A timing constraints control technique for embeadide

real time systems

Mouna Ben Said, Kais Loukil, Nader Ben Amor,
Mohamed Abid

CES Laboratory
ENIS National School of Engineers
Sfax, Tunisia
mouna.bensaid@ieee.org

Abstract— the real-time applications have a growingcomplexity
and size which have to be well controlled. They cape viewed as
a set of synchronized tasks, communicating and shiag critical
resources. One of the main difficulties in the reatime
application design is time constraints meeting. Altasks have to
be running before their predefined deadlines. At tis level, the
integration of real time operating systems (RTOS)n the real-
time systems design flow is necessary to enable sdhling tasks
and managing the competition between them with reget of
timing constraints. One of the problems encounteretiere is that
one task may have different execution times. It magxceed its
predefined WCET and then its deadline for many reasns. The
problem is that one deadline exceeding may causebsequent
constraints violations which may disrupt the functoning of the
system. This paper deals with this particular issuelt presents a
new technique that permits the monitoring of tasksunder
execution. It controls their timing constraints by means of
watchdog concept and detects deadline missing.
information is used to tune the target applicationparameters in
order to satisfy timing constraints for the further computation
iterations. We have implemented this technique inhe RTOS
MicroC/OS-Il using the EDF scheduling policy. Thistechnique
has been validated using an Altera FPGA prototypingplatform
and the 3D rendering application.

l. INTRODUCTION

The real-time execution is one of the main constsaior
embedded systems. In fact these systems are ofth in
applications where time is a strong constraint arel called
real-time (RT) systems. A RT system is not a systhat
responds as fast as possible to requests, butn@sporrectly
within the time constraints imposed. Then, the rimfation to
be processed by a RT system should mainly arighaneioo
early nor too late so that they can be effectiwaiploited by
the system [1]. A very significant example is thi#eo
transmission system. This system must enable tidirspand
receiving of digitized video at a rate of 25 or iB@ages per
second for a good quality of service. The video tmys

That

Jean Philippe Diguet

Lab STICC
UBS University
Lorient, FRANCE

steps must be carried out sequentially while mgetiame
rate constraint. Here is where we talk about RTstramts
whose respect is a major concern in real-time systesign.
It is common to differentiate between RT systemsthosir
temporal constraints’ level of criticism. There drard real-
time systems, where all timing constraints have b®
respected and soft RT systems, which accept aircedate of
temporal errors unless they have catastrophic comesees.
This latter class includes, among others, multi@exjistems
[2], which are subject of the present work.

The real-time applications have a growing compleaiid
size. In order to facilitate their design, implenagion,
scalability and conviviality, they are designed ia
multitasking context. They can be viewed as a skt o
synchronized tasks, communicating and sharing catiti
resources. At this level, the use of a real-timerapng system
(RTOS) is a necessity. In fact, an RTOS helps obitte real-
time applications’ complexity by managing the clvanand
competition between tasks with respect of timingstints
[3]. One of the problems encountered here is théabia
execution time of the same task, which may excded i
predefined WCET (Worst Case Execution Time); thrgdat
number of CPU cycles assigned to a task. Manyoresaare
behind the WCET exceeding such as variable systaia c
frequency, hardware interrupts, variable types mfcpssed
data and inaccurate WCET estimation. The problerthas
one deadline exceeding may cause subsequent dotsstra
violations which may disrupt the functioning of tbgstem
(with different levels of criticism).

It is important to set up online monitoring techureg to
detect such problems and correct them. In [10] exlldack
control real-time scheduling is presented. Feedbamkrol
real-time scheduling defines error terms for schesju
monitors the error, and continuously adjusts theedales to
maintain stable performance. In this technique, dliea
missing problem is resolved using different CPUbadkion

through a series of stages including image and dsoutime and there is no exploitation of the applicatimrameters.

digitalization, video compression, transmission agckption,

In [11], a middleware Control Framework is presdnté

and synchronizing sound and image. All these psicgs enhances the effectiveness of QoS adaptation desidiy

dynamic control and reconfiguration of internal graeters Where n is the number of tasks

and functionalities of distributed multimedia apglions. This

In this way we ensure that all tasks normally ruthiw the

technique is complex and is not dedicated for emégd system “H".

systems with insufficient resources.

In this paper, we propose a technique that perthigs
monitoring of tasks executions within a RT systenotider to
control their timing constraints meeting. It permmithe
detection of timing constraints violations to bdeatn act on
the tasks’ temporal parameters to solve the probldre

present also its integration in the open source RT(

MicroC/OS-II for which we have added a second tieak
scheduler which takes into account timing constsaird real-
time tasks. We developed a test application of 3iject
rendering under NIOS Il IDE. It uses the RTOS MEOS-II
and runs on a prototyping platform based on AkeFPGA.
The present paper is organized as follows: in eedi, we
present an overview of the control technique. 8actll is
devoted to the RTOS modification and the EDF sclieglu
algorithm implementation which is necessary to getour
monitoring technique. Section IV presents the arpemtal

results obtained on an FPGA board and using 3D émg

synthesis application.

1. CONTROL TECHNIQUE OVERVIEW

We start by defining the timing parameters congiden
this work that we also call OS parameters. Thengive a
description of the proposed technique’s structure.

A. Systemtiming parameters

In this work, we consider a configuration of permthsks.
A periodic task [4] launches its instances in raguime
intervals called periods. It is characterized bg thllowing
timing parameters:

» Period P,

B. Complete approach overview
Our control technique runs at both application &8

layers. It is used to supervise the respect of taak
constraints while tasks are executing in a reaktgystem.

Fig. 1 gives an overview of this control technique.

Layer

Task adaptor J Adapt Task
Application

05 layer Global Watchdog Deadline

exceeding Local Watchdog

Hyper-period ’ '
i wortres,
exceeding werceos
Realtime constraints)

Adapration
function

Applicative
parameters

OS parameters

LY ‘ Os adaptor

Adapt @

Figure 1. Control technique structure

Our technique is based on two types of ‘w’. a lowdl
which controls execution at task level, and a dloba
which controls the execution at system level, dhersystem
“H”. We assign a local ‘w to each task in order to
supervise its execution and maintain its stateefach period
(such as number of execution times and end of ¢xedu
There is a communication between tasks and their
corresponding watchdogs. Each task begins by ogeatnd

* Deadline D, onto which system timing requirementgitializing the watchdog. Once launched, each ‘W
are usually mapped. It is a task maximum respong&ponsible for monitoring its task’s execution.lokal ‘w’

time,
« Execution time Te, as an average measurement,
* Worst case execution time WCET.

A task may begin execution at different moments lzane
different execution times, but it must finish befdts deadline.
The timing parameters must be defined with respédhe
following relationship:

0<Te<WCET<D<P.

The scheduling of a set of periodic tasks is cyalid the
sequence is repeated similarly every a study petiatl we
call the system hyper-period “H”. It is the lowasimmon
multiple of all tasks periods [5]. To meet time sbaints, all
tasks have to be executed at every period. Duhiagsystem
“H", a task Ti with a period Pi shall be executedHPi
times. So we must assign each task Ti an exectitiza Tei
so that:

> H g <a @
P.

il L

also communicates with the global ‘w’ to submit aleadline
exceeding detection alerts. Then the global ‘w’ esathis
event.

When the “H” expires, the global ‘W' analyzes tligt bf
events to see whether they affect the overall systeecution.
If there is no “H” overtaking, the system keepswith the
unchanged set of application parameters. But deiects a
“H” exceeding, it determines its origin, and thencalls an
adaptation function. This function makes an adaptat
decision according to the overtaking. It choosanael of
Telapplication parameters (depend on the targelicagipn)
using a pre-established model table. It selectsatitequate
model to solve the problem of overtaking. Theneihds the
new parameters values forming the selected modektoand
OS adapters so that they modify their current patars.

C. Scheduling algorithm selection

In a conventional multitasking embedded RTOS, tasks
scheduled using a fixed priority based policy wheeadlines
are not taken into account. Such a policy raisgohblem: the
highest priority task may deprive less criticalkeafrom CPU
time. Whereas, in order to meet real time condsaail tasks

have to finish running before their deadlines.dotf one task A. RTOSselection

deadline exceeding may cause a delay of all tagkshwmay
disrupts the overall functioning of the system.idt then
obvious that such a policy is inappropriate forl-téae
systems. These systems require using schedulingypbiat
guarantees good distribution of CPU time among @img
tasks and considers the timing constraints of tie@-tasks.

The development environment used in this work issNI
IDE. It allows complex system design around the SIIO
processor. It serves for the implementation andatien of
the system software part whether with simulatiororcard.
This environment supports the real time operatiggtesn
MicroC/OS-II allowing the implementation of applimmns

For this reason, we were brought to seek more a@equnder this RTOS. Since we have chosen to work thgHEDF

scheduling algorithm which ensures that all tasks during
their periods. The scheduling policy that was chaseEDF,
Earliest deadline first [6] (Liu and Layland 1973).is a

scheduler, two solutions for the choice of RTOSfussible:
the first is to add an EDF scheduler to the RTOSr&/OS-
Il since its original scheduler is fixed priorityased. The

preemptive scheduling algorithm used in real-tiy&ems. It gacond js to seek another RTOS already with EDEdkdar
belongs to the class of dynamic priority algorithwiere 5.4 then get engaged in the complex modificatiomefHAL
priority is assigned according to deadline: tasthe nearest (arqware Abstraction Layer) in order to configared port it

deadline is the highest priority task. EDF is asooptimal o oyr platform. Since the source code of MicroGIOB
algorithm; it produces a feasible schedule fofedkible tasks open and available with all the documentation, vaveh

sets. Next section gives a brief explanation ofedditing adopted the first solution.
feasibility.

D. Schedulability analysis

Let’s consider a set of tasks and their time cairss. The
schedulability analysis is the study of tasks’ fieitity using
the chosen scheduling policy. In other words, ithis fact of
checking that every task always meets its deadkioe.the
EDF policy, we make a schedulability analysis byfqening
a feasibility test based on the system overall |cad
following the two theorems below [7]:

Theorem 1 (Lui and Layland, 73):

Any set T of periodic and synchronous tasks figAi,1 =
0), and whose deadlines are equal to periodsyk.eDi = Pi)
is feasible under EDF if and only if:

vi- Yoy
Tier' © ©)

Where:

Ai,1 is the arrival date of the 1st instance okt#s

Di is its deadline

Pi is its period

Tei is its execution time

B. EDF scheduler implementation in MicroC/OSH1

To implement the EDF scheduler in the target kerwel
must start by checking the initial conditions white kernel
pre-emption and task periodicity.
The first condition is verified by the kernel whiih already
preemptive. However, concerning the second one,rd@ic
/OS-1l supports only a-periodic tasks. Hence wednée
establish periodic tasks management first. Thermage to
the implementation of the scheduling policy.

1) Establishment of task periodicity management

It's true that MicroC/OS-Il doesn't manage tasks
periodicity, but it offers time management servi¢dslay a
task for some time to expire,
functioning at the rate of a system clock [8]. Thisck
triggers a periodic interrupt called "system tiek'a frequency
fixed at baseline (usually between 10 and 100 Hhg ISR
associated with the system clock interruption idleda
“OSTimeTick()". During this routine, MicroC/OS-II
decrements the delays of waiting tasks till exporat then
makes them ready to run again.

In order to integrate task periodicity managementhie
kernel MicroC/OSII, we exploited time managemenvises
and the system clock tick interrupt described abéve added
a data structure in the user definable Task Cortock
(TCB) extension in order to support task periodtirder is

In case where Di < Pi, (3) is a sufficient but netessary associated with each task period and decrementexveay

condition.

. Tei
2= — =1
Z Di—
TieT (3)
Theorem 2: EDF optimality [Dertouzos, 74]

If there is a policy that leads to a feasible scifiad, then
the scheduling is also feasible under EDF.

Ill. EXPERIMENTATION

clock tick. Once it expires, it is automaticallyse and the
task is made ready to run.

2) Scheduler implementation

Then we extended once more the TCB to supportttier o
tasks temporal parameters (deadline, WCET and &racu
time). Initially, the deadline and the WCET must defined
offline.

Periodic tasks activation and deadlines updatetzaeged
to an internal function called OSTimeTick(). Thism€tion is

The implementation of the technique already deedrib!tS€lf triggered periodically by the system tickéSR.
requires two steps: real-time scheduling policyleighment, Whenever a scheduling event occurs (ticker ISR fiagshes

then control technique implementation.

or is delayed, new task released, etc.) the TCBwi# be
searched for the task closest to its deadline. tHsis will then
be scheduled for execution next.

resume a delayed) task

To get the highest priority task, we implemented twtime of the task being switched out. We use anractator to

solutions. The first solution is browsing all deads at each
switching event to determine the nearest one. Egersl one
consists in arranging the deadline structures Imked list

sorted by ascending order of deadline. The smatleatlline
will then be in the top of the list. This solutiaa more

optimized in terms of execution time.

Fig. 2 shows the TCB extended data structure (Thsic
Data) used for the EDF scheduling following the oset
solution.

OSDeadLnlList
TASK_USER_DATA O |

OSTCBExtPeriod OsDInld 0

OSTCBEXtDly OsDeadLn

OSTCBExtDIn OsDInDly

OSDeadLnNext

OSDeadLnPrev

TASK_USER_DATA |

OSTCRFxI Period OspInidi

OSDeadln
OSTCBExLDly

OSTCBEXtDIN 0OsDInDly

OsDeadLnNext

OSDcadLnPrev

Figure 2. Tasks list structure after scheduling policy essaiohent

C. 3D test application implementation

We have validated our control technique on a corpl
multimedia application: the 3D rendering applicatidhis
application has a variable execution time due gadifferent
algorithmic parameters. These parameters are thderof
polygons representing the 3D object and the typshafling
algorithm (flat shading and Gouraud shading). Wareeded
first to the reformulation of the source code satth can
handle different 3D objects at once instead of gtabal
object. Then, using MicroC/OSIl| services, we rewrohe
application as a set of tasks cooperating to gemexa3D
scene. We chose a simple scenario of four tasksecating to
generate a 3D rendering of 2 overlapping 3D objettese
tasks are: Init, Anim1, Anim2 and Mixing.

D. Execution time computation

The HAL system clock tick provides low degree of

accuracy of time intervals (10-100Hz) which is neful
when tasks are short. That's why we used a higksmlution
counter, called “timestamp timer” which can be Haddvia
HAL timing functions described in [9], to obtainmtg
information. However, since the HAL only supportaeo
timestamp timer in the system, and we work in atitasking
context with a preemptive kernel, the use of ohig tool is
not sufficient in our case. Thus we opted for ahuoétthat
combines the use of the “timestamp timer” and saithe
MicroC/OS-Il services. We performed our executiomet

save the task total execution time.

E. Added systemcalls

Being a modular system, MicroC/OS-Il offers the
possibility to select the services we need for aiqadar
application. The selection is done graphically ggime NIOS
Il IDE (the configuration file is generated automally).
That’s why we were brought to define some new systalls
in order to configure the added services. We treetimit the
number of these calls in order to ease the appitat
developer task. We defined five system calls whaie
summarized in Table I.

TABLE I. THE ADDED SYSTEM CALLS
System call Service and location
OSTaskOver() | Indicates the end of one task iteration
(a task is defined as an infinite loop)

At the end of task before delaying it.

OSTaskInitExt() | Initializes task’s timing constresn
just before the task’s creation.
Synchronizes tasks’ periods with “H".
Called after tasks’ creation.
Essentially allows enabling the contr
technique andselecting the schedule
The options are OS_SCHED_ED
and OS_SCHED_PRIOR_BASEL
Joins the call of OSInit() in the ma
function.
Performs nitializations necessary f
the new control mechanism.

PHP_Start()

OSInitExt()

OSInitControl()

Joins the call of OSInit().

IV. TEST AND VALIDATION

This section is divided into two parts. The firsegents the
validation of the EDF scheduling policy. The secquadt is
the validation of the control technique using thiplemented
scheduler. The time values used in the test sacenarie in
number of system clock tick (L00Hz).

A. Scheduling policy validation

We define in Table Il the OS parameters that wéllused
for the EDF scheduling policy validation.

TABLE II. OSPARAMETERS FOR SCHEDULER VALIDATION
OS Parameters Task 1 Task 2 Task B
WCET 13 13 8
Deadline 35 35 30
Period 40 40 40
Nb exe/H 1 1 1

measurements through the hook function OSTaskSwlook

[8] which is called by the kernel whenever a cah®witch
occurs. When the task is switched in, we start dbenter
running. Then, when switching to another task weeee the
current value of the timestamp counter which isekecution

If we apply the feasibility test (2) to this scapawe find:
Ul=(13+13+8)/40=0.85<1

Hence our system is feasible.

Task3 is the highest priority task since it has ¢hédiest
deadline.
"Message Queue"; it is pending to messages frorh bbt
them. Fig. 3 shows the order of tasks’ executiodeurthe
EDF scheduling policy with an illustrative examplef
preemption.

Wi 11 G+ - o _eore,c - Nies Bl IDE

Be 5t Reici lavgel Segd Buedt Tl G linde teb

Figure 3. EDF scheduler validation

Being the highest priority task, Task3 begins to fiust.
Then it switches to the "pending" state letting @RU control
to the next highest priority task which is Task2dhuse it is
placed before taskl in the ready list). The indicat
“TaskOver” shows the moments of preemption of Taakd
Task2 (Taskover = 0) by Task3 when this latterrogpts a
message. It also illustrates the order of termmatf tasks
which allows verifying the proper functioning of eth
scheduler.

MicroC/OS-II's fixed priority based scheduling tims
always constant irrespective of the number of ecbsadsks. It
is calculated of about 1lus. As for the EDF schexdul
presented in this paper, it has an execution tinpgstional
to the number of ready tasks in the system. Thehewa& is
about 7us per ready task.

B. Control technique validation

1) Completetest case

The complete test scenario used for the contrdinigoe
validation is given in Table Il. It is composed dftasks: T.
Animl1, T. Anim2 and T. Mixing We pass through thsteps
of testing. The first step presents normal exeoutib tasks,
i.e. with respect to all temporal constraints defirinitially.

The next step shows the detection of one task wheadl|[=="

violation without influence on the overall functiog of the
system. The last step shows the detection of “Heesding,
which requires a modification of the applicationda®S
parameters, namely an adaptation of the system.

TABLE IlI. OSPARAMETERS FOR TEST
OS Parameters T. Anim1 T. Anim2 T. Mixing
WCET 15 15 20
Deadline 50 50 55
Period 60 60 60
Nb exe/H 1 1 1

It communicates with Taskl and Task2 via The system “H” is equal to 60.

If we apply the feasibility test (2) to this sceipaxve find:
Ul=(15+ 15+ 20)/ 60 =0.83

If we calculate also the sufficient condition for
schedulability (3), we find:

U2 = 15/50 + 15/50 + 20/55 = 0.96

According to U1 and U2 calculations, we ensure thate
will be no deadline exceeding if the WCET value® ar
respected.

2) Scenario 2: deadline exceeding
Following the execution of the previous scenatie, CPU
time taken by the task Anim_1 has increased irthird “H”
because of the change of processed data (incrdatiee o
number of polygons). It exceeds the WCET. The tiesul
tasks execution times are shown in Table III.

TABLE IV. TASKS' EXECUTION TIME FOR THE FIRST SCENARIO
OS Parameters T. Anim1 T. Anim2 T. Mixing
Te 23 15 20

Ul = (23 + 15 + 20) / 60 = 0.96
U2 = 15/50 + 23/50 + 20/55 = 1.12

According to these calculations, we find that aning
time of 23 for task Anim1 causes a deadline excepfu2>
1) without affecting the overall functioning of tegstem (U1
<1). This theoretical result has been proved praltyi by the
illustration of tasks execution in Fig. 4.

.| Nios Il C/C++ - hello_ucosii.c - Nios Il IDE
Ele Edt Refactr Movigate Search Project Toos Run Wndow Heb

THE - R R FrO-Qr ™ B) i_'r-!\usiiC;C++
o e % Debug
problems [ISRETU e N Properties X% Gupl AB-3-°7

[<terminated > helo_ucosi_3 bios I HV configuration [Nios T Rerdware] Nios 11 Terminal Window (17/06/09 23:45)
A

Figure 4. lllustration of deadline exceeding detection

The local ‘w' associated with Task 3 detects a tirad
overtaking. It triggers a deadline exceeding aldrich is then
saved in the exceeding event list.

3) Scenario 2: Hyper-period exceeding
In this latter scenario, the execution time of tdgkml
increases again to reach about 36 clock ticks €ranl

TABLE V. TASKS' EXECUTION TIME FOR THE SECOND SCENARIO

T. Anim1 T. Anim2
36 15

OS parameters
Te

T. Mixing
20

U1 = (36 + 15+ 20) /60 = 1.18
U2 = 36/50 + 15/50 + 20/55 = 1.38

V.

The present paper dresses the issue of timing reamtst
violation in soft real time applications because thie
variability of task’s execution time. It proposescantrol
technique implemented in a real time kernel in ptdeenable
the monitoring of tasks execution. This technigaadies the
detection of any task deadline or period exceedising a

CONCLUSION

Both of Ul and U2 exceed 1, causing this time docal ‘w' for each task and one global ‘w’ for thehole

exceeding of the deadline then the period. Figh®as the
execution graph of the second scenario.

./_ Exceeding
141, £ SRR SR— i
Anim) — Lo
Animl --eeeee- : IJ —
} "
Ly | ! I !, I &
10 20 30 40 Moy M
== delayed T
i din Peried
—— g 1

Figure 5. Execution graph of the second scenario

Task Anim1 begins to exceed its deadline by a (ickil
51). Then, the task “Mixing” exceeds its deadlinsoaand
continues to run up more than its period. Singens once a
“H”, the task “Mixing” also exceeds the “H".

We illustrate in the fig. 6 that the execution datform is
in conformity with the theoretical result.

./ Nios II C/C++ - hello_ucosii.c - Nios Il IDE
Ble Edt Refaclor Novigate Search Project Toos Run Window bHelp

i Al AACRACA 50405

¥

N

5 |Bresncics
%ﬁDebug
K% GabiME-5-°7
<terminated > helo_ucosii 3 Nios I HW configuration [Nios I Hardware] Nios I Terminal Window (17/08/09 22:32)

iz Over it

Problems [ERETT A Prooertics

rask 2

149.580124

Figure 6. lllustration of “H” exceeding detection

Fig. 6 illustrates the deadline and period violatlerts
triggered by the local watchdogs of both tasks Aniemnd
Mixing. Then, the global ‘w’ triggers a “H” exceedj alert. It
determines from the exceeding event list alreadyedahe
first overtaking that caused the disruption of thasks
execution. Finally, it calls the adaptation funotim solve the
problem.

application. It identifies the possible influence$ these
violations on the overall functioning of the systeifhe
resulting work may be seen as a supervising blaskng the
OS parameters (execution time, WCET, deadlinepdeand
“H”) as input and the timing constraints violati@berts as
output.

The establishment of the proposed technique hag gon

through several stages. First, we needed to usealaime
scheduling algorithm. We chose the EDF algorithrd aere
brought to implement it in the RTOS MicroC/OS-Il.eW
exploited time management services and the sydisrk tick
interrupt provided by this kernel for successfuegration of
the scheduling policy. The next stage was the impleation
of the control mechanism. We defined five new systalls
that have to be used by a MicroC/OS-Il applicatieneloper
to benefit from these new services. The work hanliested
and validated through the 3D rendering applicatioming on
an Altera FPGA prototyping platform. Our technigaeused
to set up a more general adaptation techniquentiiztages
two other constraints: lifetime, battery and outpudlity [12].

REFERENCES

[1] Audrey M. and Silly-Chetto M., “Simulation and assment of real
time scheduling algorithms under constraints of Q&e&search report,
September 2004

Decotigny D., “Bibliographie d‘introduction a l'mdnancement dans
les systemes informatiques temps réel,”
http://david.decotigny.free.fr/rt/intro-ordo, 192902

A. Tanenbaum, “Modern Operating Systems,” Prentitadl, 1994,
ISBN 0130313580

N. Audsley and A. Burns, “Real-time systems schedyl
Department of Computer Science, University of YaJk

J. Delacroix, “Linux Programmation systéme et réseBunod, 2009,
ISBN 13 : 978-2-10-052539-3

N. Navet and J.P. Thomesse, “L'ordonnancementlélal@ine gestion
efficace des ressources,” in: J'automatise, seefd2, no 24

N. Navet, “Introduction to the schedulability arsif;” academic
course available at www.loria.fr/~nnavet/cours/Nsip@03-
2004/Mines-Ordo-03_04.pdf, November 2003

Labrosse J.J., “MicroC/OS-Il, The real time kerheR&d books
editions, 2002, ISBN 1-57820-103-9

Altera corporation, “NIOS Il software developer'atibook,” March
2009

C.Lu, J.Stankovic, G.Tao, and S.Son. Feedback @om&al-time
scheduling: Framework, modeling and algorithm. g&dessue of RT
Systems Journal on Control-Theoretic Approaches R&al-Time
Computing, 23(1/2):85-126, july/september 2002.

B.Li and K.Nahrstedt. A control-based middlewaraniework for
quality of service adaptation. IEEE Journal one8i&d Areas in
Communication, September 1999

K. Loukil, N. Ben Amor, M. Abid, “Self adaptive renfigurable

system based on middleware cross layer adaptatmgelfi SSD’'09,
Djerba, Tunisia, March 2009.

(2]

(3]
(4]
(5]
(6]
(7]

(8]

9]

[10]

[11]

[12]

