristique,  basée  sur  le  calcul  d’angle,  notée  Indice  d’Angle  (IA)  afin  de  mieux  décrire  les 
masses microlobulées. Autres caractéristiques, comme la circularité (C), la valeur moyenne (NRV) et 
l’indice d’élongation (CIE), ont été utilisées pour représenter la région. 
Afin d’évaluer l’efficacité de notre descripteur de forme, on a utilisé une base d’images DDSM et trois 
classifieurs supervisés de différent types (Kppv, Bayes et MLP). Le classifieur Bayesien a donné la 
meilleure  performance  avec  un  taux  de  96,04% en  terme  de  spécificité  et  un  taux  de  97,55% en 
terme de sensibilité. 

Abstract  :  Automation  has  prompted  scientists  to  develop  tools  to  cope  with  breast  cancer 
detection and diagnosis. In this context, we proposed a new method to describe the shape to assist 
in  diagnosis  of  breast  cancer.  For  better  characterizing  the mass,  our  shape  descriptor  combines 
shape  and boundary  features.  During  this work, we modified  the Radial Distance Measure  (RDM) 
method  in  order  to  reduce  the  temporal  complexity.  Also,  we  proposed  a  feature,  based  on  the 
measure  of  angle,  denoted  (IA)  to  describe  the  microlobulated  masses.  Other  features  like  the 
circularity (C), the average value (NRV) and the index of elongation (CIE) are used to represent the 
region. 
To  evaluate  the  effectiveness  of  our  shape  descriptor,  we  used  a  DDSM  database  and  three 
supervised classifiers (Kppv, Bayes and MLP). The Bayesian classifier gave the best performance in 
terms of specificity (96.04% ) and sensitivity (97.55%).
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