A Petri Net Extension for Schedulability Analysis of Real Time
Embedded Systems

Yessine Hadj Kacem, Walid Karamti , Adel Mahfoudhi, and Mohamed Abid
Computer Embedded Systems (CES),University of Sfax
National School of Engineers (ENIS), BP 1173, Sfax, 3038)idia

Abstract— Petri Net can be used to analyze and verify realverification like a theorem; its major limitation is that the
time systems. However, scheduling problems are not totallyser interacting with the prover must be able to guide him.
covered using this formalism. Traditionally, the verifioat  For example, the methall proposed in [15] is used in order
of these systems is limited to the performance and behaviotw validate opted models. The authors start with an abstract
analyses. specification from the scheduler and then use successive
This paper presents a scheduling analysis method for reakefinments to account for the time characteristics of the au-
time systems at an early stage. The proposed formalistomats. They check the hierarchy of refinements by proving
called Priority Timed Petri Net (PTPN) extends Time Petrithe various generated obligations. Formal model-based-met
Nets in order to find a feasible schedule that satisfies timingds describe system behaviour and explore different system
constraints. Computational and analysis model were givestates. These techniques are Simulation, feasibility aest
while explaining the proposed model-checking. Model checking. Simulation is based on the simulation of
the task progress during one system period, wich assures tha
Keywords: real time systems, verification, Time Petri Nets, g|| the authorities of tasks respect their deadline. It caatt

scheduling analysis, PTPN scheduling policies or task models which are difficult to-ana
. lyze mathematically. Calculating response times applies a
1. Introduction currence formula which calculates the deadlines of exenuti

Real time systems (RTS) are time constrained systemsn an interval that contains the greatest response timégof t
that are in a continuous interaction with their externalienv considered task which is met. Feasibility test which adie
ronment. Such systems have become increasingly complefgrmula decides the feasibility of task scheduling acangdi
especially with their distributed aspects (parallel opera  to which characteristics appear to be the simplest method
on various machines), where the need for using reliabléo implement with a low calculation complexity. Contrary
techniques of scheduling emerges. Since function or butp the simulation and test of feasibility, the model-chagki
may cause economic and human catastrophes. Thus, tpheovides examples showing why an imposed constraint is
anomaly absence at simulation stage cannot confirm theot satisfied. Petri Nets (PN) presents an adequate model-
non-appearance of bugs. So, schedulability [21] is a keghecker due to its greatly expressive dynamic vision and its
challenge in the analysis of distributed RTS. executable aspect. However, the application of Petri Nets t
Therefore, to protect such systems from problems and faila scheduling problem is far from trivial; determinism adpec
ure, it is necessary to implement formal techniques intdndeis tackled neither in regular Petri Net, nor in its extension
to make reliable the development process of the real-timéor RTS verification. There are many recent research efforts
applications, from their design to checking. This allowson real time systems verification using PN. The adoption of
designers to accurately validate systems, and check thmodel checking by means of PN extensions has been vastly
required properties of their behaviour. investigated.

The specification and formal verification techniques couldn [18], the authors use T-Timed stochastic Petri Nets to
reduce the problem impact. They aim at being a reliablenodel real time tasks. The authors stress the independent
approach and they constitute an important and recent field q@feriodic tasks in order to support Rate Monotonic strategy
research. The objective of the formal specification is stgrt [12]. Priorities are integrated using the inhibitor arcsiehh
from an abstract modeling to express the system propertiemnnect the waiting places of each task with transitions tha
by taking into account a set of constraints and therefore, toall the processor modeled by a place. The temporal faults,
check that the system specification satisfies these preperti considered as a task behavior, are presented in the Pesri Net
Generally, the choice of the suitable formal method dependssk model. However, if the tasks to be modeled are too
on the characteristics of the system and the properties to lm@mplex then the size of the model will be enormous and the
checked. We distinguish two classes from prove methodsidded inhibitor arcs face difficulties to interpret the drap
deductive methods and models-based methods. Roux [19] presented the Scheduling Timed Petri Nets
Deductive methods consist in interpreting the problem of STPN) to analyze the schedulability of the independent



tasks on a multiprocessor architecture. Each processor éxtension of the proposed formalism is stressed. Findigy, t
modeled by a place; thus the concept of priority is introduce model analysis of the extended PN is described.

by the inhibitor arcs. The motivation behind this approach ) ) .
was mainly to propose calculation of a state space that i€-1 Background for Petri Nets and Time Petri
more reduced than the traditional state graph suggested iyets

[2] and the difference bound matrix. The authors extend pefinition 1

their work in [10] to support the tasks with variable time p petri Net is a 4-tuple [14]R = { P, T, B, F}, where:
execution. Another improvement [11] consists in extendin 1) P = {p1, po, ..., p} is a finite set of places: > 0;

the STPN to manage the dynamic priorities and suppogrﬁz) T ={t1, t2, ..., tm} is a finite set of transitionn > 0;
variant scheduling policies. _ (3) B: (P xT)— Nis the backward incidence function;
Berthomieu, in the same line, introduced the notion of(4)F: (P x T) — N is the forward incidence function;
priorities within the temporal Petri nets framework [3] via gach system state is represented by a markihgf the net,
the PrTPN (Priority Time petri Nets) extension. His progosa;; is defined by :M: P — N

is based on the following constraint: a transition will be pefinition 2

fired only when it has the highest priority compared top marked Petri Net is a coupl®N =< R, M, >, where
the concurrent and enabled transitions. To introduce the is 5 petri Net and\, is the initial marking.

priorities, the author also uses inhibiting arcs as a neWefinition 3

component which connects the simultaneous transitions. Thy yector F¢, is associated with each marking which
problem arises when the network is of an enormous size a’}?resents the fired transitions.

several transitions are dependent. The model will then be ] 1

difficult to be presented and interpreted. Ft, is defined by:F'Ts : T —

As a notable model checker, the Extended Place-timed Petft ¢ T and B(P,t) < M <t € FT, < FT,(t) = 1

Nets (EPdPN)[5] is worth mentioning. EPdPN is based orDefinition 4

P-Timed Petri Net and introduces two priorities to solve theThe firing of a transition is described by :

problem of transitions’ conflict. Nevertheless, the cdntfi  Let M be a marking,vt € FT,, then the firing of the
tion of authors does not take into account the periodicity otransitiont is said:

real time tasks. M'= M + F(P,t) — B(P,t)

This paper presents a Time Petri Net based approach fofi the rest of this paper, we use the following notation :
systems scheduling analysis, considering periodicitgdix 37 % pz’

priority, pre-emption, multiprocessor architecture antei-  Definition 5

task relations (e.g., precedence and mutual exclusiorg. Thy’ is reachable from a marking M iff3t € T, M -5 M’
proposed Priority Time Petri Net gives determinism aspecthanks to its power of expressivities, the regular PN
to the model and to accelerate its execution. Besides, th@ake it possible to describe parallelism, dependency and
developed tool of our support infrastructure is founded orsemaphores, which present important properties of RTS. In
the Eclipse platform, in the form of a plug-in capable togpite of this significant ability, regular PNs are not able to

exchange data with Eclipse Features. model the temporal evolution of RTS. That is why the regular
The paper is organized as follows: the description of thep is extended to Time Petri Net.

proposed Priority Time Petri Net is given in the nextpefinition 6

session highlighting formal definitions. Section 3 expdain Time Petri Net associate a static time interval with the

the extended Petri Nets building blocks for the scheduitgibil transition firing. A Time Petri Net is a 3-tupEPN:

analysis. Section 4 introduces the supporting tool andatepi 7pxN = { PN, Tiin, Trmaz}, Where:

an experiment. Finally, the conclusion and future researcbl) PN is a regular Petri Net;

directions will be discussed. (2) Toin = T — QF | Thin(t;) is the earliest firing time
mapping;

2. Computational and Analysis Models @) Tnae = T = Q7 U{oc}, Thnas(t:) is the latest firing
time mapping;

Petri nets [16] is a mathematical formalism, which allowsA global clock is coupled to the system.

the specification of the behaviour of real time interactiveDefinition 7

systems. Concurrent real time concepts such as timinBach transition in a TPN is accompanied by a local clock.

constraints, shared resource and synchronisation ar@ takall local clocks are grouped in a vector called (HI), with

into account through two main Petri Nets extensions: Timed! : T — Q¥ .

Petri Nets [13] and Timed Petri Nets [17]. In what follows The clock transition is activated as soon as the transigon i

some definitions on Petri Nets are presented. Next, somenabled and remains activated until it will be valid.

basic concepts on regualr PN are briefly recalled. Then, thBefinition 8



A transition is valid when it is firable and the local clock The relation betwee®, and B is defined as:

has met the time interval: Vte T AVpe P, if Bp,t)=0< P.(t,p) =0
tisvalid < t € FTs A Hl(t) € [Thmin, Tmaz) Let p € P and the sefl}, = {Vt € T\B(p,t) > 0}
Definition 9 For a concrete presentation Bf we consider it as a matrix
Only valid transitions will be fired. To simplify their selec of |T'| lines and|P| columns,
tions, the functionF't, is filtered and the temporal filter is P:(to, po) P.(to, pn)

: : : FTy(t) <0 P =
described byt is not valid— Set Increment HI(t) (b o) Po(tons p)
Hence, the marking after filtring isM’ = M + F(P,t) — N*, if t €T,
B(P,t) =t € FT, Vp e P andVt € T, P.[p,t] — 0

. . . o Definition 11

2.2 Discussion about the indeterminism The marked PTPN is the couple/ PTPN =<

As already mentioned, regular PNs are not able to suppo®®T PN, My > :
the temporal evolution of RTS. Among the multitude of the(1) RT'P is a PTPN network
existing extensions of Petri Nets for RTS modeling, we car(2) M, is the initial marking of the net
cite: PTPN is an extension of Time Petri Nets; so the definitions
« Timed Petri Nets in which time can be assigned toof local and global clock and firable transitiorfst, are
places or transitions. In fact, P-Timed Petri Nets andconserved.
T-Timed Petri are two subclasses of this PN extensionPefinition 12
While firing a transition with a duratiod; in Transiton A transition is valid if it is firable and it respects it firing
Timed Petri Nets, the required tokens are removed forrdlate-
the input place at an indeterminate date and they argt € 1" is valid <=t € FTs A HI(t) = Ty (1)
added to the output place after the duratipn Timed ~ The marking strategy is based on priorities: the transition
Petri Nets can lead to a well performance analysid'aving the highest priority will be fired. When such policy
method but could not cover the scheduling problemis applied to a validr't, vector which presents only inde-
wich require determinism aspect. pendent transitions.
« Previously presented Time Petri Nets: They offer aDefinition 13
suitable solution able to describe the different statedWo transitions are independent if the firing of the first does
of a Task and their related events. not influence that of the second.To accelerate the firing of
While the Time Petri Nets is quite accurate for the taskransitions with PTPN, we propose a method which makes

behavior characterisation, there are some issues in tles cadl possible to fire a vector of independent transitions.

of the RTS task with fixed priorities. It is worth noting that 2 4 Marking evolution in PTPN

the Time Petri Nets lead to a good presentation of all system I
> T Definition 14

tasks and events, but they intercalate a firing interval o p Ki PTPN Eiring Machine (PEM) is offered

the transitions which presents an event. This could brin o fire a marking, a Iring Machine ( ) is offere

about the passage of a task state towards another during our extended formalism. The mechanism is described

undeterminable date. Indeed, in our study, tasks with th& Figure 1. The_ PFM Input is a PTPN mark.mg. For ez_ach )
highest priority are executed. However, a Time Petri Ne ntry, the machine triggers four events considered as jobs:

handles the tasks in an equitable way (no transition pyiprit uring theFf Irst Jr?'b,h PFM deter;n ines the fvc—:}ctor of flcrjap Ig
that causes the problem of transition conflict. The state Ensnmns dts_Vl\j/ Ic p_reise_nts_ t Iet_lnput oft el' ds?con .t.JO
graph of all the nodes does not obey to a strategy of ree%l € ?tconh_J?] conS|tsf§_|n '?Oa Ing non-valid transitions
time scheduling. Thus if we attribute the notion of priority rom i, which respect finng ume.

to transitions, the new formalization of Time Petri Nets can

go beyond the indeterminism problem. In particul&g,;,

is equal toT}, ., to avoid indeterminate time. ~

2.3 Priority Time Petri Net: PTPN o=y o Elp i
Definition 10

PTPN is a 3-tuple defined by’TPN =< R,Ty,P. >

where: < g O

(1) R is a regular Petri Net ) . )

(2) Ty : T — Q7 is the firing date of a transition Figure 1: PTPN Firing Machine

(3) P. : (T'xP) — Nis the priority of a transition according
to a place Definition 15



F't; temporal filtering is defined as: Algorithm 1 State graph construction

Vt € Fts and HI(t;) # Tf(i) = Ft(ti) < 0 1: for each clock ticdo
After this filtering, we can say: gi fOf_feffﬂCfl‘)Im?rki“G_{?O toh

. . . IT Tiraple transition existshen
Vte Ft; < tisvald. 4: if valid transition existghen
The objective of the third job is to ensure that the vectors: state construction and New marking
contains only independent transitions. So, PFM applies e@i else

7 Set increment clock
priority filtering. 8 end if
Definition 16 9 end if
Filtering must take into account all places, if two tramsis i(l)i 3”19' for
enda for

are in competition of place sharing, then the transition
which has the highest priority will be fired. In fact, the
roduct of theF't, vector and the matrix°r is calculated
ﬁ\ order to select a concurrent and valid transition for eacr?'5 PTPN states graph
place; it is saved in the vectdfrod as follows: In PTPN, a state is a node composed bf, tmp), where
M is a marking andmyp is the time for firing the marking
M. The graph of states is a set of nhodes connected with arcs

Prod: Pw— Ftg x Pr

) having F't; weight. The connection arcs will be established
Fts(to) P’I"(to,pz) . .
- - only when two markings of the nodes are reachable via a
Prod(P;) = x , wherei € [0, n] It vector.
o o The construction of PTPN states graph corresponds to the
Fto(tm) Pr(tm, pi)] o _execution algorithm shown in Algorithm 1. This process
Next, the transition having the highest priority per palse i starts with the creation of an initial stéfely,0). Then, for
selected from the vectaProd(p;). each clock tic, an iterative process is triggered. A marking

Fts(to) x Pr(to, pi)

is sent to the PFM. Next, the machine returns a new
marking that allows the creation of a new nod¥, tmp)

with an arc having the weight of th&'t, vector. The new
generated marking presents the new entry point of the PFM.
This iteration is continued while there are firable and valid

MazO prod(py)[t;]], where:

Fts(tm) X Pr(tmvpi)

. transitions.
e i €[0,n]
e j€[0,m] :
e Maz is a function that returns the transition with the 3. Model Construction
highest priority This section depicts how PTPN is used to model real time

tasks and particularly their periodicity, priority, deglemcy

N%W: each vectorlfrod ) %f efacl:lh p_Iacef is transformed into and distribution on distributed architecture.
a binary vector through the following function: . L ,
Fori eyo,n] ? J 3.1 Task creation and activation with PTPN

Vt; € Fts\Max(Prod(p;)) = Prod(p;)[t;] < 1 ; o E ; _
v, € A (t; = Maz(Prod(p:))) — Pmd(;z s — 0 We will use the net shown in Figure 2 to illustrate the cre

In that Case the Vectdq"‘t is updated by Subtrac“ng the ation and activation of task with PTPN. There are six placeS

Bin :—

vector Pr from each place>Z of the F't; vector: ("Uncreated", "Period", "Created", "Disabled", "Readyida
Fts « Fts — Prod(p;) "Activated") and three transitions ("Creation", "TPerl@hd
"Activation”). The vectorTy is defined by R;, F;, 0). In
Fts(to) Prod(p)[to]

the state shown in Figure 2, there are two tokens; one in
the "Uncreated" place and another in the "Disabled" place.

Fits = - The tokens in the place "Uncreated" represents an uncreated
Fto(tm) Prod(p:)[tm]] Task which is ready to be created at the tife The token
Definition 17 in the "Disabled" place indicates that the task is disabled.
The firing of F't5 is defined as: If the task is activating a job, then there are no tokens in
=M+ Z B(P,t)) "Disabled" place and there is one token in the "Activated"

one. At time0, the "Creating" transition is enabled and the
The PFM accelerates the PTPN evolution by firing the Wh0|6|r|ng time is R;. So at the timeR;, it will be validated. The
vector since aIIFt transitions are independent. firing consumes the token from "Uncreated" and produces
We note M % M’, where M is an entered marking and two tokens: one is for "Period" and another for "Created".
M’ is the ouput marking. To simplify notation8/’ is said  Now the "Activation" transition is enabled, the firing timre i
to be accessible vid/ through F't;. 0 and consequently it is validated. "Activation” fires at time



"Ri" and consumes one token from "Disabled” and anothetowards the busy state.
from "Created". The firing produces one token in "Ready"Indeed, the modeling of this event with PTPN, consists
and one in "Activation". in creating two entry arcs towards the "GetProc" activity
transition. The first arc arises from the "Ready" place aed th
second comes from the "Processor"” place which is shared by
the various "GetProc" transitions of the tasks. The ouitpgtt
R arcs of this place have to carry the priorities associated wi
the suitable tasks. When a token appears in the "Ready"
place, the task is set to occupy the processor. The assibciate
"GetProc" transition is valid only when each one of the
y Aovaton "Ready" and "Processor" places presents a token. The firing
allows the consumption of both tokens and the production of
the other one in the "inExecution" place. The new marking
describes the activity of the processor of the current ta$k.
Figure 2: Creation and activation of a task with PTPN  course, we are interested in premptive systems, whosemotio
is managed as follows: each task occupies the processor for
a single unit of time. If the task remains the most primary,
3.2 Dependency between tasks then it occupies it again, other wise it will be preemptede Th

The dependency modeling is based on task graph whicfiodeling with PTPN inserts similarly a firing date (1) on
describes the precedence between tasksT)Lié a producer the "incrementing StopWatch" transition. The firing allows
task of the consumer job;, Ty,. T; andT}, depend orf}; so incrementing the chronometers which calculate the time of
T; is called the predecessor @ and T}, (the successors). the processor use per task. Each.task.has two stopwatches:
The execution of the tas; has to be completed before the first one to compute the "Ci" units and the second
the execution of the tasd; and 7, may start. Figure 3 [0 count the 'du” units. They are modelled by two places
depicts how the relation between tasks is presented. TheretoPWatchCi* and "StopWatchDu". For any "inExecution
is a "successor" place for each task to describe the ed§ing. there is a production of tokens in both stopwatch
of execution. When "successor” is marked, the transitio?laces. As soon as the "StopWatchCi" place indicates the
"Send" is valid. It is attached only to predecessor tasks. [Rrésence ol’i tokens, the transition "endCi" is validated.
Figure 3, "Sends" is linked to the place "SuccessorTpf Its firing allows the liberation of the processor as well as
The firing produces two tokens: one for the pldgeT; and the blocking of the task up to the new wake. The transition
another one for the plac&2T,. Now, both of T’ and T, "endDu" is valid when the "StopWatchDu" place indicates
can be activated and complete its execution. ! the presence oDu tokens. The firing allows the liberation
It should be noted that priorities are attributed accordingf the processor and the deactivation of the task (the task
to Rate Monotonic Policy. Regarding dependent tasks, théid not appear in the line of the processor). In particular
predecessor task has a higher priority than the successor offS€S Wheréu is a multiple of i, the transitions "endCi

Uncreated

Created

Activated

according to rectified Rate Monotonic policy. and "endDu" are valid. The task has to pass towards the
"Terminated" state to indicate that it is well organizedrth
P the transition "endDu" is more principal than "endCi". To
Q R integrate both priorities associated with these two ttaons
with PTPN, we need a shared place between both transitions.

Figure 4 presents a "Maker" place which plays the role
T of a judge for both events. "Maker" allows the firing of a
Tk T "ReleaseProc" transition responsible for the liberatibthe
;/j processor for the pre-emption.
An important issue in real time system verification is to
check if each job has met its deadline. Therefore, we identif
Figure 3: Representation of tasks dependency with PTPNwo verification levels: the periodicity and the deadlines A
shown in Figure 5, there are four places ("Period", "Cre-
ated", "Activated”, "Deadline"), two transitions ("Tped",

3.3 Task Execution "Tdeadline") andl’ f(P;, 0). The transition "Tperiod" is valid
According to the adapted organization strategy, a taskor €achP; time unit. The firing consumes the token from
can occupy the free processor only when it has the highe$te place "Period” and produces two others: One in the
priority. The event of activity allows the passage of a taskPlace "Created” and the other in the place "Period". This
towards the execution state as well as that of the processBteans that the task is ready to wake up and the new period




is loaded. If the task is already activated, the transitiord.1 Tool
"Tdeadline" is valid. The firing of the transition "Tdeaddh

provides a token to the place "Deadline” and disables the The |mplem_ented tool takes the form of a Petri Net
task execution. editor and a simulator of the modelled net. The developed

editor for our PTPN relies on the GMF founded on Eclipse
Modeling Framework (EMF). The definition of the PTPN

Ready ™ Meta Model represents the starting point of the editor’s
N/ Processor generation process. As shown in Figure 6, the regular Petri
Getbroe < Nets Meta Model is extended with the attribyteiority
AN linked to the InputArc entity. Thus, the production of an
Van editor plug-in allows the interactive edition of the PTPN
" (create drag, drop, grab or delete a component). The created
incrementing ] models are checked through a set of constraints expressed

StopWatch

with the Object Constraint Language (OCL) [7]. The val-

StopWatch ol ) idation doubles through the verification at times and after
laKer, .
P ./ st constructing the model.
Actived| 0 | ) 1 ReleaseRroc  \___/
NG 3, T
endDuration
endCi - 1 PTPN -containsTransitions
* -name
-containsPlace 1
( )
(/ \‘ Term\nated\\i/ . .
Disable \\7/ containsinPutArcs 1 1 -containsOutPutArcs
Place Transition
-namel -name
N etreen
Successor | -
N> 7\
Flgure 4. Execu“ng a TaSk Wlth PTPN -InputArcFromPlace -OutputArcFromTransition
According to the described models presented previougdy, th oo Outputare
. . . . _priori -weigth
scheduling analysis of a real-time system modelled with priodty =
PTPN produces a model whose size is very important. The AnputArcToTransition
great complexity of the RTS makes it difficult to understand

and manage. In order to solve the problems of organisation
and interpretation of the models described in PTPN, we
resort to the structuring method of the Petri nets in the next

-OutputArcToPlace

session. Figure 6: PTPN Meta Model
Period bead
. \Deadine . . . . .
\_> < ) It is obvious that the created model is built around a drawing
. composed of places, transitions and arcs. In fact, we need to
— | [oeadine easily extract the existing data from the editor. Fortulyate
N (/\ the created model can also be serialized to generate an XML
N N (Extensible Markup Language) or XMI (XML Metadata
Created Activated Interchange) file. The generated file conforms to the PTPN
Figure 5: Meeting deadlines with PTPN Meta model and presents the entry port point of the Simula-

tor. Due to the structure of the editor output, the propsrtie
of the modelled net are easily interpreted.
. The verification framework is sufficiently flexible and ex-
4. Tool and EXpe”ment pressive to support module inclusion and extension. The use
This section introduces PPTNS (Priority Time Petri Netsof the editor tool makes it easier and faster to create PTPN
for Scheduling analysis), the tool that we have implementechodels. Compared to existing Time Petri Nets simulators
to concretize our proposed formalism. The implementatiosuch as ROMEO [6] and TINA [4], the impetus of our
uses the Graphical Modeling Framework (GMF). We sub+ool is its structured input and output files which guarastee
sequently present an example that illustrates how PPTNS isteraction with the existing PN simulators and Eclipse
used to test the schedulability of a set of tasks. features.



Table 1: Experiment for scheduling anlysis

Id_Task| R; | C; | deadline| Period | Duration | Priority | Partition
1 1|1 3 3 3 6 P1
2 0| 2 5 5 4 5 P1
3 0| 2 6 6 2 4 P2
4 0| 2 5 5 4 2 P2
Table 2: Simulation Results
Step | Time Ft, Step | Time Ft,
0 0 Creatingts , t3, t4 10 3 incrementingStopwatcty, ts
1 0 Activating t, 11 3 end’;ts, ReleasePro¢;
2 0 Executingt, 12 3 Executings
3 1 Creatingt;, incrementingStopwatcly | 13 4 incrementingStopwatcty, periodi,
4 1 Activating t;, ReleasePro¢, 14 4 end’;t3,Activating ¢4
5 1 Executingt, 15 4 Executing;, Activating t4
6 2 incrementingStopwatch 16 4 Executing,
7 2 end’;ty 17 5 incrementingStopwatch t4, periodts,t,
8 2 Executingt, , Activating t3 18 5 end’;t1, Deadlinety
9 2 Executingts 19 5

If we are to situate our extension with regard to the existingralid and the highest priority transitions in the colurfn,.
tools, we note the following distinctions: For the markingVZy, PFM fills the F't; vector with the event
« Contrary to Cheddar tools [22], Mast [9], Times [1], "Creating” for the three tasksty, 3, t3.
which cannot cover all the possible states of the sys-
tem, PTPN starts from an initial state to succeed in

determining the error source if it occurs. P1 @ /@

« Pertaining to other extensions presented in Section 2, _
PTPN offers a strategy which accelerates the marking P2 ‘ .
and avoids the combinatorial explosion in front of a @ °

large number of states.

Figure 7: Tasks dependency in the experiment
4.2 Case study

In this section, we show how PTPN can be used to deafhe "Step 17" describes the presence of transitions "Period
with the problems of schedulability analysis of real time¢," and "increntingStopwatclt,". After firing them and
system, with reference to the case of four tasks runninguring the step 18, the PFM detects two new transitions:
on two processors. It should be noted that due to spacgleadlinet," and "ReleaseProg", as shown in Table 2. The
limtation, we present a simple experiment. The dependenayew deadline is activated when the task has not completed
between tasks in this experiment is shown in Figure 7. Thits execution. The firing of "deadline," interrupts the
main characteristics of the taken tasks are illustrateclslel  simulation. The simulator PTPN confirms that the system is
1. We use the following acronyms to simplify notations:  not schedulable because does not meet its deadline. This

« Id_Task is the identifier of a task result can help the designer not only to rtisnon another
« R, is the date of the first activation computing resource but also to avoid the new partitioning
« C; is the execution time of a task of all the other tasks.

o P, is a processor

After creating the model with PTPN editor, the result of the5' Conclusion

simulation is shown in Table 2. Each step describes a node Priority Time Petri Nets supports the scheduling anal-
of the previously explained state graph. The column timeysis of real-time systems running on multiple processors,
presents different overall clock ticks. The simulationibsg including periodic, dependant, and pre-emptive tasks with
at the instan®, the initial marking vectof\/, is the input of  determinist strategy. The salient trait of novelty in the
the PFM. This machine is responsible for determining thesemantics of PTPN consists in the attribution of a priority



for transitions to isolate conflicts. Rather than presentn
solution for the problems of confusion, PTPN Firing Ma-
chine accelerates the PTPN evolution by applying tempora}h]
and priority filtering. In regular PN, the firing of a transiti
requires identifying the new vector of firable transitions.[15]
However, with PFM, this vector is established only after
the firing of old one. It is also guided by the priorities.
Consequently, starting from a marking, the PFM fires
simultaneously valid transitions having highest priostyd
returns the new marking/’.
In future research, we are interested in including perfor{18l
mance analysis in the verification of RTS and planning to
integrate PTPN design patterns ranging building blocs for
an easy model construction and interpretation. Indeed, wid°l
intend to incorporate PTPN in a Model Driven Engineering
(MDE) process [20]. The transformation from annotated20]
analysis models to a formal model allows the validation spe-
o . . : : X [21]
cific properties. In particular, we are interested in tratisy
Unified Modeling Language (UML) diagrams annotated with
the profile Modeling and Analysis of Real-Time Embedded
systems (MARTE) [8] into PTPN model to analyse system[zzl
schedulability. The SPTPN simulator taking the form of
a plug-in could easily exchange data with UML Eclipse
editors.

(13]

(16]

(17]

References

[1] T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, and"iVTimes

- a tool for modelling and implementation of embedded system
TACAS '02: Proceedings of the 8th International Conferenaélools
and Algorithms for the Construction and Analysis of Systguages
460-464, London, UK, 2002. Springer-Verlag.

B. Berthomieu and M. Diaz. Modeling and verification ofmg
dependent systems using time petri nelEEE Trans. Softw. Eng.
17(3):259-273, 1991.

B. Berthomieu, F. Peres, and F. Vernadat. Bridging the lgetween
timed automata and bounded time petri nets. FORMATS pages
82-97, 2006.

B. Berthomieu and F. Vernadat. Time petri nets analysth tina. In
QEST pages 123-124, 2006.

L. Chen, Z. Shao, G. Fan, and H. Ma. A petri net based method
analyzing schedulability of distributed real-time embeddsystems.
Journal of Computers3(12), 2008.

G. Gardey, D. Lime, M. Magnin, and O. H. Roux. Romeo: A tool
for analyzing time petri nets. IRAV, pages 418-423, 2005.

O. M. Group. UML 2.0 OCL Specification. OMG Adopted Specifi
cation ptc/03-10-14. Object Management Group, OctobeB200

0. O. M. Group. A UML Profile for MARTE: Modeling and Analys
of Real-Time Embedded systems, Beta 2, ptc/2008-06-09.edDbj
Management Group, June 2008.

M. G. Harbour, J. J. G. Garciia, J. C. P. Gutierrez, and J.DM
Moyano. Mast: Modeling and analysis suite for real time aaions.
Real-Time Systems, Euromicro Conference ®8125, 2001.

D. Lime and O. H. . Roux. A translation based method foe th
timed analysis of scheduling extended time petri nets. RIRSS
'04: Proceedings of the 25th |IEEE International Real-TimestSms
Symposium pages 187-196, Washington, DC, USA, 2004. |IEEE
Computer Society.

D. Lime and O. H. Roux. Formal verification of real-timgsgems
with preemptive schedulingReal-Time Syst41(2):118-151, 2009.
C. L. Liu and J. W. Layland. Scheduling algorithms for ltipro-
gramming in a hard-real-time environmentl. ACM 20(1):46-61,
1973.

(2]

(3]

(4]
(5]

(6]
(7]
(8]

El

(20]

[11]

[12]

P. M. Merlin. A Study of the Recoverability of Computing Systems.
Irvine: Univ. California, PhD Thesis, 1974. available fréxnn Arbor:
Univ Microfilms, No. 75-11026.

T. Murata. Petri nets: Properties, analysis and appitios. Proceed-
ings of the IEEE77(4):541-580, April 1989.

O. Nasr, J.-P. Bodeveix, M. Filali, and M. Rached. Vedfion of a
scheduler in b through a timed automata specificatiorinual ACM
Symposium on Applied Computing (SAC), Dijon, 23/04/06406
pages 1800-1801, http://www.acm.org/, avril 2006. ACM.

C. A. Petri. Fundamentals of a theory of asynchronoderination
flow. In IFIP Congress pages 386—-390, 1962.

C. Ramchandani. Analysis of asynchronous concurrgatems by
timed petri nets. Technical report, Cambridge, MA, USA, 497
P.-H. Robert and G. Juanole. Modélisation et vérifaatde poli-
tigues d’ordonnancement de taches temps-réel.8dme Colloque
Francophone sur I'lngénierie des Protocoles-CFIP’20@@ages 167—
182, 17-20 octobre 2000.

O. H. Roux and A.-M. Déplanche. A t-time Petri net exiensfor
real time-task scheduling modelinguropean Journal of Automation
(JESA) 36(7):973-987, 2002.

D. C. Schmidt. Model-driven engineerinEEE Computer 39(2),
February 2006.

L. Sha, T. Abdelzaher, K.-E. Arzen, A. Cervin, T. Bakér, Burns,
G. Buttazzo, M. Caccamo, J. Lehoczky, and A. K. Mok. Real
time scheduling theory: A historical perspectiv@eal-Time Systems
Journal 28(2/3):101-155, 2004.

F. Singhoff, J. Legrand, L. t. Nana, and L. Marcé. Cheddaflexible
real time scheduling frameworldCM Ada Letters journal, 24(4):1-8,
ACM Press, ISSN :1094-364MNov. 2004.



