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Abstract. This paper is intended to present a 
approach to the construction of a task model of 
method, named TOOD (Task Object Oriented 
Design), used for the development of an 
interactive system. This approach is based on a 
formal notation, which gives quantitative results 
which may be checked by designers and which 
provide the possibility of performing 
mathematical verifications on the models. The 
modelling formalism is based on the joint use of 
the object approach and of high level Petri nets. 
The concepts borrowed from the object 
approach make it possible to describe the static 
aspect of tasks and the Petri nets enable the 
description of dynamics and behaviour. We also 
describe a software aid tool for the manipulation 
of these models, which allow the edition and the 
simulation of a task model. In order to facilitate 
comprehension of the method, an extremely 
simple example of procedure used in missile 
firing management will be given. 

3 Introduction 

Several research projects have been dedicated to the 
modelling of user tasks in the field of interactive system 
design (see, for example, the work concentrating on the 
following methods: MAD [ 1], DIANE [ 2], GOMS [ 3], 
TKS [ 4], Action Theory [ 5]) However, their actual use is 
far from being a widespread practice. One of the possible 
reasons for this is that they do not use truly formal 
methods, which make it possible to provide the task 
models with concision, coherence and non-ambiguity [ 6]. 
What is more, these projects suffer from their lack of 
integration into a global design process covering the 
entire lifecycle of the HCI and also from the lack of 
modelling support software. In order to overcome these 
problems, current research projects are oriented towards a 
methodological framework which covers from the first 

activity analysis stage up to the stage of the detailed 
specification of the HCI: The methods MAD* [ 8], 
DIANE+ [ 9], GLADIS ++ [ 7], ADEPT [ 10], TRIDENT 
[ 11] [ 12] go in this direction. These design methodologies 
are based on several models (task model, user model, 
interface model) and are aided by tools for the 
implementation of these models. 
Our research work falls into this category, whilst placing 
the emphasis on the formal aspects of model 
representation and their transformation throughout the 
stages of the design process. The TOOD method is based 
on the representation that the user has of the task, apart 
from considerations of computer processing. It uses the 
object approach and the object Petri nets to describe, on 
the one hand, the functional aspects and the dynamics of 
the user tasks, and on the other hand the behavioural 
aspects of the HCI and of the user in order to specify how 
the tasks are performed. Its formalism aims at covering 
the entire development cycle from the analysis of what 
exists, up to the detailed design and implementation. 
In this paper, we will restrict ourselves to presenting just 
the stage of task modelling using TOOD; the reader will 
find a more detailed description of the method in [ 13]. 
This description is illustrated by an example concerning a 
missile firing management task. Explanations on 
supporting software for TOOD are also provided. 

4 TOOD Development Cycle 

The TOOD design process can be divided into four major 
stages, Figure 1: 

• The analysis of the existent system and of the 
need is based on its user’s activity and it forms 
the entry point and the basis for any new 
designs. 

• The Functional Task Model (FTM) concerns 
the description of the user tasks of the system to 
be designed. It makes it possible to describe the 
user task in a coherent and complete way. Two 
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models are created at this level: the Static 
Functional Task Model (SFTM) and the 
Dynamic Functional Task Model (DFTM), in 
order to be able to use it for the HCI 
specification. 

• The Operational Model (OM) makes it possible 
to specify the HCI objects in a Local Interface 
Model (LIM), as well as the user procedures in 
a User Model (UM) of the system to be 
designed. It uses the needs and the 
characteristics of the functional task model in 
order to result in an Abstract Interface Model 
(AIM) which is compatible with the user’s 
objectives and procedures. 

• The Creation of the HCI concerns the computer 
implementation of the specifications resulting 
from the previous stage, supported by the multi-
agent software architecture defined in the 
Interface Implementation Model (IIM). 
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Figure 1: TOOD Method Development Cycle 

The TOOD method is supported by an editor 
developed in Visual C++. It makes model capture and 
syntactic checking easier. Moreover, it supports the test 
and simulation activities of the dynamic task model. 
Examples of screen pages are given later by illustrating 
them with models, which come from a description of 
tasks relating to missile firing management. The analysis 
of what exists and of firing management needs show that 
the pilot of a bomber must be able to select a bomb, a 
point (PE) at which the bomb is situated on the aircraft 
and finally the explosion mode for this bomb (rocket). He 
must also choose the operational options for the execution 
of his fire. There is no preferential order for the 
performance of tasks. 

5 Functional Task Model (FTM) 

From the analysis of what exists and of the need, the main 
aim of the FTM is to establish a coherent and complete 
description of the “future” user task, firstly in a functional 

form (Static Functional Task Model, SFTM), and also in 
the dynamic form (Dynamic Functional Task Model, 
DFTM) in order to use it for the conceptual specification 
of the interface. 
This model, like MAD [ 1], is designed as a means to take 
the user and his task into account as early as possible in 
the cycle. The aim is to provide the development teams 
with a methodological tool, which will allow them to 
isolate the user task information necessary for the formal 
design of interfaces in order to allow a more natural 
integration into the logical development cycle. The 
construction of the functional model is based on four 
iterative stages: 
1. Hierarchical breakdown of the tasks. 
2. Identification of the describer objects. 
3. Definition of the dynamics of the elementary and 

control tasks. 
4. Integration of task interruptions. 

1.1 Static Functional Task Model (SFTM) 

The Functional model enables the breakdown of the 
user’s stipulated work with the interactive system into 
significant elements, called tasks. Each task is considered 
as being an autonomous entity corresponding to a goal or 
to a sub-goal, which can be situated at various 
hierarchical levels. This goal remains unchanged in the 
various work situations. In order to perfect this definition, 
TOOD formalises the concept of tasks using an object 
representation model, in which the task can be seen as an 
Object, an instance of the Task Class. This representation 
consequently attempts to model the task class by a generic 
structure of coherent and robust data, making it possible 
to describe and organise the information necessary for the 
identification and performance of each task. 
Two types of graphic and textual document, as is shown 
in Figure 2 define each task class. 

Name : T111 : -----
Description : -----
Decomposed from : T11 :

 into :
- T1111 : ------
- T1112 : ------
- T1113 : ------

Triggers :
- E111-1 : -----

Controls :
- C111-1 : -----
- C111-2 : ----

Input :
- I111-1 : -----
- I111-2 : -----

Output:
- O111-1 : -----
- O111-2 : -----

Reactions :
- R111-1 :-----

Resources :
- M-1 : -----
- M-3 : -----
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Figure 2: Graphic and textual document of a task class 

The task class is studied as an entity formed using four 
different describers: the Input Interface, the Output 
Interface, the Resources and the Body. We also associate 
a certain number of identifiers to these describers, which 
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make it possible to distinguish the Task Class amongst 
the others: Name, Goal, Index, Type and Hierarchy, 
Table 1:. This parallel with software engineering 
guarantees a strong link between a user-centred 
specification based on ergonomic models and the 
software design based on the object model.  
 
Attributes Description 
Name Action verb followed by a complement (object 

treated by the task), reflecting the treatment to be 
performed by the task. It is preferable for the name 
to include vocabulary used by the users in order to 
respect the terminology during the development of 
the interface. 

Goal Explanation in natural language of the goal which 
the user or application wishes to reach via the task. 

Index Formal identifier of the task formed using the 
number of the master task, to which the sequential 
number corresponding to the said task is added. 

Type Nature of the task, it designates its category: 
human, automatic or interactive. 

Hierarchy Number of task classes composing it; it is 
represented by a series of small squares. 

Triggers Events which bring about the performance of the 
task. They are classed into two categories : 
Formal or explicit trigger events, which 
correspond to external triggers. They appear in an 
observable way in the work environment 
(information on screen, press on a button, 
communication, …). The tasks triggered by this 
type of event are considered, as being compulsory 
that is their performance is vital. 
Informal or implicit trigger events, which 
correspond to triggers, brought about following a 
user decision, from a set of information 
characterising its work situation. Unlike the formal 
events, they are not visible to an outside observer, 
but may be expressed verbally. 

Contextual 
conditions 

Information which must be checked during the 
performance of the task. These conditions affect 
the way in which the task is performed. 

Input data Information necessary during the performance of 
the task.  

Reactions Results produced by the performance of the task. 
Their content indicates the following type of 
modification : 
− Physical and, in this case, it indicates the 
modification of the environment (applicative 
call, change of state, …). 
− Mental, indicating the modification or a new 
representation of the situation by the user. 
The Reactions thus determine whether the aims 
are attained or not and, in such a case, the task will 
be repeated after a possible development of the 
situation. 

Output data Data transformed or created by the performance of 
the task. 

Resources Human users and/or interaction system entities 
involved in the performance of the task 

Body Central unit of the task class. For intermediate or 
hierarchical tasks, it gives the task procedure 
diagram, that is to say the logical and temporal 
relations of the sub-tasks. These relations reflect, 
in a certain way, the user’s work organisation. On 
the other hand, for terminal tasks, it defines the 
action procedures for the HCI/user couple. The 
specification for these procedures is produced in 
the task operational model.  

Table 1: Task class identifiers 

The resources, and the information from the input and 
output interfaces are modelled by objects, called 
“describer objects”, instances of describer classes. These 
objects, from a computing point of view, represent the 
components of a task class (Figure 3), whereas from a 
user point of view, they constitute the mental image of the 
entities manipulated in a task. They will thus have a final 
image in the interactive system.  
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Figure 3 : Describer object Class hierarchy 

These describer classes are defined by: 
• Name: identification of the class. Each 

specialised class bears a name, which defines the 
nature of its specialisation. 

• Index: formally references the object. 
• Description: Explanation of the object’s role in 

natural language. 
• Attribute: indicates the characteristics, which 

one wishes to model with reference to objects in 
the real world. 
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T11 Select α

E11-1
Description: T rigger of
manual selection bomb
Attribute: Selector α
Priority: 1
Nature: usual

R11-1
Description:Flag
indicates bomb selected
Attribute: Bomb.active
Nature: physique

O11-1
Description: Bomb
selected
Attribute: Bomb

C11-1
Description: Point at
which the bomb is
located on the fly
Attribute: point

C11-2
Description: Indication of
presence β
Attribute:Sensorβ .present

C11-3
Description: Indication of
presence τ
Attribute: Sensorτ.present

I11-1
Description: Tension of β
Attribute Sensorβ .tension

I11-2
Description: Tension of τ
Attribute: Sensorτ.tension

C11-4
Description: Current
selection mode
Attribute: M ode.courant

O11-2
Description: Tension of β
Attribute: Sensorβ .tension

O11-3
Description: Tension of τ
Attribute: Sensorτ.tension

M 11-1
Description: Pilot
Attribute:
Role: Human

M 11-2
Description: Bomb
selection Zone
Attribute:
Bomb_Selection_Zone
role: material

 

Figure 4: Identification of the Describer objects 

Figure 4 gives the identification of the describer 
objects in the task class “Select a bomb α”. In this 
example, the trigger class E11-1 characterises a manual 
bomb selection event. A real object,  “Selector α” of 
boolean type, selector on/off corresponds to the 
attribute of this class. 

5.2 Hierarchical breakdown 

The construction of the task model structure is guided by 
user aims. This construction is based on the current tasks, 
which are translated and organised progressively into a 
new task, which reflects another way of working. This 
imagined manner could bring new tasks to light, a new 
functional distribution and new user roles. A graphic 
editor, Figure 5, facilitates these stages in the elaboration 
of task diagrams. The editor is divided into three zones: 
Menu bar, command buttons, and the task edition zone. 
Both the menu bar and the command buttons are divided 
into five groups: saving functions, edition functions (cut, 
copy, stick), help functions, FTM editing functions and 
finally the operational model construction functions. To 
start, all of the tasks identified are entered. Then, we 
define the inter-task links, which express the information 
flow between the tasks, which follow on from one 
another. For each task, we make an inventory of all the 
describer objects used for each task. First, the describer 
objects for the master task are entered, progressing 
towards the sheet tasks, and thus creating a database at 
the same time. The breakdown is presented firstly during 
the specification of the describer objects for each task 
(window, specification, specified task thumbnail, Figure 
5), and then in diagrams which make it possible to define 
inter-task links (edition zone, Figure 5). In this way, it 
constitutes the static model (SFTM). 

 

 
Figure 5: Task editor. 

In our example of missile firing management, the task 
graph is made up of a root task, “Perform firing 
management”, broken down into two parallel sub-tasks, 
“Prepare firing options” and “Prepare firing management 
options”, associated to the user’s aims. The task “Select a 
point” is made up of two elementary tasks, “Select point 
automatically” and “Select point manually”, which 
correspond to two distinct user strategies for choosing the 
point. In this example, the task class “Prepare firing 
options” may be activated by five trigger events which all 
correspond to events in the master control task T0. The 
trigger class E1-1 characterises an event of manual bomb 
selection. 

1.2 Dynamic Functional Task Model (DFTM) 

The dynamic Functional task model (DFTM) aims at 
integrating the temporal dimension (sequencing, 
synchronisation, concurrency, and interruption) by 
completing the static model. The dynamic behaviour of 
tasks is defined by a control structure, called TCS (Task 
Control Structure), based on an object Petri net (RPO) 
[ 14], Figure 6. It is merely the transformation of the static 
structure. This TCS describes the consumption of the 
input interface’s describer objects, the task activity, the 
release of describer objects from the output interface as 
well as the resource occupation. 
Each TCS has an input transition t1 and an output 
transition t2 made up of a selection part and an action 
part. The functions associated to each transition allow the 
selection of objects and define their distribution in 
relation to the task activity. 
The selection part of transition t1 is made up of three 
functions: δ, β, χ 
• Priority function δ makes it possible to select the 

highest priority trigger for the task. This function is 
at the basis of the interruption system. It allows the 
initiation of a task performance, even if another 
lower priority task is being carried out. However, 
the performance of the task in relation to this trigger 
remains subject to the verification of the 
completeness and coherence functions. 



PIC'2001 - UMIST, Manchester, UK: 19 – 21 June 2001 
_________________________________________________________________________________________________ 

- 5 / 7 - 

• Completeness function β checks the presence of all 
the describer objects relating to an observed event, 
that is to say the input data, the control data and the 
resources used to activate the task class in relation 
to a given trigger event. 

• Coherence function χ assesses the admissibility of 
these describers in relation to the conditions 
envisaged for the task. As in [ 8], this function is a 
set of verification rules which use simple logical or 
mathematical type operators and which obey a 
unique syntax making their formulation possible. 

The selection part of transition t2 has a completeness 
function ρ which checks the presence of output data and 
resources associated to the reactions released by the body 
of the task. 

The hierarchical tasks are considered to be control tasks 
for the tasks, which compose them. Consequently, the 
action parts of the input and output transitions of their 
TCS possess respectively an emission function φ and a 
synchronisation function σ. Function φ defines the 
emission rules (constructors of the input transition) for 
transition t1, for the activation of the sub-tasks, as well as 
the distribution of data consumed by these sub-tasks. 
Function σ defines the synchronisation rules 
(constructors of the output transition) for the sub-tasks. 
These rules are defined in Table 2. 
 Constructo

r 
Symbol Transition Order 

of 
priority 

Shar
ing 
of 

reso
urce 

Description 

Junction et 
Distribution 
(simultaneity
) Ej

j=[1…n]

 

E j
j =1

j = n

∏ Cst No 

n tasks are 
performed at the 
same time by m 
different 
resources. The 
same trigger or 
else by different 
triggers these 
tasks. 

Transfer (Or) 

j=[1…n]Ej

Yes Yes n tasks are 
performed in 
order of trigger 
priority. The 
tasks share data 
and resources. 
These tasks can 
be interrupted In

pu
t T

ra
ns

iti
on

 

Transfer with 
condition 

j=[1…n]Ej

Condition (C
Ej &
Cnd

Yes - n tasks are 
performed in 
order of trigger 
priority which 
will satisfy 
certain 
conditions. The 
tasks share data 
and resources. 
These tasks can 
be interrupted. 

Transfer 
alternative 

Ej

Yes - One single task 
is triggered. The 
triggers are 
similar, but only 
one is taken 
according to the 
context. 

Synchronisati
on 

Rj
j=[1…n

- - n sub-tasks must 
be finished so 
that the 
management task 
may be finished. 
The management 
task releases 
either Rj 
reactions or new 
reactions. 

Or 
j=[1…n]Ej

  The management 
task is finished 
when at least one 
of these sub-
tasks is finished. 

O
ut

pu
t T

ra
ns

iti
on

 

Alternative 
Ej

- - The management 
task is finished 
when only one of 
its “daughter” 
tasks is finished. 

Table 2: Constructors of the input transition and 
Constructors of the output transition. 

Figure 6 presents the TCS of the “Prepare the firing 
options” control task. For transition t1, the priority 
function is δ = (E1-1, E1-2, E1-3, E1-4, E1-5). The 
completeness function for the trigger E1-1 : "Bomb 
selector α" is :β(E1-1) = <C1-1, C1-2, C1-3, C1-4, I1-1, I1-2, M1-
1, M1-2>. The coherence rule χ(E1-3) = (I1-1 = AUTO) 
specifies the constraint, which the management system 
must have initially: automatic mode to change to manual 
point selection. Task T1 can finish in relation to R1-
1:"bomb selected". This result must be accompanied by 
output data and resources specified by ρ(R1-1) =<O1-1, 
O1-2, O1-3, M1-1, M1-2> Finally, the emission and 
synchronisation functions indicate that task T1 is 
performed via three sub-tasks T11, T12, T13 carried out 
in parallel according to their trigger priority (constructor 
Or). The pilot can therefore "choose a bomb α", "select a 
point", or "select a rocket" in any order. It may be noted 
that task T12 "select a point" can be carried out in relation 
to three alternative triggers (alternative constructor); 
indeed, the choice of point is made in an way which is 
exclusive of the system initialisation, or during the 
preparation of another fire by the system during automatic 
selection or by the pilot during manual selection. Finally, 
control task T1 finishes either when the bomb is selected 
manually or automatically by the system (alternative 
constructor and synchronisation constructor). 
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Figure 6: TCS Task Control Structure 

In order to guide the designer during the specification 
stages, we propose a mechanism to model task 
interruption. Few methods make it possible to formalise 
task interruption; [ 15] presents a model of the 
interruptions based on Petri nets as a complement to 
MAD and UAN. The advantage of our method is that it 
completes the TCS with the interruption mechanism 
whilst maintaining the same formalism (Figure 7). This 
makes it possible to model the interruption of a task. An 
interruption takes place when a new higher priority 
trigger requires the performance of a task whose 
resources are being used by another lower priority task. 
At that moment, the task being performed goes into a 
suspended state (P8) and releases its resources. The high 
priority task is thus carried out. Once this task is finished 
and the resources are free once again, the performance of 
the suspended task is resumed according to three possible 
cases: at the beginning, at the point at which it stopped, or 
at the end when it is abandoned. 

O
P6P7

P1P2P3

P4 P5

t1

t2

<C>
<M>

<R><O>

<E><I>

<M>

<E,C,I,M>

<E,C,I,M>

<E,C,I><M>

<M>
<E,C,I>

<E>

<E,C,I>

S
elect the em

port point

//TRIGGERS
E12-1: E0-2: Init
E12-2: E0-3: Selector MAN
E12-3: E0-4: Selector AUTO
//CONTROLS

//INPUT
I12-1: I0-3: Current selection mode
I12-2: I0-4: Current emport point
//MEANS
M12-1: M0-1: Pilot
M12-2: M0-3: Application
M12-3: M0-4: Zone selection point emport

//TCS
δ: sup(E12-1, E12-2, E12-3)

β: β(E12-1) = <I12-1, I12-2, M12-2, M12-3>
β(E12-2) = <I12-1, I12-2, M12-1, M12-3>
β(E12-3) = <I12-1, I12-2, M12-1, M12-3>

χ: χ(E12-2) = (I12-1 = AUTO)
χ(E12-3) = (I12-1 = MAN)

ρ: ρ(R12-1) = <O12-1, O12-2, M12-2, M12-3>
ρ(R12-2) = <O12-1, O12-2, M12-1, M12-2>

σ: R12-1 ⊕ R12-2
}

 

Figure 7: Interruption structure 

The Figure 7 presents the interruption structure of the task 
"Select the point". The “Select the point” task may be 
performed manually or automatically. However, the pilot 
can, during manual selection, change to automatic mode. 
Automatic selection has priority over manual selection. 
This is modelled firstly by giving higher priority to 
trigger E12-3 relating to the automatic selector, and also 
by completing the TCS with an interruption structure.  
The editor also allows the capture of the DFTM. The 
designer must then enter the information in the TCS on 
each of the tasks previously edited. For each TCS, it is 
necessary to indicate the distribution of input, controls 
and resources in relation to the trigger event as well as the 
release of output and resources in relation to each reaction 
(Implantation of the TCS, Figure 8). 

 
Figure 8: TCS Simulation 

For the task “prepare the firing options”, the 
completeness function of the trigger E1-1: "Bomb 
selector α" is: β(E1-1) = <C1-1, C1-2, C1-3, C1-4, I1-1, 
I1-2, M1-1, M1-2> with C1-1 = current point, C1-2 = 
Sensor β present, C1-3 = Sensor t present, C1-4 = Current 
selection mode, I1-1 = Tension of sensor b, I1-2 = 
Tension of sensor t, M1-1 = Pilot, M1-2 = Bomb 
selection zone α. The user must then define the initial 
marking of the root task and launch the simulation of his 
scenario. 
It is also possible, if necessary to enter the coherence 
rules for transition t1 of the TCS. The simulator makes it 
possible to observe the behaviour of the description such 
as it has been modelled under conditions described at the 
beginning of the simulation: it is a matter of establishing a 
scenario which allows the exploitation of different work 
situations by informing the initial marking window of the 
root task. 

3 Operational Model (OM) 

The aim of the operational model is the specification of 
the user interface to a high level of abstraction. In order to 
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achieve this, it defines the interaction between the User 
Model (UM) and the Local Interface Model (LIM), for 
each terminal task, in terms of objects, actions, states and 
control structure, Fig.1. An aggregation process of all the 
LIMs in the Abstract Interface Model (AIM) specifies the 
description of the final interface. 
The Interface Implementation Model (IIM) is the low-
level specification of the presentation of the final 
interface in multi-agent software architecture of the PAC-
AMODEUS type. The implementation of this model is 
carried out by the translation of identified agents into 
terms of objects, states, actions, and chaining of the 
abstract model in the form of screens, menus, windows, 
icons based on a set of ergonomic criteria and 
recommendations [ 16], guidelines [ 12] and heuristics 
[ 17]. For more information on the operational model, the 
reader may refer to [ 18]. 

4 Conclusion 

The use of the object oriented approach and object Petri 
nets presents several advantages for the modelling of the 
user task. Indeed, the TOOD task model, through its static 
and dynamic description, allows the modularity of 
specifications, the expression of interruptions and 
concurrency. The addition of describer objects to the task 
entity enables a connection to a programming language, 
which simplifies the passage to implementation. 
Moreover, the TOOD method can contribute towards 
helping with communication between the different actors 
in the design process through its formal description. 
Because of lack of space, we have not approached the 
operational model, which leads to the specification of the 
HCI in this paper. This model is designed in continuity 
with the Functional model using the same formalisms, 
which favours the semantic stability of the TOOD 
method. 
We are currently developing a software tool, which will 
support the TOOD method. The part concerning the 
Functional model of the task is finished. We still have to 
provide software tools for the operational model in order 
to facilitate automatic HCI generation.  
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