
A Petri Net Extension for Schedulability Analysis of Real Time
Embedded Systems

Yessine Hadj Kacem, Walid Karamti , Adel Mahfoudhi, and Mohamed Abid
Computer Embedded Systems (CES),University of Sfax

National School of Engineers (ENIS), BP 1173, Sfax, 3038, Tunisia

Abstract— Petri Net can be used to analyze and verify real
time systems. However, scheduling problems are not totally
covered using this formalism. Traditionally, the verification
of these systems is limited to the performance and behaviour
analyses.
This paper presents a scheduling analysis method for real
time systems at an early stage. The proposed formalism
called Priority Timed Petri Net (PTPN) extends Time Petri
Nets in order to find a feasible schedule that satisfies timing
constraints. Computational and analysis model were given
while explaining the proposed model-checking.

Keywords: real time systems, verification, Time Petri Nets,
scheduling analysis, PTPN

1. Introduction
Real time systems (RTS) are time constrained systems

that are in a continuous interaction with their external envi-
ronment. Such systems have become increasingly complex,
especially with their distributed aspects (parallel operation
on various machines), where the need for using reliable
techniques of scheduling emerges. Since function or bug
may cause economic and human catastrophes. Thus, the
anomaly absence at simulation stage cannot confirm the
non-appearance of bugs. So, schedulability [21] is a key
challenge in the analysis of distributed RTS.
Therefore, to protect such systems from problems and fail-
ure, it is necessary to implement formal techniques intended
to make reliable the development process of the real-time
applications, from their design to checking. This allows
designers to accurately validate systems, and check the
required properties of their behaviour.
The specification and formal verification techniques could
reduce the problem impact. They aim at being a reliable
approach and they constitute an important and recent field of
research. The objective of the formal specification is starting
from an abstract modeling to express the system properties
by taking into account a set of constraints and therefore, to
check that the system specification satisfies these properties.
Generally, the choice of the suitable formal method depends
on the characteristics of the system and the properties to be
checked. We distinguish two classes from prove methods:
deductive methods and models-based methods.
Deductive methods consist in interpreting the problem of

verification like a theorem; its major limitation is that the
user interacting with the prover must be able to guide him.
For example, the methodB proposed in [15] is used in order
to validate opted models. The authors start with an abstract
specification from the scheduler and then use successive
refinments to account for the time characteristics of the au-
tomats. They check the hierarchy of refinements by proving
the various generated obligations. Formal model-based meth-
ods describe system behaviour and explore different system
states. These techniques are Simulation, feasibility testand
Model checking. Simulation is based on the simulation of
the task progress during one system period, wich assures that
all the authorities of tasks respect their deadline. It can treat
scheduling policies or task models which are difficult to ana-
lyze mathematically. Calculating response times applies are-
currence formula which calculates the deadlines of execution
on an interval that contains the greatest response times of the
considered task which is met. Feasibility test which applies a
formula decides the feasibility of task scheduling according
to which characteristics appear to be the simplest method
to implement with a low calculation complexity. Contrary
to the simulation and test of feasibility, the model-checking
provides examples showing why an imposed constraint is
not satisfied. Petri Nets (PN) presents an adequate model-
checker due to its greatly expressive dynamic vision and its
executable aspect. However, the application of Petri Nets to
a scheduling problem is far from trivial; determinism aspect
is tackled neither in regular Petri Net, nor in its extension
for RTS verification. There are many recent research efforts
on real time systems verification using PN. The adoption of
model checking by means of PN extensions has been vastly
investigated.
In [18], the authors use T-Timed stochastic Petri Nets to
model real time tasks. The authors stress the independent
periodic tasks in order to support Rate Monotonic strategy
[12]. Priorities are integrated using the inhibitor arcs which
connect the waiting places of each task with transitions that
call the processor modeled by a place. The temporal faults,
considered as a task behavior, are presented in the Petri Nets
task model. However, if the tasks to be modeled are too
complex then the size of the model will be enormous and the
added inhibitor arcs face difficulties to interpret the graph.
Roux [19] presented the Scheduling Timed Petri Nets
(STPN) to analyze the schedulability of the independent

tasks on a multiprocessor architecture. Each processor is
modeled by a place; thus the concept of priority is introduced
by the inhibitor arcs. The motivation behind this approach
was mainly to propose calculation of a state space that is
more reduced than the traditional state graph suggested by
[2] and the difference bound matrix. The authors extend
their work in [10] to support the tasks with variable time
execution. Another improvement [11] consists in extending
the STPN to manage the dynamic priorities and support
variant scheduling policies.
Berthomieu, in the same line, introduced the notion of
priorities within the temporal Petri nets framework [3] via
the PrTPN (Priority Time petri Nets) extension. His proposal
is based on the following constraint: a transition will be
fired only when it has the highest priority compared to
the concurrent and enabled transitions. To introduce the
priorities, the author also uses inhibiting arcs as a new
component which connects the simultaneous transitions. The
problem arises when the network is of an enormous size and
several transitions are dependent. The model will then be
difficult to be presented and interpreted.
As a notable model checker, the Extended Place-timed Petri
Nets (EPdPN)[5] is worth mentioning. EPdPN is based on
P-Timed Petri Net and introduces two priorities to solve the
problem of transitions’ conflict. Nevertheless, the contribu-
tion of authors does not take into account the periodicity of
real time tasks.
This paper presents a Time Petri Net based approach for
systems scheduling analysis, considering periodicity, fixed
priority, pre-emption, multiprocessor architecture and inter-
task relations (e.g., precedence and mutual exclusion). The
proposed Priority Time Petri Net gives determinism aspect
to the model and to accelerate its execution. Besides, the
developed tool of our support infrastructure is founded on
the Eclipse platform, in the form of a plug-in capable to
exchange data with Eclipse Features.
The paper is organized as follows: the description of the
proposed Priority Time Petri Net is given in the next
session highlighting formal definitions. Section 3 explains
the extended Petri Nets building blocks for the schedulability
analysis. Section 4 introduces the supporting tool and depicts
an experiment. Finally, the conclusion and future research
directions will be discussed.

2. Computational and Analysis Models
Petri nets [16] is a mathematical formalism, which allows

the specification of the behaviour of real time interactive
systems. Concurrent real time concepts such as timing
constraints, shared resource and synchronisation are taken
into account through two main Petri Nets extensions: Time
Petri Nets [13] and Timed Petri Nets [17]. In what follows
some definitions on Petri Nets are presented. Next, some
basic concepts on regualr PN are briefly recalled. Then, the

extension of the proposed formalism is stressed. Finally, the
model analysis of the extended PN is described.

2.1 Background for Petri Nets and Time Petri
Nets

Definition 1
A Petri Net is a 4-tuple [14],R = { P , T , B, F }, where:
(1) P = {p1, p2, ..., pn} is a finite set of placesn > 0;
(2) T = { t1, t2, ..., tm} is a finite set of transitionm > 0;
(3) B : (P × T) 7→ N is the backward incidence function;
(4) F : (P × T) 7→ N is the forward incidence function;
Each system state is represented by a markingM of the net,
it is defined by :M : P 7→ N

Definition 2
A marked Petri Net is a couplePN =< R, M0 >, where
R is a Petri Net andM0 is the initial marking.
Definition 3
A vector Fts is associated with each markingM which
presents the fired transitions.

Fts is defined by:FTs : T →

{

1
0

∀t ∈ T andB(P, t) ≤M ⇔ t ∈ FTs ⇔ FTs(t) = 1
Definition 4
The firing of a transition is described by :
Let M be a marking,∀t ∈ FTs, then the firing of the
transitiont is said:
M ′ = M + F (P, t)−B(P, t)
In the rest of this paper, we use the following notation :
M

t
→M ′

Definition 5
M’ is reachable from a marking M iff:∃t ∈ T, M

t
→M ′

Thanks to its power of expressivities, the regular PN
make it possible to describe parallelism, dependency and
semaphores, which present important properties of RTS. In
spite of this significant ability, regular PNs are not able to
model the temporal evolution of RTS. That is why the regular
PN is extended to Time Petri Net.
Definition 6
Time Petri Net associate a static time interval with the
transition firing. A Time Petri Net is a 3-tupleTPN :
TPN = { PN , Tmin, Tmax}, where:
(1) PN is a regular Petri Net;
(2) Tmin : T 7→ Q+ , Tmin(ti) is the earliest firing time
mapping;
(3) Tmax : T 7→ Q+ ∪ {∞}, Tmax(ti) is the latest firing
time mapping;
A global clock is coupled to the system.
Definition 7
Each transition in a TPN is accompanied by a local clock.
All local clocks are grouped in a vector called (Hl), with
Hl : T 7→ Q+ .
The clock transition is activated as soon as the transition is
enabled and remains activated until it will be valid.
Definition 8

A transition is valid when it is firable and the local clock
has met the time interval:
t is valid⇔ t ∈ FTs ∧Hl(t) ∈ [Tmin, Tmax]
Definition 9
Only valid transitions will be fired. To simplify their selec-
tions, the functionFts is filtered and the temporal filter is

described by:t is not valid=⇒

{

FTs(t)← 0
Set Increment Hl(t)

Hence, the marking after filtring is:M ′ = M + F (P, t) −
B(P, t) =⇒ t ∈ FTs

2.2 Discussion about the indeterminism
As already mentioned, regular PNs are not able to support

the temporal evolution of RTS. Among the multitude of the
existing extensions of Petri Nets for RTS modeling, we can
cite:

• Timed Petri Nets in which time can be assigned to
places or transitions. In fact, P-Timed Petri Nets and
T-Timed Petri are two subclasses of this PN extension.
While firing a transition with a durationdi in Transition
Timed Petri Nets, the required tokens are removed form
the input place at an indeterminate date and they are
added to the output place after the durationdi. Timed
Petri Nets can lead to a well performance analysis
method but could not cover the scheduling problem
wich require determinism aspect.

• Previously presented Time Petri Nets: They offer a
suitable solution able to describe the different states
of a Task and their related events.

While the Time Petri Nets is quite accurate for the task
behavior characterisation, there are some issues in the cases
of the RTS task with fixed priorities. It is worth noting that
the Time Petri Nets lead to a good presentation of all system
tasks and events, but they intercalate a firing interval of
the transitions which presents an event. This could bring
about the passage of a task state towards another during an
undeterminable date. Indeed, in our study, tasks with the
highest priority are executed. However, a Time Petri Net
handles the tasks in an equitable way (no transition priority)
that causes the problem of transition conflict. The states
graph of all the nodes does not obey to a strategy of real
time scheduling. Thus if we attribute the notion of priority
to transitions, the new formalization of Time Petri Nets can
go beyond the indeterminism problem. In particular,Tmin

is equal toTmax to avoid indeterminate time.

2.3 Priority Time Petri Net: PTPN
Definition 10

PTPN is a 3-tuple defined byPTPN =< R, Tf , Pr >

where:
(1) R is a regular Petri Net
(2) Tf : T 7→ Q+ is the firing date of a transition
(3) Pr : (T×P) 7→ N is the priority of a transition according
to a place

The relation betweenPr andB is defined as:
∀t ∈ T ∧ ∀p ∈ P , if B(p, t) = 0⇔ Pr(t, p) = 0
Let p ∈ P and the setTp = {∀t ∈ T \B(p, t) > 0}
For a concrete presentation ofB, we consider it as a matrix
of |T | lines and|P | columns,

Pr =





Pr(t0, p0) Pr(t0, pn)

Pr(tm, p0) Pr(tm, pn)





∀p ∈ P and∀t ∈ T, Pr[p, t]→

{

N∗, if t ∈ Tp

0
Definition 11
The marked PTPN is the coupleMPTPN =<

PTPN, M0 > :
(1) RTP is a PTPN network
(2) Mo is the initial marking of the net
PTPN is an extension of Time Petri Nets; so the definitions
of local and global clock and firable transitionsFts are
conserved.
Definition 12
A transition is valid if it is firable and it respects it firing
date.
∀t ∈ T is valid⇐⇒ t ∈ FTs ∧Hl(t) = Tf(t)
The marking strategy is based on priorities: the transition
having the highest priority will be fired. When such policy
is applied to a validFts vector which presents only inde-
pendent transitions.
Definition 13
Two transitions are independent if the firing of the first does
not influence that of the second.To accelerate the firing of
transitions with PTPN, we propose a method which makes
it possible to fire a vector of independent transitions.

2.4 Marking evolution in PTPN
Definition 14

To fire a marking, a PTPN Firing Machine (PFM) is offered
by our extended formalism. The mechanism is described
in Figure 1. The PFM input is a PTPN marking. For each
entry, the machine triggers four events considered as jobs:
During the first job, PFM determines the vector of firable
transitionsFts which presents the input of the second job
The second job consists in isolating non-valid transitions
from Fts which respect firing time.

Figure 1: PTPN Firing Machine

Definition 15

Fts temporal filtering is defined as:
∀t ∈ Fts and Hl(ti) 6= Tf (i) =⇒ Fts(ti)← 0
After this filtering, we can say:
∀t ∈ Fts ⇐⇒ t is valid.
The objective of the third job is to ensure that the vector
contains only independent transitions. So, PFM applies a
priority filtering.
Definition 16
Filtering must take into account all places, if two transitions
are in competition of place sharing, then the transition
which has the highest priority will be fired. In fact, the
product of theFts vector and the matrixPr is calculated
in order to select a concurrent and valid transition for each
place; it is saved in the vectorProd as follows:

Prod : P 7→ Fts × Pr

Prod(Pi) =

2666664Fts(t0)
−−−

−−−
Fts(tm)

3777775× 2666664Pr(t0, pi)
−−−

−−−
Pr(tm, pi)

3777775, wherei ∈ [0, n]

Next, the transition having the highest priority per palce is
selected from the vectorProd(pi).2666664 Fts(t0)× Pr(t0, pi)

−−−−−−

−−−−−−
Fts(tm)× Pr(tm, pi)

3777775 Max()
→ [Prod(pi)[tj]], where:

• i ∈ [0, n]
• j ∈ [0, m]
• Max is a function that returns the transition with the

highest priority

Now, each vectorProd() of each place is transformed into
a binary vector through the following function:
For i ∈ [0, n]

Bin :→

�
∀tj ∈ Fts\Max(Prod(pi)) =⇒ Prod(pi)[tj]← 1

∀tj ∈ Fts ∧ (tj = Max(Prod(pi))) =⇒ Prod(pi)[tj]← 0

In that case, the vectorFts is updated by subtracting the
vectorPr from each placepi of the Fts vector:
Fts ← Fts − Prod(pi)

Fts ←

2666664Fts(t0)
−−−

−−−
Fts(tm)

3777775− 2666664 Prod(pi)[t0]
−−−

−−−
Prod(pi)[tm]]

3777775
Definition 17
The firing of Fts is defined as:
M ′ = M +

∑

t∈Fts

(F (P, t)−B(P, t))

The PFM accelerates the PTPN evolution by firing the whole
vector since allFts transitions are independent.
We noteM

Fts→ M ′, whereM is an entered marking and
M ′ is the ouput marking. To simplify notations,M ′ is said
to be accessible viaM throughFts.

Algorithm 1 State graph construction
1: for each clock ticdo
2: for each markingdo
3: if firable transition existsthen
4: if valid transition existsthen
5: state construction and New marking
6: else
7: Set increment clock
8: end if
9: end if

10: end for
11: end for

2.5 PTPN states graph
In PTPN, a state is a node composed of(M, tmp), where

M is a marking andtmp is the time for firing the marking
M . The graph of states is a set of nodes connected with arcs
havingFts weight. The connection arcs will be established
only when two markings of the nodes are reachable via a
Fts vector.
The construction of PTPN states graph corresponds to the

execution algorithm shown in Algorithm 1. This process
starts with the creation of an initial state(M0, 0). Then, for
each clock tic, an iterative process is triggered. A marking
is sent to the PFM. Next, the machine returns a new
marking that allows the creation of a new node(M, tmp)
with an arc having the weight of theFts vector. The new
generated marking presents the new entry point of the PFM.
This iteration is continued while there are firable and valid
transitions.

3. Model Construction
This section depicts how PTPN is used to model real time

tasks and particularly their periodicity, priority, dependency
and distribution on distributed architecture.

3.1 Task creation and activation with PTPN
We will use the net shown in Figure 2 to illustrate the cre-

ation and activation of task with PTPN. There are six places
("Uncreated", "Period", "Created", "Disabled", "Ready" and
"Activated") and three transitions ("Creation", "TPeriod" and
"Activation"). The vectorTf is defined by (Ri, Pi, 0). In
the state shown in Figure 2, there are two tokens; one in
the "Uncreated" place and another in the "Disabled" place.
The tokens in the place "Uncreated" represents an uncreated
Task which is ready to be created at the timeRi. The token
in the "Disabled" place indicates that the task is disabled.
If the task is activating a job, then there are no tokens in
"Disabled" place and there is one token in the "Activated"
one. At time0, the "Creating" transition is enabled and the
firing time isRi. So at the timeRi, it will be validated. The
firing consumes the token from "Uncreated" and produces
two tokens: one is for "Period" and another for "Created".
Now the "Activation" transition is enabled, the firing time is
0 and consequently it is validated. "Activation" fires at time

"Ri" and consumes one token from "Disabled" and another
from "Created". The firing produces one token in "Ready"
and one in "Activation".

Figure 2: Creation and activation of a task with PTPN

3.2 Dependency between tasks
The dependency modeling is based on task graph which

describes the precedence between tasks. LetTi be a producer
task of the consumer jobTj , Th. Tj andTh depend onTi; so
Ti is called the predecessor ofTj andTh (the successors).
The execution of the taskTi has to be completed before
the execution of the taskTj and Th may start. Figure 3
depicts how the relation between tasks is presented. There
is a "successor" place for each task to describe the end
of execution. When "successor" is marked, the transition
"Send" is valid. It is attached only to predecessor tasks. In
Figure 3, "Sends" is linked to the place "Successor" ofTi.
The firing produces two tokens: one for the placeTi2Tj and
another one for the placeTi2Th. Now, both ofTj and Th

can be activated and complete its execution.
It should be noted that priorities are attributed according
to Rate Monotonic Policy. Regarding dependent tasks, the
predecessor task has a higher priority than the successor one
according to rectified Rate Monotonic policy.

Figure 3: Representation of tasks dependency with PTPN

3.3 Task Execution
According to the adapted organization strategy, a task

can occupy the free processor only when it has the highest
priority. The event of activity allows the passage of a task
towards the execution state as well as that of the processor

towards the busy state.
Indeed, the modeling of this event with PTPN, consists
in creating two entry arcs towards the "GetProc" activity
transition. The first arc arises from the "Ready" place and the
second comes from the "Processor" place which is shared by
the various "GetProc" transitions of the tasks. The outputting
arcs of this place have to carry the priorities associated with
the suitable tasks. When a token appears in the "Ready"
place, the task is set to occupy the processor. The associated
"GetProc" transition is valid only when each one of the
"Ready" and "Processor" places presents a token. The firing
allows the consumption of both tokens and the production of
the other one in the "inExecution" place. The new marking
describes the activity of the processor of the current task.Of
course, we are interested in premptive systems, whose notion
is managed as follows: each task occupies the processor for
a single unit of time. If the task remains the most primary,
then it occupies it again, other wise it will be preempted. The
modeling with PTPN inserts similarly a firing date (1) on
the "incrementing StopWatch" transition. The firing allows
incrementing the chronometers which calculate the time of
the processor use per task. Each task has two stopwatches:
the first one to compute the ’Ci’ units and the second
to count the ’du’ units. They are modelled by two places
"StopWatchCi" and "StopWatchDu". For any "inExecution"
firing, there is a production of tokens in both stopwatch
places. As soon as the "StopWatchCi" place indicates the
presence ofCi tokens, the transition "endCi" is validated.
Its firing allows the liberation of the processor as well as
the blocking of the task up to the new wake. The transition
"endDu" is valid when the "StopWatchDu" place indicates
the presence ofDu tokens. The firing allows the liberation
of the processor and the deactivation of the task (the task
did not appear in the line of the processor). In particular
cases whereDu is a multiple ofCi, the transitions "endCi"
and "endDu" are valid. The task has to pass towards the
"Terminated" state to indicate that it is well organized, then
the transition "endDu" is more principal than "endCi". To
integrate both priorities associated with these two transitions
with PTPN, we need a shared place between both transitions.
Figure 4 presents a "Maker" place which plays the role
of a judge for both events. "Maker" allows the firing of a
"ReleaseProc" transition responsible for the liberation of the
processor for the pre-emption.
An important issue in real time system verification is to
check if each job has met its deadline. Therefore, we identify
two verification levels: the periodicity and the deadline. As
shown in Figure 5, there are four places ("Period", "Cre-
ated", "Activated", "Deadline"), two transitions ("Tperiod",
"Tdeadline") andTf(Pi, 0). The transition "Tperiod" is valid
for eachPi time unit. The firing consumes the token from
the place "Period" and produces two others: One in the
place "Created" and the other in the place "Period". This
means that the task is ready to wake up and the new period

is loaded. If the task is already activated, the transition
"Tdeadline" is valid. The firing of the transition "Tdeadline"
provides a token to the place "Deadline" and disables the
task execution.

Figure 4: Executing a Task with PTPN

According to the described models presented previously, the
scheduling analysis of a real-time system modelled with
PTPN produces a model whose size is very important. The
great complexity of the RTS makes it difficult to understand
and manage. In order to solve the problems of organisation
and interpretation of the models described in PTPN, we
resort to the structuring method of the Petri nets in the next
session.

Figure 5: Meeting deadlines with PTPN

4. Tool and Experiment
This section introduces PPTNS (Priority Time Petri Nets

for Scheduling analysis), the tool that we have implemented
to concretize our proposed formalism. The implementation
uses the Graphical Modeling Framework (GMF). We sub-
sequently present an example that illustrates how PPTNS is
used to test the schedulability of a set of tasks.

4.1 Tool

The implemented tool takes the form of a Petri Net
editor and a simulator of the modelled net. The developed
editor for our PTPN relies on the GMF founded on Eclipse
Modeling Framework (EMF). The definition of the PTPN
Meta Model represents the starting point of the editor’s
generation process. As shown in Figure 6, the regular Petri
Nets Meta Model is extended with the attributepriority

linked to theInputArc entity. Thus, the production of an
editor plug-in allows the interactive edition of the PTPN
(create drag, drop, grab or delete a component). The created
models are checked through a set of constraints expressed
with the Object Constraint Language (OCL) [7]. The val-
idation doubles through the verification at times and after
constructing the model.

Figure 6: PTPN Meta Model

It is obvious that the created model is built around a drawing
composed of places, transitions and arcs. In fact, we need to
easily extract the existing data from the editor. Fortunately,
the created model can also be serialized to generate an XML
(Extensible Markup Language) or XMI (XML Metadata
Interchange) file. The generated file conforms to the PTPN
Meta model and presents the entry port point of the Simula-
tor. Due to the structure of the editor output, the properties
of the modelled net are easily interpreted.
The verification framework is sufficiently flexible and ex-
pressive to support module inclusion and extension. The use
of the editor tool makes it easier and faster to create PTPN
models. Compared to existing Time Petri Nets simulators
such as ROMEO [6] and TINA [4], the impetus of our
tool is its structured input and output files which guarantees
interaction with the existing PN simulators and Eclipse
features.

Table 1: Experiment for scheduling anlysis
Id_Task Ri Ci deadline Period Duration Priority Partition

1 1 1 3 3 3 6 P1
2 0 2 5 5 4 5 P1
3 0 2 6 6 2 4 P2
4 0 2 5 5 4 2 P2

Table 2: Simulation Results
Step Time Fts Step Time Fts

0 0 Creatingt2 , t3, t4 10 3 incrementingStopwatcht2 t3
1 0 Activating t2 11 3 endCit2, ReleaseProct3
2 0 Executingt2 12 3 Executingt3
3 1 Creatingt1, incrementingStopwatcht2 13 4 incrementingStopwatcht3, periodt1
4 1 Activating t1, ReleaseProct2 14 4 endCit3,Activating t1
5 1 Executingt1 15 4 Executingt1, Activating t4
6 2 incrementingStopwatcht1 16 4 Executingt4
7 2 endCit1 17 5 incrementingStopwatcht1,t4, periodt2,t4
8 2 Executingt2 , Activating t3 18 5 endCit1, Deadlinet4
9 2 Executingt3 19 5

If we are to situate our extension with regard to the existing
tools, we note the following distinctions:

• Contrary to Cheddar tools [22], Mast [9], Times [1],
which cannot cover all the possible states of the sys-
tem, PTPN starts from an initial state to succeed in
determining the error source if it occurs.

• Pertaining to other extensions presented in Section 2,
PTPN offers a strategy which accelerates the marking
and avoids the combinatorial explosion in front of a
large number of states.

4.2 Case study
In this section, we show how PTPN can be used to deal

with the problems of schedulability analysis of real time
system, with reference to the case of four tasks running
on two processors. It should be noted that due to space
limtation, we present a simple experiment. The dependency
between tasks in this experiment is shown in Figure 7. The
main characteristics of the taken tasks are illustrated in Table
1. We use the following acronyms to simplify notations:

• Id_Task is the identifier of a task
• Ri is the date of the first activation
• Ci is the execution time of a task
• Pi is a processor

After creating the model with PTPN editor, the result of the
simulation is shown in Table 2. Each step describes a node
of the previously explained state graph. The column time
presents different overall clock ticks. The simulation begins
at the instant0, the initial marking vectorM0 is the input of
the PFM. This machine is responsible for determining the

valid and the highest priority transitions in the columnFts.
For the markingM0, PFM fills theFts vector with the event
"Creating" for the three tasks :t2, t3, t3.

Figure 7: Tasks dependency in the experiment

The "Step 17" describes the presence of transitions "Period
t4" and "increntingStopwatcht4". After firing them and
during the step 18, the PFM detects two new transitions:
"deadlinet4" and "ReleaseProct4", as shown in Table 2. The
new deadline is activated when the task has not completed
its execution. The firing of "deadlinet4" interrupts the
simulation. The simulator PTPN confirms that the system is
not schedulable becauset4 does not meet its deadline. This
result can help the designer not only to runt4 on another
computing resource but also to avoid the new partitioning
of all the other tasks.

5. Conclusion
Priority Time Petri Nets supports the scheduling anal-

ysis of real-time systems running on multiple processors,
including periodic, dependant, and pre-emptive tasks with
determinist strategy. The salient trait of novelty in the
semantics of PTPN consists in the attribution of a priority

for transitions to isolate conflicts. Rather than presenting a
solution for the problems of confusion, PTPN Firing Ma-
chine accelerates the PTPN evolution by applying temporal
and priority filtering. In regular PN, the firing of a transition
requires identifying the new vector of firable transitions.
However, with PFM, this vector is established only after
the firing of old one. It is also guided by the priorities.
Consequently, starting from a markingM , the PFM fires
simultaneously valid transitions having highest priorityand
returns the new markingM ′.
In future research, we are interested in including perfor-
mance analysis in the verification of RTS and planning to
integrate PTPN design patterns ranging building blocs for
an easy model construction and interpretation. Indeed, we
intend to incorporate PTPN in a Model Driven Engineering
(MDE) process [20]. The transformation from annotated
analysis models to a formal model allows the validation spe-
cific properties. In particular, we are interested in translating
Unified Modeling Language (UML) diagrams annotated with
the profile Modeling and Analysis of Real-Time Embedded
systems (MARTE) [8] into PTPN model to analyse system
schedulability. The SPTPN simulator taking the form of
a plug-in could easily exchange data with UML Eclipse
editors.

References
[1] T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi. Times

- a tool for modelling and implementation of embedded systems. In
TACAS ’02: Proceedings of the 8th International Conferenceon Tools
and Algorithms for the Construction and Analysis of Systems, pages
460–464, London, UK, 2002. Springer-Verlag.

[2] B. Berthomieu and M. Diaz. Modeling and verification of time
dependent systems using time petri nets.IEEE Trans. Softw. Eng.,
17(3):259–273, 1991.

[3] B. Berthomieu, F. Peres, and F. Vernadat. Bridging the gap between
timed automata and bounded time petri nets. InFORMATS, pages
82–97, 2006.

[4] B. Berthomieu and F. Vernadat. Time petri nets analysis with tina. In
QEST, pages 123–124, 2006.

[5] L. Chen, Z. Shao, G. Fan, and H. Ma. A petri net based methodfor
analyzing schedulability of distributed real-time embedded systems.
Journal of Computers, 3(12), 2008.

[6] G. Gardey, D. Lime, M. Magnin, and O. H. Roux. Romeo: A tool
for analyzing time petri nets. InCAV, pages 418–423, 2005.

[7] O. M. Group. UML 2.0 OCL Specification. OMG Adopted Specifi-
cation ptc/03-10-14. Object Management Group, October 2003.

[8] O. O. M. Group. A UML Profile for MARTE: Modeling and Analysis
of Real-Time Embedded systems, Beta 2, ptc/2008-06-09. Object
Management Group, June 2008.

[9] M. G. Harbour, J. J. G. Garciia, J. C. P. Gutierrez, and J. M. D.
Moyano. Mast: Modeling and analysis suite for real time applications.
Real-Time Systems, Euromicro Conference on, 0:0125, 2001.

[10] D. Lime and O. H. . Roux. A translation based method for the
timed analysis of scheduling extended time petri nets. InRTSS
’04: Proceedings of the 25th IEEE International Real-Time Systems
Symposium, pages 187–196, Washington, DC, USA, 2004. IEEE
Computer Society.

[11] D. Lime and O. H. Roux. Formal verification of real-time systems
with preemptive scheduling.Real-Time Syst., 41(2):118–151, 2009.

[12] C. L. Liu and J. W. Layland. Scheduling algorithms for multipro-
gramming in a hard-real-time environment.J. ACM, 20(1):46–61,
1973.

[13] P. M. Merlin. A Study of the Recoverability of Computing Systems.
Irvine: Univ. California, PhD Thesis, 1974. available fromAnn Arbor:
Univ Microfilms, No. 75–11026.

[14] T. Murata. Petri nets: Properties, analysis and applications. Proceed-
ings of the IEEE, 77(4):541–580, April 1989.

[15] O. Nasr, J.-P. Bodeveix, M. Filali, and M. Rached. Verification of a
scheduler in b through a timed automata specification. InAnnual ACM
Symposium on Applied Computing (SAC), Dijon, 23/04/06-27/04/06,
pages 1800–1801, http://www.acm.org/, avril 2006. ACM.

[16] C. A. Petri. Fundamentals of a theory of asynchronous information
flow. In IFIP Congress, pages 386–390, 1962.

[17] C. Ramchandani. Analysis of asynchronous concurrent systems by
timed petri nets. Technical report, Cambridge, MA, USA, 1974.

[18] P.-H. Robert and G. Juanole. Modélisation et vérification de poli-
tiques d’ordonnancement de tâches temps-réel. In8ème Colloque
Francophone sur l’Ingénierie des Protocoles-CFIP’2000, pages 167–
182, 17-20 octobre 2000.

[19] O. H. Roux and A.-M. Déplanche. A t-time Petri net extension for
real time-task scheduling modeling.European Journal of Automation
(JESA), 36(7):973–987, 2002.

[20] D. C. Schmidt. Model-driven engineering.IEEE Computer, 39(2),
February 2006.

[21] L. Sha, T. Abdelzaher, K.-E. Arzen, A. Cervin, T. Baker,A. Burns,
G. Buttazzo, M. Caccamo, J. Lehoczky, and A. K. Mok. Real
time scheduling theory: A historical perspective.Real-Time Systems
Journal, 28(2/3):101–155, 2004.

[22] F. Singhoff, J. Legrand, L. t. Nana, and L. Marcé. Cheddar : a flexible
real time scheduling framework.ACM Ada Letters journal, 24(4):1-8,
ACM Press, ISSN :1094-3641, Nov. 2004.

