
 A timing constraints control technique for embedded 
real time systems 

Mouna Ben Saïd, Kaïs Loukil, Nader Ben Amor, 
Mohamed Abid  
CES Laboratory 

ENIS National School of Engineers 
Sfax, Tunisia  

mouna.bensaid@ieee.org  

Jean Philippe Diguet  
 

Lab STICC  
UBS University 

Lorient, FRANCE  
 

 
 

 
 

Abstract— the real-time applications have a growing complexity 
and size which have to be well controlled. They can be viewed as 
a set of synchronized tasks, communicating and sharing critical 
resources. One of the main difficulties in the real-time 
application design is time constraints meeting. All tasks have to 
be running before their predefined deadlines. At this level, the 
integration of real time operating systems (RTOS) in the real-
time systems design flow is necessary to enable scheduling tasks 
and managing the competition between them with respect of 
timing constraints. One of the problems encountered here is that 
one task may have different execution times. It may exceed its 
predefined WCET and then its deadline for many reasons. The 
problem is that one deadline exceeding may cause subsequent 
constraints violations which may disrupt the functioning of the 
system. This paper deals with this particular issue. It presents a 
new technique that permits the monitoring of tasks under 
execution. It controls their timing constraints by means of 
watchdog concept and detects deadline missing. That 
information is used to tune the target application parameters in 
order to satisfy timing constraints for the further computation 
iterations. We have implemented this technique in the RTOS 
MicroC/OS-II using the EDF scheduling policy. This technique 
has been validated using an Altera FPGA prototyping platform 
and the 3D rendering application. 

I. INTRODUCTION 

The real-time execution is one of the main constraints for 
embedded systems. In fact these systems are often used in 
applications where time is a strong constraint and are called 
real-time (RT) systems. A RT system is not a system that 
responds as fast as possible to requests, but responds correctly 
within the time constraints imposed. Then, the information to 
be processed by a RT system should mainly arise neither too 
early nor too late so that they can be effectively exploited by 
the system [1]. A very significant example is the video 
transmission system. This system must enable the sending and 
receiving of digitized video at a rate of 25 or 30 images per 
second for a good quality of service. The video must go 
through a series of stages including image and sound 
digitalization, video compression, transmission and reception, 
and synchronizing sound and image. All these processing 

steps must be carried out sequentially while meeting frame 
rate constraint. Here is where we talk about RT constraints 
whose respect is a major concern in real-time systems design. 
It is common to differentiate between RT systems by their 
temporal constraints’ level of criticism. There are hard real-
time systems, where all timing constraints have to be 
respected and soft RT systems, which accept a certain rate of 
temporal errors unless they have catastrophic consequences. 
This latter class includes, among others, multimedia systems 
[2], which are subject of the present work. 

The real-time applications have a growing complexity and 
size. In order to facilitate their design, implementation, 
scalability and conviviality, they are designed in a 
multitasking context. They can be viewed as a set of 
synchronized tasks, communicating and sharing critical 
resources. At this level, the use of a real-time operating system 
(RTOS) is a necessity. In fact, an RTOS helps control the real-
time applications’ complexity by managing the chaining and 
competition between tasks with respect of timing constraints 
[3]. One of the problems encountered here is the variable 
execution time of the same task, which may exceed its 
predefined WCET (Worst Case Execution Time); the largest 
number of CPU cycles assigned to a task.  Many reasons are 
behind the WCET exceeding such as variable system calls 
frequency, hardware interrupts, variable types of processed 
data and inaccurate WCET estimation. The problem is that 
one deadline exceeding may cause subsequent constraints 
violations which may disrupt the functioning of the system 
(with different levels of criticism).  

It is important to set up online monitoring techniques to 
detect such problems and correct them. In [10] a feedback 
control real-time scheduling is presented. Feedback control 
real-time scheduling defines error terms for schedules, 
monitors the error, and continuously adjusts the schedules to 
maintain stable performance. In this technique, deadline 
missing problem is resolved using different CPU allocation 
time and there is no exploitation of the application parameters. 
In [11], a middleware Control Framework is presented. It 
enhances the effectiveness of QoS adaptation decisions by 



dynamic control and reconfiguration of internal parameters 
and functionalities of distributed multimedia applications. This 
technique is complex and is not dedicated for embedded 
systems with insufficient resources. 

In this paper, we propose a technique that permits the 
monitoring of tasks executions within a RT system in order to 
control their timing constraints meeting. It permits the 
detection of timing constraints violations to be able to act on 
the tasks’ temporal parameters to solve the problem. We 
present also its integration in the open source RTOS 
MicroC/OS-II for which we have added a second real-time 
scheduler which takes into account timing constraints of real-
time tasks. We developed a test application of 3D object 
rendering under NIOS II IDE. It uses the RTOS MicroC/OS-II 
and runs on a prototyping platform based on Altera's FPGA. 
The present paper is organized as follows: in section II, we 
present an overview of the control technique. Section III is 
devoted to the RTOS modification and the EDF scheduling 
algorithm implementation which is necessary to set up our 
monitoring technique. Section IV presents the experimental 
results obtained on an FPGA board and using 3D image 
synthesis application. 

II. CONTROL TECHNIQUE OVERVIEW 

We start by defining the timing parameters considered in 
this work that we also call OS parameters. Then we give a 
description of the proposed technique’s structure. 

A. System timing parameters 

In this work, we consider a configuration of periodic tasks. 
A periodic task [4] launches its instances in regular time 
intervals called periods. It is characterized by the following 
timing parameters: 

• Period P, 

• Deadline D, onto which system timing requirements 
are usually mapped. It is a task maximum response 
time, 

• Execution time Te, as an average measurement, 

• Worst case execution time WCET. 

A task may begin execution at different moments and have 
different execution times, but it must finish before its deadline. 
The timing parameters must be defined with respect of the 
following relationship:  

0 ≤ Te ≤ WCET ≤ D ≤ P. 

The scheduling of a set of periodic tasks is cyclic and the 
sequence is repeated similarly every a study period that we 
call the system hyper-period “H”. It is the lowest common 
multiple of all tasks periods [5]. To meet time constraints, all 
tasks have to be executed at every period. During the system 
“H”, a task Ti with a period Pi shall be executed ni=H/Pi 
times. So we must assign each task Ti an execution time Tei 
so that:  

    (1) 

Where n is the number of tasks 
In this way we ensure that all tasks normally run within the 

system “H”. 

B. Complete approach overview 

Our control technique runs at both application and OS 
layers. It is used to supervise the respect of real time 
constraints while tasks are executing in a real time system. 
Fig. 1 gives an overview of this control technique. 

 
 

Figure 1.  Control technique structure 

Our technique is based on two types of ‘w’: a local ‘w’ 
which controls execution at task level, and a global ‘w’ 
which controls the execution at system level, over the system 
“H”. We assign a local ‘w’ to each task in order to 
supervise its execution and maintain its state for each period 
(such as number of execution times and end of execution). 
There is a communication between tasks and their 
corresponding watchdogs. Each task begins by creating and 
initializing the watchdog. Once launched, each ‘w’ is 
responsible for monitoring its task’s execution. A local ‘w’ 
also communicates with the global ‘w’ to submit any deadline 
exceeding detection alerts. Then the global ‘w’ saves this 
event.  

When the “H” expires, the global ‘w’ analyzes the list of 
events to see whether they affect the overall system execution. 
If there is no “H” overtaking, the system keeps on with the 
unchanged set of application parameters. But if it detects a 
“H” exceeding, it determines its origin, and then it calls an 
adaptation function. This function makes an adaptation 
decision according to the overtaking. It chooses a model of 
Te/application parameters (depend on the target application) 
using a pre-established model table. It selects the adequate 
model to solve the problem of overtaking. Then it sends the 
new parameters values forming the selected model to task and 
OS adapters so that they modify their current parameters.  

C. Scheduling algorithm selection 

In a conventional multitasking embedded RTOS, tasks are 
scheduled using a fixed priority based policy where deadlines 
are not taken into account. Such a policy raises a problem: the 
highest priority task may deprive less critical tasks from CPU 
time. Whereas, in order to meet real time constraints all tasks 



have to finish running before their deadlines. In fact, one task 
deadline exceeding may cause a delay of all tasks which may 
disrupts the overall functioning of the system. It is then 
obvious that such a policy is inappropriate for real-time 
systems. These systems require using scheduling policy that 
guarantees good distribution of CPU time among competing 
tasks and considers the timing constraints of real-time tasks. 
For this reason, we were brought to seek more adequate 
scheduling algorithm which ensures that all tasks run during 
their periods. The scheduling policy that was chosen is EDF, 
Earliest deadline first [6] (Liu and Layland 1973). It is a 
preemptive scheduling algorithm used in real-time systems. It 
belongs to the class of dynamic priority algorithms where 
priority is assigned according to deadline: task with the nearest 
deadline is the highest priority task. EDF is also an optimal 
algorithm; it produces a feasible schedule for all feasible tasks 
sets. Next section gives a brief explanation of scheduling 
feasibility. 

D. Schedulability analysis 

Let’s consider a set of tasks and their time constraints. The 
schedulability analysis is the study of tasks’ feasibility using 
the chosen scheduling policy. In other words, it is the fact of 
checking that every task always meets its deadline. For the 
EDF policy, we make a schedulability analysis by performing 
a feasibility test based on the system overall load and 
following the two theorems below [7]:  

Theorem 1 (Lui and Layland, 73): 

Any set T of periodic and synchronous tasks (i.e. ∀i, Ai,1 = 
0), and whose deadlines are equal to periods (i.e. ∀k, Di = Pi) 
is feasible under EDF if and only if: 

                (2) 

Where:  

Ai,1 is the arrival date of the 1st instance of task Ti 

Di is its deadline 

Pi is its period  

Tei is its execution time 

In case where Di < Pi, (3) is a sufficient but not necessary 
condition. 

  (3) 

Theorem 2: EDF optimality [Dertouzos, 74] 

If there is a policy that leads to a feasible scheduling, then 
the scheduling is also feasible under EDF. 

III.  EXPERIMENTATION 

The implementation of the technique already described 
requires two steps: real-time scheduling policy establishment, 
then control technique implementation. 

A. RTOS selection 
The development environment used in this work is Nios II 

IDE. It allows complex system design around the NIOS II 
processor. It serves for the implementation and execution of 
the system software part whether with simulation or on card. 
This environment supports the real time operating system 
MicroC/OS-II allowing the implementation of applications 
under this RTOS. Since we have chosen to work with the EDF 
scheduler, two solutions for the choice of RTOS are possible: 
the first is to add an EDF scheduler to the RTOS MicroC/OS-
II since its original scheduler is fixed priority based. The 
second is to seek another RTOS already with EDF scheduler 
and then get engaged in the complex modification of the HAL 
(Hardware Abstraction Layer) in order to configure and port it 
on our platform. Since the source code of MicroC/OS-II is 
open and available with all the documentation, we have 
adopted the first solution. 

B.  EDF scheduler implementation in MicroC/OS-II 

To implement the EDF scheduler in the target kernel, we 
must start by checking the initial conditions which are kernel 
pre-emption and task periodicity.  
The first condition is verified by the kernel which is already 
preemptive. However, concerning the second one, MicroC 
/OS-II supports only a-periodic tasks. Hence we need to 
establish periodic tasks management first. Then we move to 
the implementation of the scheduling policy. 

1) Establishment of task periodicity management  
It’s true that MicroC/OS-II doesn’t manage tasks 

periodicity, but it offers time management services (delay a 
task for some time to expire, resume a delayed task) 
functioning at the rate of a system clock [8]. This clock 
triggers a periodic interrupt called "system tick" at a frequency 
fixed at baseline (usually between 10 and 100 Hz). The ISR 
associated with the system clock interruption is called 
“OSTimeTick()”. During this routine, MicroC/OS-II 
decrements the delays of waiting tasks till expiration, then 
makes them ready to run again. 

In order to integrate task periodicity management in the 
kernel MicroC/OSII, we exploited time management services 
and the system clock tick interrupt described above. We added 
a data structure in the user definable Task Control Block 
(TCB) extension in order to support task period. A timer is 
associated with each task period and decremented at every 
clock tick. Once it expires, it is automatically reset and the 
task is made ready to run. 

2) Scheduler implementation 
Then we extended once more the TCB to support the other 

tasks temporal parameters (deadline, WCET and execution 
time). Initially, the deadline and the WCET must be defined 
offline.  

Periodic tasks activation and deadlines update are charged 
to an internal function called OSTimeTick(). This function is 
itself triggered periodically by the system ticker ISR. 
Whenever a scheduling event occurs (ticker ISR, task finishes 
or is delayed, new task released, etc.) the TCB list will be 
searched for the task closest to its deadline. This task will then 
be scheduled for execution next. 



To get the highest priority task, we implemented two 
solutions. The first solution is browsing all deadlines at each 
switching event to determine the nearest one. The second one 
consists in arranging the deadline structures in a linked list 
sorted by ascending order of deadline. The smallest deadline 
will then be in the top of the list. This solution is more 
optimized in terms of execution time.  

Fig. 2 shows the TCB extended data structure (Task User 
Data) used for the EDF scheduling following the second 
solution. 

 

 
Figure 2.  Tasks list structure after scheduling policy establishment 

C. 3D test application implementation 

We have validated our control technique on a complex 
multimedia application: the 3D rendering application. This 
application has a variable execution time due to its different 
algorithmic parameters. These parameters are the number of 
polygons representing the 3D object and the type of shading 
algorithm (flat shading and Gouraud shading). We proceeded 
first to the reformulation of the source code so that it can 
handle different 3D objects at once instead of one global 
object. Then, using MicroC/OSII services, we rewrote the 
application as a set of tasks cooperating to generate a 3D 
scene. We chose a simple scenario of four tasks cooperating to 
generate a 3D rendering of 2 overlapping 3D objects. These 
tasks are: Init, Anim1, Anim2 and Mixing. 

D. Execution time computation 

The HAL system clock tick provides low degree of 
accuracy of time intervals (10-100Hz) which is not useful 
when tasks are short. That’s why we used a higher resolution 
counter, called “timestamp timer” which can be handled via 
HAL timing functions described in [9], to obtain time 
information. However, since the HAL only supports one 
timestamp timer in the system, and we work in a multitasking 
context with a preemptive kernel, the use of only this tool is 
not sufficient in our case. Thus we opted for a method that 
combines the use of the “timestamp timer” and some of the 
MicroC/OS-II services. We performed our execution time 
measurements through the hook function OSTaskSwHook() 
[8] which is  called by the kernel whenever a context switch 
occurs. When the task is switched in, we start the counter 
running. Then, when switching to another task we retrieve the 
current value of the timestamp counter which is the execution 

time of the task being switched out. We use an accumulator to 
save the task total execution time.    

E. Added system calls 

Being a modular system, MicroC/OS-II offers the 
possibility to select the services we need for a particular 
application. The selection is done graphically using the NIOS 
II IDE (the configuration file is generated automatically). 
That’s why we were brought to define some new system calls 
in order to configure the added services. We tried to limit the 
number of these calls in order to ease the application 
developer task. We defined five system calls which are 
summarized in Table I.  

TABLE I.  THE ADDED SYSTEM CALLS 

System call Service and location 
OSTaskOver() Indicates the end of one task iteration 

(a task is defined as an infinite loop) 
At the end of task before delaying it. 

OSTaskInitExt() Initializes task’s timing constraints 
just before the task’s creation. 

PHP_Start() Synchronizes tasks’ periods with “H”. 
Called after tasks’ creation. 

OSInitExt() Essentially allows enabling the control 
technique and selecting the scheduler. 
The options are OS_SCHED_EDF 
and OS_SCHED_PRIOR_BASED. 
Joins the call of OSInit() in the main 
function. 

OSInitControl() Performs nitializations necessary for 
the new control mechanism. 
Joins the call of OSInit(). 

 

IV.  TEST AND VALIDATION  

This section is divided into two parts. The first presents the 
validation of the EDF scheduling policy. The second part is 
the validation of the control technique using the implemented 
scheduler. The time values used in the test scenarios are in 
number of system clock tick (100Hz).  

A. Scheduling policy validation 

We define in Table II the OS parameters that will be used 
for the EDF scheduling policy validation.  

TABLE II.  OS PARAMETERS FOR SCHEDULER  VALIDATION 

OS Parameters Task 1 Task 2 Task 3 
WCET  13 13 8 
Deadline  35 35 30 
Period 40 40 40 
Nb exe/H 1 1 1 

 

If we apply the feasibility test (2) to this scenario, we find: 

U1 = (13 + 13 + 8) / 40 = 0.85 < 1 

Hence our system is feasible.  



Task3 is the highest priority task since it has the earliest 
deadline. It communicates with Task1 and Task2 via 
"Message Queue"; it is pending to messages from both of 
them. Fig. 3 shows the order of tasks’ execution under the 
EDF scheduling policy with an illustrative example of 
preemption. 

 

 
Figure 3.  EDF scheduler validation 

Being the highest priority task, Task3 begins to run first. 
Then it switches to the "pending" state letting the CPU control 
to the next highest priority task which is Task2 (because it is 
placed before task1 in the ready list). The indicator 
“TaskOver” shows the moments of preemption of Task1 and 
Task2 (Taskover = 0) by Task3 when this latter intercepts a 
message. It also illustrates the order of termination of tasks 
which allows verifying the proper functioning of the 
scheduler.  

MicroC/OS-II’s fixed priority based scheduling time is 
always constant irrespective of the number of created tasks. It 
is calculated of about 11µs. As for the EDF scheduler 
presented in this paper, it has an execution time proportional 
to the number of ready tasks in the system. The overhead is 
about 7µs per ready task.  

B. Control technique validation 

1) Complete test case 
The complete test scenario used for the control technique 

validation is given in Table II. It is composed of 3 tasks: T. 
Anim1, T. Anim2 and T. Mixing We pass through three steps 
of testing. The first step presents normal execution of tasks, 
i.e. with respect to all temporal constraints defined initially. 
The next step shows the detection of one task deadline 
violation without influence on the overall functioning of the 
system. The last step shows the detection of “H” exceeding, 
which requires a modification of the application and OS 
parameters, namely an adaptation of the system. 

TABLE III.  OS PARAMETERS FOR TEST 

OS Parameters T. Anim1 T. Anim2 T. Mixing 
WCET 15 15 20 
Deadline   50 50 55 
Period 60 60 60 
Nb exe/H 1 1 1 

 
The system “H” is equal to 60. 

If we apply the feasibility test (2) to this scenario, we find:  

U1= (15 + 15 + 20) / 60 = 0.83  

If we calculate also the sufficient condition for 
schedulability (3), we find: 

U2 = 15/50 + 15/50 + 20/55 = 0.96 

According to U1 and U2 calculations, we ensure that there 
will be no deadline exceeding if the WCET values are 
respected.  

2) Scenario 2: deadline exceeding 
Following the execution of the previous scenario, the CPU 

time taken by the task Anim_1 has increased in the third “H” 
because of the change of processed data (increase of the 
number of polygons). It exceeds the WCET. The resulting 
tasks execution times are shown in Table III. 

TABLE IV.  TASKS’  EXECUTION TIME FOR THE FIRST SCENARIO 

OS Parameters T. Anim1 T. Anim2 T. Mixing 
Te 23 15 20 

 

U1 = (23 + 15 + 20) / 60 = 0.96  

U2 = 15/50 + 23/50 + 20/55 = 1.12 

According to these calculations, we find that a running 
time of 23 for task Anim1 causes a deadline exceeding (U2> 
1) without affecting the overall functioning of the system (U1 
<1). This theoretical result has been proved practically by the 
illustration of tasks execution in Fig. 4. 

 
Figure 4.  Illustration of deadline exceeding detection  

The local ‘w’ associated with Task 3 detects a deadline 
overtaking. It triggers a deadline exceeding alert which is then 
saved in the exceeding event list.    

3) Scenario 2: Hyper-period exceeding 
In this latter scenario, the execution time of task Anim1 

increases again to reach about 36 clock ticks (Table IV) 



TABLE V.  TASKS’  EXECUTION TIME FOR THE SECOND SCENARIO 

OS parameters  T. Anim1 T. Anim2 T. Mixing 
Te 36 15 20 

 
U1 = (36 + 15 + 20) / 60 = 1.18  

U2 = 36/50 + 15/50 + 20/55 = 1.38  

Both of U1 and U2 exceed 1, causing this time an 
exceeding of the deadline then the period. Fig. 5 shows the 
execution graph of the second scenario.  

 
Figure 5.  Execution graph of the second scenario 

Task Anim1 begins to exceed its deadline by a tick (until 
51). Then, the task “Mixing” exceeds its deadline also and 
continues to run up more than its period. Since it runs once a 
“H”, the task “Mixing” also exceeds the “H”. 

We illustrate in the fig. 6 that the execution on platform is 
in conformity with the theoretical result. 

 
Figure 6.  Illustration of “H” exceeding detection 

Fig. 6 illustrates the deadline and period violation alerts 
triggered by the local watchdogs of both tasks Anim1 and 
Mixing. Then, the global ‘w’ triggers a “H” exceeding alert. It 
determines from the exceeding event list already saved the 
first overtaking that caused the disruption of the tasks 
execution. Finally, it calls the adaptation function to solve the 
problem.   

 

V. CONCLUSION  

The present paper dresses the issue of timing constraints 
violation in soft real time applications because of the 
variability of task’s execution time. It proposes a control 
technique implemented in a real time kernel in order to enable 
the monitoring of tasks execution. This technique handles the 
detection of any task deadline or period exceeding using a 
local ‘w’ for each task and one global ‘w’ for the whole 
application. It identifies the possible influences of these 
violations on the overall functioning of the system. The 
resulting work may be seen as a supervising block having the 
OS parameters (execution time, WCET, deadline, period, and 
“H”) as input and the timing constraints violation alerts as 
output. 

The establishment of the proposed technique has gone 
through several stages. First, we needed to use a real-time 
scheduling algorithm. We chose the EDF algorithm and were 
brought to implement it in the RTOS MicroC/OS-II. We 
exploited time management services and the system clock tick 
interrupt provided by this kernel for successful integration of 
the scheduling policy. The next stage was the implementation 
of the control mechanism. We defined five new system calls 
that have to be used by a MicroC/OS-II application developer 
to benefit from these new services. The work has been tested 
and validated through the 3D rendering application running on 
an Altera FPGA prototyping platform. Our technique is used 
to set up a more general adaptation technique that manages 
two other constraints: lifetime, battery and output quality [12]. 

REFERENCES 
[1] Audrey M. and Silly-Chetto M., “Simulation and assessment of real 

time scheduling algorithms under constraints of QoS,” Research report, 
September 2004 

[2] Decotigny D., “Bibliographie d'introduction à l'ordonnancement dans 
les systèmes informatiques temps réel,” 
http://david.decotigny.free.fr/rt/intro-ordo, 1999-2002 

[3] A. Tanenbaum, “Modern Operating Systems,” Prentice Hall, 1994, 
ISBN 0130313580 

[4] N. Audsley and A. Burns, “Real-time systems scheduling,”  
Department of Computer Science, University of York, UK 

[5] J. Delacroix, “Linux Programmation système et réseau,” Dunod, 2009, 
ISBN 13 : 978-2-10-052539-3 

[6] N. Navet and J.P. Thomesse, “L’ordonnancement, la clé d’une gestion 
efficace des ressources,” in: J'automatise, september 2002, no 24 

[7] N. Navet, “Introduction to the schedulability analysis,” academic 
course available at www.loria.fr/~nnavet/cours/Mines2003-
2004/Mines-Ordo-03_04.pdf, November 2003  

[8] Labrosse J.J., “MicroC/OS-II, The real time kernel,” R&d books 
editions, 2002, ISBN 1-57820-103-9 

[9] Altera corporation, “NIOS II software developer’s Handbook,” March 
2009 

[10] C.Lu, J.Stankovic, G.Tao, and S.Son. Feedback control real-time 
scheduling: Framework, modeling and algorithm. special issue of RT 
Systems Journal on Control-Theoretic Approaches to Real-Time 
Computing, 23(1/2):85–126,  july/september 2002. 

[11] B.Li and K.Nahrstedt. A control-based middleware framework for 
quality of service adaptation. IEEE Journal  on Selected Areas in 
Communication, September 1999 

[12] K. Loukil, N. Ben Amor, M. Abid, “Self adaptive reconfigurable 
system based on middleware cross layer adaptation model,” SSD’09, 
Djerba, Tunisia, March 2009.  

  


