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Abstract. This paper is intended to present a
approach to the construction of a task model of
method, named TOOD (Task Object Oriented
Design), used for the development of an
interactive system. This approach is based on a
formal notation, which gives quantitative results
which may be checked by designers and which
provide the possibility of performing
mathematical verifications on the models. The
modelling formalism is based on the joint use of
the object approach and of high level Petri nets.
The concepts borrowed from the object
approach make it possible to describe the static
aspect of tasks and the Petri nets enable the
description of dynamics and behaviour. We also
describe a software aid tool for the manipulation
of these models, which allow the edition and the
simulation of a task model. In order to facilitate
comprehension of the method, an extremely
simple example of procedure used in missile
firing management will be given.

3 Introduction

Several research projects have been dedicated to the
modelling of user tasks in the field of interactive system
design (see, for example, the work concentrating on the
following methods: MAD [1], DIANE [2], GOMS [3],
TKS [4], Action Theory [5]) However, their actual use is
far from being a widespread practice. One of the possible
reasons for this is that they do not use truly formal
methods, which make it possible to provide the task
models with concision, coherence and non-ambiguity [6].
What is more, these projects suffer from their lack of
integration into a global design process covering the
entire lifecycle of the HCI and also from the lack of
modelling support software. In order to overcome these
problems, current research projects are oriented towards a
methodological framework which covers from the first
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activity analysis stage up to the stage of the detailed
specification of the HCI: The methods MAD* [8],
DIANE+ [9], GLADIS ++ [7], ADEPT [10], TRIDENT
[11] [12] go in this direction. These design methodologies
are based on several models (task model, user model,
interface model) and are aided by tools for the
implementation of these models.

Our research work falls into this category, whilst placing
the emphasis on the formal aspects of model
representation and their transformation throughout the
stages of the design process. The TOOD method is based
on the representation that the user has of the task, apart
from considerations of computer processing. It uses the
object approach and the object Petri nets to describe, on
the one hand, the functional aspects and the dynamics of
the user tasks, and on the other hand the behavioural
aspects of the HCI and of the user in order to specify how
the tasks are performed. Its formalism aims at covering
the entire development cycle from the analysis of what
exists, up to the detailed design and implementation.

In this paper, we will restrict ourselves to presenting just
the stage of task modelling using TOOD; the reader will
find a more detailed description of the method in [13].
This description is illustrated by an example concerning a
missile firing management task. Explanations on
supporting software for TOOD are also provided.

4 TOOD Development Cycle

The TOOD design process can be divided into four major
stages, Figure 1:

e The analysis of the existent system and of the
need is based on its user’s activity and it forms
the entry point and the basis for any new
designs.

e The Functional Task Model (FTM) concerns
the description of the user tasks of the system to
be designed. It makes it possible to describe the
user task in a coherent and complete way. Two
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models are created at this level: the Static
Functional Task Model (SFTM) and the
Dynamic Functional Task Model (DFTM), in
order to be able to use it for the HCI
specification.

e The Operational Model (OM) makes it possible
to specify the HCI objects in a Local Interface
Model (L1M), as well as the user procedures in
a User Model (UM) of the system to be
designed. It wuses the needs and the
characteristics of the functional task model in
order to result in an Abstract Interface Model
(AIM) which is compatible with the user’s
objectives and procedures.

e The Creation of the HCI concerns the computer
implementation of the specifications resulting
from the previous stage, supported by the multi-
agent software architecture defined in the
Interface Implementation Model (I11M).
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Document Analysis
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Figure 1: TOOD Method Development Cycle

The TOOD method is supported by an editor
developed in Visual C++. It makes model capture and
syntactic checking easier. Moreover, it supports the test
and simulation activities of the dynamic task model.
Examples of screen pages are given later by illustrating
them with models, which come from a description of
tasks relating to missile firing management. The analysis
of what exists and of firing management needs show that
the pilot of a bomber must be able to select a bomb, a
point (PE) at which the bomb is situated on the aircraft
and finally the explosion mode for this bomb (rocket). He
must also choose the operational options for the execution
of his fire. There is no preferential order for the
performance of tasks.

5 Functional Task Model (FTM)

From the analysis of what exists and of the need, the main
aim of the FTM is to establish a coherent and complete
description of the “future” user task, firstly in a functional

form (Static Functional Task Model, SFTM), and also in

the dynamic form (Dynamic Functional Task Model,

DFTM) in order to use it for the conceptual specification

of the interface.

This model, like MAD [1], is designed as a means to take

the user and his task into account as early as possible in

the cycle. The aim is to provide the development teams

with a methodological tool, which will allow them to

isolate the user task information necessary for the formal

design of interfaces in order to allow a more natural

integration into the logical development cycle. The

construction of the functional model is based on four

iterative stages:

1. Hierarchical breakdown of the tasks.

2. ldentification of the describer objects.

3. Definition of the dynamics of the elementary and
control tasks.

4. Integration of task interruptions.

1.1 Static Functional Task Model (SFTM)

The Functional model enables the breakdown of the
user’s stipulated work with the interactive system into
significant elements, called tasks. Each task is considered
as being an autonomous entity corresponding to a goal or
to a sub-goal, which can be situated at various
hierarchical levels. This goal remains unchanged in the
various work situations. In order to perfect this definition,
TOOD formalises the concept of tasks using an object
representation model, in which the task can be seen as an
Obiject, an instance of the Task Class. This representation
consequently attempts to model the task class by a generic
structure of coherent and robust data, making it possible
to describe and organise the information necessary for the
identification and performance of each task.

Two types of graphic and textual document, as is shown
in Figure 2 define each task class.
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Figure 2: Graphic and textual document of a task class

The task class is studied as an entity formed using four
different describers: the Input Interface, the Output
Interface, the Resources and the Body. We also associate
a certain number of identifiers to these describers, which

-217-



PIC'2001 - UMIST, Manchester, UK: 19 — 21 June 2001

make it possible to distinguish the Task Class amongst
the others: Name, Goal, Index, Type and Hierarchy,
Table 1:.. This parallel with software engineering
guarantees a strong link between a user-centred
specification based on ergonomic models and the
software design based on the object model.

Attributes | Description

Body Central unit of the task class. For intermediate or
hierarchical tasks, it gives the task procedure
diagram, that is to say the logical and temporal
relations of the sub-tasks. These relations reflect,
in a certain way, the user’s work organisation. On
the other hand, for terminal tasks, it defines the
action procedures for the HCl/user couple. The
specification for these procedures is produced in

Name Action verb followed by a complement (object
treated by the task), reflecting the treatment to be
performed by the task. It is preferable for the name
to include vocabulary used by the users in order to
respect the terminology during the development of

the interface.

the task operational model.

Goal Explanation in natural language of the goal which
the user or application wishes to reach via the task.

Index Formal identifier of the task formed using the
number of the master task, to which the sequential

number corresponding to the said task is added.

Type Nature of the task, it designates its category:
human, automatic or interactive.

Hierarchy | Number of task classes composing it; it is

represented by a series of small squares.

Triggers Events which bring about the performance of the
task. They are classed into two categories :

Formal or explicit trigger events, which
correspond to external triggers. They appear in an
observable way in the work environment
(information on screen, press on a button,
communication, ...). The tasks triggered by this
type of event are considered, as being compulsory
that is their performance is vital.

Informal or implicit trigger events, which
correspond to triggers, brought about following a
user decision, from a set of information
characterising its work situation. Unlike the formal
events, they are not visible to an outside observer,
but may be expressed verbally.

Contextual
conditions

Information which must be checked during the
performance of the task. These conditions affect
the way in which the task is performed.

Input data | Information necessary during the performance of

the task.

Reactions | Results produced by the performance of the task.
Their content indicates the following type of
modification :

— Physical and, in this case, it indicates the
modification of the environment (applicative
call, change of state, ...).

— Mental, indicating the modification or a new
representation of the situation by the user.

The Reactions thus determine whether the aims
are attained or not and, in such a case, the task will
be repeated after a possible development of the
situation.

Output data | Data transformed or created by the performance of
the task.

Resources | Human users and/or interaction system entities

involved in the performance of the task

Table 1: Task class identifiers

The resources, and the information from the input and
output interfaces are modelled by objects, called
“describer objects”, instances of describer classes. These
objects, from a computing point of view, represent the
components of a task class (Figure 3), whereas from a
user point of view, they constitute the mental image of the
entities manipulated in a task. They will thus have a final

image in the interactive system.
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Figure 3 : Describer object Class hierarchy

These describer classes are defined by:

e Name: identification of the class. Each
specialised class bears a name, which defines the
nature of its specialisation.

o Index: formally references the object.

o Description: Explanation of the object’s role in
natural language.

e Attribute: indicates the characteristics, which
one wishes to model with reference to objects in
the real world.
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Figure 4: Identification of the Describer objects

Figure 4 gives the identification of the describer
objects in the task class “Select a bomb a”. In this
example, the trigger class E11-1 characterises a manual
bomb selection event. A real object, “Selector o of
boolean type, selector on/off corresponds to the
attribute of this class.

5.2 Hierarchical breakdown

The construction of the task model structure is guided by
user aims. This construction is based on the current tasks,
which are translated and organised progressively into a
new task, which reflects another way of working. This
imagined manner could bring new tasks to light, a new
functional distribution and new user roles. A graphic
editor, Figure 5, facilitates these stages in the elaboration
of task diagrams. The editor is divided into three zones:
Menu bar, command buttons, and the task edition zone.
Both the menu bar and the command buttons are divided
into five groups: saving functions, edition functions (cut,
copy, stick), help functions, FTM editing functions and
finally the operational model construction functions. To
start, all of the tasks identified are entered. Then, we
define the inter-task links, which express the information
flow between the tasks, which follow on from one
another. For each task, we make an inventory of all the
describer objects used for each task. First, the describer
objects for the master task are entered, progressing
towards the sheet tasks, and thus creating a database at
the same time. The breakdown is presented firstly during
the specification of the describer objects for each task
(window, specification, specified task thumbnail, Figure
5), and then in diagrams which make it possible to define
inter-task links (edition zone, Figure 5). In this way, it
constitutes the static model (SFTM).
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Figure 5: Task editor.

In our example of missile firing management, the task
graph is made up of a root task, “Perform firing
management”, broken down into two parallel sub-tasks,
“Prepare firing options” and “Prepare firing management
options”, associated to the user’s aims. The task “Select a
point” is made up of two elementary tasks, “Select point
automatically” and “Select point manually”, which
correspond to two distinct user strategies for choosing the
point. In this example, the task class “Prepare firing
options” may be activated by five trigger events which all
correspond to events in the master control task TO. The
trigger class E1-1 characterises an event of manual bomb
selection.

1.2 Dynamic Functional Task Model (DFTM)

The dynamic Functional task model (DFTM) aims at
integrating the temporal dimension (sequencing,
synchronisation, concurrency, and interruption) by
completing the static model. The dynamic behaviour of
tasks is defined by a control structure, called TCS (Task
Control Structure), based on an object Petri net (RPO)
[14], Figure 6. It is merely the transformation of the static
structure. This TCS describes the consumption of the
input interface’s describer objects, the task activity, the
release of describer objects from the output interface as
well as the resource occupation.
Each TCS has an input transition t1 and an output
transition t2 made up of a selection part and an action
part. The functions associated to each transition allow the
selection of objects and define their distribution in
relation to the task activity.
The selection part of transition t1 is made up of three
functions: 8, B,
e Priority function 8 makes it possible to select the
highest priority trigger for the task. This function is
at the basis of the interruption system. It allows the
initiation of a task performance, even if another
lower priority task is being carried out. However,
the performance of the task in relation to this trigger
remains subject to the verification of the
completeness and coherence functions.
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e Completeness function B checks the presence of all
the describer objects relating to an observed event,
that is to say the input data, the control data and the
resources used to activate the task class in relation
to a given trigger event.

e Coherence function y assesses the admissibility of
these describers in relation to the conditions
envisaged for the task. As in [8], this function is a
set of verification rules which use simple logical or
mathematical type operators and which obey a
unique syntax making their formulation possible.

The selection part of transition t2 has a completeness

function p which checks the presence of output data and

resources associated to the reactions released by the body
of the task.

The hierarchical tasks are considered to be control tasks
for the tasks, which compose them. Consequently, the
action parts of the input and output transitions of their
TCS possess respectively an emission function ¢ and a
synchronisation function o. Function ¢ defines the
emission rules (constructors of the input transition) for
transition t1, for the activation of the sub-tasks, as well as
the distribution of data consumed by these sub-tasks.
Function o defines the synchronisation rules
(constructors of the output transition) for the sub-tasks.
These rules are defined in Table 2.

[Transfer Yes
lplternative

One single task
is triggered. The
triggers are
similar, but only
one is taken
according to the
context.

3
5

¥

that the
1=
reactions.

management task
or The management

may be finished.

. task is finished
3 when at least one
of these sub-

The management
tasks is finished.

Output Transition

AN
B

[Synchronisati - - n sub-tasks must
on be finished so
task releases

either Rj

reactions or new

- - The management

_J task is finished

QLB when only one of

its  “daughter”

tasks is finished.

IAlternative

Constructo | Symbol Transition | Order | Shar | Description
r of ing

Input Transition
Y

priority | of

reso

urce

Punction et n tasks are

Distribution performed at the

simultaneity same time by m

iu | different
fief--»  Cst No | resources.  The
; same trigger or
else by different
triggers these
tasks.

[Transfer (Or) Yes Yes | n  tasks are
performed in
order of trigger
priority. The
tasks share data
and  resources.
These tasks can
be interrupted

[Transfer with Yes - n tasks are

condition performed in
order of trigger
priority  which
will satisfy
certain
conditions. The
tasks share data
and  resources.

These tasks can
be interrupted.

Table 2: Constructors of the input transition and
Constructors of the output transition.

Figure 6 presents the TCS of the “Prepare the firing
options” control task. For transition t1, the priority
function is & = (E1-1, E1-2, E1-3, E1-4, E1-5). The
completeness function for the trigger E1-1 : "Bomb
selector o is :B(E1-1) = <C1-1, C1-2, C1-3, C1-4, I1-1, 11-2, M1-
1, M1-2>. The coherence rule %(E1-3) = (11-1 = AUTO)
specifies the constraint, which the management system
must have initially: automatic mode to change to manual
point selection. Task T1 can finish in relation to R1-
1:"bomb selected”. This result must be accompanied by
output data and resources specified by p(R1-1) =<01-1,
01-2, 01-3, M1-1, M1-2> Finally, the emission and
synchronisation functions indicate that task T1 s
performed via three sub-tasks T11, T12, T13 carried out
in parallel according to their trigger priority (constructor
Or). The pilot can therefore “choose a bomb o, "select a
point”, or "select a rocket" in any order. It may be noted
that task T12 "select a point" can be carried out in relation
to three alternative triggers (alternative constructor);
indeed, the choice of point is made in an way which is
exclusive of the system initialisation, or during the
preparation of another fire by the system during automatic
selection or by the pilot during manual selection. Finally,
control task T1 finishes either when the bomb is selected
manually or automatically by the system (alternative
constructor and synchronisation constructor).
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Figure 6: TCS Task Control Structure

In order to guide the designer during the specification
stages, we propose a mechanism to model task
interruption. Few methods make it possible to formalise
task interruption; [15] presents a model of the
interruptions based on Petri nets as a complement to
MAD and UAN. The advantage of our method is that it
completes the TCS with the interruption mechanism
whilst maintaining the same formalism (Figure 7). This
makes it possible to model the interruption of a task. An
interruption takes place when a new higher priority
trigger requires the performance of a task whose
resources are being used by another lower priority task.
At that moment, the task being performed goes into a
suspended state (P8) and releases its resources. The high
priority task is thus carried out. Once this task is finished
and the resources are free once again, the performance of
the suspended task is resumed according to three possible
cases: at the beginning, at the point at which it stopped, or
at the end when it is abandoned.
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Figure 7: Interruption structure

The Figure 7 presents the interruption structure of the task
"Select the point”. The “Select the point” task may be
performed manually or automatically. However, the pilot
can, during manual selection, change to automatic mode.
Automatic selection has priority over manual selection.
This is modelled firstly by giving higher priority to
trigger E12-3 relating to the automatic selector, and also
by completing the TCS with an interruption structure.

The editor also allows the capture of the DFTM. The
designer must then enter the information in the TCS on
each of the tasks previously edited. For each TCS, it is
necessary to indicate the distribution of input, controls
and resources in relation to the trigger event as well as the
release of output and resources in relation to each reaction
(Implantatlon of the TCS, Figure 8).

% A TOOD - [Perlorm hnng mansgemend. too.1]
_,p;,-. ES Yiew uwuuium-d m-avvnwdw-ml Hrew Hel

D|=(@] &]m|w| 8|7 [w] Ol #la|=]"]

For Help. press F1

Figure 8: TCS Simulation

For the task “prepare the firing options”, the
completeness function of the trigger E1-1: "Bomb
selector o is: B(E1-1) = <C1-1, C1-2, C1-3, C1-4, I1-1,
11-2, M1-1, M1-2> with C1-1 = current point, C1-2 =
Sensor B present, C1-3 = Sensor t present, C1-4 = Current
selection mode, 11-1 = Tension of sensor b, 11-2 =
Tension of sensor t, M1-1 = Pilot, M1-2 = Bomb
selection zone o. The user must then define the initial
marking of the root task and launch the simulation of his
scenario.

It is also possible, if necessary to enter the coherence
rules for transition t1 of the TCS. The simulator makes it
possible to observe the behaviour of the description such
as it has been modelled under conditions described at the
beginning of the simulation: it is a matter of establishing a
scenario which allows the exploitation of different work
situations by informing the initial marking window of the
root task.

3 Operational Model (OM)

The aim of the operational model is the specification of
the user interface to a high level of abstraction. In order to
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achieve this, it defines the interaction between the User
Model (UM) and the Local Interface Model (LIM), for
each terminal task, in terms of objects, actions, states and
control structure, Fig.1. An aggregation process of all the
LIMs in the Abstract Interface Model (AIM) specifies the
description of the final interface.

The Interface Implementation Model (11M) is the low-
level specification of the presentation of the final
interface in multi-agent software architecture of the PAC-
AMODEUS type. The implementation of this model is
carried out by the translation of identified agents into
terms of objects, states, actions, and chaining of the
abstract model in the form of screens, menus, windows,
icons based on a set of ergonomic criteria and
recommendations [16], guidelines [12] and heuristics
[17]. For more information on the operational model, the
reader may refer to [18].

4  Conclusion

The use of the object oriented approach and object Petri
nets presents several advantages for the modelling of the
user task. Indeed, the TOOD task model, through its static
and dynamic description, allows the modularity of
specifications, the expression of interruptions and
concurrency. The addition of describer objects to the task
entity enables a connection to a programming language,
which simplifies the passage to implementation.
Moreover, the TOOD method can contribute towards
helping with communication between the different actors
in the design process through its formal description.
Because of lack of space, we have not approached the
operational model, which leads to the specification of the
HCI in this paper. This model is designed in continuity
with the Functional model using the same formalisms,
which favours the semantic stability of the TOOD
method.

We are currently developing a software tool, which will
support the TOOD method. The part concerning the
Functional model of the task is finished. We still have to
provide software tools for the operational model in order
to facilitate automatic HCI generation.
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